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Abstract
Hardware-accelerated ray tracing has enabled ray traced reflections for real-time applications such as games. However, the
number of traced rays during each frame must be kept low to achieve expected frame rates. Therefore, techniques such as
rendering the reflections at quarter resolution are used to limit the number of rays. The recent hardware features inline ray
tracing, and variable rate shading (VRS) could be combined to limit the number of rays even further. This research aims to use
hardware VRS to limit the number of rays while maintaining the visual quality in the final rendered image. An experiment with
performance tests is performed on a rendering pipeline using different techniques to generate rays. The techniques use inline
ray tracing combined with VRS and ray generation shaders. These are compared and evaluated using performance tests and
the image evaluator FLIP. The results show that limiting the number of rays with hardware VRS leads to improved performance
while the difference in visual quality remains comparable.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

Real-time ray tracing has been a long-term goal within computer
graphics [Shi05, KKW∗13, KVBB∗19], and hardware-accelerated
ray tracing is one step closer towards this goal. Current games
use hardware-accelerated ray tracing for specific effects, for ex-
ample reflections [DS19]. The result is more realistic images than
current techniques [Sta18, Gro20], such as screen-space reflec-
tions (SSR) that fails when information is not available within
screen-space. However, hardware-accelerated ray tracing is still
expensive in terms of time and requires low ray counts on cur-
rent consumer hardware. This requires aggressive denoising algo-
rithms [Sta18, DS19] since low ray counts result in a noisy image,
but the frame rates are still not up to the standard that many users
expect.

This paper looks at the performance characteristics of using in-
line ray tracing combined with VRS to limit the number of rays
when rendering reflections. Two methods of determining shading
rates are tested. One using the average surface roughness and the
other on the average number of grazing angles within a screen area.
The performance and visual quality are compared against the ex-
isting solution that trace rays at quarter resolution [Sta18], using
ray generation shaders. Here visual quality is a measurement of
perceivable noise in the final images and the reflections. The per-
formance and visual quality of the techniques are evaluated using
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performance tests and FLIP [ANAM∗20]. FLIP is a tool that calcu-
lates the perceived difference between two images based on human
perception and viewing conditions [ANAM∗20]. This paper is lim-
ited to single bounce ray traced reflections in static scenes.

2. Background

Hardware-accelerated ray tracing is available through the DirectX
Ray Tracing (DXR) API [HAM19, Mic21]. The first version of
DXR uses ray generation shaders to trace rays through an accel-
eration structure. Closest-hit and miss shaders are used to gather
the results from the ray cast [HAM19, Mic21]. Inline ray tracing
enables ray tracing in all shader types, which gives more control to
the developer [Mic21].

VRS is a recent technique that is available in Di-
rectX 12 [Mic19a, Mic19b, AMD20]. VRS controls the pixel
shader invocations, and the result from one invocation can be
stored in multiple texels. Fewer innvocations saves time when not
all parts of the image need to be shaded with the same amount
of detail. D3D12 divide VRS into tier 1 and tier 2, depending on
hardware-support [Mic19a, Mic19b]. Tier 1 enables control of the
shading rate for all fragments at once [Mic19b]. Tier 2 has the
same capabilities, but the shading rate can also be controlled with
an image and per primitive.

3. Related Work

There are various methods to minimize the time spent on shading.
One solution is to trace rays at quarter resolution [Sta18, HAM19].
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The quarter resolution image gets reconstructed to a full resolution
image in a subsequent spatial filter using neighboring pixels’ hits,
resulting in more samples [Sta18, HAM19]. Backprojection is also
used to increase the number of samples. The last noise is reduced
with a final blur based on the samples’ variance.

Variable Rate Tracing (VRT) divides the screen into tiles, where
each tile gets a certain number of rays in each frame. The number
of rays are allocated so that grazing angles and specific surfaces,
such as water, receive a higher ray count [DS19].

Software-based VRS techniques enable VRS on hardware that
does not support it natively, which also enables smaller tile
sizes [Dro20]. The shading rate is based on the minimum RGB
value and luma. Hardware VRS has also been used successfully.
One solution is to determine the shading rate with an edge detec-
tion filter based on the image’s luminance. Both techniques resulted
in performance improvements around 15% [Dro20, VR21].

4. Method

The techniques in this paper are implemented in a custom frame-
work using the D3D12 API. Similar to previous work, a deferred
renderer is used, removing the need to trace camera rays [Sta18].
The deferred renderer stores albedo color, world normals, material
information, geometric world normals, and velocity. The images
from the techniques are then compared to a version rendered in full
resolution.

4.1. Variable Rate Shading

The shading rate is based on an image, requiring VRS tier 2. Each
texel in the image corresponds to a tile, where each tile corresponds
to an area of 16x16 pixels when rendering. The VRS image gets
generated after the geometry pass, using a compute shader. Each
thread calculates an average heuristic value of the tile, which deter-
mines the shading rate. The heuristic is either the average roughness
or the average number of grazing angles in the tile. Table 1 shows
the shading rates with corresponding thresholds. High roughness
and geometric normal vectors parallel to the view direction use a
lower shading rate, in this case, 2x2. Low roughness and vectors
close to perpendicular to the surface use the shading rate 1x1.

Roughness Avg. Dot Product Shading Rate
≥ 0.75 ≤ 1.0 2x2
≥ 0.25 ≤ 0.75 2x1
≥ 0.0 ≤ 0.5 1x1

Table 1: Thresholds of the average roughness and dot product (Be-
tween the surface normal and the camera view direction) that cor-
respond to a certain shading rate.

4.1.1. Ray Traced Reflections

The reflection rays get traced at quarter resolution, and each out-
put pixel corresponds to a 2x2 quad of the full resolution. Each
frame one pixel per quad is used to trace a ray. The pixel changes
between frames and is selected using blue noise [Uli88, GF16].
The scene’s depth, rendered in previous passes, is used to calculate

the world-space position, used as the ray origin. A small offset in
the surface normal direction is applied to avoid self-intersections.
Importance sampling, based on the normal distribution function,
similar to previous work [Kar13], is used to calculate the ray di-
rection. The importance sampling function uses a Halton-sequence
with a Cranley-Patterson rotation to get a unique low-discrepancy
sequence for each pixel [CP76, KK02]. When tracing the ray, all
primitives are included, and back-face culling is turned on. From
each ray, the hit color, the direction, and the inverse probability dis-
tribution function (PDF) are stored. The hit color comes from either
the closest-hit or miss shader and corresponds to the direct lighting
contribution or the skybox. The closest-hit shader calculates texture
coordinates, position, normal, and tangent vectors by interpolating
between the vertices of the triangle that got hit. The shader also
gathers material information. Since the closest-hit shader does not
have access to partial derivatives as the pixel shader does, a fixed
mip-level has to be used. Mip-level two was chosen since it seemed
to improve the quality of the reflections over mip-level zero. The
miss shader samples the skybox texture with the ray direction. The
inline ray tracing implementation uses a pixel shader required to
utilize VRS. The vertex shader generates a full-screen triangle to
generate invocations for the whole screen. The pixel shader is very
similar to the ray generation shader. However, ray queries are used
to trace the rays. The result from the trace causes a branch that ei-
ther executes code for a hit or a miss. If the trace results in a hit, a
very similar code block to the closest-hit shader is executed. Other-
wise, the shader samples the skybox texture with the ray direction.
The results are in the end written to render targets.

4.1.2. Reconstruction

The reconstruction pass scales the image up to full-resolution. All
techniques make use of the same reconstruction filter. The filter is
similar to previous work by Stachowiak [Sta18], where each pixel
gets classified into four classes using blue noise so that each full
resolution pixel has a unique set of ray samples. This results in an
array of offsets that are used to sample neighboring pixels. For each
sample, the bidirectional distribution function (BRDF) response for
a full resolution pixel gets calculated. The local BRDF gets multi-
plied by the original inverse PDF to weigh the color from each hit
point. The weighted color for each sample is summed and normal-
ized with the total weight of all samples. This method was pre-
sented by Stachowiak and Uludag [SU15]. Backprojection, using
the G-Buffers velocity-buffer, is used to find the previous frame’s
color in a following temporal step. The current and previous sam-
ples are accumulated using an exponential moving average and
stored in a history buffer. Each sample in the history buffer gets
validated by backprojecting the geometric world-space normal and
compare with the current one to ensure consistency over frames.
Ghosting is prevented by using neighbourhood clipping similar to
previous work [Kar14,Ped16,Sal16], which uses the estimated vari-
ance of the samples. The number of history samples to keep in the
history buffer depends on the roughness of the surface. Rougher
surfaces allow a longer history length. The current history length is
stored in the history buffer, and if the history sample is rejected, the
length is set to one. The final pass for the reflections is a bilateral
Gaussian blur with a variable kernel size. The kernel size is based
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on the pixel’s variance, calculated during the spatial reconstruction.
Pixels with higher variance use a wider kernel.

4.2. Experiment Setup and Execution

The system that was used to perform the performance tests and ren-
dering consists of an i7 9700k CPU from Intel clocked at 3.6 GHz at
base speed. However, it can boost up to 4.9GHz. The graphics card
is an Nvidia RTX 3090 Founders Edition. The OS used during the
performance tests was Windows 10 Pro (20H2) using the newest
build available, 19042.928, with the latest Nvidia GPU drivers that
were available at the time, 466.27. The resolution of the rendered
output was 1920x1080, the full resolution of the application. The
performance tests were performed by having a camera fly through
the scene and collect 5000 samples of the frame time. The camera
is moving with a fixed time-step of 16.66 milliseconds and is inde-
pendent from the rendering time, resulting in similar frames during
each test. FLIP uses the resolution of the display and the distance
from the display to the viewer as input to calculate the perceived
error correctly [ANAM∗20]. The width of the display in pixels was
2560 and 0.5 meters. The distance to the display was set to 0.62
meters. All the used images were captured using Nvidia Nsight in
a separate run of the application so that Nsight did not impact the
results of the performance tests. The images were exported from
Nsight in a low-dynamic range format.

5. Results and Analysis

The results are presented in Table 2, showing the GPU frame time
from each test and the errors that FLIP outputs, shown in Table 3.
The results also show some examples of the final reflections and
rendered images. These images are shown with an error map that is
the output from FLIP. The timings, shown in Table 2, reveal a sig-
nificant difference between the reference, tracing one ray per full
resolution pixel, and the techniques that trace one ray per quarter
resolution pixel. However, the increase is dependent on the scene
since the Sun Temple scene does not show as dramatic improve-
ments. When comparing the reference technique to the others, one
can see that the reference technique has close to double the average
frame time in the ray generation stage. Introducing VRS only im-
proves the timings. The VRS image generation step does not take
up a significant portion of the frame time in either of the two tech-
niques. Table 2 shows that this stage takes up zero frame time for
all techniques without VRS since they do not have a VRS image
to generate. The stages that utilize VRS are inline VRS rough and
inline VRS graze. Overall Table 2 shows that using VRS results
in increased performance in all the scenes. The inline VRS rough
technique performs roughly 30.3% better compared to the quarter
resolution technique, and the inline VRS graze performs roughly
5.5% better in the Sponza scene. In the Sun Temple, inline VRS
rough performs roughly 9.8% better compared to the quarter reso-
lution technique, and the inline VRS graze performs roughly 17.1%
better. The final scene, the Bistro scene, has a roughly 23.1% and
22.2% improvement respectively for inline VRS rough and inline
VRS graze.

Figure 1 show that the quarter resolution techniques have many
differences highlighted when compared to the full resolution refer-
ence. Limiting the number of rays further with VRS increases the

Sponza Sun Temple Bistro
Technique Avg (ms) Avg (ms) Avg (ms)
VRS Image Generation
Reference 0.000 0.000 0.000
Quarter Resolution 0.000 0.000 0.000
Inline VRS Rough 0.024 0.024 0.024
Inline VRS Graze 0.022 0.017 0.017
Dispatch Rays
Reference 0.797 1.535 2.995
Quarter Resolution 0.279 0.508 0.885
Inline VRS Rough 0.118 0.346 0.517
Inline VRS Graze 0.169 0.271 0.536
Ray Tracing Total
Reference 1.363 2.107 3.619
Quarter Resolution 0.971 1.080 1.481
Inline VRS Rough 0.677 0.974 1.139
Inline VRS Graze 0.918 0.895 1.152

Table 2: Timings from the Crytek Sponza, Sun Temple, and Lum-
beryard Bistro scenes.

highlights in the FLIP error maps. It is also shown that the tech-
niques using VRS have the highest error in the final render. There-
fore, when combining inline ray tracing with VRS, there is a slight
cost in visual quality. This is supported by the values in Table 3,
which show the mean values for the FLIP error maps. These values
are proportional to the error perceived by human beings. The per-
ceived error between the techniques and the reference image is also
more noticeable on more reflective surfaces, such as the metallic
ribbons on the colored curtains in the Sponza scene, which can be
seen in Figure 1. However, even though the error maps show signif-
icant differences, the final render does not show this. Table 3 shows
that Inline VRS Rough has the highest mean error in the Sponza
scene. In the Sun Temple scene, Inline VRS Graze has the high-
est error. The error for the Sun Temple scene is lower than for the
Sponza scene, which is interesting since the Sun Temple has more
reflective surfaces. The Lumberyard Bistro follows the same re-
sults as the other scenes, but it has the highest mean error of all the
scenes.

Sponza Sun Temple Bistro
Technique Mean Mean Mean
Final Reflections
Inline (VRS Rough) 0.072 0.043 0.086
Inline (VRS Graze) 0.071 0.046 0.086
Ray Gen (Quarter Res) 0.063 0.040 0.078
Final Render
Inline (VRS Rough) 0.006 0.000 0.000
Inline (VRS Graze) 0.006 0.000 0.000
Ray Gen (Quarter Res) 0.005 0.000 0.000

Table 3: The error in numbers for the error images and the corre-
sponding technique. This table shows the error for the Sponza, Sun
Temple, and Lumberyard Bistro scenes.
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Figure 1: Visual results from the Crytek Sponza scene (Two Left Columns), Epic Games Sun Temple scene (Two Middle Columns), and the
Amazon Lumberyard Bistro scene (Two Right Columns). Rendered with inline ray tracing at quarter resolution with VRS enabled (First
Column) and ray generation shaders at quarter resolution (Second Column). Grazing angles were used to determine the shading rate in this
example. The middle row of images show the reflections whilst the bottom row show the FLIP error map with the reference images. Black
means no perceived error, and yellow means high error [ANAM∗20]. Few highlighted areas mean better visual quality.

6. Discussion

In Section 5 results from the performance tests were presented,
which showed that combining inline ray tracing with VRS results
in a lower frame time. The explanation for this is that the number
of rays that are traced has been decreased, reducing the number
of calculations performed. However, the best method to generate
the VRS image seems to heavily depend on the scene since the re-
sults vary between the test scenes. In the Sponza scene, using the
roughness to determine the shading rate gives better frame time,
while in the other scenes, the results are close. Nonetheless, using
image-based VRS is a competitive method compared to rendering
at a quarter resolution only. This means that if the noise could be re-
duced even further without decreasing the performance, this could
be a method for reducing the number of rays that are traced in a
real-time ray traced application.

Inline ray tracing combined with VRS gives a performance in-
crease from 5.5% to 30.3%. One could compare this against the
related work, where the performance increase was up to around
15% [Dro20, VR21]. This is in the range of the results found in
this paper. The performance might be improved further if more
threads on the GPU took the same code path. As the ray direc-
tions are seemingly random, threads often has to take different code
paths across lanes, or access different memory locations, which can
lead to degraded performance. One ray could hit a primitive while
the neighboring threads are calculating rays that miss. In the cur-
rent implementation, dynamic branching occurs with many texture
fetches for the different materials, which could degrade the per-
formance. This could be improved by performing a ray binning
step before the rays are traced, which has been tried before [DS19].
However, VRS was not free in terms of visual quality since it did
have an impact. This means that it may need more work to reduce
the noise in the reflection image before it is used in a production
environment. However, it shows some promising results.

7. Conclusions and Future Work

This paper concludes that VRS does improve the performance of a
real-time ray traced application compared to the quarter resolution
technique. The performance of inline ray tracing combined with
VRS showed an improvement of at least 5%. However, there is a
cost in visual quality due to the lowered number of rays. There-
fore, more work is needed before the technique is used in produc-
tion. Whether roughness or grazing angles should determine the
shading rate in the VRS image depends on the scene. When us-
ing roughness, it results in improved performance for scenes con-
taining many surfaces with high roughness values. In the current
implementation, using grazing angles result in blocky or blurry re-
sults on mirror-like surfaces. When viewing a mirror so that the
mirror’s normal is parallel with the view vector, the shading rate is
lowered, resulting in artifacts. Therefore, a combination of rough-
ness and grazing angles might be a better technique for determin-
ing the shading rate. When lowering the number of rays cast in the
scene, the visual quality should remain comparable with existing
techniques, with this paper comparing against quarter resolution
rendering. Future work should generate rays in a separate step and
bin these so that rays with similar directions and world positions
are grouped. The similarity of the rays after the ray binning step
could then be used to generate a VRS image. Similar rays would
share the same hit result instead of shooting one ray for each. The
ray that is used within that group could be varied between frames.
Software VRS methods could also be explored, and it would be
interesting to check the performance characteristics of the ray gen-
eration shaders combined with software VRS in the future since
these could be more optimized for these types of workloads.
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