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Max Planck model with missing data. The hole is inpainted by copying appropriate fragments of other parts of the object to the hole region.

Abstract
Inpainting is a well-known technique in the context of image and art restoration, where paint losses are filled up
to the level of the surrounding paint and then coloured to match. Analogue tasks can be found in 3D geometry
processing, as digital representations of real-world objects often contain holes, due to hindrances during data
acquisition or as a consequence of interactive modelling operations. In this paper we present a novel approach to
automatically fill-in holes in structured surfaces where smooth hole filling is not sufficient. Previous approaches
inspired by texture synthesis algorithms require specific spatial structures to identify holes and possible candidate
fragments to be copied to defective regions. Consequently, the results depend heavily on the choice and location
of these auxiliary structures, such that for instance symmetries are not reconstructed faithfully. In contrast, our
approach is based on local neighbourhoods and therefore insensitive with respect to similarity transformations. We
use so-called guidance surfaces to guide and prioritise the atomic filling operations, such that even non-trivial and
larger holes can be filled consistently. The guidance surfaces are automatically computed and iteratively updated
during the filling process, but can also incorporate any additional information about the surface, if available.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Comp. Geometry and Object Modeling]:

1. Introduction

Creating digital 3D copies of real-life objects is becoming
a standard procedure for various application fields - rang-
ing from cultural heritage applications and medicine to au-
tomotive, artistic, and entertainment industries. Despite all
technological progress, models resulting even from the most
careful acquisition process are generally incomplete, due to
occlusion, the object’s material properties or spatial con-
straints during recording (among others), i.e. they contain
undersampled regions and/or holes. In some applications,
holes are also deliberately introduced into an object, as re-
moving damaged, undesired or unnecessary parts of an ob-
ject is an important tool in interactive modelling.
In order to derive complete and visually appealing models,

these holes have to be filled plausibly, i.e. the basic geom-
etry has to be smoothly patched and the (unknown, yet as-
sumed) detail geometry has to be restored or extrapolated,
taking into account the context of the object. That this ill-
posed task has hope of being solved at all is based on the
observation that real-life objects often exhibit a high degree
of coherence in the sense that for missing parts one can find
similar regions on the object. This observation has been ex-
ploited extensively in the field of 2D texture synthesis and
disocclusion, and also in 3D surface completion. The prob-
lem with previous approaches, though, is that they require
specific spatial structures to identify holes and possible can-
didate fragments to be copied to defective regions. Conse-
quently, the results depend heavily on the choice and loca-
tion of these auxiliary structures. In contrast, we propose
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in this paper a surface inpainting method that analyses the
neighbourhood of a hole, finds best matching local neigh-
bourhood patches represented in local frames (the 3D ana-
logue to what is called a fragment in image processing), and
fills the hole with copies of these. By finding best matches
hierarchically on several scales, the hole is filled in confor-
mance with the context with respect to all considered scales.
The two key challenges for such a 3D fragment-based ap-
proach are

• to identify symmetry, similarity and coherence relation-
ships in the scene or on the object

• to exploit these relationships to inpaint surface regions.

Before we describe in detail how these challenges can be
tackled, we’ll shortly review the relevant literature in the fol-
lowing section, covering the inspiring works on 2D image
processing, but also previous approaches to automatic hole
filling for boundary representations in 3D. Then we describe
our algorithm in a one-level, non-hierarchical way in sec-
tion 4, and extend the algorithm in section 5 to exploit Guid-
ance Surfaces in a multi-scale approach.

2. Previous Work

The work most relevant for our paper can be subdivided into
two basic categories, 2D image completion and 3D surface
completion.

2.1. Image Completion

Image completion aims at filling-in holes in an image that
are generated erasing defective, damaged or undesired parts
of an image, by extending information available in the re-
maining image. Here, in addition to the overall visual prop-
erties of the image, the larger and highly irregular structures
of the image have to be preserved. With this requirement
in mind, Ballester et al. [BBC∗01] fill images by explicitly
propagating lines of equal brightness (so-called isophotes)
by solving variational problems, whereas Jia et al. [JT03]
segment the image and propagate segment borders into the
hole region, before filling colours in a pixel-based approach.
Using isophote-propagation to guide what is otherwise a
pure texture synthesis approach, Criminisi et al. [CPT03]
presented an approach that is similar to ours in the sense
that, in order to propagate larger scale structures to hole re-
gions, we also prioritise our hole filling steps according to
the detection of feature lines on the surface – lines that can
be considered as the 3D analogue to isophotes in images.
Our approach also benefits from work presented by Drori
et al. [DCOY03], who assign iteratively updated confidence
values to each pixel in the image and exploit these confi-
dence values for guiding the filling steps.

2.2. Surface Completion

As 3D data-acquisition generally leads to incomplete sur-
faces, the need to fill holes in 3D surfaces is traditionally
part of surface reconstruction algorithms (see [CL96] as an

l = 0, . . . ,L Hierarchy level (L for coarsest)

P l = {pl
i} Point sets (hierarchy level l)

Bl = {bl
i} ⊂ P l Sets of border points

Cl = {cl
i} ⊂ P l \Bl Candidate sets

α : P l 7→ [0,1] Confidence value

N (pl
i)⊂ P l Local neighbourhood of p

Gl Guidance surface

n,nl Number of points in P l

N Number of points in the descriptor

χ : P l →RN Descriptor

Table 1: Notation and Symbols

example), but has also achieved recent research attention in
its own right [DMGL02, VCBS03, Lie03, CDD∗04].
Lifting the 2D-surface into a 3D volumetric representation,
Davis et al. [DMGL02] extend a signed distance function
that is initially only defined close to the known surface to the
complete space using volumetric diffusion, thereby complet-
ing the surface even for non-trivial hole boundaries. Clarenz
et al. [CDD∗04] cover surface holes minimising Willmore
energy functionals, leading to smooth surface patches with
guaranteed continuity properties.

Smooth completion is also the result of very recently pub-
lished hole filling algorithms, where templates – constructed
from some known basis mesh [KS05] or from a partly man-
ual selection from a shape data base [PMG∗05] – have been
exploited.

In some applications, however, smooth filling of holes is
not sufficient; this is particularly the case in cultural her-
itage applications, where virtual museums require visual
appealing reconstructions of cultural heritage objects. In
such applications, so-called surface inpainting algorithms
are needed that do not only reconstruct the basic geome-
try of the defective object, but also their fine scale geomet-
ric features. Although the problem of completing 2D images
appears conceptually almost identical to completing 2D sur-
faces in 3D, transferring successful techniques from image
completion to 3D is far from trivial. The lack of a regular
grid deprives us from the universal parameter domain that
is so extensively exploited in 2D image processing. As a
consequence, already the construction of multi-scale hier-
archies representing different frequency bands – apparently
a key ingredient to many image completion approaches –
proves to be challenging, as the vertices’ positions at the
same time encode both, signal and domain of the function to
be analysed [GSS99, Tau95, PG01]. To our best knowledge,
there are yet only few publications that address the prob-
lem of detail preserving during hole filling [SK02,SACO04].
Adapting technologies from exemplar-based image synthe-
sis methods and similar in concept to our approach, Sharf et
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Fill (Point Set Hierarchy PL, . . . ,P0)

compute initial guidance surface GL [optional]
for all l = L, . . . ,0 do
Bl ← find boundary points in P l

Cl ← find candidate points in P l

compute descriptors χ(Cl) and χ(Bl) using Gl

Q← prioritise Bl

whileQ not empty do
b← top(Q)
find best matching candidate c ∈ Cl

copyN (c) toN (b)
update Bl andQ

end while
Gl−1←MLS(P l)

end for

al. [SACO04] fill holes by copying existing surface patches
from the object to the hole region. The fundamental problem
of this algorithm is that it is completely octree-based: Holes
in the surface are detected by checking for near-empty oc-
tree cells, different scales in their hierarchical approach are
represented through octree levels, descriptors are based on a
regular sampling of a distance field, and, most importantly,
patches to be copied can be generated from other octree cells
only. As a consequence, even perfectly symmetrical objects
can only be reconstructed if the symmetry axis of a symmet-
rical feature happens to coincide with an octree axis (or one
of the considered, discrete rotations thereof). Furthermore,
due to the resulting non-invariance with respect to rotation,
translation and scaling, very careful parameter tuning is re-
quired to successfully reconstruct real-world examples.

3. Overview and Terminology

Given a point set P ⊂ R3 representing a manifold surface,
the goal of our algorithm is to fill any existing holes plau-
sibly, i.e. taking into account the object’s local and global
context. This goal is achieved by first identifying Boundary
Points, i.e. points that are close to regions in the point set
with insufficient sampling, and then by copying appropriate
local neighbourhood patches (so-called fragments) from a
candidate set to the hole region. This way the hole is itera-
tively closed. As newly inserted points influence later filling
steps, we assign to every point in the point set a confidence
value, which is equal to 1 for all points in the original point
set and is in the interval [0,1) for inserted points. By these
means, we are able to evaluate each point’s confidence and
adjust its influence on the algorithm appropriately.
In accordance with the terminology in texture synthesis ap-
proaches, we call the regions close to insufficient sampling
Target Fragments and regions from where points to be in-
serted are drawn are called Source or Candidate Fragments.
With the notation given in table 1, the basic workflow of our
algorithm can best be seen in pseudo-code (top of the page).
The overall approach is hierarchical, i.e. it reconstructs the

surface in the hole region on coarse scales first and exploits
the result to derive the guidance function for the next levels.
Hence, the first step in our algorithm is to compute a point
set hierarchy, consisting of L point sets P0, . . . ,PL, where
P0 is the original point set andP1, . . . ,PL are smoothed and
(optionally) subsampled copies thereof. For clarity of pre-
sentation, though, we describe a non-hierarchical, 1-level-
formulation of our approach first, before we motivate and
present the hierarchical formulation in section 5.

4. Non-Hierarchical Formulation

Suppose we are given a point set P = {p1, . . . ,pn} ⊂ R3.
Following the notion from 2D-image synthesis, we define
for every point p ∈ P in conjunction with a local frame
Fp and a radius ρ ∈ R a corresponding surface fragment
Nρ(p)⊂ P as

Nρ(p) = { pi ∈ P | d(p,q(pi))≤ ρ } ,

where q(pi) is the projection of pi into the plane defined by
Fp (see fig. 1). In order to establish the defining local frame,
we take the best fitting plane to the k nearest neighbours of
p, as suggested in [HDD∗92], and use it as parameter plane
for the fragment and its normal as surface normal in p. Given
this frame, the points in the fragment can efficiently be col-
lected traversing a proximity graph as suggested in [KZ04].
Please note that we use the terms fragment and local neigh-
bourhood synonymously throughout this paper, and that we
suppress the index ρ in unambiguous cases, as we do with
the index l.

Figure 1: Illustration of a local point set neighbourhood
(triangulated for display purposes, centre) and its regularly
resampled counterpart (left). Hole regions in the original
surface (red square) lead to invalid descriptor components
(coloured in red).

4.1. Neighbourhood Descriptors

Unlike 2D image fragments, 3D surface fragments consti-
tute an irregular and unstructured sampling of a surface.
As a consequence, there is no canonic distance measure to
quantify the alikeness of two fragments. Therefore, a neigh-
bourhood descriptor (together with a corresponding distance
function) has to be defined. In a recent approach, Zelinka et
al. [ZG04] have shown so-called Geodesic Fans to faithfully
identify regions on a surface that are geometrically similar.
Their descriptor is a vector of N discrete samples of one or
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Figure 2: Descriptor layout. Left: The number of sample
points per ring grows linear with respect to its length, i.e.
the sampling rate for each ring is identical (Four samples
per 2πr in the depicted case). Centre: Descriptor as sug-
gested in [ZG04]; here, the number of sample points per ring
is constant, such that the sampling rate decreases linearly.
Right: 3D illustration of the local resampling.

several signals defined on the surface. The samples are taken
at N fixed sample positions according to some sampling pat-
tern given in geodesic polar coordinates (fig. 2, middle).
Dealing with point sets, the computation of geodesics is an

ill-defined and expensive operation. Nevertheless, we adopt
the geodesic fan approach to our setting by deriving a locally
regular resampling of the point cloud that can then be used
to come up with a straight-forward descriptor. To this end,
we choose the sampling pattern depicted in fig. 2 (left) (as it
does not emphasise the regions close to the centre) and in-
terpret these N sample positions as polar coordinates in the
parameter plane described above, scaled to fit into the pa-
rameter domain of the fragment. We define as the fragment
shape descriptor the vector of height values of this local reg-
ular resampling over the parameter plane:

χ(p) =
(
hp

1 , . . . ,hp
N
)t ∈RN .

Please note that although on coarser scales where fragments
are of larger size (see below) a considerable number of
points may have to be resampled, this can be performed
efficiently using natural neighbour interpolation techniques
that are performed directly on the GPU [KEHKL∗99]. Al-
ternatively, interpolated height values for the new sample
points can also be computed quite efficiently by construct-
ing a 2D Delaunay triangulation and using the barycentric
coordinates of the sample positions for interpolation.

An obvious choice for a distance metric on the space of
descriptors would be the weighted Mean Squared Error

δ(χ(p),χ(q)) =
1
N ∑

i
wi||hp

i −hq
i ||

2, (1)

with some appropriate weights wi. However, as the sampling
pattern is uniquely defined only up to the direction of the x-
axis (see fig. 2), we allow for a set of transformations ϕ cor-
responding to discrete rotations and mirroring to be applied
to the descriptor before evaluation of eqn. 1 and perform lin-
ear interpolation along the rings where necessary [ZG04].

Obviously, for some points in the data set, the parameter
domain will stretch into regions containing points with con-

fidence value < 1 (points that have been inpainted in some
previous step) or no points at all. The basic idea is that de-
scriptor values corresponding to these regions should con-
tribute less to the selection of appropriate target-candidate
pairs. This is achieved by setting the weights in eqn. 1 to
wi = αi(p) ·αi(q), where the αi(p) are the interpolated con-
fidence values of the points in N (p). For descriptor values
corresponding to empty regions in N (p) we assign a confi-
dence value of zero.

4.2. 1-Level Inpainting

Before we can start reconstructing the missing surface in
hole regions, we have to detect the hole boundary first. While
trivial in the case of triangle meshes, this boundary detection
is a difficult problem when dealing with point sets. To solve
this, we use the approach very recently presented in [Sch05],
that robustly identifies loops of boundary points. The basic
concept is now to find for every boundary point b∈B an ap-
propriate candidate c ∈ P and to copy its neighbourhood to
the invalid (empty) parts of N (b). To guarantee that invalid
regions in N (b) can indeed be filled with the corresponding
regions in N (c), the candidate set C is built by collecting all
points p ∈ P , whose descriptors do not contain any invalid
components, i.e.

C =
{

c ∈ P | hc
i valid ∀i

}
.

With a suitable candidate set and a discriminative descriptor
at hand, inpainting simply consists of finding the best match-
ing candidate cb for any boundary point b and co-aligning
cb’s local frame with the frame of N (b).
In order to reduce the time required for searching a best
matching candidate, we apply the tree structured vector
quantisation method (TSVQ, [WL00]) to the candidate set.
By means of the TSVQ the search for a best matching can-
didate is significantly accelerated and renders the filling pro-
cedure interactive even for large candidate sets.

In addition to the minimising transformation from sec.
4.1, we also perform one ICP-step for the best matching can-
didate, taking into account the descriptor samples only and
using fixed correspondences in order to compensate for little
deviations that might result from the discreteness of our set
of considered rotations.

Finally, all points from N (c) corresponding to invalid re-
gions in χ(b) are inserted into P , receiving the aggregated
confidence from eqn. 2 of the target descriptor used to com-
pute the match. Afterwards the sets B and C are updated.

4.3. Structure-Driven Inpainting

So far, we have described an algorithm that performs filling
in random order. Analogue to what was noted for images by
Criminisi et al. [CPT03], this often has the adverse effect
that flat surface regions are unduely propagated into the hole
region. Our algorithm tackles this by assigning priority val-
ues to all possible targets and performing a best-first filling
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algorithm. The priority values are computed to favour those
targets which are on the continuation of strong features and
are surrounded by a high confidence neighbourhood.

Unfortunately, feature detection on point sets in itself is a
non-trivial task, let alone in the presence of holes. We there-
fore use a simple heuristic to measure the expressiveness of
a fragment: We compute the standard deviation σ of the de-
scriptor values along the sampling rings depicted in fig. 2.
By means of this criterion, regions of high curvature are pre-
ferred over flat regions. Please note that this criterion is well-
adapted to our hierarchical setting described in sec. 5, as here
the fragment size corresponds to the amount of detail con-
tained in the fragment and therefore σ faithfully encodes the
probability of the presence of a feature on the resp. scale.

The confidence of the neighbourhood is measured by
means of the aggregated confidence value

α(χp) =
1
N ∑

i
α(hp

i ) (2)

that is computed for every target descriptor.
We experimented with several combinations of the two

criteria α and σ to prioritise the filling operations. Accord-
ing to our experiments, a threshold approach performed best:
Among those target descriptors that have the highest confi-
dence value (quantised into ten bins), we choose the one with
highest σ to be filled first. This way, of those target fragments
with a high confidence we favour the most discriminative.

It is worth noting that our algorithm can of course triv-
ially be modified to a semi-automatic approach, where a few
appropriate candidates are suggested to the user, who then
selects the one to be pasted into the target region.

5. Hierarchical Formulation

The essence of exemplar-based completion is to exploit co-
herence and similarity between the region of interest and ap-
propriate candidate regions of the considered object. Geo-
metric properties of the hole region, though, might be rep-
resented in different scales, and in many cases similarity
relations present in different scales correspond to very dif-
ferent regions on the object. It is therefore important to al-
low candidates to stem from the optimal object region per
scale, such that for instance the bunny’s missing left knee
(see figs. 6/7) is reconstructed on coarse levels by copying
the bunny’s right knee, whereas the fur structure, exhibiting
different similarity relations, is reconstructed from various
different locations on the bunny’s back.

Only in the presence of real symmetry, where similarity
on all considered scales happens to relate to the same can-
didate region, the one-level approach described in the pre-
vious section is sufficient. For instance, the missing left eye
and nose region of the Max-Planck-model (as shown on the
title page of this paper) can be reconstructed using trans-
ferred and mirrored copies of parts of the opposite side of the
face. This type of similarity relation ranging over all consid-
ered scales – rarely encountered when dealing with images
– is relevant for large classes of 3D objects. Nevertheless,

Figure 3: David’s head, subsampled to 300000 points, orig-
inal (top left), iteratively smoothed once with k = 100 (top
right), after 5 (bottom left), and 8 iterations (bottom right).
The discs indicate the corresponding neighbourhood size.

in order to handle cases as described above, we propose a
hierarchical, multi-level approach, whose first step is to cre-
ate a point set hierarchy P1, . . . ,PL with according scales
ρ1, . . . ,ρL, each point set representing the (defective) object
and its geometrical properties up to the according scale.

5.1. Creating the Point Set Hierarchy

We approximate the scale-space representation of the input
model by iteratively applying Laplacian smoothing, deriving
coarser and coarser scales, corresponding to ever larger ker-
nel widths. Specifically, to derive P l+1 from P l we compute
new point positions pl+1 = 1

µ ∑
k
j=1 µ jpl

j, as the weighted

mean of all k nearest neighbours pl
j of pl , where µ = ∑ j µ j.

(Actually, we perform the smoothing in direction of the sur-
face normal only, as we wish to smooth the surface itself,
rather than the distribution of sample points in the surface).
This corresponds to smoothing P l with a kernel width of

ρp = max
j=1,...,k

d(p,pl
j).

The average distance to the kth-nearest neighbour

ρ =
1
n ∑ρp

is called the k-Ring Radius and describes a natural size of
the local neighbourhood patches, as it contains all the de-
tail information up to the respective hierarchy level, with all
higher level detail information smoothed out (see fig.3).
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Defective Target Surface Ideal Candidate

original

level h

level h+1

Candidate 
Descriptor
 (level h)

Candidate 
Descriptor
 (level h+1)

Target
Descriptor

 (level h / h+1)

Figure 4: Defective target surface and an ideal candidate
(bold), together with two levels from the scale-space repre-
sentation (dashed, level l+1 filled, level l incomplete). Up-
dating target descriptor values invalid on level l using the
guidance surface from level l+1 leads to a descriptor (bot-
tom left) that is not well comparable with either of the can-
didate descriptors (bottom centre / right).

We are aware that our smoothing scheme has two main draw-
backs: On the one hand, it is a well-known fact that Gaussian
filtering causes shrinkage and ultimately converges to a sin-
gle point — this causes no harm to our method, as all com-
parisons are evaluated on each level separately and conse-
quently any potential shrinkage is cancelled out. On the other
hand, as the points contributing to the new, filtered point po-
sitions are a fixed number of nearest neighbours, the sam-
pling density influences the smoothing. Strictly speaking,
claiming that a certain "scale" is represented in a smoothed
point set, therefore holds only for roughly uniformly sam-
pled point sets.
To address this drawback, more sophisticated filtering meth-
ods could be applied, in the spirit of [KH98, CDR00] or
[Tau95]. However, in our setting the approximated scales are
used to guide the filling process only and therefore our sim-
ple approach proved to be sufficient.

5.2. Multi-Level Inpainting

Based on the point set hierarchy P0, . . . ,PL, we formulate
the inpainting as a bottom-up process, filling the hole in the
coarsest scale representation PL first and then consecutively
on the finer levels up to the finest level P0. In each step
(aside from the first step, where PL is completed using the
non-hierarchical formulation of our algorithm as described
in sec. 4), we use the previous, next coarser level point set
to construct a guidance surface that can be used in the tar-
get descriptors for the filling step on the current level. This
way we can encode hints to the larger scale geometry into
the descriptor components that have been invalid till now
and hence neglected. Let the Guidance Surface Gl be any
implicit representation of the (completed) point set P l+1. In

Target Descriptor (2-Layer) Candidate Descriptor  (2-Layer)

Figure 5: The 2-Layer descriptor for the situation in fig. 4

our approach, we use the zero set of the MLS-approximation
ofP l+1, but any other locally evaluable representation could
also be applied. A straight-forward approach (that would
also resemble comparable approaches in 2D image process-
ing) would then be to assign height values to invalid target
descriptor components by sampling Gl (see fig. 4, bottom
left). This straight-forward approach, however, would have
the adverse effect that even ideal candidates would not be
considered a perfect match. The reason for this is that insert-
ing samples from Gl to the current level’s descriptor inher-
ently causes two scales to be mingled. The resulting hybrid
descriptor – incorporating two scales at the same time – is in
fact comparable to descriptors on neither the current level l
nor the coarser level l+1. This fact is illustrated in fig. 4.

5.3. 2-Layer Descriptor

As a consequence, we define 2-layer descriptors as illus-
trated in fig. 5:

• The bottom layer χl+1, is constructed as described in sec.
4.1, with the exception that height values are derived from
the zero level set of the MLS-approximation of P l+1.

• The top layer χl is constructed using the same parameter
plane and the same sampling pattern, but capturing the
available local geometry from P l only, and assigning zero
confidence to the invalid descriptor components.

The distance function for the two-layer descriptor is then
simply a weighted sum of the distance functions per level:

δ(χ(p),χ(q)) = δ(χl(p),χl(q))+ τ δ(χl+1(p),χl+1(q)).

While the parameter τ is arbitrary in principle, a value of
0.3 has proven to produce good results in our experiments.
In cases where multiple hierarchy levels are reconstructed,
it is advisable to increase τ for finer levels, as they can be
expected to be already a reliable reconstruction.

As stated above, the coarsest level L is filled without guid-
ance (formally setting τ = 0), as there is no previous recon-
struction available for evaluation as guidance surface. Given
that the coarsest level’s scale size corresponds well to the
scale of the hole, this problem is sufficiently well-posed.
However, for very large holes, considerable filtering might
be necessary to this end. In this case a natural and trivial ex-
tension to our algorithm is to use any one of the available
smooth hole filling schemes for the coarsest level and use
the result as guidance surface GL.
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Figure 6: Hierarchical reconstruction of the Stanford Bunny. First, a point set hierarchy (l = 0 to 3) of the defective bunny is
constructed (bottom). Starting with l = 3, each level is filled per-se, where in level l, the level l +1 serves as Guidance Surface.

Figure 7: Reconstruction result. Figure 8: Hierarchical reconstruction of the David Head Model.

6. Results

We applied our fragment-based inpainting algorithm to var-
ious data sets of point sampled geometry. The objects de-
picted in the images of this paper exhibit holes in structured
surface regions and are in addition to this comparably large
in size. Reconstructing the surface for these holes using tra-
ditional smooth hole filling algorithms would have lead to
disturbing visual artifacts.

The figure on the title page illustrates the basic workflow
of our algorithm. For target fragments (illustrated as green
discs) an optimal candidate fragment (red discs) is identi-
fied. The points corresponding to invalid target regions are
pasted into the point set after the according transformations
(translation, rotation, optional mirroring), which are deduced
from the descriptor comparisons, are applied. In near sym-
metric cases like faces, the non-hierarchical formulation of
our algorithm already gives satisfying results, given that the
required scale to cover the hole can be represented without
scale-space segmentation.

Figs. 6 and 7 demonstrate the use of our hierarchical for-
mulation for the exploitation of similarities that are spread
over several scales. Using our approach we were able to re-
construct both the knee as a symmetrical large scale feature
and the fur structure that itself does not exhibit an analogue
symmetry, but is also well presented as a coherent feature on
the surface on finer scales. During the coarse level inpainting
steps, corresponding target-candidate descriptor pairs were
identified. In this example, prioritising the target fragments
for filling according to their discriminativity was particularly
useful. This way, the target regions close to the bunny’s knee

were selected for filling first. During the finer scale filling
operations, the fur structure was transferred to the hole re-
gion from various (other) regions on the bunny’s back.

Also, the david head model from the Michelangelo project
(fig. 8) could not have been filled using a 1-level approach, as
the model itself does not contain appropriate candidates that
correspond to the (unknown) hole regions’ full spectrum of
scales. By filling the hole for coarser regions, representing
the basic geometry, first, and adding more and more detail
with decreasing neighbourhood size at later stages, our al-
gorithm was able to inpaint this hole in a visual believable
way, taking into account the objects global and local context.

In order to assess the influence of the automatically com-
puted guidance surface and the candidate set on the inpaint-
ing results, we reconstructed the bunny data set with the help
of the complete point set itself as guidance surface and can-
didate set. The combination of both, perfect guidance and
perfect candidate set, resulted in the perfect reconstruction of
the bunny (fig. 9). As opposed to that, figs. 6 and 7 show the
hierarchical reconstruction of the incomplete bunny without
any additional knowledge.

7. Conclusions & Future Work

Inspired from exemplar-based techniques in 2D image
processing, we have introduced in this paper a novel method
for the filling of holes in structured point set surfaces. In
order to be able to recognise and exploit similarity and co-
herence properties in the object, we derived target and can-
didate fragments, each living in their specific scale with a
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Figure 9: From left to right: Original Bunny data set, data set with artificially introduced hole, iterative repair steps, resulting
reconstruction. In this example, the candidate set and the guidance surface have been built from the original bunny data set.

Figure 10: Original Aphrodite data set (left), an incomplete scanning session and its iterative completion.

naturally defined fragment size that is well correlated to the
respective scale of the filling operations. In addition to that,
the fragments are defined in local frames, thereby making
our algorithm insensitive to similarity transformations as ro-
tation, translation and scaling.

Being based on a scale-space representation of the object,
our hierarchical algorithm is able to robustly identify and ex-
ploit similarity relations between the region of interest and
possibly various other locations on the surface, depending
on the respective scale.
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