
Volume Graphics (2005)
E. Gröller, I. Fujishiro (Editors)

© The Eurographics Association 2005.

Time-Varying Interval Volumes

Caixia Zhang*, Daqing Xue*, Roger Crawfis*, Rephael Wenger*

The Ohio State University

Abstract
In this paper, we study the interval segmentation and direct rendering of time-varying volumetric data to provide
a more effective and interactive volume rendering of time-varying structured and unstructured grids. Our
segmentation is based upon intervals within the scalar field between time steps, producing a set of geometrically
defined time-varying interval volumes. To construct the time-varying interval volumes, we cast the problem one
dimension higher, using a five-dimensional iso-contour construction for interactive computation or segmentation.
The key point of this paper is how to render the time-varying interval volumes directly. We directly render the 4D
interval volumes by projecting the 4D simplices onto 3D, decomposing the projected 4-simplices to 3-simplices
and then rendering them using a modified hardware-implemented projected tetrahedron method. In this way, we
can see how interval volumes change with the time in one view. The algorithm is independent of the topology of
the polyhedral cells comprising the grid, and thus offers an excellent enhancement to the volume rendering of
time-varying unstructured grids. Another advantage of this algorithm is that various volumetric and surface
boundaries can be embedded into the time-varying interval volumes.

CR Categories: I.3.3 [Picture/Image Generation]: Display algorithms

1. Introduction

With the widespread use of high performance computing
systems, some application simulations are capable of
producing large datasets. These simulations tend to be time
varying, adding another dimension to the problem. This
paper mainly deals with the interval segmentation and
rendering for time-varying structured and unstructured
datasets.
 A traditional method to render time-varying data is to
take a snapshot of the data for each particular time step and
generate an animation from the time series data. This
method is useful, but it replies on human memory and
cognitive abilities to tie together spatio-temporal
relationships. An alternative method is to display the
movement of the time series data in a single image using
direct rendering of high dimensional data. Some people
have worked on the hypervolume visualization [BPR*98]
and high dimensional direct rendering of time-varying
volumetric data [WWS03], but their algorithms do not
apply for unstructured grids.
 Interval volumes have been used to segment and render
structured and unstructured volumetric data [BCZ*04]. It is
a region-of-interest extraction algorithm, and fast volume
visualization techniques are employed to render the interval
volumes. Under the framework of the high-dimensional
iso-contouring algorithm, interval volumes can easily be
computed using two schemes for time varying data sets.
The first scheme computes the interval volumes separately
for each time step of the dataset using the algorithm
discussed in [BCZ*04]. The user can then cycle through all

the time steps to visualize the data. It is obvious that this
scheme does not show the relationship of the interval
volumes between different time steps well.
 An alternative approach is to use the high-dimensional
isosurfacing algorithm to compute a 4-dimensional volume
representing a time-varying interval volume. This can be
accomplished by applying the isosurfacing algorithm
directly on a 5-dimensional grid to generate a surface
comprised of 4-simplices. Then, we can render the 4-
tetrahedra by slicing the interval volumes between the time
steps. An alternative method, and the focus of this paper, is
to render the 4-simplex from the interval volumes by
integrating in the time directly, rather than projecting and
slicing them.
 In the following sections we look at some of the previous
work done in this domain. We then give an overview of our
time-varying interval volume computation algorithm,
followed with rendering methods and visualization
techniques for the time-varying interval volumes. We end
with some results of our work and present future directions
for research in this domain.

2. Previous Work

Previous work that relates to our research primarily focuses
on high-dimensional scientific visualization, unstructured
volume rendering and interval volumes.

 High-Dimensional Visualization: Hanson et al.
[HH92][HH92*][HC93] introduced a general technique, as
well as an interactive system, for visualizing surfaces and
volumes embedded in four dimensions. In their method, 3D
scalar fields were treated as elevation maps in four
dimensions in the same way 2D scalar fields could be
viewed as 3D terrains. Bajaj et al. [BPR*95] developed an

*{zhangc, xue, crawfis, wenger}@cse.ohio-state.edu

http://www.eg.org
http://diglib.eg.org

C. Zhang & D. Xue & R. Crawfis & R. Wenger /Time-Varying Interval Volumes

© The Eurographics Association 2005

interface that provides “global views” of scalar fields
independent of the dimension of their embedded space and
generalized the object space projection technique into a
hyper-volume projection method. Texture mapping
hardware was utilized to directly render n-dimensional
views of the global scalar field. Woodring et al.
[WS03][WWS03] treated the time-varying data as four-
dimensional data, and applied high dimensional slicing and
projection techniques to generate an image hyperplane. The
results of their technique generated a volume that is the
projection of hyperplanes along a 4D projection vector,
which can be rendered using traditional volume rendering
techniques.

 Unstructured Volume Rendering: Shirley and
Tuchman [ST90] presented an algorithm for hardware
accelerated rendering of unstructured tetrahedral grids by
approximating the projection to screen space using a set of
triangles. Grids consisting of different cells are first
decomposed into a tetrahedral representation using
simplicial decomposition techniques [AC97][Max02].
Williams extended Shirley-Tuchman’s approach to
implement direct projection of other polyhedral cells in
their HIAC rendering system [WMS98] and used high
accuracy light integration functions to model the light
transport through the medium [Wil92]. Recently, with the
advent of programmable graphics hardware, a tremendous
amount of work has been done in implementing the
Shirley-Tuchman algorithm on graphics hardware using the
programmable vertex and fragment shader pipelines on the
GPUs [WKE02][WMF*02][KQE04]. In all of the above
cases, the rendering performance of the projected tetrahedra
algorithm is typically proportional to the number of cells to
be rendered. The rendering process involves visibility
sorting (usually O(nlogn)) and projection (O(n)) of the
polyhedral cells. As an alternative to projection, polyhedral
cells can also be rendered using ray casting [WKM*03].

 Interval Volumes: An interval volume is the set of points
in a scalar field enclosed between two isosurfaces defined
by two different isovalues. Fujishiro [FMS95] introduced
interval volumes as a solid fitting algorithm. A few
applications of interval volumes were presented in
[Guo95][FMS96]. Fujishiro computed a tetrahedralization
of the interval volume by computing the intersection of two
convex polyhedra enclosed by the isosurfaces given by the
Marching cubes algorithm [LC87], within each cell.
Nielson [NS97] computed the tetrahedralization by first
decomposing each cube in the grid to five tetrahedra.
Nielson then used an efficient lookup table to compute the
interval volume within each simplex and decompose it into
tetrahedra. The tetrahedralization was constructed manually
by analyzing all the possible intersections of a tetrahedron
with an interval enclosed by two isosurfaces. Banks
[BL03][BLS04] counted the cases for a family of
visualization techniques, including iso-contours and
interval volumes.
 The above work is on the interval volumes of a single
scalar field. For interval volumes with respect to a time-
varying dataset, Ji et al. [JSW03] tracked the interval
volumes using higher dimensional isosurfacing, and
rendered an iso-contour surface of the interval volumes.
They did not directly render the 4D interval volumes.

 In this paper, we work on the computation and direct
rendering of the time-varying interval volumes. We use
interval volumes to create disjoint volume segments, or
intervals. Interval volumes provide a segmentation of the
data into easily discernable regions. The direct rendering of
the time-varying interval volumes makes it possible to get
the distribution and relationship of the interval volumes
across time steps, and help us to understand the time-
varying structured and unstructured volumetric fields.

3. Time-varying Interval Volume Computation

In [BWC00], we presented a new algorithm for computing
isosurfaces in arbitrary dimensional data sets. The
algorithm proceeds by generating isosurface patches within
each d-dimensional polyhedral cell comprising the d-
dimensional grid. The output of the algorithm is a set of (d-
1)-dimensional simplices forming a piecewise linear
approximation to the isosurface. The algorithm constructs
the isosurface piecewise within each cell in the grid using
the convex hull of an appropriate set of points. In [FMS95]
we present a proof of correctness for the d-dimensional
isosurface construction and show that it correctly produces
a triangulation of a (d-1)-manifold with boundary. Here, we
give a short review of the algorithm. See [BZX*04] for
more details.

 For a function f(x,y,z) sampled on a three dimensional
grid, the interval volume [FMS95] is defined by If(α,β) =
{(x,y,z): α ≤ f(x,y,z) ≤ β}. More generally, for a function f :
Rd→R in any dimension, the interval volume is defined by
If(α,β) = {(x, … ,xd): α ≤ f(x1, … ,xd) ≤ β }. Intuitively, the
interval volume is the set of points enclosed between the
two isosurfaces corresponding to the isovalues, α and β.
For a d-dimensional grid, the interval volume is a d-
dimensional subset of the grid and can be represented by a
collection of d-simplices.
 The interval volume algorithm proceeds as follows:
1. Let f(x1, … ,xd) define a d-dimensional function.
2. Let scalar values, α, β (α < β), be the desired

isovalues bounding the interval.
3. Let F(x1, … ,xd, w) be the (d+1)-dimensional function,

given by, F(x1, … ,xd,w) = f(x1, … ,xd) - (α (1- w) + β
w), such that

 ()
⎩
⎨
⎧

=−
=−

=
1,),,(
0,,,

),,,(
1

1
1 wforxxf

wforxxf
wxxF

d

d
d β

α
L

L
L

4. Compute the zero-valued isosurface, S, given by F(x1,
… ,xd, w) = 0 for 0 ≤ w ≤ 1.

5. Let π be the projection function mapping Rd+1 to Rd
given by π(x1, … ,xd,xd+1) = (x1, … ,xd). The desired
interval volume, If(α,β), is then given by π(S).

 For a time-varying scalar grid with hexahedral cells, the
construction of the time-varying interval volumes is a five-
dimensional isosurfacing problem. Given a four
dimensional scalar field f(x,y,z,t), the interval volume
consists of all the points which satisfy α ≤ f(x,y,z,t) ≤ β.

C. Zhang & D. Xue & R. Crawfis & R. Wenger /Time-Varying Interval Volumes

© The Eurographics Association 2005

Following the above interval volume algorithm, in order to
compute the time-varying interval volume, we first create a
five dimensional scalar field F(x,y,z,t,w), such that
F(x,y,z,t,0) = f(x,y,z,t) - α and F(x,y,z,t,1) = f(x,y,z,t) - β.
Then, the interval volume α ≤ f(x,y,z,t) ≤ β can be extracted
by first computing the zero isosurface of the five
dimensional function F(x,y,z,t,w), and then projecting the
resulting isosurface along the w axis to four dimensional
space.
 Here, we should note that the entries of the isosurface
lookup table for 5D hypercube are too large to be stored in
the main memory. Since a 5D hypercube contains 32
vertices, the size of the table will contain 232 = 4G entries.
As pointed out in [JSW03], not all the four billion cases are
possible. Only 316 ≈ 43M entries are possible for interval
volumes. However, this size may be still too large to be
processed in core. One solution is to compute the entries of
the lookup table at runtime and cache them into a hash table
which is small enough to fit into the main memory. In this
paper, we use this caching method to store the 5D
isosurface lookup table. See [OSU] for the lookup table
generation code.
 Since the isosurface triangulation is consistent, the
interval volume triangulation will also be consistent. Our
algorithm guarantees the consistency in the table generation
stage by using a lexicographical ordering of the isosurface
vertices and then building the convex hull incrementally,
adding one vertex at a time in the specified order. This is
similar to the scheme used by [NS97] and [Max02], which
ensures canonical triangulations across cell boundaries and
generates consistent meshes. However, we still have to
worry about the decomposition from 4-simplices to 3-
simplices for the purpose of rendering. And we will address
this problem in the next section.

4. Time-varying Interval Volume Rendering

After we extract the 4-simplices comprising the 4D interval
volume, one rendering possibility is to slice the 4-simplices
parallel to the time axis to generate 3-simplices (i.e. 3D
tetrahedra) for a corresponding time step. The resulting 3D
tetrahedra can then be rendered. This scheme is analogous
to rendering time-varying isosurfaces [BWC00], but allows
slicing at non-integral time steps to compute interpolated
interval volumes between consecutive time steps. Figure 1
shows one example of the time slicing. The left image and
the right image are the interval volumes with respect to the
two time steps t1 and t2. The middle image is the
corresponding interval volume with the time value t = (t1 +
t2)/2.
 In this paper, we are more interested in the direct
rendering of the 4-simplices extracted from the 5D
isosurface lookup table, in order to understand the
distribution and relationship of the time-varying interval
volumes across time steps. Now the challenge is how to
render the 4-simplices to the 2D image space. The
following subsections will explain the projection of 4-
simplices to 3-simplices and the projection of 3-simplices
to image space.

4.1 Projection and decomposition of 4-simplices to 3-
simplices

4.1.1 Projection of 4-simplices to 3D

Each 4-simplex extracted from the 5D isosurface lookup
table has five vertices with coordinates (x, y, z, t). Every
two vertices out of the five are connected by an edge. The
4-simplex is projected to 3D along a given projection
direction in 4D: π(x1, x2, x3, x4) = (u1, u2, u3), where π is the
projection function. Here, we use a projection along the t
axis as an example. So, π(x1, x2, x3, x4) = (x1, x2, x3).
 The five projected vertices compose some volume in
three dimensions, except in some degenerate cases where
the five projected vertices form a triangle, or a line, or a
point. There are six common cases for the spatial
relationship of the projected 4-simplex, as shown in Figure
2. They are either labeled as general cases, or the
degenerate cases which still compose a volume in 3D (for
example, four vertices coplanar, three vertices colinear, and
two vertices coincident). The more severe degenerate cases,
where the projected vertices are all co-planar, are not
considered in this paper, because they do not produce
volumetric entities.
 The projected 4-simplices are classified as different types
based on the spatial relationship of the five vertices of the
projected 4-simplex along the t axis in three-dimensional
space. Figure 2 illustrates the six common cases of the 4-
simplex projection. Class 1 and class 2 are general cases. In
class 1, no vertex is inside a tetrahedron composed of the
other four vertices. In class 2, one vertex is inside the
tetrahedron of the other four vertices (in Figure 2, P5 is
inside the tetrahedron P1P2P3P4). Class 3, class 4 and class
5 are degenerate cases. In class 3(a), four vertices (P1, P2,
P3, P4) are coplanar. P5 is inside the triangle of P1P2P3 in
class 3(b). In class 4, three vertices (P1, P4, P3) are
colinear, and in class 5, two vertices (P4, P5) are
coincident.
 A projected 4-simplex with 5 vertices is classified step by
step using the flow chart in Figure 3.
 In this paper, we classify the projected 4-simplices into
two general cases and four degenerate cases. The
degenerate cases generate fewer decomposed tetrehedra in
section 4.1.2 and improve the rendering performance. We
could just consider only general cases and combine the
degenerate cases into the general cases. For example, class
3(b) and class 5 can be combined into class 2, with the
vertex P5 moving from the face P1P2P3 or from the vertex
P4 to inside the tetrahedron P1P2P3P4. Similarly, class 3(a)
and class 4 can be combined into class 1, with the vertex P4
moved from the position coplanar with P1P2P3 or colinear
with P1P3 to the position on the opposite side of P5 with
respect to the face P1P2P3. This generalization of the cases
will generate more tetrahedra (many of them with nearly
zero volume) and/or will need some checking to distinguish
them in the tetrahedralization stage.

Figure 1: Results of time slicing

C. Zhang & D. Xue & R. Crawfis & R. Wenger /Time-Varying Interval Volumes

© The Eurographics Association 2005

 This classification will guide us in decomposing the
projected 4-simplices into tetrahedra for the purpose of
rendering.

4.1.2 Tetrahedralization of projected 4-simplices

Our first attempt at this problem was to project 4-simplices
to 3D along the time axis by simply ignoring the time value
(t) and keeping only the position information (x, y, z) for
each vertex. Then, the projected 4-simplices are
decomposed into tetrahedra in 3D space based on the above
classification in Figure 2. Table 1 was constructed by hand
and shows the possible decomposition of each class.
 After rendering the resulting 3D tetrahedra using the
Projected Tetrahedron method, we found that the result was
not correct. An image of a constant plate is shown in Figure
4. There are some obvious patterns on the plate. As we
know, many 4-simplices are extracted from the lookup
table for each hypercube cell, and then are projected to 3D
and decomposed to tetrahedra. By keeping track of the
tetrahedral components inside each cell, we find that each
tetrahedron is in right place and the tetrahedra as a whole
fill the cell. However, we also find that the projections of a
set of 4-simplices overlap. For example, for a cube cell
from our constant plate example as shown in Figure 4,
some space is shared five times by the projection of 4-
simplices, while other space is shared only four times. This
uneven overlapping distribution of the projected 4-
simplices causes a non-constant opacity throughout the cell.

Table 1: Original decomposition of the projected 4-
simplices

Class Possible Tetrahedra
Class 1 P1P2P3P4 and P1P2P3P5

or: P1P2P4P6, P1P3P4P6, P2P3P4P6,
P1P2P5P6, P1P3P5P6 and P2P3P5P6

Class 2 P1P2P3P4, or:
P1P2P3P5, P1P2P4P5, P1P3P4P5 and
P2P3P4P5

Class 3(a) P1P2P3P5 and P1P3P4P5
or P1P2P4P5 and P2P3P4P5
or: P1P2P5P6, P2P3P5P6, P3P4P5P6,
P1P4P5P6

Class
3(b)

P1P2P3P4, or:
P1P2P4P5, P1P3P4P5 and P2P3P4P5

Class 4 P1P2P3P5, or:
P1P2P4P5 and P2P3P4P5

Class 5 P1P2P3P4

P1

P2

P3

P5

P4

P1

P2

P3

P4

P5

 Class 1 Class 2

P1

P2 P3

P4

P5

P1

P2

P3

P4

P5

 Class 3(a) Class 3(b)

P1 P4 P3

P2

P5

P1

P2

P3

P4/P5

 Class 4 Class 5

Figure 2: Classification of projected 4-simplex

p r o j e c t e d 4 - s i m p l e x w i t h 5 v e r t i c e s

A n y 2 v e r t i c e s
c o i n c i d e n t ? C l a s s 5

Y e s

N o

A n y 3 v e r t i c e s
c o l l i n e a r ?

Y e s
C l a s s 4

N o

A n y 4 v e r t i c e s
c o p la n a r ?

Y e s

O n e v e r t e x i n s i d e
t h e o t h e r t h r e e ?

C l a s s 3 (b)

Y e s

C l a s s 3 (a)

N o

O n e v e r t e x i n s i d e
t h e o t h e r f o u r ? C l a s s 2

N o

Y e s

N o

C l a s s 1

Figure 3: Flow chart of the classification of the projected
4-simplex

Figure 4: Incorrect rendering result of a constant plate
 in four dimensions

C. Zhang & D. Xue & R. Crawfis & R. Wenger /Time-Varying Interval Volumes

© The Eurographics Association 2005

 The key observation in the incorrect opacity is that the
length of the projection through time cannot be ignored
during the projection of the 4-simplices along the time axis.
During the projection, each vertex obtains a t∆ value. The
value t∆ is calculated in a similar way as the calculation of

z∆ in the projected tetrahedron algorithm, but along the
time dimension. The basic idea is that a ray is cast along the
time projection and t∆ is calculated as the length of the ray
that passes through the 4-simplices. Here the projection is
from 4D to 3D. So, a vertex in 3D has a non-zero t∆ value
if it has two different t values along the ray in the t
dimension and the t∆ is calculated as the difference of the
two t values. That means, one vertex has a non-zero t∆ if it
is overlapped with another vertex in 3D (here, the vertex
can be an original projected vertex or a point which is
interpolated by other projected vertices after the projection
to 3D). Vertices with a non-zero t∆ value are illustrated by
the black points in Figure 5 for each case of the projected
4-simplices.
 In class 5, P4 and P5 are coincident after the projection
and P4 has a non-zero t∆ . In class 4, P4 has a non-zero

t∆ value which is the difference of P4.t and the
interpolated t value between P1 and P3. In class 3(a), the
new vertex P6 which is the intersection point of the lines
P1P3 and P2P4 has a non-zero t∆ value which is the
difference of two interpolated t values between P1P3 and

P2P4. While for class 3(b), the t∆ at P5 is non-zero which
is equal to the difference of P5.t and the t value interpolated
inside the triangle P1P2P3. Similarly, for class 2, the

t∆ value at P5 is the difference of P5.t and the interpolated
t value inside the tetrahedron P1P2P3P4. In class 1, the new
vertex P6 is the intersection point of the triangle P1P2P3
and the line P4P5. The t∆ value at P6 is the difference of
the interpolated t value inside P1P2P3 and the interpolated t
value along the line P4P5.
 After determining the vertex with a non-zero t∆ for each
class, the decomposition of the projected 4-simplices into
tetrahedra should make sure that the vertex with a non-
zero t∆ is one vertex of the decomposed tetrahedra. Now
the decomposition becomes a unique process. The unique
decomposition is listed in Table 2 for each class of 4-
simplex. For each decomposed tetrahedron, one vertex has
a non-zero t∆ value and each point inside the tetrahedron
has an interpolated t∆ value. The t∆ distribution inside
the tetrahedron also contributes to the final opacity of the
rendered tetrahedron.

Table 2: Final decomposition of the projected 4-simplices

Class Decomposed Tetrahedra

Class 1 P1P2P4P6, P1P3P4P6, P2P3P4P6, P1P2P5P6,
P1P3P5P6 and P2P3P5P6

Class 2 P1P2P3P5, P1P2P4P5, P1P3P4P5 and
P2P3P4P5

Class 3(a) P1P2P5P6, P2P3P5P6, P3P4P5P6 and
P1P4P5P6

Class 3(b) P1P2P4P5, P1P3P4P5 and P2P3P4P5
Class 4 P1P2P4P5 and P2P3P4P5
Class 5 P1P2P3P4

4.2 Projection of 3-simplices to image space

We use an implementation of the Projected Tetrahedron
algorithm from Shirley and Tuchman [CST90] to render the
projected tetrahedra from the 4-simplices. The algorithm
approximates a tetrahedron using one to four triangles
depending on the screen projection of the tetrahedron’s
vertices. We implement the PT algorithm using a vertex
program in programmable graphics hardware [WMF*02].
 Compared to the projection of the normal tetrahedra,
there is one difference in the rendering of the time-varying
interval volumes: the tetrahedra here have a non-constant

t∆ distribution from the projection along the time axis.
Therefore, when we calculate the opacity of the projected
triangles, we should consider both the contribution of
the t∆ for the projection along the time axis and the
contribution of the z∆ for the projection along the z-axis.
 The transparency along a ray passing through a
tetrahedron is represented as following for the rendering of
the 4-simplices:

zt

zz t

ezt

dztdtdzT

∆⋅∆⋅−=∆⋅∆⋅−=

∆⋅−=−= ∫∫ ∫
ττ

ττ

)exp(

))(exp()exp(
 (1)

 Here, τ is the extinction coefficient. The opacity along a
ray is represented as

P1

P2

P3

P5

P4

P6

P1

P2

P3

P4

P5

 Class 1 Class 2

P1

P2 P3

P4

P5

P6

P1

P2

P3

P4

P5

 Class 3(a) Class 3(b)

P1 P4 P3

P2

P5

P1

P2

P3

P4/P5

 Class 4 Class 5

Figure 5: Tetrahedralization of projected 4-simplex

C. Zhang & D. Xue & R. Crawfis & R. Wenger /Time-Varying Interval Volumes

© The Eurographics Association 2005

 zte ∆⋅∆⋅−−= τα 1 (2)
 Figure 6(a) shows a constant tetrahedron P1P2P3P4,
which is composed of four projected class-5 4-simplices,
each with a non-zero t∆ value at one vertex (represented as
black points). By adding the interpolated t∆ values from
four tetrahedra, every point P inside the tetrahedron has a
constant t∆ (as shown in equation 3). Figure 6(b) shows
the distribution of the t∆ inside the tetrahedron. This is
what we expect for a constant tetrahedron which is
composed of four projected 4-simplices extracted from a
5D isosurface lookup table.

)(4321

3
4321

321
3

4321

421

2
4321

431
1

4321

432

4321

tttttift

t
vol
volt

vol
vol

t
vol
volt

vol
vol

ttttt

PPPP

P
PPPP

PPPP
P

PPPP

PPPP

P
PPPP

PPPP
P

PPPP

PPPP

p

∆=∆=∆=∆=∆∆=

∆×+∆×

+∆×+∆×=

∆+∆+∆+∆=∆

 (3)

 The transparency along a ray passing through any point P
inside the constant tetrahedron is:

ztztttt

ztztztzt

ee
eeee

TTTTT

∆⋅∆⋅−∆⋅∆+∆+∆+∆⋅−

∆⋅∆⋅−∆⋅∆⋅−∆⋅∆⋅−∆⋅∆⋅−

==

⋅⋅⋅=

⋅⋅⋅=

ττ

ττττ

)(

4321

4321

4321 (4)

 The opacity along the ray is zte ∆⋅∆⋅−−= τα 1 . It shows
the opacity along a ray passing through any point P inside
the constant tetrahedron depends on the constant t∆ inside
the tetrahedron and the z∆ from the projection along the z-
axis.
 Since the zero-thickness vertices in PT algorithm do not
necessarily have zero t∆ thickness, and the vertex with
non-zero thickness in PT algorithm may have zero
thickness of t∆ , so we cannot directly multiply the t∆ and
the z∆ at each vertex and then interpolate it inside the
projected triangles. Actually, the bi-variant function should
be evaluated at each pixel. That means, we should multiply
the interpolated t∆ and the interpolated z∆ for each pixel
inside the projected triangles. We develop a modified
implementation of the Shirley and Tuchman algorithm
using the vertex and fragment programs to consider both
the contributions of the t∆ and the z∆ . In the vertex
program, we calculate the t∆ and z∆ for each vertex of
the projected triangles, then their contributions to the
opacity are multiplied in the fragment program for each
pixel.
 Considering the contribution of the t∆ on the opacity, the
data in Figure 4 is rendered correctly as in Figure 7.

4.3. Visualization techniques of time-varying interval
volumes
In this section, we build upon our work of the computation
and projection of the time-varying interval volumes to
come up with some visualization techniques for effective
visualization of the time-varying volumetric data sets. As

discussed in previous sections, the tetrahedra for time-
varying interval volumes have t∆ distribution from the
projection along the time axis and they overlap themselves
in 3D space. This causes some occlusion and compositing
problems. In this section, we will figure out the suitable
visualization techniques for the time-varying interval

P1

P3 P2

P4

P

P1

P3 P2

P4

P

P1

P3 P2

P4

P

P1

P3 P2

P4

P

(a)

+

++

(b)

Figure 6: Projected tetrahedral components and
t∆ distribution inside a constant tetrahedron

Figure 7: Rendering result of a constant plate

C. Zhang & D. Xue & R. Crawfis & R. Wenger /Time-Varying Interval Volumes

© The Eurographics Association 2005

volumes. For Figures 8 to 16, please also see the color
plate.

4.3.1. Direct rendering of the time-varying interval
volumes

We can render the time-varying interval volumes directly
from the extracted 4-simplices, using the projection
methods as discussed in sections 4.1 and 4.2. Since the
time-varying interval volumes actually project to the same
three-dimensional space (i.e., it is a self-intersecting
volume), no accurate sorting is possible. In this section, an
additive compositing operator is used to blend the 4-
simplices into the image. The color of the vertex is encoded
using the time value. For the overlapped vertices (as shown
with the black points in Figure 5), the time value is
calculated as the average t value of the two overlapped
vertices.
 Figure 8 is an example of the direct volume rendering
result of a simple test function comprised of a linear ramp
in time. Here, the color at t=t1 is green, and the color at
t=t2 is red. The color between t1 and t2 is encoded between
green and red. From this figure, we can see the transition
from the green, to the yellow, and to the red as the field
moves over time.

4.3.2. Highlighted surface boundaries

Similar to the interval volumes with embedded boundary
surfaces in [BCZ*04], we can embed the boundary
isosurfaces into time-varying interval volumes to highlight
interior features. The boundary surfaces are extracted
during the construction of the time-varying interval
volumes without extra computation cost, simply by
checking if the vertices are on a boundary or not.
 For time-varying interval volumes, there are two types of
boundaries: volumetric boundaries and surface boundaries.
In this subsection, we first consider the surface boundaries.
Given a time-varying interval volume defined by two
isovalues α and β, and two time steps t1 and t2, there are
four boundary isosurfaces at: (a) t=t1 and f(x,y,z,t)=α, (b)
t=t1 and f(x,y,z,t)=β, (c) t=t2 and f(x,y,z,t)=α, (d) t=t2 and
f(x,y,z,t)=β. Since these surfaces are the boundary of the
tetrehedra which compose the time-varying interval
volume, these boundary surfaces are rendered together with
the 4D interval volume. The four isosurface boundaries are
illustrated in Figure 9 in the above order (a) to (d) from left
to right. From the figure, we can see how the isosurfaces
change with time and with value.

4.3.3. Volumetric boundaries

There are also four kinds of volumetric boundaries for a
time-varying interval volume defined by two isovalues α
and β, and two time steps t1 and t2: (a) time-varying
isosurfaces at f(x,y,z,t)=α and t1≤ t ≤ t2, (b) time-varying
isosurfaces at f(x,y,z,t)=β and t1 ≤ t ≤ t2, (c) interval
volumes at α≤ f(x,y,z,t) ≤ β and t=t1, and (d) interval
volumes at α≤ f(x,y,z,t) ≤ β and t=t2. The four volumetric
boundaries are shown in Figures 10(left), 10(right), 11(left)
and 11(right), respectively.
 The volumetric boundaries are rendered using the normal
projected tetrahedron algorithm, without the contribution of

t∆ on the opacity. Here, the boundary interval volumes

are sorted, not according to the viewing rays, but according
to their priorities (the time here) to bring an important
interval volume at a specific time step to the forefront. This
priority-based sorting technique comes from the idea of the
Maximum Intensity Projection (MIP) in medical
community. Also, a constant color is assigned to each
volumetric boundary. Figures 15 and 16 are rendered using
this technique.

5. Results

We apply the rendering and visualization techniques of the
time-varying interval volumes explained in section 4 to
several datasets. Figure 12 shows time-varying interval
volumes of a vortex dataset, rendering the vorticity
magnitude in the range of (8.0, 12.0). The color is encoded
using time t: green at t=t1, red at t=t2, and yellow for
overlapped regions between t=t1 and t=t2. From this
figure, we can see how the interval volumes move over
time. We can also notice that some new components are
generated over time, such as the purely red one in Figure

Figure 10: Time-varying isosurfaces at f(x,y,z,t)=α
and t1≤ t ≤ t2 (left), and f(x,y,z,t)=β and t1 ≤ t ≤ t2
(right).

Figure 11: Interval volumes at α≤ f(x,y,z,t) ≤ β and
t=t1 (left), and α≤ f(x,y,z,t) ≤ β and t=t2 (right).

Figure 8: Direct rendering
result of a time-varying
interval volume

Figure 9: Time-varying
interval volume with four
isosurfaces

C. Zhang & D. Xue & R. Crawfis & R. Wenger /Time-Varying Interval Volumes

© The Eurographics Association 2005

12. Figure 13 is the interval volumes of the vortex dataset
for three time steps. The color mapping with time t is in the
following way: blue at t=t1, green at t=t2, red at t=t3, cyan
for overlapped regions between t=t1 and t=t2, yellow
between t=t2 and t=t3. So, for the overlapped region
among t=t1, t=t2 and t=t3, the color is white using the
additive compositing operator. In this figure, areas where
contours are appearing over time are predominantly red,
while areas that faded over time are predominantly blue.
Areas which maintain a high isovalue over time appear
white. Figure 14 shows time-varying interval volumes for
the NASA Tapered Cylinder dataset, by rendering the
density attribute in the range (0.982124, 0.9852195). This
dataset is a curvilinear grid in PLOT3D format. Similarly,
this figure shows the movement of the interval volumes
with the time.
 By rendering two interval volumes at t=t1 and t=t2
extracted from the volumetric boundary into one image
using the MIP technique discussed in section 4.3.3, we can
see how the interval volumes move with the time steps. In
this way, an important interval volume at a specific time
step is brought to the forefront, preventing being occluded
by the interval volumes at other time steps. Figures 15 and
16 show two interval volumes at t1 and t2 for the vortex
dataset and the Tapered Cylinder dataset in one view using
the MIP technique. Here, yellow color represents the
interval volume at t1, and red color is for t2. In the two
figures, the interval volume at t2 is given higher priority.
By comparing the images using MIP and the corresponding
time-varying interval volumes, we can interpret the images
of time-varying interval volumes well.

 All the results presented in this paper have been
generated using a PC with a QuadroFX 3000 graphics card
and a Pentium IV 3.4 GHz processor. The interval volume
computation time and the volume rendering time for the
datasets are listed in Table 3.

Table 3: 4D interval volume computation and rendering
performance

Data set

4D interval
volume

construction
and

decompo-
sition time

Number

of 4-
simplices

Number

of
tetrahedra

(with
volume)

Rendering

time
(linear
color)

Test
function

(2x20x10x
10)

75ms

9,720

27,054

30ms

Vortex
dataset

(2x128x
128x128)

12.2s

319,304

882,044

970ms

Tapered
Cylinder

(curvilinear
2x64x64

x32)

18.5s

349,624

941,098

1,030ms

Vortex
dataset

(3x128x
128x128

22.5s

654,846

1,807,460

1,980ms

Figure 12: Time-varying interval
volumes for vortex dataset (two
time steps)

Figure 13: Time-varying interval
volumes for vortex dataset (three
time steps)

Figure 15: Two interval volumes
at t1 and t2 for the vortex dataset
are rendered using MIP

Figure 14: Time-varying interval volumes for the
NASA Tapered Cylinder dataset

Figure 16: Two interval volumes at t1 and t2 for the
Tapered Cylinder dataset are rendered using MIP

C. Zhang & D. Xue & R. Crawfis & R. Wenger /Time-Varying Interval Volumes

© The Eurographics Association 2005

 In the Table 3, the 4D interval volume construction and
decomposition time includes the time to calculate the
entries of the isosurface lookup table, the time to construct
4-simplices and the time to decompose 4-simplices to
tetrahedra. Due to the decomposition of 4-simplices to 3-
simplices and the overlapping copies of the 3-simplices in
3D space, there are more tetrahedra for time-varying
interval volumes.

6. Conclusions and Future Work

In this paper, we have presented an algorithm for
computing time-varying interval volumes in structured and
unstructured grids using a fast isosurface extraction
algorithm. And we have explained the rendering methods
of the 4-simplices by projecting and decomposing the 4-
simplices to 3-simplices, and using a modified hardware-
implemented projected tetrahedron method. In this way, we
can render the time-varying interval volumes which
integrate multiple time steps into a single view and we can
see the movement of the interval volumes over time in one
view. Different visualization techniques have been
demonstrated for the visualization of the time-varying
structured and unstructured data sets.
 The current rendering technique uses the hardware
implemented projected tetrahedron method [WMF*02]. We
can use the new PT implementation presented in [KQE04]
to improve the quality of the images and we can consider to
speed up the projection from 4D to 3D by taking advantage
of the modern graphics hardware. Also, the current
algorithm can be augmented with feature detection
techniques to aid the user in identifying useful/interesting
intervals in the field. We also want to extend the concept of
constructive solid geometry for multi-attribute data sets to
time-varying interval volumes.

Acknowledgements

The Tapered Cylinder data set is from NASA’s online data
set repository. Part of this work was supported by NSF
award #ACI-0222903.

References

[AC97] ALBERTELLI, G., AND R. A. CRAWFIS, “Efficient subdivision
of finite-element datasets into consistent tetrahedral”, in Proceedings
of IEEE Visualization '97, p.213-219, October 18-24, 1997, Phoenix,
Arizona.

[BPR*98] BAJAJ, C., V. PASCUCCI, G. RABBIOLO, AND D.
SCHIKORE, “Hypervolume Visualization: A Challenge in
Simplicity", in IEEE Volume Visualization 1998 Symposium, pp. 95-
102.

[BL03] BANKS, D., AND S. LINTON, “Counting Cases in Marching
Cubes: Toward a Generic Algorithm for Producing Substitopes”, In
Proceedings of IEEE Visualization 2003, pp. 51-58.

[BLS04] BANKS, D., S. LINTON, AND P. STOCKMEYER, “Counting
Cases in Substitope Algorithms”, IEEE Transactions on Visualization
and Computer Graphics, July/August, 2004, Vol. 10, No. 4, pp. 371-
384.

[BWC00] BHANIRAMKA, P., R. WENGER, AND R. CRAWFIS,
“Isosurfacing In Higher Dimensions”, in Proceedings of IEEE
Visualization 2000, Ertl, Hamann, Varshney, Ed., IEEE Visualization
Proceedings, 2000, 15-22.

[BWC04] BHANIRAMKA, P., R. WENGER, AND R. CRAWFIS,
“Isosurface Construction in any dimension using convex hulls”, IEEE

Transactions on Visualization and Computer Graphics, March/April,
2004, Vol. 10, No. 2, pp 130-141.

[BZX*04] BHANIRAMKA, P., C. ZHANG, D. XUE, R. CRAWFIS, AND
R. WENGER, “Volume Interval Segmentation and Rendering”, in
IEEE Volume Visualization 2004 Symposium, pp. 55-62.

[FMS95] FUJISHIRO, I., Y. MAEDA, AND H. SATO, “Interval volume: a
solid fitting technique for volumetric data display and analysis”, in
IEEE Visualization 1995, Atlanta, GA, 1995.

[FMS*96] FUJISHIRO, I., Y. MAEDA, H. SATO AND Y. TAKESHIMA,
“Volumetric data exploration using interval volume”, in IEEE
Transactions on Visualization and Computer Graphics, 2 (June 1996).

[Guo95] GUO, B. “Interval Set: A Volume Rendering Technique
Generalizing Isosurface Extraction”, in Proceedings of IEEE
Visualization 1995, Atlanta, GA.

[HH92] HANSON, A., AND P. HENG, “Four-Dimensional Views of 3D
Scalar Fields”, in Proceedings of IEEE Visualization 1992, pp. 84-91.

[HH92*] HANSON, A., AND P. HENG, “Illuminating the Fourth
Dimension”, IEEE Computer Graphics and Applications, Vol. 12, No.
4, pp. 54-62, 1992.

[HC93] HANSON, A., AND R. CROSS, “Interactive Visualization Methods
for Four Dimensions”, in Proceedings of IEEE Visualization 1993,
pp. 196-203.

[JSW03] JI, G., H. SHEN, AND R. WENGER, “Volume Tracking using
Higher Dimensional Isosurfacing”, In Proceedings of IEEE
Visualization 2003, pp. 209-216.

[KQE04] KRAUS, M., W. QIAO, AND D. EBERT, “Projecting
Tetrahedra without Rendering Artifacts”, in Proceedings of IEEE
Visualization 2004, pp. 27-34.

[LC87] LORENSEN, W. E., AND H. E. CLINE, “Marching cubes: A high
resolution 3d surface construction algorithm”, in M. C. Stone, ed.,
Computer graphics, 1987, Anaheim, California, July 1987, pp. 163-
169.

[Max02] MAX, N. “Consistent Subdivision of Convex Polyhedra into
Tetrahedra”, in Journal of Graphics Tools, 6 (3), 29-36, 2002.

[NS97] NIELSON, G. M., AND J. SUNG, “Interval volume
tetrahedrization”, in R. Y. a. H. Hagen, ed., IEEE Visualization 1997,
IEEE, November 1997, pp. 221-228.

[ST90] SHIRLEY, P. AND A. TUCHMAN, “A polygonal approximation to
direct scalar volume rendering”, in Volume Visualization Workshop,
1990, pp. 63-70.

[OSU] The Ohio State University. Isotable generation software.
http://www.cse.ohio-state.edu/graphics/isotable.

[WKE02] WEILER, M., M. KRAUS, AND T. ERTL, “Hardware Based
View-independent Cell Projection”, in Symposium on Volume
Visualization, 2002, Boston, MA.

[WKM*03] WEILER, M., M. KRAUS, M. MERZ, AND T. ERTL,
“Hardware-Based Ray Casting for Tetrahedral Meshes”, in
Proceedings of IEEE Visualization 2003, pp. 333-340.

[Wil92] WILLIAMS, P. “Visibility Ordering of Meshed Polyhedra”, in
ACM Transactions on Graphics, 11 (4), 103-126, April 1992.

[Wil92*] WILLIAMS, P., “A Volume Density Optical Model”, in IEEE
Volume Visualization Symposium 1992, 61-68, 1992.

[WMS98] WILLIAMS, P., N. MAX, C. M. STEIN, “A High Accuracy
Volume Renderer for Unstructured Data”, in IEEE Transactions on
Visualization and Computer Graphics 4(1): 37-54 (1998).

[WS03] WOODRING, J., AND H. SHEN, “Chronovolumes: A Direct
Rendering Technique for Visualizing Time-Varying Data”, In
Proceedings of 2003 International Workshop on Volume Graphics.

[WWS03] WOODRING, J., C. WANG, AND H. SHEN, “High Dimensional
Direct-Rendering of Time-Varying Volumetric Data”, In Proceedings
of IEEE Visualization 2003, pp. 417-424.

[WMF*02] WYLIE, B., K. MORELAND, L. A. FISK, AND P. CROSSNO,
“Tetrahedral Projection using Vertex Shaders”, In Symposium on
Volume Visualization 2002, pp. 7-12, 2002.

