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Abstract

Providing a thorough mathematical foundation, multiresolution modeling is the standard approach for global
surface deformations that preserve fine surface details in an intuitive and plausible manner. A given shape is
decomposed into a smooth low-frequency base surface and high-frequency detail information. Adding these details
back onto a deformed version of the base surface results in the desired modification. Using a suitable detail
encoding, the connectivity of the base surface is not restricted to be the same as that of the original surface.
We propose to exploit this degree of freedom to improve both robustness and efficiency of multiresolution shape
editing.

In several approaches the modified base surface is computed by solving a linear system of discretized Laplacians.
By remeshing the base surface such that the Voronoi areas of its vertices are equalized, we turn the unsymmetric
surface-related linear system into a symmetric one, such that simpler, more robust, and more efficient solvers can
be applied. The high regularity of the remeshed base surface further removes numerical problems caused by mesh
degeneracies and results in a better discretization of the Laplacian operator.

The remeshing is performed on the low-frequency base surface only, while the connectivity of the original surface
is kept fixed. Hence, this functionality can be encapsulated inside a multiresolution kernel and is thus completely

hidden from the user:

1. Introduction

Caused by the steadily increasing availability and efficiency
of both hardware and software for digital geometry process-
ing, more and more physical stages in the industrial develop-
ment and design process are assisted by or even replaced by
methods from CAGD. Between those, one of the most chal-
lenging topics is shape editing, since complex mathematical
frameworks have to be hidden behind an intuitive modeling
metaphor, thus enabling even the non-expert user to perform
sophisticated surface deformations.

Currently, such modeling tasks are typically done us-
ing CAD systems based on NURBS as the underlying
surface representation. However, the topological restriction
of NURBS to triangular or rectangular domains results in
an extremely high number of (possibly trimmed) surface
patches to be used for representing non-trivial geometries,
making surface editing a complicated and tedious process.

During the last years, many techniques from NURBS
modeling have been discretized and generalized to triangle
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meshes. While subdivision surfaces can be considered as a
generalization of spline surfaces to arbitrary topology, they
require the mesh to have semi-regular subdivision connec-
tivity. Without the topological restrictions of NURBS and
the connectivity constraints of subdivision surfaces, arbitrary
triangle meshes gained increasing attention as a surface rep-
resentation suitable for shape editing [KCVS98]. Recent ap-
proaches based on triangle mesh modeling provide an easy
and intuitive modeling metaphor as well as real-time re-
sponse times when interacting with the surface [BK04].

Freeform modeling approaches are mostly used to create
and edit smooth surfaces. A combination with multireso-
lution modeling techniques is more relevant for real-world
modeling tasks, since this provides both local and global
shape deformations while additionally preserving fine sur-
face details in an intuitive and plausible manner.

This is achieved by splitting a given surface — considered
as a surface signal — into high and low frequencies. The
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smooth base surface and are typically constructed by low-
pass filtering the original surface [DMSB99, Lév03]. The
remaining high frequencies are encoded into detail informa-
tion, such that the original surface can be reconstructed from
the smooth base and this detail information. A general mul-
tiresolution modeling framework then consists of

1. a decomposition operator splitting the surface into a low-
frequency base surface and high-frequency details,

2. afreeform modeling operator deforming the base surface,

3. a reconstruction operator adding the detail information
back onto a modified version of the base surface.

Notice that the original surface and the base mesh play
different roles in the modeling process. The former is the
mesh the designer sees and interacts with, the latter is gener-
ally hidden from the user and is internally used for comput-
ing the deformations. As a consequence, the requirements
on these two surfaces also differ. The original surface has to
provide a high-quality approximation to the actual surface
geometry and represents its fine details and sharp features
by a possibly hand-crafted triangulation. On the other hand
side, since all numerical computations are performed on the
base mesh, its structure is mainly responsible for robustness
and efficiency.

When a suitable detail encoding is used [KVS99, BK03],
the tessellation of the base surface is not restricted to be the
same as the tessellation of the original surface. As a conse-
quence, the triangulation of the base surface can be consid-
ered as an additional degree of freedom that can be adjusted
in order to improve the multiresolution modeling process.
Note that by construction the base surface is smooth and
contains no high-frequency details, hence a remeshing or re-
sampling is possible without introducing aliasing artifacts.
In contrast, the original surface generally does contain sharp
features, therefore a remeshing is prohibitive, as it could de-
stroy a feature-aligned triangulation.

Two major design goals for a multiresolution modeling
framework are robustness and efficiency. As both items are
closely related to the base mesh, we propose to adjust its tes-
sellation, i.e. to remesh the base surface, such that the shape
editing process becomes both more stable and more efficient.

Numerical robustness on triangle meshes is mostly related
to the triangles’ shape. Close-to equilateral triangles enable
stable computations, while for degenerate faces neither area
nor normal vectors can be derived robustly, causing prob-
lems for the detail encoding as well as for the computation
of the deformations. As a consequence, a remeshing of the
base surface should aim at well-shaped triangles.

For the actual deformation of the base surface we have
to solve a linear system based on Laplacians. This system
is symmetric up to per-vertex normalization factors contain-
ing the Voronoi areas around the vertices (see Sec. 3). Fine-
tuning the remeshing, such that the vertex areas are equal-
ized, turns this matrix into a symmetric one. As a conse-

quence, this enables us to use more robust solvers that addi-
tionally are faster by an order of magnitude. By exploiting
this remeshing technique, our approach differs from previ-
ous ones, as we do not try to find a suitable solver fitting our
problem, but we fit our problem to the best possible solvers
instead.

2. Related Work

There is a large variety of shape editing approaches, being
based either on NURBS, on subdivision surfaces or on ar-
bitrary triangle meshes, and using surface related or volu-
metric techniques in order to compute shape deformations.
However, we will focus on multiresolution modeling meth-
ods in this paper, since they provide the most intuitive preser-
vation of fine details even for large scale modifications.

A key component is the encoding of high-frequency detail
information. The standard method is to represent the original
surface as a displacement of the smooth base surface, e.g.
by associating a displacement vector with each vertex. To
achieve a natural detail preservation, these vectors have to
be stored in local frames, consisting of the surface normal
and two perpendicular tangent vectors [FB95, FB88].

An approach based on subdivision surfaces is presented
by Zorin et al. [ZSS97] that tightly couples the surfaces on
different smoothness levels by the required subdivision con-
nectivity. Guskov et al. [GSS99] propose a modeling system
for arbitrary meshes and store details in vertex-based local
frames. They build their hierarchy by progressive mesh dec-
imation, such that the vertices on level i are a subset of the
vertices of level i+ 1.

In order to base the detail encoding on purely geometric
(instead of additional parametric) information, normal dis-
placements represent vertices on one mesh as an offset in
normal direction from another mesh. One method to gener-
ate normal displacements is to shoot rays from the base sur-
face in normal direction and to place samples at the intersec-
tions of these rays with the original surface [GVSS00]. This,
however, corresponds to a resampling of the high-frequency
original surface and may therefore lead to aliasing problems.

In contrast, Kobbelt et al. [KCVS98, KVS99] resample
the smooth base surface by finding base points on it, such
that the vertices of the original surface are normal displace-
ments of these base points. Since this technique resamples a
low-frequency surface, it avoids aliasing and preserves sharp
features of the original surface. As an additional advantage,
it decouples the tessellation of the base surface from the
original surface. Building on this work, Botsch and Kobbelt
[BKO3] present a volumetric detail encoding that provides a
more natural behavior and avoids local self-intersections —
at the expense of a more involved reconstruction operator.

The last two approaches offer the possibility to freely ad-
just the tessellation of the base mesh, while keeping the
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triangulation of the original mesh fixed. We will shown in
Sec. 4 that a special isotropic remeshing of the base surface
greatly improves the multiresolution modeling process.

Isotropic remeshing of large meshes based on a global pa-
rameterization was proposed by Alliez et al. [ACdVDIO3].
In order to avoid the expensive global parameterization, both
Surazhsky et al. [SG03, SAGO03] and Vorsatz et al. [VRS03]
base the remeshing on local parameterizations instead, en-
hancing the general idea of dynamic meshes [KBS00].

The remeshing method we present in Sec. 4 is conceptu-
ally very similar to these techniques, but has the advantage
of not having to respect a hard error bound or handling sharp
features, therefore being considerably simpler and more ef-
ficient. Using this remeshing technique, the multiresolution
modeling process described in the next section becomes both
more robust and more efficient, as shown in Sec. 5.

3. Multiresolution Modeling

In this section we describe the multiresolution modeling
framework and set up the notation used throughout the pa-
per.

For our freeform modeling operator we use the bound-
ary constraint modeling approach of [BK04]. The designer
first specifies the support of the modification, i.e. the sur-
face region that is allowed to change, by selecting an arbi-
trary region on the mesh using a painting or outlining tool.
Within the support region, one or several control handle re-
gions are chosen that act as generalized control points by
providing 9 degrees of freedom (translation, rotation, scal-
ing). Using a manipulator item, these affine transformations
can be applied to the control handles in an intuitive manner.
The support region then provides a smooth blend between
the transformed handles and the fixed part of the surface (cf.
Fig. 1).

The deformed blue surface region is computed by a con-
strained energy minimization. The minimizer surfaces S of

Figure 1: In our freeform modeling metaphor, the designer
selects a support region (blue) and a handle region (green).
After transforming the handle using a manipulator widget,
the blue region smoothly blends between the handle and the
fixed part of the surface.
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Figure 2: The discretization of the Laplacian at a vertex
pi depends on cotangent values of o,;j and B;; and on the
Voronoi area A(p;).

these special surface functionals are characterized by Euler-
Lagrange PDEs of the form AKS =0, where A denotes the
Laplacian operator. Typical values for k lead to membrane
surfaces (k = 1), thin-plate surfaces (k = 2), and surfaces
minimizing curvature variation (k = 3).

In order to turn these PDE:s into linear systems, we use the
recursive discretization of the Laplacian operator proposed
by [DMSB99, MDSBO3]:

Ay Y 2 (cotayj + cotPi))
I A(pi)

Api == pi )

where (xij = Z(p,',pj_l,pj) and Bij = Z(p,‘,pjurl,pj) for a
vertex p; and its one-ring neighbors p; € N(p;). The nor-
malization factor A(p;) denotes the Voronoi area around the
vertex p; (cf. Fig. 2) and is built from the incident triangles’
circum-centers (or edge midpoints for obtuse angles).

(A% —a) )

This leads to a linear system in the free (blue) vertices p =
(p1,---,pp), the (green) handle vertices h = (hy,...,hy)
and the (grey) fixed vertices f = (f1,...,fr):

Ak p 0

= ¢ |. 3)
0| Irin h h

Note that h and f are boundary constraints and should be
moved to the right-hand side for the actual solution of the
system. They are used as pseudo-unknowns for clearer nota-
tion only. Each time the handle is moved, the right-hand side
of this system is changed, such that the new blue surface is
computed by solving the system again.

This freeform modeling operator is integrated into a mul-
tiresolution modeling framework as shown in Fig. 3. In a
modeling session, the designer first selects the support re-
gion and control handles on the original mesh (top center).
These regions are mapped to the smooth base surface and the
linear system is solved in the undeformed state, removing
further medium frequencies (bottom center). The difference
between the surfaces shown at top center and bottom center
are encoded into high-frequency detail information.
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Figure 3: Our multiresolution modeling framework initially computes a low-frequency base (bottom left) for the input surface
(top left). After selecting support and control handles on the original surface (top center), these regions are mapped to the base
surface and high-frequency details are encoded (bottom center). Moving the manipulator changes the base surface (bottom
right), adding the detail information back results in the correct modification (top right).

By dragging the manipulator the designer deforms the
base surface using the freeform modeling operator (bottom
right). Adding the details back onto this surface constructs
the desired global deformation (top right). Notice that the
user interacts with the original surface only, as shown in the
top row. All computations depicted in the bottom row are
hidden within the multiresolution modeling kernel.

For the detail encoding we use the Phong detail represen-
tation of [KVS99]. We first build a continuous normal field
on the base surface and encode each vertex p of the orig-
inal surface by a point b on the base surface and an offset
A in normal direction, i.e. p = b+ A-n(b). The base point
b is not restricted to be a vertex of the base mesh, but is in
general an interior point represented by a triangle index and
barycentric coordinates. As a consequence, the tessellation
of the base surface does not have to be the same as that of
the original surface.

Taking a closer look at Fig. 3, we see that all deformations
are computed by applying Eq. 3 to the base surface (bot-
tom row). Notice that the linear system is not symmetric in
general, caused by the normalization factors A(p;) of Eq. 1,
denoting the Voronoi area around the vertex p;. Since for a
higher order Laplacian matrix AF, k> 1, also Laplacians of
degree k — 1 of boundary vertices of f or h are involved, and

since these again depend on some free vertices of p, such a
matrix cannot be made symmetric by a simple multiplication
with a diagonal matrix.

We therefore propose to use the remeshing technique de-
scribed in the next section to turn this matrix into a sym-
metric one, leading to both more robust and more efficient
computations.

4. Area-Equalizing Remeshing

The matrix in Eq. 3 contains cotangent weights derived from
the base surface geometry. They capture the surface metric
and imitate a natural internal stiffness behavior, since a kind
of conformal mapping between the surface before and after
the modification is implicitly built by preserving the (rela-
tive) shape of triangles [DMAOQ2].

Notice that these weights are computed only once after
loading the mesh and are usually not updated during the
modeling session. By remeshing the base surface such that
the Voronoi areas of its vertices are equalized, a Laplacian
matrix of this form becomes symmetric. As the weights are
computed only once, this remeshing also is a preprocessing
step that is performed after loading the model and before
computing the cotangent weights.

(© The Eurographics Association 2004.
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Figure 4: Our remeshing technique yields very regular
meshes and additionally equalizes the Voronoi areas of ver-
tices.

Similar to previous explicit remeshing approaches
[SG03, SAG03, VRS03], we first generate a regularly
remeshed surface by alternated equalization of edge lengths
and vertex valences. Given a target edge length /, we perform
the following steps:

. . . . 4
L. Split all edges at their midpoint that are longer then 3.

2. Collapse all edges shorter than %l into their midpoint.

3. Flip edges in order to minimize the deviation from va-
lence 6 (or 4 on boundaries).

4. Relocate vertices on the surface by tangential smoothing.

After a few of these cycles (about 5) we obtain a triangu-
lation whose edges have length close to / and whose vertices
have valence close to 6. However, vertex areas may still dif-
fer, since a vertex of valence k is enclosed by a loop of k£
edges of length /. Hence the area of a vertex scales w.r.t. its
valence, resulting in a “nesting” of vertices in some mesh
regions.

To account for this we propose a fine-tuning by an area-
based tangential smoothing. Each vertex p is assigned a
gravity that equals its area A(p). A tangential smoothing pro-
cess moves each vertex p; to its gravity-weighted centroid

! Y Alpj)p;.

8i=v A
Ypen(p)Alp)) PiEN(p:)

To ensure a tangential smoothing on the surface, the update
vector is projected back into the tangent plane of p;, such
that the update rule becomes:

pi — pi+7t<1—nimT> (&i—pi),

where n; is the normal vector of p; and A is a damping fac-
tor used to avoid oscillations. Vertices with large (relative)
Voronoi area have a higher gravity and attract other vertices,
thereby reducing their own area. Usually very few (< 20) it-
erations suffice to reduce the total variance of vertex areas
by a factor of about 5, resulting in a mesh that provides (al-
most) equal vertex areas (cf. Fig. 4). In all our experiments
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the relative mean area error was below 5% and the average
inner angle deviated from 60° by at most 0.1°.

Notice that in comparison to existing sophisticated
remeshing approaches [SG03, SAG03, VRS03], our prob-
lem setting is much simpler, since we do not have to take
care of an exact approximation error or normal deviation.
Slight deviations from the original surface are acceptable,
as long as the remeshed surface roughly captures the sur-
face metric. As the base surface that is to be remeshed does
not contain high frequencies, there is also no need to handle
sharp features.

The target edge length / for the remeshing is chosen to
be slightly less than the average edge length of the original
surface. Because the sampling rate stays about the same and
since we do not have to guarantee an error bound, we do not
even have to base the vertex relocation steps of our remesh-
ing on global or local parameterizations. Projecting the up-
date vectors into the respective tangent planes turned out to
be sufficient. Since parameterizations would be the most ex-
pensive part of the remeshing procedure, our scheme can be
implemented quite efficiently, such that we can process an
input base mesh of 100k triangles in less than 5 seconds (cf.
Fig. 4).

For the mapping of support and handle regions from the
original surface to the remeshed version, we implicitly con-
struct a mutual parameterization between both surfaces dur-
ing the pre-smoothing and remeshing phases.

5. Numerical Consequences

The first obvious consequence of the remeshing is that
degenerate triangles are removed. Those would otherwise
cause numerical problems, since the matrix would no longer
be positive definite [PP93]. Because of the high regularity
of the resulting mesh, all inner triangle angles (up to a few
outliers) are very close to 60 degrees. This causes the re-
spective cotangent weights to be positive, removing stability
and convergence problems caused by negative weights. Ad-
ditionally, the discretization of the Laplacian gets more reli-
able if the triangulation is lacking obtuse angles [MDSBO03].

While the better approximation of the Laplacian operator
and the improved conditioning of the resulting matrix are
clearly preferable, the main benefit is that the matrix gets
symmetric up to small errors. By replacing all vertex areas
A(pi) by their mean value, we enforce an exactly symmetric
matrix, but also introduce slight errors in the discretization.

Measuring the error between surfaces computed using ei-
ther the correct or the mean vertex areas revealed very slight
and low-frequency differences. As the same slight errors are
done when the system is solved before and during the modi-
fication (Fig. 3, bottom center and bottom right), they are di-
minished by the detail encoding. These observations proved
that we can safely use the symmetric approximation to the
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Laplacian matrix. This, however, provides significant bene-
fits for the linear system solvers to be used, as shown in the
next sections.

5.1. Iterative Solvers

The standard method for solving a sparse and unsymmet-
ric system is probably the preconditioned biconjugate gra-
dients method (BiCG) [PFTV92]. Although working well
for most cases, BiCG does not provide theoretical conver-
gence guarantees and therefore shows a very irregularly
(non-monotonic) decreasing residual for ill-conditioned sys-
tems. From an implementation point of view this method is
not optimal, because a multiplication with both the matrix
A and its transposed AT have to be provided. This prevents
the use of just one of either compressed row or compressed
column format for sparse matrices [BBC*94].

An improvement of this situation is provided by the sta-
bilized version Bi-CGSTAB, being a mixture of BiCG and
GMRES [BBC*94]. For this method, only the multiplication
with the matrix A has to be provided and the convergence
behavior is smoother. However, there are still no guarantees
that the method converges at all.

Using our remeshing technique, the matrix of Eq. 3 be-
comes symmetric and positive definite (SPD). For these sys-
tems the simple conjugate gradients (CG) is the preferable
method [AMS90], providing both guaranteed and monotonic
convergence and a simple and more efficient implementation
(up to a factor of 2).

5.2. Multigrid Solvers

For large systems iterative solvers rapidly remove the high
frequencies of the residual, but converge very slowly to the
final solution. If very large systems are to be solved effi-
ciently, multi-grid methods should be employed [Hac86].

After pre-computing a mesh hierarchy based on mesh dec-
imation techniques, the system is first solved on the coars-
est hierarchy level. This solution is prolongated to the next
finer level and used as starting value for the iterations on this
level. The same process is repeated until the finest level has
been reached. The logarithmic number of levels leads to a
total complexity of O(n) for multi-grid solvers, as opposed
to O(nz) for non-multi-grid iterative methods, n being the
number of unknowns, i.e. the free vertices p.

In order to avoid the remeshing of all hierarchy levels,
we propose to build the mesh hierarchy using the remesh-
ing of Sec. 4 with growing target edge lengths. This leads
to symmetric matrices on each multi-grid level, providing
the benefits for the single-level iterative solvers also to the
multi-grid methods. As the vertices of the resulting hierar-
chy do not form a nested sequence, the correspondences and
the prolongation operator should be based on barycentric in-
terpolation on the piecewise linear triangle meshes.

The main problem of multi-grid solvers is that it can
be quite complicated to implement them, since special
care has to be taken for the hierarchy building, the pre-
conditioning scheme and the prolongation operator [AKS].
However, if iterative solvers are to be used, multi-grid
methods are the only way to achieve rapid solution times
[KCVS98, RL0O3, AKS].

5.3. Direct Solvers

The use of direct solvers for linear systems is often un-
derestimated, since naive direct methods have complexity
0(n3). Additionally, Gaussian elimination (LU factoriza-
tion) is know to be numerically unstable unless proper pivot-
ing is used. For symmetric systems, however, Cholesky fac-
torization provably is backward stable, but it still has cubic
complexity.

As the system we are considering is sparse, but not band-
limited, the first step is to generate a band-limitation. For
this task several standard methods based on symmetric row
and column permutations are available [GL81], e.g. the re-
verse Cuthill-McKee [CM69] or the minimal degree algo-
rithm. They result in a concentration of the non-zero ele-
ments around the diagonal, leading to a band-limit b.

If a matrix A is band-limited by b, so is its Cholesky
factor L with A = LLT [GL89]. Computing such a band-
limited Cholesky factorization has complexity O(bn?) in-
stead of 0(n3) for the unbanded case. The actual solution
based on this factorization has complexity O(bn) and is
therefore comparable to multi-grid methods. Although hav-
ing the same asymptotic complexity, band-limited Cholesky
solvers turned out to be faster by an order of magnitude com-
pared even to sophisticated multi-grid solvers.

5.4. Comparison

Comparing direct solvers to multi-grid iterative methods, di-
rect solvers seem to be preferable for sparse SPD matrices.
For both the pre-computation phase and the actual solution
of linear systems they are faster than multi-grid iterative
methods.

Besides higher efficiency, direct solvers are additionally
much easier to use. Packages based on highly optimized
lapack and BLAS libraries are publicly available, some of
them also including the band-limitation, e.g. the TAUCS li-
brary [TCR]. In contrast, hierarchical multi-grid solvers on
triangle meshes are quite sophisticated and several key com-
ponents and parameter values have to chosen by experience.

There are also similar methods for solving unsymmet-
ric problems based on a band-limited LU factorization
[DEG*99]. In this case, two types of permutations are re-
quired: symbolic permutations for band-limitation and piv-
oting permutations ensuring numerical robustness. As these
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Method Complex. Precomp. 3 Solutions
Iterative 15k 7.2s 7.4s
Multi-grid 15k 4.5s 0.8s
Direct 15k 2.4s 0.07s
Iterative 31k 15.2s 25.5s
Multi-grid 31k 8.8s 2.0s
Direct 31k 6.7s 0.16s

Table 1: The timings for computing a thin-plate surface con-
sisting of 15k resp. 31k free vertices using different solvers.
The respective linear system is solved three times for the
x, ¥y and z coordinate, respectively. The corresponding pre-
computations are preconditioning (Iterative), building the
multigrid hierarchy (Multigrid), and band-limiting and fac-
torizing (Direct), respectively.

permutations cannot be handled separately, the overall fac-
torization process is more involved. Since no matrix sym-
metries can be exploited, these methods are generally not as
efficient as symmetric matrix solvers.

6. Results

Our remeshing method effectively removes degenerate tri-
angles and results in a very regular tessellation consisting
of almost equilateral faces, thereby avoiding numerical de-
generacies and improving the Laplacian discretization and
general conditioning of the matrix.

Since for our remeshing we do not have to take care of
approximation errors or sharp features, our method is signif-
icantly faster than previous (more sophisticated) remeshing
techniques, such that we can process meshes of 100k trian-
gles in less than 5s on a Pentium 4 3.0GHz.

The resulting matrices are symmetric and positive defi-
nite, hence we can use a direct Cholesky-based solver, that
provides the same linear asymptotic time complexity as
multi-grid methods, but is significantly faster compared to
those. As a representative example, Table 1 lists the timings
for computing a thin-plate surface of 15k or 31k free vertices
(solving the system three times for x, y and z), using single-
level iterative methods, multi-grid iterative methods and a
direct solver, respectively. As the same linear system has to
be solved each time the control handle is interactively moved
(i.e. the right-hand side is changed), the direct methods are
faster by an order of magnitude.

Exploiting the fact that the control handles are affinely
transformed, [BKO04] propose the pre-computation of basis
functions associated with the control handle. This shifts the
per-frame solution of the linear system to a pre-computation
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by solving the same system 3 +4 -5 times, h being the
number of individual control handles. In this setting, our
approach can efficiently be used to speed up this pre-
computation phase significantly.

7. Conclusions

In this paper we pointed out that using state-of-the-art mul-
tiresolution surface representations, the connectivity of the
low-frequency base surface is not restricted to be the same
as that of the original surface. We exploit this degree of free-
dom by remeshing the base surface, such that the problem
becomes numerically better conditioned and the linear sys-
tem to be solved turns into a symmetric one.

‘We showed that for symmetric positive definite sparse lin-
ear systems direct solvers based on a band-limited Cholesky
factorization are clearly preferable to iterative methods, as
they are significantly faster as well as much easier to use.
This observation should also be useful in other applications
where this type of matrix problems is to be solved.

For our multiresolution modeling framework the pro-
posed remeshing technique provides the possibility to keep
the tessellation of the input mesh fixed, even if it contains
numerically critical skinny triangles. This makes multireso-
lution modeling more robust, more efficient and also appli-
cable to a wider range of input geometries, at the cost of just
a small increment of the pre-computation phase.
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