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Abstract 
In this paper, we study the interval segmentation and direct rendering of time-varying volumetric data to provide 
a more effective and interactive volume rendering of time-varying structured and unstructured grids. Our 
segmentation is based upon intervals within the scalar field between time steps, producing a set of geometrically 
defined time-varying interval volumes. To construct the time-varying interval volumes, we cast the problem one 
dimension higher, using a five-dimensional iso-contour construction for interactive computation or segmentation. 
The key point of this paper is how to render the time-varying interval volumes directly. We directly render the 4D 
interval volumes by projecting the 4D simplices onto 3D, decomposing the projected 4-simplices to 3-simplices 
and then rendering them using a modified hardware-implemented projected tetrahedron method. In this way, we 
can see how interval volumes change with the time in one view. The algorithm is independent of the topology of 
the polyhedral cells comprising the grid, and thus offers an excellent enhancement to the volume rendering of 
time-varying unstructured grids. Another advantage of this algorithm is that various volumetric and surface 
boundaries can be embedded into the time-varying interval volumes. 
 
CR Categories: I.3.3 [Picture/Image Generation]: Display algorithms  

_____________________________________________________________________________________________________ 
 

1. Introduction 

 
With the widespread use of high performance computing 
systems, some application simulations are capable of 
producing large datasets. These simulations tend to be time 
varying, adding another dimension to the problem. This 
paper mainly deals with the interval segmentation and 
rendering for time-varying structured and unstructured 
datasets. 
   A traditional method to render time-varying data is to 
take a snapshot of the data for each particular time step and 
generate an animation from the time series data. This 
method is useful, but it replies on human memory and 
cognitive abilities to tie together spatio-temporal 
relationships. An alternative method is to display the 
movement of the time series data in a single image using 
direct rendering of high dimensional data. Some people 
have worked on the hypervolume visualization [BPR*98] 
and high dimensional direct rendering of time-varying 
volumetric data [WWS03], but their algorithms do not 
apply for unstructured grids.  
   Interval volumes have been used to segment and render 
structured and unstructured volumetric data [BCZ*04]. It is 
a region-of-interest extraction algorithm, and fast volume 
visualization techniques are employed to render the interval 
volumes. Under the framework of the high-dimensional 
iso-contouring algorithm, interval volumes can easily be 
computed using two schemes for time varying data sets. 
The first scheme computes the interval volumes separately 
for each time step of the dataset using the algorithm 
discussed in [BCZ*04]. The user can then cycle through all 

the time steps to visualize the data. It is obvious that this 
scheme does not show the relationship of the interval 
volumes between different time steps well.  
   An alternative approach is to use the high-dimensional 
isosurfacing algorithm to compute a 4-dimensional volume 
representing a time-varying interval volume. This can be 
accomplished by applying the isosurfacing algorithm 
directly on a 5-dimensional grid to generate a surface 
comprised of 4-simplices. Then, we can render the 4-
tetrahedra by slicing the interval volumes between the time 
steps. An alternative method, and the focus of this paper, is 
to render the 4-simplex from the interval volumes by 
integrating in the time directly, rather than projecting and 
slicing them. 
   In the following sections we look at some of the previous 
work done in this domain. We then give an overview of our 
time-varying interval volume computation algorithm, 
followed with rendering methods and visualization 
techniques for the time-varying interval volumes. We end 
with some results of our work and present future directions 
for research in this domain. 
 

2. Previous Work 

Previous work that relates to our research primarily focuses 
on high-dimensional scientific visualization, unstructured 
volume rendering and interval volumes. 
 
   High-Dimensional Visualization: Hanson et al. 
[HH92][HH92*][HC93] introduced a general technique, as 
well as an interactive system, for visualizing surfaces and 
volumes embedded in four dimensions. In their method, 3D 
scalar fields were treated as elevation maps in four 
dimensions in the same way 2D scalar fields could be 
viewed as 3D terrains. Bajaj et al. [BPR*95] developed an  
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interface that provides “global views” of scalar fields 
independent of the dimension of their embedded space and 
generalized the object space projection technique into a 
hyper-volume projection method. Texture mapping 
hardware was utilized to directly render n-dimensional 
views of the global scalar field. Woodring et al. 
[WS03][WWS03] treated the time-varying data as four-
dimensional data, and applied high dimensional slicing and 
projection techniques to generate an image hyperplane. The 
results of their technique generated a volume that is the 
projection of hyperplanes along a 4D projection vector, 
which can be rendered using traditional volume rendering 
techniques. 
 
   Unstructured Volume Rendering: Shirley and 
Tuchman [ST90] presented an algorithm for hardware 
accelerated rendering of unstructured tetrahedral grids by 
approximating the projection to screen space using a set of 
triangles. Grids consisting of different cells are first 
decomposed into a tetrahedral representation using 
simplicial decomposition techniques [AC97][Max02]. 
Williams extended Shirley-Tuchman’s approach to 
implement direct projection of other polyhedral cells in 
their HIAC rendering system [WMS98] and used high 
accuracy light integration functions to model the light 
transport through the medium [Wil92]. Recently, with the 
advent of programmable graphics hardware, a tremendous 
amount of work has been done in implementing the 
Shirley-Tuchman algorithm on graphics hardware using the 
programmable vertex and fragment shader pipelines on the 
GPUs [WKE02][WMF*02][KQE04]. In all of the above 
cases, the rendering performance of the projected tetrahedra 
algorithm is typically proportional to the number of cells to 
be rendered. The rendering process involves visibility 
sorting (usually O(nlogn)) and  projection (O(n)) of the 
polyhedral cells. As an alternative to projection, polyhedral 
cells can also be rendered using ray casting [WKM*03]. 
 
   Interval Volumes: An interval volume is the set of points 
in a scalar field enclosed between two isosurfaces defined 
by two different isovalues. Fujishiro [FMS95] introduced 
interval volumes as a solid fitting algorithm. A few 
applications of interval volumes were presented in 
[Guo95][FMS96]. Fujishiro computed a tetrahedralization 
of the interval volume by computing the intersection of two 
convex polyhedra enclosed by the isosurfaces given by the 
Marching cubes algorithm [LC87], within each cell. 
Nielson [NS97] computed the tetrahedralization by first 
decomposing each cube in the grid to five tetrahedra. 
Nielson then used an efficient lookup table to compute the 
interval volume within each simplex and decompose it into 
tetrahedra. The tetrahedralization was constructed manually 
by analyzing all the possible intersections of a tetrahedron 
with an interval enclosed by two isosurfaces. Banks 
[BL03][BLS04] counted the cases for a family of 
visualization techniques, including iso-contours and 
interval volumes.  
    The above work is on the interval volumes of a single 
scalar field. For interval volumes with respect to a time-
varying dataset, Ji et al. [JSW03] tracked the interval 
volumes using higher dimensional isosurfacing, and 
rendered an iso-contour surface of the interval volumes. 
They did not directly render the 4D interval volumes. 

 
    In this paper, we work on the computation and direct 
rendering of the time-varying interval volumes. We use 
interval volumes to create disjoint volume segments, or 
intervals. Interval volumes provide a segmentation of the 
data into easily discernable regions. The direct rendering of 
the time-varying interval volumes makes it possible to get 
the distribution and relationship of the interval volumes 
across time steps, and help us to understand the time-
varying structured and unstructured volumetric fields. 

 

3. Time-varying Interval Volume Computation 

In [BWC00], we presented a new algorithm for computing 
isosurfaces in arbitrary dimensional data sets. The 
algorithm proceeds by generating isosurface patches within 
each d-dimensional polyhedral cell comprising the d-
dimensional grid. The output of the algorithm is a set of (d-
1)-dimensional simplices forming a piecewise linear 
approximation to the isosurface.  The algorithm constructs 
the isosurface piecewise within each cell in the grid using 
the convex hull of an appropriate set of points. In [FMS95] 
we present a proof of correctness for the d-dimensional 
isosurface construction and show that it correctly produces 
a triangulation of a (d-1)-manifold with boundary. Here, we 
give a short review of the algorithm. See [BZX*04] for 
more details. 
 
   For a function f(x,y,z) sampled on a three dimensional  
grid, the interval volume [FMS95] is defined by If(α,β) = 
{(x,y,z): α ≤ f(x,y,z) ≤ β}. More generally, for a function f : 
Rd→R in any dimension, the interval volume is defined by 
If(α,β) = {(x, … ,xd): α ≤ f(x1, … ,xd) ≤ β }. Intuitively, the 
interval volume is the set of points enclosed between the 
two isosurfaces corresponding to the isovalues, α and β. 
For a d-dimensional grid, the interval volume is a d-
dimensional subset of the grid and can be represented by a 
collection of d-simplices. 
   The interval volume algorithm proceeds as follows: 
1. Let f(x1, … ,xd) define a d-dimensional function. 
2. Let scalar values, α, β (α < β), be the desired 

isovalues bounding the interval. 
3. Let F(x1, … ,xd, w) be the (d+1)-dimensional function, 

given by, F(x1, … ,xd,w) = f(x1, … ,xd) - (α (1- w) + β 
w), such that 
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4. Compute the zero-valued isosurface, S, given by F(x1, 
… ,xd, w) = 0 for 0 ≤ w ≤ 1. 

5. Let π be the projection function mapping Rd+1 to Rd 
given by π(x1, … ,xd,xd+1) = (x1, … ,xd). The desired 
interval volume, If(α,β), is then given by π(S). 

 
   For a time-varying scalar grid with hexahedral cells, the 
construction of the time-varying interval volumes is a five-
dimensional isosurfacing problem. Given a four 
dimensional scalar field f(x,y,z,t), the interval volume 
consists of all the points which satisfy α ≤ f(x,y,z,t) ≤ β. 
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Following the above interval volume algorithm, in order to 
compute the time-varying interval volume, we first create a 
five dimensional scalar field F(x,y,z,t,w), such that 
F(x,y,z,t,0) = f(x,y,z,t) - α and F(x,y,z,t,1) = f(x,y,z,t) - β. 
Then, the interval volume α ≤ f(x,y,z,t) ≤ β can be extracted 
by first computing the zero isosurface of the five 
dimensional function F(x,y,z,t,w), and then projecting the 
resulting isosurface along the w axis to four dimensional 
space.  
   Here, we should note that the entries of the isosurface 
lookup table for 5D hypercube are too large to be stored in 
the main memory. Since a 5D hypercube contains 32 
vertices, the size of the table will contain 232 = 4G entries. 
As pointed out in [JSW03], not all the four billion cases are 
possible. Only 316 ≈ 43M entries are possible for interval 
volumes. However, this size may be still too large to be 
processed in core. One solution is to compute the entries of 
the lookup table at runtime and cache them into a hash table 
which is small enough to fit into the main memory. In this 
paper, we use this caching method to store the 5D 
isosurface lookup table. See [OSU] for the lookup table 
generation code. 
   Since the isosurface triangulation is consistent, the 
interval volume triangulation will also be consistent.  Our 
algorithm guarantees the consistency in the table generation 
stage by using a lexicographical ordering of the isosurface 
vertices and then building the convex hull incrementally, 
adding one vertex at a time in the specified order. This is 
similar to the scheme used by [NS97] and [Max02], which 
ensures canonical triangulations across cell boundaries and 
generates consistent meshes. However, we still have to 
worry about the decomposition from 4-simplices to 3-
simplices for the purpose of rendering. And we will address 
this problem in the next section. 
 

4. Time-varying Interval Volume Rendering 

After we extract the 4-simplices comprising the 4D interval 
volume, one rendering possibility is to slice the 4-simplices 
parallel to the time axis to generate 3-simplices (i.e. 3D 
tetrahedra) for a corresponding time step. The resulting 3D 
tetrahedra can then be rendered. This scheme is analogous 
to rendering time-varying isosurfaces [BWC00], but allows 
slicing at non-integral time steps to compute interpolated 
interval volumes between consecutive time steps. Figure 1 
shows one example of the time slicing. The left image and 
the right image are the interval volumes with respect to the 
two time steps t1 and t2. The middle image is the 
corresponding interval volume with the time value t = (t1 + 
t2)/2.  
    In this paper, we are more interested in the direct 
rendering of the 4-simplices extracted from the 5D 
isosurface lookup table, in order to understand the 
distribution and relationship of the time-varying interval 
volumes across time steps. Now the challenge is how to 
render the 4-simplices to the 2D image space. The 
following subsections will explain the projection of 4-
simplices to 3-simplices and the projection of 3-simplices 
to image space. 

4.1 Projection and decomposition of 4-simplices to 3-
simplices 

4.1.1  Projection of 4-simplices to 3D 

Each 4-simplex extracted from the 5D isosurface lookup 
table has five vertices with coordinates (x, y, z, t). Every 
two vertices out of the five are connected by an edge. The 
4-simplex is projected to 3D along a given projection 
direction in 4D: π(x1, x2, x3, x4) = (u1, u2, u3), where π is the 
projection function. Here, we use a projection along the t 
axis as an example. So, π(x1, x2, x3, x4) = (x1, x2, x3). 
   The five projected vertices compose some volume in 
three dimensions, except in some degenerate cases where 
the five projected vertices form a triangle, or a line, or a 
point. There are six common cases for the spatial 
relationship of the projected 4-simplex, as shown in Figure 
2. They are either labeled as general cases, or the 
degenerate cases which still compose a volume in 3D (for 
example, four vertices coplanar, three vertices colinear, and 
two vertices coincident). The more severe degenerate cases, 
where the projected vertices are all co-planar, are not 
considered in this paper, because they do not produce 
volumetric entities. 
   The projected 4-simplices are classified as different types 
based on the spatial relationship of the five vertices of the 
projected 4-simplex along the t axis in three-dimensional 
space. Figure 2 illustrates the six common cases of the 4-
simplex projection. Class 1 and class 2 are general cases. In 
class 1, no vertex is inside a tetrahedron composed of the 
other four vertices. In class 2, one vertex is inside the 
tetrahedron of the other four vertices (in Figure 2, P5 is 
inside the tetrahedron P1P2P3P4). Class 3, class 4 and class 
5 are degenerate cases. In class 3(a), four vertices (P1, P2, 
P3, P4) are coplanar. P5 is inside the triangle of P1P2P3 in 
class 3(b). In class 4, three vertices (P1, P4, P3) are 
colinear, and in class 5, two vertices (P4, P5) are 
coincident.  
   A projected 4-simplex with 5 vertices is classified step by 
step using the flow chart in Figure 3.  
   In this paper, we classify the projected 4-simplices into 
two general cases and four degenerate cases. The 
degenerate cases generate fewer decomposed tetrehedra in 
section 4.1.2 and improve the rendering performance. We 
could just consider only general cases and combine the 
degenerate cases into the general cases. For example, class 
3(b) and class 5 can be combined into class 2, with the 
vertex P5 moving from the face P1P2P3 or from the vertex 
P4 to inside the tetrahedron P1P2P3P4. Similarly, class 3(a) 
and class 4 can be combined into class 1, with the vertex P4 
moved from the position coplanar with P1P2P3 or colinear 
with P1P3 to the position on the opposite side of P5 with 
respect to the face P1P2P3. This generalization of the cases 
will generate more tetrahedra (many of them with nearly 
zero volume) and/or will need some checking to distinguish 
them in the tetrahedralization stage. 

  
Figure 1: Results of time slicing 



C. Zhang & D. Xue  & R. Crawfis & R. Wenger /Time-Varying Interval Volumes 

© The Eurographics Association 2005 

  This classification will guide us in decomposing the 
projected 4-simplices into tetrahedra for the purpose of 
rendering. 

4.1.2  Tetrahedralization of projected 4-simplices 

Our first attempt at this problem was to project 4-simplices 
to 3D along the time axis by simply ignoring the time value 
(t) and keeping only the position information (x, y, z) for 
each vertex. Then, the projected 4-simplices are 
decomposed into tetrahedra in 3D space based on the above 
classification in Figure 2. Table 1 was constructed by hand 
and shows the possible decomposition of each class. 
   After rendering the resulting 3D tetrahedra using the 
Projected Tetrahedron method, we found that the result was 
not correct. An image of a constant plate is shown in Figure 
4. There are some obvious patterns on the plate. As we 
know, many 4-simplices are extracted from the lookup 
table for each hypercube cell, and then are projected to 3D 
and decomposed to tetrahedra. By keeping track of the 
tetrahedral components inside each cell, we find that each 
tetrahedron is in right place and the tetrahedra as a whole 
fill the cell. However, we also find that the projections of a 
set of 4-simplices overlap. For example, for a cube cell 
from our constant plate example as shown in Figure 4, 
some space is shared five times by the projection of 4-
simplices, while other space is shared only four times. This 
uneven overlapping distribution of the projected 4-
simplices causes a non-constant opacity throughout the cell. 
 

Table 1: Original decomposition of the projected 4-
simplices 
 
Class Possible Tetrahedra 
Class 1 P1P2P3P4 and P1P2P3P5 

or: P1P2P4P6, P1P3P4P6, P2P3P4P6, 
P1P2P5P6, P1P3P5P6 and P2P3P5P6 

Class 2 P1P2P3P4, or: 
P1P2P3P5, P1P2P4P5, P1P3P4P5 and 
P2P3P4P5 

Class 3(a) P1P2P3P5 and P1P3P4P5 
or P1P2P4P5 and P2P3P4P5 
or: P1P2P5P6, P2P3P5P6, P3P4P5P6, 
P1P4P5P6 

Class 
3(b) 

P1P2P3P4, or: 
P1P2P4P5, P1P3P4P5 and P2P3P4P5 

Class 4 P1P2P3P5, or: 
P1P2P4P5 and P2P3P4P5 

Class 5 P1P2P3P4 
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Figure 2: Classification of projected 4-simplex 
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Figure 3: Flow chart of the classification of the projected
4-simplex 
 

   
Figure 4: Incorrect rendering result of a constant plate 
 in four dimensions 
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   The key observation in the incorrect opacity is that the 
length of the projection through time cannot be ignored 
during the projection of the 4-simplices along the time axis. 
During the projection, each vertex obtains a t∆ value. The 
value t∆ is calculated in a similar way as the calculation of 

z∆  in the projected tetrahedron algorithm, but along the 
time dimension. The basic idea is that a ray is cast along the 
time projection and t∆ is calculated as the length of the ray 
that passes through the 4-simplices. Here the projection is 
from 4D to 3D. So, a vertex in 3D has a non-zero t∆ value 
if it has two different t values along the ray in the t 
dimension and the t∆ is calculated as the difference of the 
two t values. That means, one vertex has a non-zero t∆ if it 
is overlapped with another vertex in 3D (here, the vertex 
can be an original projected vertex or a point which is 
interpolated by other projected vertices after the projection 
to 3D). Vertices with a non-zero t∆ value are illustrated by 
the black points in Figure 5 for each case of the projected 
4-simplices. 
   In class 5, P4 and P5 are coincident after the projection 
and P4 has a non-zero t∆ . In class 4, P4 has a non-zero 

t∆ value which is the difference of P4.t and the 
interpolated t value between P1 and P3. In class 3(a), the 
new vertex P6 which is the intersection point of the lines 
P1P3 and P2P4 has a non-zero t∆ value which is the 
difference of two interpolated t values between P1P3 and 

P2P4. While for class 3(b), the t∆ at P5 is non-zero which 
is equal to the difference of P5.t and the t value interpolated 
inside the triangle P1P2P3. Similarly, for class 2, the 

t∆ value at P5 is the difference of P5.t and the interpolated 
t value inside the tetrahedron P1P2P3P4. In class 1, the new 
vertex P6 is the intersection point of the triangle P1P2P3 
and the line P4P5. The t∆ value at P6 is the difference of 
the interpolated t value inside P1P2P3 and the interpolated t 
value along the line P4P5.  
   After determining the vertex with a non-zero t∆ for each 
class, the decomposition of the projected 4-simplices into 
tetrahedra should make sure that the vertex with a non-
zero t∆ is one vertex of the decomposed tetrahedra. Now 
the decomposition becomes a unique process. The unique 
decomposition is listed in Table 2 for each class of 4-
simplex. For each decomposed tetrahedron, one vertex has 
a non-zero t∆  value and each point inside the tetrahedron 
has an interpolated t∆ value. The t∆  distribution inside 
the tetrahedron also contributes to the final opacity of the 
rendered tetrahedron.  
 
Table 2: Final decomposition of the projected 4-simplices 

 
Class Decomposed Tetrahedra 

Class 1 P1P2P4P6, P1P3P4P6, P2P3P4P6, P1P2P5P6, 
P1P3P5P6 and P2P3P5P6 

Class 2 P1P2P3P5, P1P2P4P5, P1P3P4P5 and 
P2P3P4P5 

Class 3(a) P1P2P5P6, P2P3P5P6, P3P4P5P6 and 
P1P4P5P6 

Class 3(b) P1P2P4P5, P1P3P4P5 and P2P3P4P5 
Class 4 P1P2P4P5 and P2P3P4P5 
Class 5 P1P2P3P4 

4.2  Projection of 3-simplices to image space 

We use an implementation of the Projected Tetrahedron 
algorithm from Shirley and Tuchman [CST90] to render the 
projected tetrahedra from the 4-simplices. The algorithm 
approximates a tetrahedron using one to four triangles 
depending on the screen projection of the tetrahedron’s 
vertices. We implement the PT algorithm using a vertex 
program in programmable graphics hardware [WMF*02].  
   Compared to the projection of the normal tetrahedra, 
there is one difference in the rendering of the time-varying 
interval volumes: the tetrahedra here have a non-constant 

t∆  distribution from the projection along the time axis. 
Therefore, when we calculate the opacity of the projected 
triangles, we should consider both the contribution of 
the t∆ for the projection along the time axis and the 
contribution of the z∆ for the projection along the z-axis. 
   The transparency along a ray passing through a 
tetrahedron is represented as following for the rendering of 
the 4-simplices: 
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   Here, τ is the extinction coefficient. The opacity along a 
ray is represented as  
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Figure 5: Tetrahedralization of projected 4-simplex 
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     zte ∆⋅∆⋅−−= τα 1             (2) 
   Figure 6(a) shows a constant tetrahedron P1P2P3P4, 
which is composed of four projected class-5 4-simplices, 
each with a non-zero t∆ value at one vertex (represented as 
black points). By adding the interpolated t∆ values from 
four tetrahedra, every point P inside the tetrahedron has a 
constant t∆ (as shown in equation 3). Figure 6(b) shows 
the distribution of the t∆ inside the tetrahedron. This is 
what we expect for a constant tetrahedron which is 
composed of four projected 4-simplices extracted from a 
5D isosurface lookup table. 
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   The transparency along a ray passing through any point P 
inside the constant tetrahedron is: 
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   The opacity along the ray is zte ∆⋅∆⋅−−= τα 1 . It shows 
the opacity along a ray passing through any point P inside 
the constant tetrahedron depends on the constant t∆ inside 
the tetrahedron and the z∆  from the projection along the z-
axis. 
   Since the zero-thickness vertices in PT algorithm do not 
necessarily have zero t∆  thickness, and the vertex with 
non-zero thickness in PT algorithm may have zero 
thickness of t∆ , so we cannot directly multiply the t∆ and 
the z∆  at each vertex and then interpolate it inside the 
projected triangles. Actually, the bi-variant function should 
be evaluated at each pixel. That means, we should multiply 
the interpolated t∆ and the interpolated z∆ for each pixel 
inside the projected triangles. We develop a modified 
implementation of the Shirley and Tuchman algorithm 
using the vertex and fragment programs to consider both 
the contributions of the t∆ and the z∆ . In the vertex 
program, we calculate the t∆ and z∆  for each vertex of 
the projected triangles, then their contributions to the 
opacity are multiplied in the fragment program for each 
pixel. 
   Considering the contribution of the t∆ on the opacity, the 
data in Figure 4 is rendered correctly as in Figure 7. 
 
4.3.  Visualization techniques of time-varying interval 
volumes 
In this section, we build upon our work of the computation 
and projection of the time-varying interval volumes to 
come up with some visualization techniques for effective 
visualization of the time-varying volumetric data sets. As 

discussed in previous sections, the tetrahedra for time-
varying interval volumes have t∆ distribution from the 
projection along the time axis and they overlap themselves 
in 3D space. This causes some occlusion and compositing 
problems. In this section, we will figure out the suitable 
visualization techniques for the time-varying interval 
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Figure 6: Projected tetrahedral components and 
t∆ distribution inside a constant tetrahedron 

  
Figure 7: Rendering result of a constant plate 
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volumes. For Figures 8 to 16, please also see the color 
plate. 

4.3.1. Direct rendering of the time-varying interval 
volumes  

We can render the time-varying interval volumes directly 
from the extracted 4-simplices, using the projection 
methods as discussed in sections 4.1 and 4.2. Since the 
time-varying interval volumes actually project to the same 
three-dimensional space (i.e., it is a self-intersecting 
volume), no accurate sorting is possible. In this section, an 
additive compositing operator is used to blend the 4-
simplices into the image. The color of the vertex is encoded 
using the time value. For the overlapped vertices (as shown 
with the black points in Figure 5), the time value is 
calculated as the average t value of the two overlapped 
vertices.  
   Figure 8 is an example of the direct volume rendering 
result of a simple test function comprised of a linear ramp 
in time. Here, the color at t=t1 is green, and the color at 
t=t2 is red. The color between t1 and t2 is encoded between 
green and red. From this figure, we can see the transition 
from the green, to the yellow, and to the red as the field 
moves over time.  

4.3.2. Highlighted surface boundaries  

Similar to the interval volumes with embedded boundary 
surfaces in [BCZ*04], we can embed the boundary 
isosurfaces into time-varying interval volumes to highlight 
interior features. The boundary surfaces are extracted 
during the construction of the time-varying interval 
volumes without extra computation cost, simply by 
checking if the vertices are on a boundary or not.  
   For time-varying interval volumes, there are two types of 
boundaries: volumetric boundaries and surface boundaries. 
In this subsection, we first consider the surface boundaries. 
Given a time-varying interval volume defined by two 
isovalues α and β, and two time steps t1 and t2, there are 
four boundary isosurfaces at: (a) t=t1 and f(x,y,z,t)=α, (b) 
t=t1 and f(x,y,z,t)=β, (c) t=t2 and f(x,y,z,t)=α, (d) t=t2 and 
f(x,y,z,t)=β. Since these surfaces are the boundary of the 
tetrehedra which compose the time-varying interval 
volume, these boundary surfaces are rendered together with 
the 4D interval volume. The four isosurface boundaries are 
illustrated in Figure 9 in the above order (a) to (d) from left 
to right. From the figure, we can see how the isosurfaces 
change with time and with value. 

4.3.3.  Volumetric boundaries 

There are also four kinds of volumetric boundaries for a 
time-varying interval volume defined by two isovalues α 
and β, and two time steps t1 and t2: (a) time-varying 
isosurfaces at f(x,y,z,t)=α and t1≤ t ≤ t2, (b) time-varying 
isosurfaces at f(x,y,z,t)=β and t1 ≤ t ≤ t2, (c) interval 
volumes at α≤ f(x,y,z,t) ≤ β and t=t1, and (d) interval 
volumes at α≤ f(x,y,z,t) ≤ β and t=t2. The four volumetric 
boundaries are shown in Figures 10(left), 10(right), 11(left) 
and 11(right), respectively.  
   The volumetric boundaries are rendered using the normal 
projected tetrahedron algorithm, without the contribution of 

t∆  on the opacity. Here, the boundary interval volumes 

are sorted, not according to the viewing rays, but according 
to their priorities (the time here) to bring an important 
interval volume at a specific time step to the forefront. This 
priority-based sorting technique comes from the idea of the 
Maximum Intensity Projection (MIP) in medical 
community. Also, a constant color is assigned to each 
volumetric boundary. Figures 15 and 16 are rendered using 
this technique.  
 

5.     Results 

We apply the rendering and visualization techniques of the 
time-varying interval volumes explained in section 4 to 
several datasets. Figure 12 shows time-varying interval 
volumes of a vortex dataset, rendering the vorticity 
magnitude in the range of (8.0, 12.0). The color is encoded 
using time t: green at t=t1, red at t=t2, and yellow for 
overlapped regions between t=t1 and t=t2. From this 
figure, we can see how the interval volumes move over 
time. We can also notice that some new components are 
generated over time, such as the purely red one in Figure 

    

 

 

   

Figure 10: Time-varying isosurfaces at f(x,y,z,t)=α
and t1≤ t ≤ t2 (left), and f(x,y,z,t)=β and t1 ≤ t ≤ t2 
(right). 

  
Figure 11: Interval volumes at α≤ f(x,y,z,t) ≤ β and 
t=t1 (left), and α≤ f(x,y,z,t) ≤ β and t=t2 (right). 

Figure 8: Direct rendering
result of a time-varying
interval volume 

Figure 9: Time-varying
interval volume with four
isosurfaces 
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12. Figure 13 is the interval volumes of the vortex dataset 
for three time steps. The color mapping with time t is in the 
following way: blue at t=t1, green at t=t2, red at t=t3, cyan 
for overlapped regions between t=t1 and t=t2, yellow 
between t=t2 and t=t3. So, for the overlapped region 
among t=t1, t=t2 and t=t3, the color is white using the 
additive compositing operator. In this figure, areas where 
contours are appearing over time are predominantly red, 
while areas that faded over time are predominantly blue. 
Areas which maintain a high isovalue over time appear 
white. Figure 14 shows time-varying interval volumes for 
the NASA Tapered Cylinder dataset, by rendering the 
density attribute in the range (0.982124, 0.9852195). This 
dataset is a curvilinear grid in PLOT3D format. Similarly, 
this figure shows the movement of the interval volumes 
with the time.  
   By rendering two interval volumes at t=t1 and t=t2 
extracted from the volumetric boundary into one image 
using the MIP technique discussed in section 4.3.3, we can 
see how the interval volumes move with the time steps. In 
this way, an important interval volume at a specific time 
step is brought to the forefront, preventing being occluded 
by the interval volumes at other time steps. Figures 15 and 
16 show two interval volumes at t1 and t2 for the vortex 
dataset and the Tapered Cylinder dataset in one view using 
the MIP technique. Here, yellow color represents the 
interval volume at t1, and red color is for t2. In the two 
figures, the interval volume at t2 is given higher priority. 
By comparing the images using MIP and the corresponding 
time-varying interval volumes, we can interpret the images 
of time-varying interval volumes well. 

   All the results presented in this paper have been 
generated using a PC with a QuadroFX 3000 graphics card 
and a Pentium IV 3.4 GHz processor. The interval volume 
computation time and the volume rendering time for the 
datasets are listed in Table 3.  
 
Table 3: 4D interval volume computation and rendering 
performance 
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Figure 12: Time-varying interval
volumes for vortex dataset (two
time steps) 

Figure 13: Time-varying interval
volumes for vortex dataset (three
time steps) 

Figure 15: Two interval volumes
at t1 and t2 for the vortex dataset
are rendered using MIP 

Figure 14: Time-varying interval volumes for the
NASA Tapered Cylinder dataset 

Figure 16: Two interval volumes at t1 and t2 for the
Tapered Cylinder dataset are rendered using MIP 
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   In the Table 3, the 4D interval volume construction and 
decomposition time includes the time to calculate the 
entries of the isosurface lookup table, the time to construct 
4-simplices and the time to decompose 4-simplices to 
tetrahedra. Due to the decomposition of 4-simplices to 3-
simplices and the overlapping copies of the 3-simplices in 
3D space, there are more tetrahedra for time-varying 
interval volumes. 

6.  Conclusions and Future Work 

In this paper, we have presented an algorithm for 
computing time-varying interval volumes in structured and 
unstructured grids using a fast isosurface extraction 
algorithm. And we have explained the rendering methods 
of the 4-simplices by projecting and decomposing the 4-
simplices to 3-simplices, and using a modified hardware-
implemented projected tetrahedron method. In this way, we 
can render the time-varying interval volumes which 
integrate multiple time steps into a single view and we can 
see the movement of the interval volumes over time in one 
view. Different visualization techniques have been 
demonstrated for the visualization of the time-varying 
structured and unstructured data sets.  
   The current rendering technique uses the hardware 
implemented projected tetrahedron method [WMF*02]. We 
can use the new PT implementation presented in [KQE04] 
to improve the quality of the images and we can consider to 
speed up the projection from 4D to 3D by taking advantage 
of the modern graphics hardware. Also, the current 
algorithm can be augmented with feature detection 
techniques to aid the user in identifying useful/interesting 
intervals in the field. We also want to extend the concept of 
constructive solid geometry for multi-attribute data sets to 
time-varying interval volumes.  
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