
Eurographics Symposium on Parallel Graphics and Visualization (2013)
F. Marton and K. Moreland (Editors)

Analysis of Cache Behavior and Performance of Different
BVH Memory Layouts for Tracing Incoherent Rays

D. Wodniok1, A. Schulz2, S. Widmer1 and M. Goesele1

1Graduate School Computational Engineering, TU Darmstadt, Germany 2TU Darmstadt, Germany

Abstract

With CPUs moving towards many-core architectures and GPUs becoming more general purpose architectures,
path tracing can now be well parallelized on commodity hardware. While parallelization is trivial in theory,
properties of real hardware make efficient parallelization difficult, especially when tracing incoherent rays. We
investigate how different bounding volume hierarchy (BVH) and node memory layouts as well as storing the BVH
in different memory areas impacts the ray tracing performance of a GPU path tracer. We optimize the BVH layout
using information gathered in a pre-processing pass applying a number of different BVH reordering techniques.
Depending on the memory area and scene complexity, we achieve moderate speedups.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing; I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data structures and data
types; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing;

1. Introduction

Many applications (especially in a global illumination con-
text) spend a substantial amount of time tracing rays through
a scene. Theoretically, ray tracing is embarrassingly parallel
as different rays can be traced independently. On multi-core
systems it is implemented in a straightforward manner by
letting each thread process its own batch of rays. Further par-
allelization can be achieved by taking advantage of SIMD
capabilities of multi-core architectures or the massive par-
allelism of many-core architectures such as GPUs which is
the focus of this paper. Efficient parallelization on SIMD ar-
chitectures is, however, much harder due to incoherent rays
whose origins and directions vary widely. Tracing incoher-
ent rays requires traversing different paths through the accel-
eration structure, resulting in incoherent memory accesses
since different nodes are traversed and different primitives
are tested. As incoherent rays form an absolute majority they
pose a serious challenge. It is thus important to carefully
choose where (i.e., in which memory area) and how to layout
data and to use special instructions to unlock the hardware’s
full potential. GPUs typically achieve their massive paral-
lelism by a wide SIMD width (in our case 32 lanes) yielding
the following challenges for an efficient implementation:

• SIMD efficiency (ratio of active to total number of SIMD
lanes): Especially for incoherent rays, the SIMD effi-
ciency can be low since the number of acceleration struc-
ture nodes that a ray has to test in order to find the nearest
intersection can vary significantly. Some rays terminate
earlier than others, leaving a number of SIMD lanes idle.

• SIMD divergence: Even if all SIMD lanes have active
rays, some may want to test geometry while others are
still traversing the acceleration structure. In that case the
execution paths of the lanes diverge and SIMD efficiency
is temporarily lower until the execution paths re-converge.

• Memory bandwidth/latency: As incoherent rays access
many different memory addresses, the number of different
cache lines accessed increases, too. On current GPUs only
a single cache line can be read at a time. In the worst case,
each SIMD lane accesses a different cache line, resulting
in serialization of the accesses and increased latency.

We focus on the memory effects of tracing incoherent rays
on NVIDIA GPUs. “Real-world” incoherent rays are gener-
ated by a basic path tracer. Presumably, the cache efficiency
when tracing incoherent rays is low. We analyze our GPU
path tracer and the effects of rearranging the nodes of the ac-
celeration structure (a bounding volume hierarchy (BVH))

c© The Eurographics Association 2013.

DOI: 10.2312/EGPGV/EGPGV13/057-064

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV13/057-064

Wodniok et al. / Analysis of Cache Behavior and Performance of Different BVH Memory Layouts for Tracing Incoherent Rays

on cache efficiency using previously recorded access statis-
tics. Our goal is to increase cache hit rates and reduce the
number of cache lines read per access. Our contributions are
the analysis of the cache behavior when tracing incoherent
rays in real-world scenarios. In particular, we show that the
commonly used depth first search memory layout performs
worst and we present several alternative layouts. None of
those performs, however, best in all cases.

2. Related Work

Plunkett et al. [PB85] first implemented ray tracing on a vec-
tor processor. With the widespread availability of SIMD ar-
chitectures, research on efficiently implementing ray tracing
on such architectures proliferated. Wald et al. [WSBW01]
presented an SIMD implementation of a ray tracer using In-
tel’s SSE instructions. Their packet tracing technique ex-
ploits ray coherence by tracing rays in packets of SIMD
width size (4 for SSE) which achieves good caching behav-
ior and yields a speed-up of roughly half an order of magni-
tude. Memory bandwidth is reduced by loading a node only
once for packets of 4 rays. Later, Wald et al. [WBS07] pro-
posed a combination of packet and frustum tracing. Using
a packet size larger than the native SIMD width and differ-
ent optimizations, they reported 3.3-10.7× speed-ups over
the native SIMD packet size. Purcell et al. [PBMH02] first
presented a complete GPU ray tracing pipeline which had to
map all computations to the GPU’s rendering pipeline. First
ray tracing implementations using NVIDIA’s CUDA [NVIa]
include Günther et al. [GPSS07] and Popov et al. [PGSS07].

Aila et al. [AL09] presented different trace loop organi-
zations. The key difference to packet tracing is that essen-
tially single ray tracing in an SIMD manner is performed us-
ing scatter/gather operations and hardware SIMD divergence
handling. Rays only visit nodes which they actually inter-
sect, but memory accesses become more incoherent. The
speculative while-while loop organization performed best. It
processes rays in one of two phases at a time: traversal or tri-
angle intersection. During traversal, an SIMD lane traverses
the tree until it finds a leaf. If some SIMD lanes have not yet
found a leaf, the SIMD lane stores its found leaf and specula-
tively continues traversal until every SIMD lane found a leaf.
Though this may result in superfluous memory accesses, the
memory bandwidth overhead is generally low enough and
the higher SIMD efficiency results in a 10% lower runtime.

Ray grouping and reordering Simply grouping rays into
packets only works well for coherent rays. Therefore, tech-
niques that extract hidden ray coherence using regrouping or
reordering ray packets have been developed. Some of which
defer ray processing at certain queue points [PKGH97,
NFLM07]. Queue processing is scheduled to minimize and
amortize cache misses, and reduce memory bandwidth de-
mand when computing intersections with scene geometry.
Mansson et al. [MMAM07] investigated several regroup-
ing algorithms for secondary rays. Further strategies are re-

grouping by ray type [BEL∗07], by hashes generated from a
ray’s geometry [GL10], by approximations of ray hitpoints
[MBK∗10], or by ray packet filtering [BWB08].

Cache efficient algorithms There are two types of cache-
efficient algorithms: Cache-aware algorithms explicitly use
prior knowledge about caches (e.g., cache-line size). Cache-
oblivious algorithms [Pro99] only assume that a cache is
present without knowing any of its properties.

Aila et al. [AK10] presented a massively parallel hard-
ware architecture which is to some extent based on
NVIDIA’s Fermi GPU architecture. They developed a cache-
aware traversal algorithm specifically designed for this ar-
chitecture, which achieves up to a 90% reduction in total
memory bandwidth for tracing incoherent rays. A major as-
sumption of the algorithm is, that the L1 cache can access
multiple cache lines per clock (otherwise L1 fetches are a
serious bottleneck). To our knowledge, L1 caches of current
hardware still do not have such capabilities.

Wald et al. [WSBW01] and Havran [Hav99] optimized
cache efficiency by either storing just one child pointer
or completely omitting them through special node ar-
rangements, thus reducing node size. Kim et al. proposed
a random-accessible compressed BVH [KMKY10] with
context-based arithmetic coding. Combined with random ac-
cessible compressed triangle meshes [YL07] they achieve an
average rendering time improvement of 35-54% due to in-
creased cache efficiency and hit rate as more nodes fit into
the cache. Yoon et al. [YM06] proposed a cache-oblivious
BVH layout for collision detection which applied to a k-
d tree for ray tracing, resulted in a 77%-180% runtime
improvement. Van Emde Boas [vEB75] derived a cache-
oblivious tree memory layout built by recursively subdivid-
ing the height of the tree in half yielding a number of sub-
trees per step. This clusters nodes and is beneficial for caches
since traversing a node causes nodes of the subtree below the
current node to be loaded into the cache which are likely to
be traversed as well. Gil et al. [GI99] proposed a dynamic
programming algorithm which allocates tree nodes to mem-
ory pages, minimizing the number of memory pages vis-
ited and the number of page faults. Bender et al. [BDFC02]
present faster but approximate algorithms for solving the
same problem in a cache-oblivious manner. Multi-branching
BVHs [EG08,DHK08,WBB08] improve cache efficiency by
simply requiring less memory thus reducing bandwidth de-
mand and keeping more nodes in the cache. Further, con-
trary to packet tracing a single ray is tested against SIMD
width size number of bounding boxes and triangles, which
is beneficial for incoherent rays but slower for coherent rays
compared to packet tracing.

3. GPU Hardware Details / Test Setup

We made minor modifications to Wong et al.’s micro-
benchmarking code [WPSAM10] and ran it on an NVIDIA

c© The Eurographics Association 2013.

58

Wodniok et al. / Analysis of Cache Behavior and Performance of Different BVH Memory Layouts for Tracing Incoherent Rays

 100
 105
 110
 115
 120
 125
 130
 135

 12032 12160 12288 12416 12544 12672 12800 12928R
e
a
d
 L

a
te

n
cy

 (
cl

o
ck

s)

Texture Cache Footprint (bytes)

Figure 1: Average texture memory L1 cache latency in cy-
cles of a Geforce GTX 680 revealing the cache properties.

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35A
v
e
ra

g
e
 R

e
a
d

 L
a
te

n
cy

 (
cl

o
ck

s)

n-way bank conflicts

n-way bank conflict access pattern

Global mem.

Shared mem.

Texture mem.

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35

Av
er

ag
e

R
ea

d
La

te
nc

y
(c

lo
ck

s)

n threads reading with threadID*132B-stride

Shared memory optimal access pattern

Global mem.

Shared mem.

Texture mem.

Figure 2: Average read latency in cycles of a Geforce GTX
680 using a memory access pattern which would cause n-
way bank conflicts (top) in shared memory and a shared
memory optimal access pattern (bottom).

Geforce GTX 680 to determine cache properties and access
latencies. We evaluated the GPUs and performed all bench-
marks using CUDA Version 5.0 [NVIa], the NVIDIA Nsight
Visual Studio Edition 3.0 Beta, and the CUDA Profiler Tools
Interface (CUPTI). The test system is equipped with an Intel
Core i7-960, 32 GB RAM, and an NVIDIA Geforce GTX
480 (primary device) as well as a GTX 680 with 2 GB RAM
(headless device). All tests were performed on the GTX 680
using driver version 306.94.

3.1. Cache properties

The Geforce GTX 680 consists of eight Streaming Multipro-
cessors (SMX) with 192 CUDA cores each. It provides 2048
MB of global/texture memory, 16, 32 or 48 KB of shared
memory or L1 cache for local memory (depending on the
runtime configuration) and 65536 registers per SMX. The
fetch latency for a global memory load of 4 bytes hitting the
L2 cache takes≈160 cycles while a miss results in a latency
of ≈290 cycles.

Given the average texture memory cache access latency
in Figure 1 retrieved from the micro-benchmark, we can de-
duce that the texture cache size is 12 KB, consisting of 4

cache sets with a cache line size of 128 bytes and is 24-way
set associative. L1 hit latency for reading 4 bytes is ≈105
cycles, L2 hit latency is ≈266 cycles and missing both L1
and L2 incurs a latency of ≈350 cycles. Figure 2 shows the
latency of two different access patterns evaluated in three
different memory areas. One causes n-way bank conflicts in
shared memory and the other is optimal for shared memory.
We can see that while the patterns are bad for either global
or both global and shared memory, texture memory performs
almost equally well with either access pattern.

4. GPU Path Tracer Implementation

The GPU path tracer implementation essentially follows van
Antwerpen’s streaming design [vA11]. A large batch of 220

samples is processed in parallel using one thread per sample.
Sample paths are iteratively extended. Samples that have fin-
ished computation due to termination via Russian Roulette
or because their paths have escaped the scene are removed
from the stream in each iteration and the remaining samples
are compacted. To keep the amount of work constant, each
finished sample is regenerated by appending a new sample
to the compacted stream. As previously observed [vA11],
appending regenerated samples exploits primary ray or even
higher order ray coherence due to specular reflection or re-
fraction and improves SIMD efficiency. To include such ef-
fects on performance in our analysis we use the Ashikhmin-
Shirley BRDF [AS00] to model scenes with materials rang-
ing from diffuse to highly specular as well as refractive
rough surfaces [WMLT07]. For ray traversal, we use the
fast speculative-while-while traversal kernel design [AL09].
As underlying ray traversal acceleration structure we use a
high quality split-BVH [SFD09]. The whole path tracer is
implemented in four kernels (sample initialization/regenera-
tion, ray tracing, path extension, connection validation). As
tracing is done in a designated kernel, all statistics are only
affected by ray traversal and not by other computations such
as shading.

5. BVH Data Structures and Layouts

For our analysis we focus on binary bounding volume hierar-
chies with axis aligned bounding boxes and include several
memory layouts for the node data and the tree itself.

5.1. Node Layouts

The classic BVH node data structure stores a bounding vol-
ume along with pointers to its children. We follow Aila et
al. [AL09], i.e., a node does not store its bounding box, but
the bounding boxes of its children. Both children are fetched
and tested together, which is more efficient for GPUs due
to increased instruction level parallelism and allows rough
front to back traversal. Depending on the data layout, the
size of such a node is at least 56 bytes (2 float values for
minimum/maximum per dimension and child plus pointers).

c© The Eurographics Association 2013.

59

Wodniok et al. / Analysis of Cache Behavior and Performance of Different BVH Memory Layouts for Tracing Incoherent Rays

We implemented one array-of-structures (AoS) layout and
two structure-of-arrays (SoA) layouts:

• AoS: 64 bytes, including 8 bytes padding (fitting 2 nodes
in one 128B cache line)

• SoA32_24: 32 + 24 bytes, min/max x/y both children,
min/max z both children and pointers, plus 8 bytes
padding (fitting 4 nodes across 2 128B cache lines)

• SoA16_8: 3×16+8 bytes, min/max x/y child1, min/max
x/y child2, min/max z both children, pointers (fitting 8
nodes across 4 128B cache lines)

We also analyzed an SoA8 layout which fitted 16 nodes in
7 cache lines. As it consistently performed much worse than
the other layouts, we excluded it from our experiments.

5.2. Tree Layouts

A tree layout describes how nodes are grouped in memory.
We analyzed six different tree layouts. The first four layouts
are two common layouts and two cache-efficient layouts. We
further propose two more layouts. The idea behind them is
to compute a path traced image at a relatively low sample
rate as a pre-process, recording the number of accesses for
each BVH node. We then use the access statistics to guide
the two layouting methods. Layouts not using statistics are:

• Depth-first-search (DFS): Nodes are ordered as visited
by a pre-order traversal. This layout performs best with
coherent rays since a cache line is potentially filled with
nodes on the path to the leaf.

• Breadth-first-search (BFS): Nodes are ordered as visited
by a breadth-first traversal visiting the left child node first.
This fits best for rays traversing neighboring branches.

• van Emde Boas (vEB): A cache-oblivious tree layout
[vEB75] described in Section 2.

• COLBVH (COL): A cache-oblivious tree layout mainly
used for collision detection [YM06] but also applicable to
raytracing. Beginning with all n nodes in a root cluster, the
tree is recursively decomposed into clusters of d

√
n+1−

1e nodes. Nodes are merged into root clusters depending
on their access probability computed from the ratio of the
surface areas of its grand-parent and parent.

Next we describe our two proposed layouts depending on
node access statistics which use a threshold p:

• Swapped subtrees (SWST): Swap the sub-trees of a
node in a depth-first layout if the fraction of left child ac-
cesses compared to all child accesses is below p∈ [0,0.5].
Left children of the nodes form a path whose nodes are
accessed the most and are spread over fewer cache lines.

• Treelet based DFS/BFS (TDFS/TBFS): A treelet is a
connected sub-tree of a BVH. For this layout treelets of
nodes that were accessed above a certain threshold are
built. This decomposes the BVH into treelets whose nodes
are accessed the most. The algorithm works with two
queues: a merge queue and a deferred queue. The merge

Scenes Triangles Nodes Size (MB)
crytek-sponza 262269 99127 6.05

kitchen 425504 150219 9.17
hairball 2880012 1021548 62.35

san-miguel 7880512 2723017 166.2

Table 1: Scenes used for benchmarking.

queue contains nodes which will be added to the cur-
rent treelet and the other queue contains nodes which are
deferred for creating additional treelets. Initially the cur-
rent treelet and deferred queue are empty, and the merge
queue contains the BVH root. Nodes are removed from
the merge queue and added to the current treelet as long as
the merge queue is not empty. When a node is removed its
children are added to one of the queues. If the percentage
of rays that continued to descend to a child node is larger
than p∈ [0,1] the child is added to the merge queue, other-
wise to the deferred queue. If the merge queue is empty, a
new treelet is created by moving a node from the deferred
queue to the merge queue and repeating the process. Once
no more nodes are present in either queue the algorithm is
done. The internal memory layout of a treelet can be cho-
sen freely. By always adding nodes just to the front or the
back of the merge queue we automatically obtain a treelet
in DFS or BFS order. Finally the node order of the whole
tree is obtained by lining up the nodes of all treelets. Thus
treelets are only used as a means for grouping nodes and
are not stored explicitly.

Note that there are other possible treelet construction algo-
rithms such as the construction algorithm described by Aila
et al. [AK10]. As mentioned previously, this approach is to
our knowledge not yet supported by current hardware and
therefore not included in our analysis.

6. Evaluation

We evaluated the performance of the BVH and node layouts
on four different scenes of varying complexity and materials
(see Table 1). The Kitchen scene consists of a mixture of
diffuse, glossy and translucent materials. The well known
hairball scene uses a nearly specular refractive material.

Several different metrics are computed using the event
counters from CUPTI. Some of them can be found in the
CUPTI User’s Guide, others were deduced from values in
Nsight Visual Studio Edition and reconstructed with events
from CUPTI. A short explanation of each metric follows
(see [SWWG13] for more details):

• Runtime, trace kernel runtime in milliseconds, measured
using CUPTI’s activity API.

• GM/L1← L2 cache load hit rate, percentage of global
memory (GM) loads that hit in L2 cache. It is slightly
diluted as the event counters include both global and local
memory loads. (Local memory makes up ∼10% of the
sum of global and local memory traffic.)

c© The Eurographics Association 2013.

60

Wodniok et al. / Analysis of Cache Behavior and Performance of Different BVH Memory Layouts for Tracing Incoherent Rays

• Tex cache hit rate, percentage of texture memory loads
that hit the texture memory cache.

• Instruction replay overhead, percentage of instructions
that were issued due to replaying memory accesses, such
as cache misses (lower is better).

• SIMD efficiency (warp execution efficiency), percent-
age of average active to total number of threads per warp.

• Branch efficiency, ratio of non-divergent branches to all
branches (SIMD divergence).

• Load efficiency, the ratio of requested memory load
throughput to actual memory load throughput.

6.1. Baseline performance analysis

The baseline BVH is laid out in DFS order and stores nodes
in AoS format. The AoS node format was chosen because
Aila et al. [AL09] are using it in their GPU ray traversal
routines which are one of the fastest. Tree nodes are accessed
via global memory and geometry via texture memory.

Figure 3 gives an overview of the baseline performance
for each scene and render loop iteration. We can see the
effect of incoherent rays immediately after the first itera-
tion. Runtime increases by 5× from 2.85 ms to 14.36 ms
for the kitchen scene. The number of primary rays per batch
drops to 20%. Despite the huge number of incoherent rays
the branch efficiency only decreases slightly to 85%. This
indicates that threads in a warp mostly agree on their exe-
cution path. The cache hit rate does not suffer noticeably.
The amount of data transferred between the different caches
in the memory hierarchy shows that most data requests are
serviced by caches. We notice a significantly lower load
and SIMD efficiency after the first iteration, which later on
increases with the number of primary rays per batch. The
achieved occupancy stays relatively close to the theoretical
maximum of 75% which means that work is well spread over
the GPU’s multiprocessors. For the hairball scene we made
a similar observation. Runtime increases from 2.49 ms up to
75.29 ms after a significant number of rays did not hit the
environment map but the geometry. Especially the load ef-
ficiency as well as the SIMD efficiency collapses due to a
combination of the incoherent memory access pattern and
the depth complexity of the BVH tree.

Furthermore we evaluated the gain of storing the BVH in
texture memory as was proposed by Aila et al. [ALK12] who
did not state expected speed-ups.

6.2. BVH and node layouts

Tables 2 and 3 show a ranking of all BVH and node lay-
out combinations which were accessed via global memory
or texture memory. The ranking is performed w.r.t. the av-
erage achieved speedup compared to the DFS layout in the
respective memory area. The SWST, TDFS and TBFS lay-
outs require a threshold probability. We have tested a num-
ber of different values to find the best performing one. The

best threshold is required to perform well for all scenes in
our data set so that its performance extends to unknown data
sets. We use the sum of the scene runtimes to measure the
performance of a threshold and choose the best perform-
ing ones. The determined thresholds are stated next to the
respective BVH layout names in the tables. Following, we
will compare the best performing combinations of thresh-
old, BVH and node layout in each memory area to the other
introduced BVH layouts.

Global Memory Overall, the node layout has the biggest
impact on performance. The AoS layout performs best fol-
lowed by SoA32_24 and SoA16_8, except for the kitchen
scene where it is roughly the other way around. Performance
differences of the AoS and SoA16_8 based layouts range
from 10% – 35%. For AoS performance differences between
tree layouts are only up to 2%. Only in the san-miguel scene
the treelet DFS layout manages to achieve 6%. Our baseline
already performs quite well. For the other node layouts tree
layouts improve performance up to 9%, i.e., without access
statistics the simple BFS layout performs best for all node
layouts, followed by the more complex vEB layout, whereas
DFS on average performs worst for all node layouts. Inter-
estingly the AoS SWST layout, which is basically a DFS
layout, on average performed slightly worse than DFS. The
better performing tree layouts have a number of effects. On
average, slightly less data is transferred by global load in-
structions, the average number of transactions per global
load request is decreased and instruction replay overhead
dropped minimally (see [SWWG13] for details). This is re-
flected in a higher IPC count because fewer instructions have
to be issued due to memory replays. We can see the impact
that the SoA32_24 node layout has on the caches in a lower
L2 global load hit rate. A L2 cache miss is more expensive
and displaces twice as many nodes than when using the AoS
node layout. The situation is similar but exacerbated for the
SoA16_8 layouts which all exhibit worse performance due
to their even higher miss penalty which results in very low
cache hit rates.

Texture Memory Again we can see that the node layout
has the biggest performance impact with the AoS layout per-
forming best followed by SoA32_24 and SoA16_8. Perfor-
mance differences of the AoS and SoA16_8 based layouts
range from 17% – 50%. The best performing combination
is the TDFS BVH layout with a threshold of 0.6 using the
AoS node layout. It is only marginally faster than the base-
line layout combination. Interestingly, there is an increase in
the amount of data transferred across all scenes and layout
combinations though the transaction size of both the texture
cache and the global memory L2 cache is 32B. The only ex-
planation we can provide for a lower traffic size of global
memory is superior broadcasting compared to texture mem-
ory.

Comparison If we compare the runtime of the best lay-
out combinations in texture and global memory, we can ob-

c© The Eurographics Association 2013.

61

Wodniok et al. / Analysis of Cache Behavior and Performance of Different BVH Memory Layouts for Tracing Incoherent Rays

0 ms

2 ms

4 ms

6 ms

8 ms

10 ms

12 ms

14 ms

16 ms

18 ms

 0 10 20 30 40 50 60 70 80 90 100

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %
110 %
120 %

Runtime
GMem cache load hit rate

SIMD eff.
Branch eff.

Load eff.
Inst. replay overhead

Rays in batch
Primary rays in batch

0 ms

2 ms

4 ms

6 ms

8 ms

10 ms

12 ms

14 ms

16 ms

18 ms

 0 10 20 30 40 50 60 70 80 90 100

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %
110 %
120 %

Runtime
Tex cache hit rate

SIMD eff.
Branch eff.

Load eff.
Inst. replay overhead

Rays in batch
Primary rays in batch

0 ms

10 ms

20 ms

30 ms

40 ms

50 ms

60 ms

70 ms

80 ms

 0 20 40 60 80 100 120 140 160 180

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %
110 %
120 %

Runtime
GMem cache load hit rate

SIMD eff.
Branch eff.

Load eff.
Inst. replay overhead

Rays in batch
Primary rays in batch

0 ms

10 ms

20 ms

30 ms

40 ms

50 ms

60 ms

70 ms

80 ms

 0 20 40 60 80 100 120 140 160 180

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %
110 %
120 %

Runtime
Tex cache hit rate

SIMD eff.
Branch eff.

Load eff.
Inst. replay overhead

Rays in batch
Primary rays in batch

Figure 3: Trace kernel profiling graphs of the baseline for the kitchen (top row) and hairball scene (bottom row) using a
Geforce GTX 680. Resolution is 1024x768 with 32spp. Nodes have AoS format and are stored in DFS order. The figure shows
the runtime behavior (left y axis) and GPU metrics (right y axis) over all rendering loop iterations (x axis). BVH nodes are
either stored in global memory (left column) or texture memory (right column).

0 ms

2 ms

4 ms

6 ms

8 ms

10 ms

12 ms

14 ms

16 ms

18 ms

 0 10 20 30 40 50 60 70 80 90 100

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %
110 %
120 %

Runtime
GMem cache load hit rate

SIMD eff.
Branch eff.

Load eff.
Inst. replay overhead

Rays in batch
Primary rays in batch

0 ms

2 ms

4 ms

6 ms

8 ms

10 ms

12 ms

14 ms

16 ms

18 ms

 0 10 20 30 40 50 60 70 80 90 100

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %
110 %
120 %

Runtime
Tex cache load hit rate

SIMD eff.
Branch eff.

Load eff.
Inst. replay overhead

Rays in batch
Primary rays in batch

0 ms

10 ms

20 ms

30 ms

40 ms

50 ms

60 ms

70 ms

80 ms

 0 20 40 60 80 100 120 140 160 180

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %
110 %
120 %

Runtime
GMem cache load hit rate

SIMD eff.
Branch eff.

Load eff.
Inst. replay overhead

Rays in batch
Primary rays in batch

0 ms

10 ms

20 ms

30 ms

40 ms

50 ms

60 ms

70 ms

80 ms

 0 20 40 60 80 100 120 140 160 180

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %
110 %
120 %

Runtime
Tex cache load hit rate

SIMD eff.
Branch eff.

Load eff.
Inst. replay overhead

Rays in batch
Primary rays in batch

Figure 4: Trace kernel profiling graphs using the best performing TDFS layout with a threshold of 0.6 and AoS node layout
using a Geforce GTX 680. Used scenes are again kitchen (top row) and hairball (bottom row). Resolution is 1024x768 with
32spp. The figure shows the runtime behavior (left y axis) and GPU metrics (right y axis) over all rendering loop iterations (x
axis). BVH nodes are either stored in global memory (left column) or texture memory (right column).

c© The Eurographics Association 2013.

62

Wodniok et al. / Analysis of Cache Behavior and Performance of Different BVH Memory Layouts for Tracing Incoherent Rays

serve that using texture memory is approximately 30 – 40%
faster. Even some of the slowest layout combinations in tex-
ture memory are faster than the best layout combinations in
global memory. Our baseline layout with nodes in texture
memory also outperforms all layout combinations in global
memory by 25% – 38%. The reason why texture memory
performs better is not entirely clear. As we have seen in
Section 3, the average access latency of texture memory is
consistently lower than for global memory and for access
patterns which cause very high latency in global and shared
memory, the texture memory’s latency increases only by a
comparably small amount. We presume that this property of
the texture memory cache, in conjunction with quite possi-
bly other unknown hardware details, let it deal very well with
incoherent memory accesses such that it is on average faster
than the L2 global memory cache. Contrary to [ALK12] our
path tracer benefited from using texture memory for loading
nodes when run on a Fermi GPU (see [SWWG13]).

7. Conclusion

We have presented a number of different BVH layout
schemes and analyzed their performance on tracing ”real-
world” distributions of incoherent rays. Two schemes make
use of information gathered in a pre-processing pass over
the BVH. Our TDFS layout had the best average speedup
in global and texture memory. In global memory we have
achieved a runtime reduction by 1%–6%. We gained a 30%–
40% runtime reduction compared to the baseline in global
memory when the BVH is stored in texture memory simi-
lar to Aila et al. [ALK12]. But also accessing the baseline
in texture memory, an improvement of only 0.5%–4.0% was
observable for the TDFS layout. The common DFS layout
performed worst for all node layouts in both memory areas.
Excluding layouts that use statistics the equally simple to
construct BFS layout on average performed best and similar
to the TDFS layout.

There are several possibilities for future work. We have
not included the performance impact on tracing coherent
rays with our analyzed layouts. As optimizing the BVH lay-
out and ray grouping and reordering techniques are orthogo-
nal one might investigate if there is any synergy when using
both techniques together. Increasing SIMD efficiency will
result in more memory accesses being issued at a time which
may be beneficial for our reordering techniques. The dy-
namic fetch kernel from Aila et al. [ALK12] which replaces
terminated rays when SIMD efficiency drops below a cer-
tain percentage could be used to investigate this. The GK110
[NVIb] features a 48 KB read-only data cache, which is the
same as the texture memory cache. It would be interesting
to see the effects of a much larger texture cache. As kd-tree
nodes are much smaller than BVH nodes more nodes fit into
cache lines. Though this should increase cache hits, more
nodes get evicted on cache misses. It would be interesting to
see which effect outweighs the other and what performance
gains can be achieved with different tree layouts.

Acknowledgments The work of S. Widmer and D. Wod-
niok is supported by the ’Excellence Initiative’ of the
German Federal and State Governments and the Graduate
School of Computational Engineering at Technische Uni-
versität Darmstadt. Hairball scene courtesy of Samuli Laine.
Crytek-sponza scene courtesy of Frank Meinl. San-miguel
scene courtesy of Guillermo M. Leal Llaguno.

References
[AK10] AILA T., KARRAS T.: Architecture considerations for

tracing incoherent rays. In Proc. HPG (2010). 2, 4

[AL09] AILA T., LAINE S.: Understanding the efficiency of ray
traversal on GPUs. In Proc. HPG (2009). 2, 3, 5

[ALK12] AILA T., LAINE S., KARRAS T.: Understanding the
Efficiency of Ray Traversal on GPUs – Kepler and Fermi Adden-
dum. Tech. Rep. NVR-2012-02, 2012. 5, 7

[AS00] ASHIKHMIN M., SHIRLEY P.: An anisotropic phong brdf
model. J. Graph. Tools (2000). 3

[BDFC02] BENDER M. A., DEMAINE E. D., FARACH-COLTON
M.: Efficient tree layout in a multilevel memory hierarchy. In
Proc. ESA (2002). 2

[BEL∗07] BOULOS S., EDWARDS D., LACEWELL J. D., KNISS
J., KAUTZ J., SHIRLEY P., WALD I.: Packet-based whitted and
distribution ray tracing. In Proc. Graphics Interface (2007). 2

[BWB08] BOULOS S., WALD I., BENTHIN C.: Adaptive ray
packet reordering. In Proc. IEEE IRT (2008). 2

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
bounding volume hierarchies for fast simd ray tracing of inco-
herent rays. CGF (2008). 2

[EG08] ERNST M., GREINER G.: Multi bounding volume hier-
archies. In Proc. IEEE IRT (2008). 2

[GI99] GIL J., ITAI A.: How to pack trees. Journal of Algorithms
(1999). 2

[GL10] GARANZHA K., LOOP C. T.: Fast Ray Sorting and
Breadth-First Packet Traversal for GPU Ray Tracing. CGF
(2010). 2

[GPSS07] GUNTHER J., POPOV S., SEIDEL H.-P., SLUSALLEK
P.: Realtime ray tracing on gpu with bvh-based packet traversal.
In Proc. IEEE IRT (2007). 2

[Hav99] HAVRAN V.: Analysis of cache sensitive representa-
tion for binary space partitioning trees. Informatica (Slovenia)
(1999). 2

[KMKY10] KIM T.-J., MOON B., KIM D., YOON S.-E.: Racb-
vhs: Random-accessible compressed bounding volume hierar-
chies. IEEE TVCG (2010). 2

[MBK∗10] MOON B., BYUN Y., KIM T.-J., CLAUDIO P., KIM
H.-S., BAN Y.-J., NAM S. W., YOON S.-E.: Cache-oblivious
ray reordering. ACM Trans. Graph. (2010). 2

[MMAM07] MANSSON E., MUNKBERG J., AKENINE-MOLLER
T.: Deep coherent ray tracing. In Proc. IEEE IRT (2007). 2

[NFLM07] NAVRATIL P. A., FUSSELL D. S., LIN C., MARK
W. R.: Dynamic ray scheduling to improve ray coherence and
bandwidth utilization. In Proc. IEEE IRT (2007). 2

[NVIa] NVIDIA: CUDA Compute Unified Device Architecture.
www.nvidia.com/object/cuda_home_new.html. 2, 3

[NVIb] NVIDIA: Kepler GK110 whitepa-
per. nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf. 7

c© The Eurographics Association 2013.

63

www.nvidia.com/object/cuda_home_new.html

Wodniok et al. / Analysis of Cache Behavior and Performance of Different BVH Memory Layouts for Tracing Incoherent Rays

GMem

BVH lay. node lay.
crytek-sponza kitchen hairball-glass san-miguel

R H SZ R H SZ R H SZ R H SZ
TDFS 0.6 AoS 581.7 86.7 94.3 1386.2 89.1 218.6 7504.9 60.5 948.8 2071.4 71.4 287.4

BFS AoS 583.3 86.5 94.3 1364.6 89.0 218.6 7462.2 60.4 948.8 2131.1 70.7 287.6
TBFS 0.3 AoS 582.6 86.6 94.3 1371.8 89.1 218.6 7469.5 60.4 948.8 2142.8 70.8 287.7

vEB AoS 582.5 86.6 94.3 1374.6 89.0 218.6 7469.4 60.6 948.6 2165.4 70.7 287.7
COL AoS 582.5 86.7 94.3 1385.5 89.1 218.6 7539.5 60.6 949.1 2166.9 70.9 287.7
DFS AoS 583.5 86.6 94.3 1394.9 89.0 218.6 7576.0 60.7 949.1 2205.3 70.6 287.9

SWST 0.5 AoS 582.2 86.8 94.3 1391.9 89.1 218.6 7638.8 60.8 949.3 2267.9 71.0 288.0
BFS SoA32_24 581.0 85.1 94.1 1310.1 88.4 217.8 9099.2 55.3 950.3 2683.3 64.4 287.4
vEB SoA32_24 583.9 85.3 94.2 1355.1 88.7 217.9 9059.4 55.7 950.1 2824.0 64.6 287.6
COL SoA32_24 585.1 85.4 94.2 1335.2 88.8 217.9 9269.1 55.4 950.7 2859.4 64.9 287.7
DFS SoA32_24 595.3 84.6 94.2 1357.9 88.3 217.9 9320.0 54.8 950.7 2932.9 63.3 288.2
BFS SoA16_8 637.4 77.2 93.4 1346.1 81.7 213.4 10747.6 38.1 942.2 3270.6 48.3 285.3
vEB SoA16_8 641.3 77.9 93.3 1364.4 83.4 215.3 10555.1 40.0 942.8 3376.6 48.6 286.1
COL SoA16_8 651.3 77.8 93.2 1371.4 84.0 215.3 10780.1 39.6 943.4 3437.5 49.1 286.3
DFS SoA16_8 680.1 75.8 93.6 1436.5 82.0 217.1 10969.3 38.3 943.0 3667.2 45.4 287.1

Table 2: Ranking of layout combinations w.r.t. average speedup in global memory. Runtime (R) in milliseconds, cache hit rate
(H) in percent and transferred data size (SZ) in gigabytes are shown.

TMem

BVH lay. node lay.
crytek-sponza kitchen hairball-glass san-miguel

R H SZ R H SZ R H SZ R H SZ
TDFS 0.6 AoS 372.4 76.5 136.3 812.6 65.6 268.1 5369.4 59.8 1053.8 1300.4 61.0 337.3

BFS AoS 373.1 76.4 136.3 807.7 65.6 268.1 5356.7 59.9 1053.8 1315.0 61.2 337.3
TBFS 0.2 AoS 373.1 76.5 136.3 810.2 65.7 268.1 5359.3 59.9 1053.8 1315.0 61.2 337.3

vEB AoS 373.0 76.5 136.3 806.7 65.5 268.1 5357.3 59.8 1053.8 1326.4 61.1 337.3
COL AoS 373.4 76.5 136.3 804.2 65.6 268.1 5386.1 59.8 1053.8 1334.8 61.0 337.3

SWST 0.4 AoS 373.8 76.5 136.3 805.1 65.5 268.1 5394.3 59.9 1053.8 1353.1 60.9 337.2
DFS AoS 374.2 76.4 136.3 806.2 65.4 268.1 5394.9 59.8 1053.8 1356.4 60.9 337.3
BFS SoA32_24 412.9 73.0 136.4 845.6 61.5 268.3 6868.8 56.6 1056.5 1877.0 56.4 337.3
vEB SoA32_24 417.0 73.0 136.4 837.4 61.1 268.3 6839.6 56.4 1056.6 1955.8 56.2 337.4
COL SoA32_24 417.1 73.0 136.4 852.9 61.2 268.3 6956.5 56.3 1056.5 1978.8 56.2 337.4
DFS SoA32_24 423.4 72.7 136.4 852.7 60.7 268.3 6971.4 56.3 1056.5 2023.4 55.9 337.3
BFS SoA16_8 497.0 60.2 135.7 988.0 43.9 264.8 9570.8 36.7 1048.7 2837.8 34.7 335.0
vEB SoA16_8 495.3 61.1 135.6 981.6 43.9 266.5 9261.5 37.8 1048.9 2932.9 35.2 335.3
COL SoA16_8 506.1 61.2 135.6 973.1 44.2 266.6 9515.5 37.7 1048.6 2999.3 35.3 335.4
DFS SoA16_8 535.7 60.5 135.7 1042.8 42.9 267.6 9663.3 38.4 1049.5 3229.9 35.1 335.9

Table 3: Ranking of layout combinations w.r.t. average speedup in texture memory. Runtime (R) in milliseconds, cache hit rate
(H) in percent and transferred data size (SZ) in gigabytes are shown.

[PB85] PLUNKETT D., BAILEY M.: The vectorization of a ray-
tracing algorithm for improved execution speed. IEEE Comput.
Graph. Appl. (1985). 2

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HANRAHAN
P.: Ray tracing on programmable graphics hardware. In Proc.
SIGGRAPH (2002). 2

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK
P.: Stackless KD-tree traversal for high performance GPU ray
tracing. CGF (2007). 2

[PKGH97] PHARR M., KOLB C., GERSHBEIN R., HANRAHAN
P.: Rendering complex scenes with memory-coherent ray tracing.
In Proc. SIGGRAPH (1997). 2

[Pro99] PROKOP H.: Cache-Oblivious Algorithms. Master’s the-
sis, MIT, 1999. 2

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial splits
in bounding volume hierarchies. In Proc. HPG (2009). 3

[SWWG13] SCHULZ A., WIDMER S., WODNIOK D., GOESELE
M.: Extended Data Collection: Analysis of Cache Behavior and
Performance of Different BVH Memory Layouts for Tracing In-
coherent Rays. Tech. Rep. 13rp003-GRIS, 2013. 4, 5, 7

[vA11] VAN ANTWERPEN D.: Improving simd efficiency for par-
allel monte carlo light transport on the GPU. In Proc. HPG
(2011). 3

[vEB75] VAN EMDE BOAS P.: Preserving order in a forest in less
than logarithmic time. In Proc. SFCS (1975). 2, 4

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid
of packets - efficient simd single-ray traversal using multi-
branching bvhs. In Proc. IEEE IRT (2008). 2

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Trans. Graph. (2007). 2

[WMLT07] WALTER B., MARSCHNER S. R., LI H., TORRANCE
K. E.: Microfacet models for refraction through rough surfaces.
In Proc. EGSR (2007). 3

[WPSAM10] WONG H., PAPADOPOULOU M.-M., SADOOGHI-
ALVANDI M., MOSHOVOS A.: Demystifying GPU microarchi-
tecture through microbenchmarking. In Proc. ISPASS (2010). 2

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER
M.: Interactive rendering with coherent ray tracing. CGF (2001).
2

[YL07] YOON S.-E., LINDSTROM P.: Random-accessible com-
pressed triangle meshes. IEEE TVCG (2007). 2

[YM06] YOON S.-E., MANOCHA D.: Cache-efficient layouts of
bounding volume hierarchies. CGF (2006). 2, 4

c© The Eurographics Association 2013.

64

