
Fourth Eurographics Workshop on Parallel Graphics and Visualization (2002)
D.

�
Bartz, X. Pueyo, E. Reinhard (Editors)

Approach for software development of parallel real-time VE
systems on heterogenous clusters

C. Winkelholz and T. Alexander

Research Institute for Communication, Information Processing, and Ergonomics,Wachtberg, GERMANY

Abstract
This paper presents our approach for the development of software for parallel real-time virtual environment sys-
tems (VE) running on heterogenous clusters of computers. This approach is based on a framework we have de-
veloped to facilitate the set-up of immersive virtual environment systems using single components coupled by an
isolated local network. The framework provides parallel rendering of multiple projection screens and parallel ex-
ecution of application and interaction tasks on components spread across a cluster. Main concept of the approach
discussed in this paper is to use the virtual reality modeling language (VRML) as an interface definition language
(IDL) for the parallel and distributed virtual environment system. An IDL-compiler generates skeleton-code for
the implementations of the script nodes specified in a VRML-file. Components created this way can be reused in
any VE by declaring the same interfaces. Instances of the implemented interfaces can reside in any application. By
this approach commercial-of-the-shelf software can easily be integrated into a VE application. In this connection
we discuss the underlying framework and software development process. Furthermore, the implementation of a
VE system for a geographic information system (GIS) based on this approach is shown. It is emphasized that the
components are used in various different applications.

Categories and Subject Descriptors(according to ACM CCS): D.1.3 [Programming Techniques]: Concurrent Pro-
gramming D.2.11 [Software Engineering]: Software Architectures D.2.12 [Software Engineering]: Interoperabil-
ity D.2.13 [Software Engineering]: Reusable Software I.3.3 [Computer Graphics]: Graphics Systems

1. Introduction

Virtual Environments (VE) are characterized as a computer-
based generation of scenes of abstract or realistic en-
vironments, which can be perceived and interacted with
consistently1. Immersive virtual environment systems have
to compute the spatial superposition of user and virtual en-
vironment in real-time. The response time and update rate
of the system have to be high enough to generate the ex-
perience of continuity and a perceptible 3D-environment.
This requires not only 3D-based real-time computing and
rendering systems but also real-time spatial registration of
the user and his behavior. The implementation of interac-
tion techniques with virtual environments requires the com-
putation of time-consuming tasks for determining intersec-
tion and collision of objects with the virtual environment.
Because of these high requirements on the processing power
VE systems are usually realized with specialized and expen-
sive parallel mainframes like Onyx infinite-reality systems

from SGI. Recently more and more systems for PC clusters
have occurred. These systems appear to be more cost effec-
tive and scalable. But beside the issue to realize such systems
in general, questions still remain on how to design an appro-
priate programming environment for this kind of parallel and
distributed systems.

When designing an object-oriented application, the pro-
grammer usually starts with creating high-level domain-
dependent abstractions and transfers them into object
classes. These classes are related to each other by inher-
itance or composition. Inheritance can only be used on
a code-implementation-level, whereas composition can be
used at runtime. Therefore composition is commonly used
at a higher level of implementation. Containers of objects
linked together by composition at runtime are also called
software components. To allow the composition of compo-
nents of different vendors across different platforms, the in-
vocation of methods has to be performed through a standard-

c
�

The Eurographics Association 2002.

23

http://www.eg.org
http://diglib.eg.org


Winkelholz and Alexander / VE systems on heterogenous clusters

ized protocol. The software implementing such a protocol
is called middleware. When middleware is commonly avail-
able for acquisition or purchase, it becomes commercial-off-
the-shelf (COTS). Popular object oriented middleware is Mi-
crosoft’s ActiveX and some implementations of CORBA2

from different vendors. To achieve cross-platform interop-
erability the interfaces and the implementation of an object
is handled separately. The interfaces are defined in a specific
interface definition language (IDL). An IDL-compiler gener-
ates skeleton-code for the implementation of the object itself
and stub-code for proxy-objects that can be used in other ap-
plication to have access on the services provided by the im-
plemented objects. Instances of the implemented objects can
reside in arbitrary applications. A proxy can be assigned to
the instance of an object with an appropriate interface at run-
time. This makes the systems developed by such approaches
highly scaleable, reliable, and easy to configure. The mid-
dlewares mentioned are developed for systems that are dis-
tributed across a local area network or a wide area network.
Furthermore, they are only designed to have access to ob-
jects distributed in several components and not to implement
real time parallel applications.

The aim of the framework discussed in this paper is
to transfer the advantages of these established general ap-
proaches to parallel real time virtual environment systems
on a cluster. Requirements of the systems addressed are
different to the conventional application area of these ap-
proaches. Main differences are based on the demand for very
low latency and the necessity to distribute the same data
from one component to multiple components. ActiveX or
middleware based on CORBA use point to point connec-
tions. This make them unsuitable for the broadcasts of data
needed for a VE system. Data can only be broadcasted con-
secutively. This scales badly with data size and number of
components that have to be supplied with the data. The aim
of our developed framework is to facilitate set-ups of im-
mersive virtual environment systems like Workbenches3 and
CAVEs 4 by assembling single components connected by an
isolated local network. For this purpose we exploit the in-
stance, that in modern stand-alone 3D-applications dataflow
graphs are found and the whole application is scheduled in
frames. The dataflow graphs are a high-level expression of
the fundamental abstractions and operations in the system.
In this context we adapt the dataflow graph to a particular
meta-computing environment. This includes deciding which
nodes in the dataflow graph should be executed on a ded-
icated workstation in the cluster. The decision how to dis-
tribute the activity of the dataflow graph is definitely a lower-
level issue in the context of application development. As a
matter of fact, task distribution on a heterogeneous cluster is
always constrained by the actual system the VE application
should be implemented on. Therefore a programming envi-
ronment should separate these concerns. While implement-
ing on a high-level abstraction the application programmer

building an interactive VE should not be concerned about
the distribution.

2. Related Work

There have been various approaches to distribute virtual
environments. Commonly they were used for large-scale
multi-user environments like the DIS/MMA5 and DIVE6.
An overview of the state of the art of such systems is
given in7. These approaches are designed to visualize a dis-
tributed virtual environment to multiple spatially separated
users across a wide area network (WAN). In this case the
requirements for synchronization and low latency are not so
strict as for single user purposes. In contrast to these large-
scale multi-user environment our focus is to substitute the
expensive high-end graphic mainframes commonly used in
single user set-ups by a cluster of PCs. Applications for these
high-end graphic real-time systems are implemented using
Performer8. Performer allows the distribution of an graphi-
cal application to several processors in a parallel computer,
but not on a cluster of PCs.

Recently a lot of research work has been published on
VE systems distributed on PC clusters. Mainly there are two
approaches that can be distinguished. The first approach fo-
cuses on the distribution of the rendering task itself. The im-
plementation of such an approach is WireGL9. Here the dis-
play is divided into several tiles that are rendered from differ-
ent servers. The protocol for the communication of the client
to the servers is based on the level of the graphic applica-
tion programming interface (API), in this case OpenGL. The
OpenGL-function calls are not directed to the local host, but
after some pre-processing and compression, to the servers.
The advantage of this approach is the portability of excit-
ing graphics applications that uses OpenGL. But a VE appli-
cation does not only consist of rendering tasks. In addition
input devices have to be integrated and a lot of processing
has to be done to integrate the users interaction into the vir-
tual environment. Therefore the second approach provides
the programmer with the concept of a shared scene-graph,
accessible from all processes forming a distributed appli-
cation. Each process owns a local copy of the scene graph
and the contained state information, which is kept synchro-
nized. There are several works based on this approach like
Avocado10, Lightning11, Distributed Open Inventor12 (DIV),
SGI Graphic Cluster13 and NetJuggler14. But in their current
implementation most of them like11� 13� 14 simply multiply
the application and broadcast the data of the input devices.
In contrast to this, with the approach presented in this paper
even the computation of single interaction and application
specific tasks can be assigned to dedicated workstations. Av-
ocado and DIV allow different distributed tasks to change
the shared scene-graph, but the way tasks interact among
each other and with the scene-graph is hidden in the im-
plementation. Our approach separates the interfaces through
which the tasks of different components interacts from their

c
�

The Eurographics Association 2002.

24



Winkelholz and Alexander / VE systems on heterogenous clusters

implementation. This approach is established in the develop-
ment of common application components using CORBA or
ActiveX. However, these common middlewares, do not pro-
vide performance required for real time VE systems.
With regard to parallelization the programming model of our
work is more related to the work of Rischbeck and Watson15.
They adopt the programming model of coexisting active and
passive objects similar to ProActive16 to implement a paral-
lel VRML Server. But their framework focuses on the distri-
bution of many fine-grained script-objects that do not need
a synchronised local copy of the world model. In contrast to
this our framework provides every node in the cluster with
a synchronized model. As it will be explained in the next
section we achieve this by distinguishing three roles of an
object: active, passive, and neutral.

3. Cluster Event Broker Architecture

The implementation of a virtual environment is typically di-
vided into an application task and a rendering task. The ren-
dering task can further be divided into a culling and a draw-
ing task. The application, culling and drawing tasks can be
executed in a kind of pipeline parallelism. In a setup with
multiple projection screens the rendering tasks for each pro-
jection screen are executed in a kind of task parallelism. The
application task commonly is further divided into several
tasks that mainly apply to the computation of the interac-
tion with the virtual environment and the generation of the
virtual environment itself. On the division of the application
task into subtasks all kind of parallelism may occur.

For a VE system designed to improve the immersion into
the virtual environment it is essential, that all the rendering
and interaction tasks use exactly the same model of the vir-
tual environment. Because of the limited bandwidth of the
network, local copies of the model have to be available in
each component, and it has to be ensured that the models
are synchronized each frame. The virtual environment seen
as 3D graphical user interface (GUI) is mainly event-driven
corresponding to conventional 2D GUIs. Interaction devices
supply the application with position and hit events. These
events are used to trigger the appearance of the GUI and the
data displayed. In 2D GUIs a desktop mouse is frequently
used as an interaction device. In VEs, data gloves or 6DOF
styluses are used as main input devices. In dependence on
the implemented interaction metaphors suitable event types
can be defined. Thus, the interaction with an VE can be mod-
eled by dataflow graphs. The nodes of the dataflow graph
are either scene-objects which determines the appearance of
an object in the virtual environment or script-objects which
perform further computation on the data received. Therefore
scene-objects are the leaves of the dataflow graph. The root
nodes are script-objects that read data from physical input
devices. Because of this strict description of the interaction
and the simulation in a dataflow graph with root and leaves,
the problem of synchronizing the models on different nodes

on the cluster reduces to the problem to direct the events
appropriately. Sending an event is like a one-way function
call. In a VE simulation the dataflow is scheduled in frames.
Each node possesses input interfaces to receive events and
output interfaces to send events. At the beginning of each
frame the nodes route changed data of their output inter-
faces to the input interfaces of the connected nodes. Then
the script-objects processes the data and the scene-objects
are rendered. There are two possible strategies how to proc-
ceed if the computation of a script-object changes the values
of its output interfaces: The data can be routed in the same
frame or be delayed until the next frame. The first strategy
should be used if computation time is only a small fraction
of the cycle time of the simulation loop. This avoids unnec-
essary increase of latency in this branch of the dataflow. If
computation time is comparable long to the cycle time of
the simulation loop also the second strategy is appropriate.
This is the starting point of our framework to distribute and
parallelize the VE simulation.

The computation of the script-objects is directed to single
components. Each component instantiates the whole model.
The routing of events is executed in each component. The
framework distinguishes between three roles of a script-
object. A script-object can be neutral, active or passive. The
computation of a neutral script-object is performed in ev-
ery component. The computation of an active script-object
is performed only in one dedicated component. In the other
components the corresponding script-objects of an active
script-object are passive. The data of the output interfaces
of active script-objects are distributed to the corresponding
passive script-objects at the very beginning of each frame,
before the routing in the components is performed. There-
fore passive script-objects do not have to perform the com-
putation. The data of the output interfaces of all correlated
script-objects is identical when the routing is performed in
the components. In this way the model of the virtual envi-
ronment is kept synchronized during the simulation. Figure 1
and Figure 2 illustrates this. At this point it has to be empha-
sized that in our terms the passive objects do not correspond
to the passive objects in the work of Caromel et al.16. In fact
in our terms the neutral objects correspond to the passive
objects in their work. The role of a script-object does not
have to be assigned at compile time but at the initialisation
of the virtual environment system. During the implementa-
tion and design of the virtual environment the developer does
not have to be concerned about the distribution of the final
system.

The mechanism of distributing the events is hidden by
some kind of middleware. Core of the middleware is one ob-
ject we call an "Event Broker" (EB). The EB drives the sim-
ulation loop and exchanges the data of the interfaces. In each
component there is an instance of an EB. Connected to the
event broker is a model view controller (MVC) framework.
The views lock the output to the physical output devices un-
til they receive a swap signal from the event broker. This

c
�

The Eurographics Association 2002.

25



Winkelholz and Alexander / VE systems on heterogenous clusters

  

VE-Component1 
 

VE-Component2 
 

VE-Component3 
 

Event Broker 

Master 

Figure 1: Distributed computation of the script-objects in
the dataflow of a VE. White spheres represent neutral script-
objects, gray spheres represent passive script-objects, and
black spheres represent active script-objects.

enables parallel rendering of multiple projection screens.
The global swap signal is send by a central master compo-
nent. The master component also initializes the event broker
of each component and assigns the active script-objects to
the components. The middleware is designed to minimize
high latency system calls to the network. This is achieved
by amalgamating the events of the active script-objects in
each component and broadcast them at the beginning of each
frame. That way a simple ethernet as underlying network is
sufficient for several set-ups. The middleware can be config-
ured to use UDP or TCP as the network protocol. In case
of UDP each workstation in the cluster has to be equipped
with a second dedicated network card which are only con-
nected among each other. This way the event brokers can use
broadcast messages in a scheduled way that avoids collisions
and lost of data packages. The middleware has been imple-
mented on Win32, Linux, and IRIX platforms. The event
data is converted into the platform independent network for-
mat in heterogeneous clusters.

We made performance measurements of the middleware.
As the metric of performance we measured the extra time
Tm needed by the middleware to synchronize the data of the
output interfaces each frame. To achieve acceptable frame
ratesTm should not exceed 10 ms. Table 1 shows how many
hosts can be connected to a cluster under this condition. In

10 kB 20 kB 30 kB 40 kB
homogen 55 40 30 25
heterogen 48 27 21 12

Table 1: Maximum number of hosts at which Tm � 10ms in
dependence of the size of the data of the interfaces. Network
bandwidth 100Mb/s, UDP as underlying protocol, and only
one component per host.

case of the usage of TCP only up to 3 distributed compo-
nents can be connected for similar amount of data per frame.
A more detailed description of the middleware and the per-
formance measurements has been described in17. The event
data size of 10-40 kB is sufficient in many cases. In the re-

cently extended implementation of the middleware data is
broadcasted concurrently distributed over multiple frames if
data-size exceeds 40 kB. In this way also the coordinates of
a large geometry or texture can be updated during an appli-
cation without drop in the framerate. The developer only has
to be aware of the fact, that if he uses events with large data
sizes the event is not routed immediately, but with a delay of
several frames.

4. Usage of VRML as an IDL

The most common way to make sure all components in the
simulation use the same interfaces is to declare them in spe-
cial files. Components can use these descriptions of the in-
terfaces to generate proper objects, which can be integrated
into the parallel and distributed simulation. Instead of defin-
ing a new interface definition language we use the virtual
reality modelling language (VRML)18 for this purpose. In
a certain sense VRML can even be seen more as an IDL
than a programming language. Because of the arrangement
of the scene-objects in a scene-graph, VRML objects gener-
ally are called nodes. VRML defines some scene-nodes with
fix-defined attributes. More important for our purpose are
script-nodes, which can be defined with arbitrary fields. The
fields are marked with the keyseventIn, eventOutor field.
The eventInfields are interfaces for the script-node to re-
ceive events and theeventOutfields specify which events are
supplied by the script-node. VRML defines data-types that
are suitable for VE applications, likeSFVec3f, SFRotation
or SFNode. A field marked with theeventInor eventOuttag
can participate in the event-driven VRML execution model.
An event is sent from one node’seventOutto another node’s
eventInfield if a route exists. Routes are described in the
routing graph, separate to the scene graph. The execution
model of our framework differs from the execution model
specified in VRML9718 in one point. An event cascade is
broken at script-nodes that are not neutral. As described
above, events created while processing an incoming event
of an active script-object have first to be distributed to the
other components to assure that the models in all compo-
nents in the cluster are kept synchronized. This delay in the
routing of events may lead to conflicts, if a fan-out branch
of the routing graph contains active script-nodes of which
the siblings are neutral. The VRML97 specification does not
define a processing order for fan-out or fan-in events. There-
fore it is inconvenient to implement the behavior in a way
that the order of processing incoming events is important. If
the developer does so in our framework, he has to be aware
that events in a branch with an active script-node are de-
layed by one frame. Future work may extend the framework
to that effect, that also the routing of neutral script nodes are
delayed if necessary and the execution model would be in
conformance with the VRML97 specification.

In VRML97 the script-nodes contain a field with an URL
to the code that has to be processed. This code implements

c
�

The Eurographics Association 2002.

26



Winkelholz and Alexander / VE systems on heterogenous clusters

functions associated with theeventInfields. The code is ex-
ecuted in a runtime environment. The runtime environment
interface, also called scene authoring interface (SAI), pro-
vides some services like for creating new nodes or for delet-
ing and adding routes dynamically. In our framework these
calls to the SAI are handled like specialeventOut-fields,
which are routed statically to the SAI. In some implemen-
tations the SAI can also be used by external applications
to control the scene graph. In addition to the functions for
the eventInfields a script node may implement some other
functions likeinitialize(), shutdown()or eventsProcessed(),
which are called at specific points in the live cycle of the
script-object. In our framework we added the functionpre-
Frame(). It is called at the beginning of each frame before
data among the components is exchanged (see Figure 2). The
preFrame()function is useful to implement script-nodes as-
sociated with physical input devices whose data has to be
provided with minimal latency to the system.

 

Ex Ca Id Ex Ca Id 

Ex Ca Ex Ca 

time 

components 

routing preFrame() 

Ex Ca Id 
Exchange of  
interface data 

Calclulation for  
model-update, 
rendering, etc. 

Idle 

Figure 2: The preFrame()- function is called at the begin-
ning of each frame. The routing is performed after the ex-
change of the interface-data.

VRML97 defines language protocols for java and
javascript. But there are also some propriate language proto-
cols for C++ from different vendors. These propriate VRML
browser are designed as simple web-browsers to run stan-
dalone and not to run parallel and distributed on a cluster.
The SAI is designed in such a way, that the external appli-
cation holds a reference to the browser enabling access to
the scene-graph. In some implementations it is also possi-
ble to set callback handles foreventOutfields of nodes in
the virtual world. By this it is not only possible to control
the VE from an external application but also to include the
external application in the event cycle. The disadvantage in
designing the system in such a way is, that the interfaces of
how the external application as a component of the VE sys-
tem interacts with the VE are hidden in the implementation
code. This makes the usage of this application as a compo-
nent in other VE systems very inconvenient. Otherwise, if

the external application itself is represented as a script with
fields that connects them to the VE, it can be reused very
easily. This separation of interface from implementation is a
very common approach in the development of components
in modern software systems. This technique is the essence
of CORBA or ActiveX. It enables interoperability with all of
the transparencies recommended in larger software projects.
The interface to each object is defined very strictly. In con-
trast, the implementation of a component - its running code
and its data - is hidden from the rest of the system (that is, en-
capsulated) behind a boundary that the client may not cross.
Clients access objects only through their advertised inter-
face, invoking only those operations that the object exposes
through its IDL interface, with only those parameters that
are included in the invocation. Another advantage of the ap-
proach to separate interface and implementation is, that kind
of invocation, local or remote, can easily be changed. In the
case of the VRML dataflow graph the invocations are only
one-way.

To apply this approach to VE systems we developed an
IDL-compiler that generates skeleton-code for the script-
nodes defined in a VRML-file. In our current implemen-
tation the IDL-compiler generates C++ skeleton-code. The
IDL-compile generates two kinds of skeleton code: lib-
skeleton code and object-skeleton code. The lib-skeleton
code maps theeventInfields of a script-node to functions,
which are exported as functions of a dynamic link library.
The implementation of the lib-skeleton code has also to be
compiled and linked in that way. The object-skeleton code
maps theeventInfields of the script node to virtual functions
of a base-class. The developer implements the functionality
of these virtual functions by inheritance. The code necessary
to register this script-object at the event broker as an imple-
mentation of the VE script-node is contained in the object-
skeleton code. The object-skeleton code is intended to im-
plement script-objects that need to be integrated into other
application frameworks to perform its task.

To allow an adequate application development a script-
object has to be able to send events to other objects by refer-
ence. They may receive these references from theireventIn
fields or through name services of the SAI. In the case of a
parallel and distributed simulation, also events sent by refer-
ences have to be delayed until the next frame. For this rea-
son in our framework the SAI offers only proxy-objects to
the implementations of the script-objects. The stub code of
these proxies is integrated into the SAI of our runtime en-
vironment. Figure 3 shows how in this case the event is di-
rected to the EB, which buffers it for synchronization. Stubs
and skeletons serve as proxies for clients and servers, respec-
tively.

In the parallel simulation the component with the low-
est performance determines the cycle time of the simula-
tion loop. This means, if there is a script which’s compu-
tation needs more than the desired cycle time it will impair

c
�

The Eurographics Association 2002.

27



Winkelholz and Alexander / VE systems on heterogenous clusters

 

VRML 
skeleton 

 
 
 

Cluster Event Broker 

VRML 
stub 

 

Event buffer 

Script 
Proxy 

Script 
Implemetation 

VRML 
SAI 

 

Figure 3: How skeleton and stub code integrate into the
event broker architecture.

the whole simulation, also in the distributed case. Therefore
the computation of such a script has to be broken down into
further scripts that than can be distributed or if possible the
computation of the script has to run asynchronous to the
event and simulation loop in an extra thread. To facilitate
the latter implementation we plan the IDL-compiler to pro-
vide compiler options that allow generation of skeleton code
for script-nodes that has to be linked ’loosly’ or ’stricly’ into
the event cascade. A ’loosly’ linked script-node means that
it is running asynchronously in an extra thread and it is not
guarantied, that the computation finish within the frame.

5. Implementing the Components

This section describes the development process of the
distributed application. For the implementation of com-
ponents for visualization the framework provides view
classes for user-centric projections screens. Objects of
the view classes can be attached to a world model to
render the scene. The following code fragment might
give an impression on how components for the vi-
sualization are implemented within the framework.
 
void WinAppC::Init(long argn, const char** argv) 
{ 
  .. 
  .. 
  CybSixDOFSensorC headtracker; 
  CybGLWorldC world; 
  CybGLStereoViewC *pView; 
  pView = new CybGLStereoViewC(this,..); 
  pView->setHeadtracker(&headtracker); 
  world.addView(pView); 
   
  EventBrokerC eb(name,endpoint,clusterIP); 
 
  world.loadFromFile(eb.getInitData());     
  eb.addModel(&world); 
  eb.AsignInterface("headtracker",&headtracker); 
  eb.initializationReady(); 
 
  while(processWinEvents()){ 
    if(!eb.processEvents()){ 
      this->Quit(); 
    } 
  } 
} 

The implementation contains one instance of the event
broker, one instance of the world model, and one or several
objects of a view class. If necessary the views can be

attached to a headtracker. The world model and the view
objects are registered at the EB to receive update and swap
events. The world model represents the local copy of the
distributed virtual environment. It is initialized by loading
the VRML-file that the event broker provides as init data.
After the initialization is finished the component calls the
processEventsfunction of the EB to run the simulation
loop until a quit message is received. Components for
visualization and components for reading sensor data have
in common to link the VE to physical devices. For the
implementation of these kinds of components it is there-
fore natural to use interfaces that provide position and/or
orientation data in the coordinate system of the real world
(e.g. headtrackers). It would be inappropriate to define these
interfaces as script-nodes in the VRML-file. Instead, the
framework includes a default interface for six degree of
freedom sensor data. To achieve a seamless integration of
sensors that intrinsically provide data in the coordinate sys-
tem of the real world into the VE application we extended
VRML by a native node that wraps the interface of a real
world sensor registered at the EB with the name defined in a
field of the native VRML-Node. The VRML-Node provides
the data of the sensor as eventOut fields transformed to the
coordinate system of the virtual environment.

The application specific components implement script
nodes defined in the virtual environment. In some cases the
implementation of these script nodes requires a program-
ming environment which the SAI and standard C++ libraries
cannot provide. In the applications discussed in section 7, for
example, this is the necessity to implement a link to other ap-
plications via ActiveX/DCOM. The most convenient way to
implement components using ActiveX is to use the program-
ming environment "Visual Studio" from Microsoft. But this
implicates to hook the code of the script-object into a for-
eign framework. In our approach the integration of a script-
object into a foreign framework is achieved by using the
object-skeleton code created with the IDL-compiler. Thus,
the development process of the components using a foreign
framework consists of the following steps:

1. Compile the VRML-file into object-skeleton code and
lib-skeleton code.

2. Implement the lib-skeleton code with some default pro-
cessing.

3. Implement the object for the full functional component
by inheritance.

4. Implement and compile the component with the imple-
mented object.

The default implementation of the lib-skeleton code may be
default processing that does not need the special resources
for performing as an active script-node. By using these
default implementation script-codes the basic function-
ality of the VE can be tested in a standalone browser.
To get a clear impression on how the implementation
of the object-skeleton code is integrated into a foreign
application framework, we give an example referring

c
�

The Eurographics Association 2002.

28



Winkelholz and Alexander / VE systems on heterogenous clusters

to the Microsoft’s "Visual Studio" (MVS) framework.
The event loop of the event broker has to run in a own
thread to avoid impair on the VE simulation caused by
the event loop of the MVS framework. Because the EB
and the application framework both require access to the
implemented script-object, the reference to the script-object
is shared in a field of a data structure that is passed
over to the thread. This data structure might look like:
 

  struct ThreadParams{ 
    CWinThread*       pThread; 
    EventBrokerC*     pEB; 
    CCriticalSection*  pCS; 
    CybWorldC*         pWorld; 
    Script1C_Impl*     pScriptImpl; 
}; 

Furthermore, the data structure contains a field for a
critical-section-object, which is used to synchronize
the access to the script-object. The thread, as shown
below, creates an instance of the event broker, ini-
tializes the simulation and registers the script-object
as an implementation at the runtime environment.
 
UINT ThreadRoutine(LPVOID paramsIn) 
{ 
  .. 
  ThreadParams* params = (ThreadParams*)paramsIn; 
 
  EventBrokerC* pEB; 
  pEB = new EventBrokerC(name,endpoint,localIP); 
  CybWorldC* pW = new CybWorldC; 
  pEB->addDocument(params->world); 
 
  params->pCS->Lock(); 
 
  pW->loadFromFile(pEB->getInitData()); 
  CybScripC* pScript; 
 
  pW->setScriptImpl(params->pScriptImpl); 
 
  pEB->initializationReady(); 
  params->pWorld = pW; 
  params->pEB = pEB; 
  params->pCS->Unlock(); 
 
  while(b){ 
    params->pCS->Lock(); 
    b=params->ptrObj->processEvents();  
    params->pCS->Unlock(); 
  } 
  // cleaning up  
  .. 
} 

The application code might create the script-object and
start the thread as the following code fragment shows.
 
ThreadParams threadParams; 
threadParams.pScriptImpl = new Script1C_Impl; 
threadParams.pCS = new CCriticalSection; 
threadParams.pThread 
 = AfxBeginThread(ThreadRoutine,&threadParams); 
 

6. Setting up the VE system

Once components like display servers, sensor servers, and
application script servers have been implemented and are
available, they are installed on the workstations providing
the resources needed for one component to perform its task.
For example, a display server should be installed on a work-

station with hardware accelerated 3D graphic capabilities
and a projector attached to it, and a sensor server is installed
on a workstation with the respective physical input devices.
The executables of the components are added to the compo-
nent repository on the host, which is used by a cluster dae-
mon to launch components on demand. The composition of
the VE is described in a VRML-file. As shown in the pre-
vious section the VRML-file is loaded by the components
to initialize the local copy of the VE model. The master

 

Host n Host 1 

Component 
repository 

Master 

VE 
Configuration 

File 

Component 
repository 

........ 

Host 2 

Component 
repository 

clusterdaemon clusterdaemon clusterdaemon 

Figure 4: The master connects to the clusterdaemons to
spawn the components of the VE system.

launches the components as can be seen in Figure 4. Af-
ter the components have been started the master connects to
the EBs of the components and communicates information
about the URL of the VRML-file to be loaded and infor-
mation about the active interfaces on each component. This
kind of data is settled in a configuration file. Further, the
configuration file contains a table with the components to be
launched on which host and the parameter to pass over at
startup. The assignment of the active interfaces is also ar-
ranged in a table. Interfaces of the VRML-file that do not
occur in the table are declared as neutral objects. For each
component it is mandatory, that the first parameter passed
at startup is a string for its name in the distributed simu-
lation. This name has to be passed to the instance of the
event broker in the component. In this way the same exe-
cutable can serve as multiple different components in the
simulation. This will become clearer in the following sec-
tion where some applications are described. By editing the
configuration file a new virtual environment application can
be assembled from consisting components.

7. Application

This section describes the implementation of three differ-
ent VE systems for a geographic information system (GIS)
based on the approach discussed in the previous sections.
The VE systems implemented are used for the evaluation
of ergonomic issues of geographic data visualization with
semi-immersive VE systems (see Alexander1). The different

c
�

The Eurographics Association 2002.

29



Winkelholz and Alexander / VE systems on heterogenous clusters

set-ups differ mainly in the usage of different display tech-
nologies. Our main application set-up uses a semi-immersive
virtual workbench as a display and a virtual laserpointer as a
pointing device. At a second set-up we use a passive stereo
projection screen, where the images for the left and right eye
are rendered in parallel on different workstations. The third
system realized is the prototype of a virtual 3D PDA using
mixed reality technology. For this display the visualization
component replaces a pattern in a video stream by the terrain
model. The pattern been replaced is fixed on a palm sized ta-
ble. Overall, we implemented the following executables to
assemble the different set-ups:

StereoPSDisp Active stereoscopic rendering component
with dynamic user centric projection for the workbench.

MonoPSDisp Monocular rendering component for parallel
rendering.

MRDisp Rendering component for a mixed reality set up.
ScriptSrv Component to run common scripts that need not

to be integrated into another framework.
AFlockOfBirds Server component for ascension flock of

birds six DOF sensors.
MSpaceMouse Component to integrate a Magellan space

mouse.
SpeechRec Component to integrate a speech recognition

system.
VEGIS Component which implements the link to the GIS.
Browser Stand alone VRML browser for debugging.

These executables can be parameterized and used as dif-
ferent components in the set-up. The names given above are
the names used in the component repository. The display
componentsMonoPSDispandStereoPSDispcan be param-
eterized with the location and orientation of the projection
screen in world coordinates. TheMonoPSDispcomponent
can further be parameterized either to display the image for
the right or for the left eye. This way theMonoPSDispcom-
ponent can be used for stereoscopic passive multi projection
screen systems, where each screen for each eye is rendered
on a different workstation. We use this type of component
in our showroom set-up. The componentStereoPSDispfor
active stereoscopic rendering with shutter glasses is used in
the set-up of the virtual workbench.

The most general usable component of these isScriptSrv.
This component only contains an EB and the synchronized
VE model with the VRML runtime environment. It is in-
tended to run scripts that do not need to be embedded into a
foreign framework. It is very useful to launch one instance
of this component class for every script that uses the time-
consuming collision detection services of the SAI. For the
integration of input devices we have implemented the two
componentsAFlockOfBirdsandMSpaceMouse. One sensor
of the flock of birds is mounted on one pair of shutter-glasses
that is used as a headtracker. An other sensor is equipped
with three buttons that is used as a six DOF mouse. For
the speech recognition componentSpeechRecwe used com-
mercial of the shelf software through an ActiveX interface.

Because speech recognition consumes computing power it
is advisable to run this on an extra workstation in the clus-
ter. The script-object provided by theSpeechReccomponent
contains oneeventOutfield for the strings recognized by the
system. This field is routed to another script-object that con-
verts the string to commands for the application. In the cur-
rent implementation this mapping is fixed and is used only
for menu item selection. For a more progressive integration
of speech control the state of the virtual environment has
to be taken into account to resolve ambiguities. In our ap-
proach the script performing the mapping can easily be ex-
tended for this task because it has access to the synchronised
VE model. The most application specific component that is
used in each set-up is theVEGIScomponent, which imple-
ments the link to a GIS. The component itself is assembled
by several subcomponents. One subcomponent generates 2D
maps from different database sources including vector data
as VMAP and raster picture data like PCMAP. This subcom-
ponent is also used in an ordinary 2D GIS system as a display
component19. Another subcomponent generates the terrain
model online from data stored in a DTED database and tex-
tures this with the maps generated by the map-component.
The subcomponents are linked together to theVEGIScom-
ponent by using standard techniques like dynamic link li-
braries and ActiveX. Beside the content of the texture map it
is also necessary to display some entities with a geo-spatial
reference as three-dimensional objects. TheVEGIS com-
ponent also manages the representatives and recalculates
their position in the virtual environment when the terrain
model changes, e.g. if another resolution of the grid is cho-
sen. Furthermore, theVEGIScomponent advertises an Ac-
tiveX/DCOM interface to external applications that allows
to control the terrain model and the entities of the virtual en-
vironment. The component itself is multi-threaded, because
the task of the terrain generation cannot be performed within
the cycle time of the simulation loop. For our workbench
the six DOF mouse sensor provided by theAFlockOfBirds
component is used to implement a virtual laserpointer as a
pointing device. The laserpointer is implemented as a sim-
ple script node using the intersection services of the SAI.
The functionality of the VE applications is composed in a
VRML file. Beside the script-objects described above there
are several other small script-objects that handle the appear-
ance of menu item, etc. These script-objects are declared as
neutral within all applications.

In the following the realisations of two different applica-
tion set-ups are shown in the Figures 5- 6. The gray boxes
represent physical devices like workstations and input out-
put devices. The workstations contain the components they
are performing represented as white boxes. The white boxes
of the components contain two description fields. At the top
the name of the executable of the component separated by a
’::’ from the name of the component instance. In the middle
a field indicates the script-object that is assigned as active to
the component. Figure 5 shows how the set-up of the work-

c
�

The Eurographics Association 2002.

30



Winkelholz and Alexander / VE systems on heterogenous clusters

bench is assembled from different components. One SGI
Onyx infinite reality rack serves as the host for the stereo-
scopic rendering componentStereoWBDispand the compo-
nentsAFlockOfBirdsand MSpaceMousefor the input de-
vices. Because our Onyx is only equipped with two proces-
sors, which are already busy to perform drawing and culling
task, the script of the pointing-device is performed as an ac-
tive object in the instance of theScriptSrvcomponent on
a single workstation in the cluster. The performance of the
system is increased by up to 25% this way. The components
SpeechRecand VEGISare running on dedicated worksta-
tions as well. We have no indication of how the performance
of the system would decrease if we would execute these
components on the Onyx, because they require a Win32 op-
erating system.

 

Windows  PC Windows  PC Windows  PC 

SGI Onyx 

WBDisp::G1 
 
active objects: 
  none 

MSpaceMouse::MSM_sgi 
 
active objects: 
  Magellan_Spacemouse_rel 
  Magellan_Spacemouse_abs 

AFlockOfBirds::Flock_sgi 
 
active objects: 
  headtracker 
  6dof_mouse_sensor 

VEGIS::VEGIS 
 
active objects: 
  VEGIS_script 
  App_Script 

ScriptSrv::Laser pointer 
 
active objects: 
  laserpointer_script 
 

SpeechRec::SpeechRec 
 
active objects: 
  speechrec_script 
   

Flock of Birds 

Magellan 
Spacemouse 

Workbench 
Projector 

100 Mbs Ethernet 

microphone 

Terrain 
& 

Map 
Database 

External 
Applications 

DCOM 

DCOM 

Figure 5: Realisation of the workbench.

Figure 6 shows the set-up for the stereoscopic parallel ren-
dering in our showroom. Because no dynamic viewfrustum
is needed the component for the head-tracker is omitted. The
rendering is performed by two instances of theMonoPSDisp
component on two different workstations. The composition
of the application in the VRML-File differs from the work-
bench application mainly in the kind of navigation and how
menu items and extra info is displayed in the VE. This is
achieved by replacing some of the passive scripts we have
not described in this paper. The showroom set-up could eas-
ily be extended to multiple projection screens later on.

8. Conclusions and Future Work

In this paper our approach to develop a highly flexible paral-
lel real-time VE systems realized on heterogeneous clusters

 

Windows PC 

Windows  PC Windows  PC 

Windows  PC 

PSDisp::GSrv1 
 
active objects: 
  none 

MGSpaceMouse::MSM_win 
 
active objects: 
  Magellan_Spacemouse_rel 
  Magellan_Spacemouse_abs 

SpeechRec::SpeechRec 
 
active objects: 
  speechrec_script 
   

Magellan 
Spacemouse 

100 Mbs Ethernet 

PSDisp::GSrv2 
 
active objects: 
  none 

Projector Projector 

microphone 

VEGIS::VEGIS 
 
active objects: 
  VEGIS_script 
  App_Script 

Terrain 
& 

Map 
Database 

External 
Applications 

DCOM 

DCOM 

Figure 6: Parallel rendering in the showroom.

of workstations has been presented. This approach provides
the developer with a meta programming environment. The
concern of designing the high level abstractions for the vir-
tual environment is separated from the low level issues of
the actual distribution of the system. Commonly used mid-
dleware proved to be not suitable for the VE systems we
were focused on. Because of this we have designed a clus-
ter event broker architecture to implement a middleware that
meets the requirements of the desired type of system. The
designed middleware exploits the circumstance that in the
implementation of virtual environments the interaction and
animation are modeled in dataflow graphs and the running
simulation is scheduled in frames. The simulation scheduled
in frames allows to amalgamate the events each frame and
to avoid unnecessary system calls with high latency. This
way, the usage of common 100Mbsethernet is sufficient for
clusters with up to 20-30 workstations. Performance mea-
surements have shown that the unavoidable system calls to
the network is one limiting factor in clusters with a huge
number of workstations. There are several projects trying to
implement network drivers and network components with
low latency and high bandwidth (see e.g.20� 21). The usage
of such network components in connection with our frame-
work promises the facility for clusters with more than 100
workstations.

We implemented several different VE applications sim-
ply by assembling existing components. Nevertheless, there
are some areas where the framework can be enhanced. So
far we have implemented only a C++ script-protocol and
C++-IDL-compiler to our framework, hence all lib-script-
objects which are loaded at runtime have to be compiled

c
�

The Eurographics Association 2002.

31



Winkelholz and Alexander / VE systems on heterogenous clusters

for each platform. The implementation of a platform inde-
pendent scripting language into the framework would facil-
itate the actual distribution of an application. Furthermore,
the framework could be extended by some kind of sophis-
ticated load-balancing. Currently the developer has to de-
fine which script-objects are to be active on a particular
host. This means no problem or is even desired for script-
objects requiring special resources or performing working
tasks. Script-objects which are not assigned explicitly to a
host are performed as neutral script-objects on each host.
In dependence on number and granulation of such neutral
script-objects they may decrease performance of the system.
In this case it would be beneficial if these script-objects are
assigned automatically as active to selected hosts. The load
balancing in our framework would have also to take the cur-
rently available bandwidth of the network into account.

However the framework described makes efficient com-
puting of VEs on heterogeneous clusters possible. This is
not limited to rendering tasks, but also includes interaction
tasks and other output of different modalities. The frame-
work has been used successfully in our three different set-
ups. It brings along flexibility, portability, and developer us-
ability, which is especially important for our application as a
research testbed.

References

1. T. Alexander. Ergonomic issues of data visualiza-
tion with semi-immersive Virtual Environment Sys-
tems,Human-System Interaction: Education, Research
and Applications in the 21th CenturyShaker Publish-
ing, 1999.

2. Object Managing Group. The Common Ob-
ject Request Broker: Architecture and Specification.
http://www.omg.org

3. W. Krüger and B. Fröhlich. The Responsive Work-
bench.IEEE Computer Graphics and Applications, pp.
12-15, May 1994.

4. C. Cruz-Neira, D. J. Sandin and A. T. DeFanti.
Surround-scrren projection-based virtual reality: The
design and implementation of the CAVE.Proceedings
of SIGGRAPH 93, pp. 135-142, ISBN 0-201-58889-7.

5. F. Kuhl, R. Weatherly and J. Dahmann.Creating Com-
puter Simulation Systems - An Introduction to High
Level Architecture.Prentice Hall, 1999.

6. C. Carlsson and Hagsand. Dive - a multi-user virtual
reality system.IEEE VRAIS93, pp 394-400.

7. S. Singhal and M. Zyda.Networked Virtual Environ-
ment - Design and Implementation.Addison Wesley
acm Press, 1999.

8. J. Rohlof and J. Helman. IRIS-Performer: A high
performance multiprocessing toolkit for Real-Time 3D
Graphics.Proceedings of SIGGRAPH 94.pp. 381-395.

9. G. Humphrey, E. Matthew, I. Buck, G. Stoll, E.
Matthew and p. Hanraham. WireGL: A Scalable
Graphics System for cluster.Proceedings of SIG-
GRAPH 2001, ACM, Los Angeles, CA, 2001.

10. H. Tramberend. Avocado: A distributed virtual reality
framework.Proceedings of the IEEE Virtual Reality In-
ternational Conference VR’99, Houston, USA, March
1999.

11. M. Bues, R. Blach, S. Stegmair, U. Häfner and H. Hoff-
mann. Towards a scalable High Performance Appli-
cations Platform for Immersive Virtual Environments.
Proceedings of Immersive Projection Technology and
Virtual Environments 2001, pp. 165-174, Springer.

12. G. Hesina, D. Schmalstieg, A. Fuhrmann and W.
Purgathofer. Distributed Open Inventor: A Prati-
cal Approach to Distribute 3D Graphics.Proceedings
VRST99, pp. 74-81, 1999.

13. SGI. White Paper: SGI Grpahics Cluster: The
Cluster Architecture Challenges, the SGI Solution.
http://www.sgi.com/Products/PDF/3088.pdf

14. J. Allard, L. Lecointtre, V. Gouraton, E. Melin and B.
Raffin. Net Juggler Guide.Technical Report, University
of Orleons, LIFO, Report Nr. 2001-02

15. T. Rischbeck and P. Watson. A Parallel VRML97
Server Based on Active Objects.VECPAR 2000 Con-
ference, June 2000, Springer Verlag.

16. D. Caromel, W. Klauser and J. Vayssiere. Towards
Seamless Computing and Metacomputing in Java.Con-
currency Practice and Experience, 10(11–13), pp.
1043-1062, Wiley & Sons, 1998.

17. C. Winkelholz and T. Alexander. Rahmenwerk zur
Realisierung einer immersiven virtuellen Umgebun-
gen verteilt in einem Cluster.FKIE-Bericht Nr. 37.
Wachtberg-Werthhoven, FGAN-FKIE. 2001

18. VRML Consortium Incorporated. Vrml97 Specifica-
tion. International Standard ISO/IEC 14772-1:1997

19. A. Kaster and J. Kaster. Componentware Approaches
in Management Information Systems.Proceedings
of the NATO RTO Symposium HFM-049/SY-005,
10.-13.4.2000 Oslo, NO, Neuilly-sur-Seine: NATO
RTO/RTA

20. G. Ciaccio and G. Chiola. GAMMA and
MPI/GAMMA on Gigabit Ethernet. PVM/MPI
2000. pp. 129-136

21. N. Bode. Myrinet - A Gigabit-per second Local Area
Network.IEEE Micro. http://www.myrinet.com

c
�

The Eurographics Association 2002.

32


