
1 

Real Time Phong Shading 

Ute Claussen 

ABSTRACT Nowadays, hardware support for Gouraud shading is state-of-the-art. Most 
hardware implementations of the Phong shading algorithm lack flexibility, for example 
are restricted in the number of light sources. In this paper, we will present a concept of 
shading processors that has been developed in a rendering system called PROOF. Two 
types of processors have been designed, one performing the normalization of vectors. The 
other one is designed for faster and cheaper shading. The capabilities of the processors 
are demonstrated. 

Introduction 

Hardware implementations of real-time shading algorithms are aiming at Phong shading 
today. Several approaches have been made. 

• 	The 'normal vector shader' developed at Schlumberger [5J. It is restricted to five 
directional light sources and its performance led to 24784 triangles rendered in less 
than 50 ms. The resolution of the screen is 1280 x 1024 pixels. 

• 	The 'fast Phong shading' approach [1]. In principle, the computations of the illu­
mination model and of the shading algorithms are combined into one formula. This 
term then is evaluated as a Taylor series of second order. Hence, rendering can be 
done with two adds per pixel. Unfortunately, a Taylor series should be developed 
for every light source. Furthermore, it is restricted to directional light sources. 

• 	The 'faster Phong shading' by Kuijk and Blake [6J. They propose to interpolate 
angularly along great circles. This is an algorithmic approach that seems to be 
promising to be built in hardware. 

• Another approach has been designed to render bicubic patches 	[11]. The hardware 
consists of adaptive forward differencing units and is also restricted to a single 
directional light source. 

Our approach stands in the framework of the PROOF rendering system that has been 
presented before [3,lOJ. It is a more expensive but more flexible approach to real-time 
Phong shading. 

First, the concept of the processor will be described. Two instantiations of the proces­
sor are developed. Their dataflow and datapaths as well as the algorithms and commands 
that are implemented will be described. Capabilities, the ways and the cost of its use is 
described. An outlook to the future and critical discussion will close the paper. 

http://www.eg.org
http://diglib.eg.org


30 

2 

Table 1. Naming Conventions of this Paper 

Ia ambient intensity 
Ie! intensity of directional light source 
Ip intensity of positional light source 
k" ambient reflection 
kd diffuse reflection 
k. specular reflection 
N surface normal 
L light source vector 
Ii highlight vector 
E eyevector 
P point on a surface 
Pp position of positional light source 
C colour 
P number of positional light sources 
R number of directional sources 

The Processor Concept 

The rendering system PROOF consists of three stages. The object processor pipeline is a 
distributed z-buffer system that solves the hidden surface problem. A second stage, called 
shading stage, calculates the illumination model, if an interpolation of normal vectors 
takes place in the object processor pipeline. The last stage, a filter stage, performs an 
oversampling and filtering of the resulting picture. The object processor pipeline and the 
filter stage have been described before, e.g. in [9,8]. 
A standard illumination model for a Phong shading is de.fined as: 

Camo = kala (1) 

for an ambient light source, 

R 

CdiT 'lJkdh(N. Lei,) + kald,(N. lid,)m] (2) 
1=1 

for all directional light sources, and 

CPOS = t[kdlp,(N' 1}. ~) + k.lp,(N. ~ + 1}1 ~ )m] (3) 
1=1 IPp, - PI IE + PPI - PI 

for all positional light sources [12]. The naming conventions of this paper are described in 
Table 1. Regarding these formulae, it is obvious that a common part of all computations 
is 

C krly(X. Yr. (4) 

Additionally, these terms have to be summed up. 
The basic idea now is to built a processor that computes terms of the form 

lout = lin +kJ(N. At. (5) 



31 

Table 2. Instantiations of k, I, A and x for different types oflight source 

light source 
ambient term 
k I A x 

diffuse term 
k I A x 

specular term 
k I A x 

ambient ka Ia d 0 
directional 
light source kd Id, ld, 1 k. Id! Hdt m 
positional 
light source - kd Ip! d 1 k. Ip, d m 

Table 3. Capabilities of the two versions of the shading processor 


: version II light source model I illumination model I 

I without : ambient , ambient reflection 
: normalization directional : diffuse reflection 
I 

i specular reflection 
including ambient I ambient reflection 

I normalization directional diffuse reflection 

I positional i specular reflection 

The instantiations of k, I, A and x for the different terms of Equations 1-3 are shown in 
Table 2. In addition, the values N, l, H or Pp respectively, and P have to be provided. 

The provision of Nand P is done by the object processor pipeline. This pipeline 
acts as a distributed z-buffer system and linearly interpolates the normal vector N for 
triangles. Consequently, vectors provided from this pipeline and passed on to the shading 
stage are not normalized. 

3 Datapaths and Algorithms 

It has been shown before that the computation of an illumination model without nor­
malization of the interpolated normal can be accepted as a 'cheap' Phong shading [2]. 
Therefore, two versions of the shading processor are proposed: one that includes normal­
ization in its algorithms as well as in its datapaths, and one that doesn't. An overview of 
the resulting capabilities of the processor versions is given in Table 3. 

3.1 Datapaths 

A design for the datapath of the simpler processor can be derived from equation (5). Basic 
functional blocks are dot product computation, vector multiplication, vector addition, and 
a look-up-table for exponentiation (see Figure 1). The intensities as well as the reflection 
and the highlight coefficient are represented as integers whereas vectors are represented 
as 2's-complement fix-point numbers. One of the characteristics of this processor is the 
high compression rate from input to output data. 



32 

Product f-I-...-----1 

~ 
Dot 

Vector 
•Multipli- . 

1 t:Jl
MUX2 ! 

Vector 
Addition24 

o 

Fig. 1. Datapath of the simpler processor. One of the characteristics of the processors is the high com­
pression rate from input to output data 



33 

3.2 Commands 

Though the processor can be implemented in a lot of hardware environments, the following 
descriptions are restricted to its application in PROOF. It can be shown that a pipeline 
of shading processors is optimal concerning this implementation [4]. The first processor 
computes the ambient intensity, hence /;n = 0 and lout = Camb • Afterwards, each couple 
of processors computes the diffuse and the specular colour component for one light source. 
Consequently, for a scene with P positional and R directional light sources, 2(P +R) + 1 
shading processors are needed. 

The processor can act in two modes, a loading mode and a pixel mode. In the loading 
mode, light source data is loaded into the registers of the processor where they remain 
constant during pixel mode. During the pixel mode, object data are passed through the 
pipeline to compute the colour of the object. Loading can be done with the two commands 
define and redefine. Light source data can also be deleted. 

During pixel mode, new pixel, new scanline, and new frame indicate the respective 
change. A fourth command indicates a change of object without changing the pixel. 

3.3 Shadow Polygons 

One sort of objects that can be handled by PROOF are shadow polygons [7]. They don't 
have to be rendered by the shading processor but they influence the rendering of other 
objects. Furthermore, shadow polygons will be removed from the list of objects that are 
passed through the shading stage. 

An object will not be illuminated by a certain light source, if it is inside the shadow 
polyhedron that is generated by the light source. Hence, in each shading processor, it 
has to be determined, if a shadow polygon 'opens' or 'closes' a polyhedron. Therefore, an 
additional counter has been implemented to do this determination. If the counter equals 
zero, the respective object will be illuminated. Otherwise, the current intensity will be 
passed on. 

The extended datapath including this counter and the components for the normal­
ization are shown in Figure 2. An additional vector adder and a look-up-table for the 
computation of l/.../X have been included and the dot product unit is split to make inter­
mediate results available. 

4 Capabilities of the Processors 

The complexity of operations lead to the assumption that the clock frequency of the 
shading processor will be about 20 MHz. The number of cycles that is needed to compute 
the illumination for a certain configuration is listed in Table 4. 

To support real time shading, a huge number of shading processors will be needed. 
This number depends on the number of pixels on the screen (M), the number of light 
sources (P and R), the average number of objects per pixel (0), and the cycle time of 
the shading processors (see Table 5). Here, it is assumed that to preserve the clock rate 
needed in a real time system, parallel pipelines are used. 



34 

vector dot 
addition 

and 
product/ dot 

ubtractio 
multipli­

product/ 

cation 
addition 

E 

48 x 8 
y 
z 

N LUT 
1 

7x 

LUT 
xm 

,
k vector 


multiplication
C): YL.,
and addition ! f-------------------: 

J," : ,h.d~ polygoo : ______ ,l______~~~~~~~______ L_____________________________ _ 

Fig. 2. The extended datapath for the shading processor with normalization and the treatment of shadow 
polygons 



35 

Table 4. Number of cycles that are needed to compute the different components of the illumination 
equation including loading 

processor without including 
normalization normalization 

ambient computation of the 4 4 
ambient component 

light source computation - 6 
of the ambient com­
ponent and normaliza­
tion of the interpo­
lated normal 

i directional diffuse component 6 6 
. light source specular component 7 7 
I positional diffuse component - 12 
! light source specular component - 13 

I all treatment of shadow 2 2 
polygons I 

Table 5. Computation of the number of shading processors needed for a certain configuration. Llt denotes 
the cycle time of a processor, R the number of directional light sources, and P the number of positional 
light sources. 0 denotes the average number of objects per pixel and M the number of pixels per frame. 
The number of frames per second is assumed to be 30. 

IltP;xel 

Ilt tp 

per 

7· o· Ilt 13· o· Ilt 

(14R +4) . o· III (14R+ 26P +6)· Q. Ilt 

3QIMs 

3Q·M·7·Q·C,t~ 
Atdue 

L p(2R + 1) p(2R +2P +1) 



36 

5 

An example demonstrates the number of processors that are needed to perform a 
real-time Phong shading. Assume 30 frames per second and 1 M pixels, hence 

/::;.tdue 33 ns 

which is less than the cycle time of a processor! Compared with the time that is needed 
to render R P = 5 light sources for one pixel (0 3), 

/::;.tpixel = 1950 ns, 

the result is that p ~ 60 parallel pipelines, or 1260 processors would be needed. 

Discussion and Conclusion 

Though the concept of the shading processor developed in this paper seems to be promis­
ing, for example with regard to the hardware support of PRIGS PLUS, its implementation 
in the PROOF environment is quite expensive. Beyond the fact that spot light sources 
cannot be treated, perspective transformation is not handled correctly either. 

Furthermore, it is questionable if the amount of hardware is justifiable if preprocessing 
methods like the highlight shading method could lead to a similar quality without the 
need for any shading stage in the system. 

Last, but not least, in commercially available processors like the Intel i860, most of 
the parts that are needed for the illumination computation are already implemented. 
Furthermore, this processor already is available with a clock frequency of 40 MHz. Con­
sequently, the shading processor can only be seen as a case study, that hopefully leads to 
new concepts for shading hardware. 

Acknowledgements 

This work was partly supported by the Commission of the European Communities through 
the ESPRlT II project 2484, SPIRIT. 

References 

[1] 	 Bishop, G. and Weimer, D. M.: Fast Phong shading. ACM Computer Graphics, 20(4):103-106, 1986. 

[2] 	 Claussen, U.: On reducing the Phong shading method. In F.R.A. Hopgood and W. Stra6er, editors, 
Proceedings of the Eurographics'89, Elsevier (North-Holland), Amsterdam, 1989. 

[3] 	 Claussen, U.: Parallel subpixel scan conversion. In A.A.M. Kuijk and W. StraBer, editors, Advances in 
Graphics Hardware II, Springer, Berlin, 1988. 

[4] 	 Claussen, U.: Verfahren zur schnellen Beleuchtungs- und Schatlierungsberechnung. PhD thesis, Uni­
versitat Tiibingen, 1990. 

[5] 	 Deering, M., Winner, S., Schediwy, B., Duffy, C. and Hunt, N.: The triangle processor and normal 
vector shader: a VLSI system for high performance graphics. ACM Computer Graphics, 22(4):21-30, 
1988. 

[6J 	 Kuijk, A. A. M. and Blake, E. H.: Faster Phong shading via angular interpolation. Computer Graphics 
FOTum, 8(4):315-324, 1989. 

[7] 	 Newman, W. M. and Sproull, R. F.: Principles of Interactive Computer Graphics. McGraw-Hill, 1981. 

[8] 	 Romanova, C. and Wagner, U.: A VLSI architecture for anti-aliasing. 1989. Presentation at the Eu­
rographics Hardware Workshop 1989 in Hamburg. 



37 

[9] 	 Schneider, B.: A processor for an object-oriented rendering system. Computer Graphics Forum, 7(4):301­
310, 1988. 

[10] 	 Schneider, B. and Claussen, U.: PROOF: an architecture for rendering in object space. In A. A. M. 
Kuijk, editor, Advances in Graphics Hardware III, Eurographics, Springer, Berlin, 1989. 

[11] 	 Shantz, M. and Lien, S.: Shading bicubic patches. ACM Computer Graphics, 21(4):189-196, July 
1987. 

[12] 	 van Dam, A.: PHIGS+ functional description revision 3.0. ACM Computer Graphics, 22(3):125-218, 
1988. 


