

DENSE 3D GAUSSIAN SPLATTING INITIALIZATION FOR SPRASE IMAGE DATA

<u>Simon Seibt</u>¹, Thomas Chang¹, Bartosz von Rymon Lipinski¹, March Erich Latoschik²

- ¹Game Tech Lab, Faculty of Computer Science, Nuremberg Institute of Technology, Nuremberg, Germany
- ² Human-Computer Interaction Group, Institute of Computer Science, University of Wuerzburg, Wuerzburg, Germany

INTRODUCTION

- **3D Gaussian Splatting** (3DGS) [KKLD23] offers a computationally efficient alternative to Neural Radiance Field (NeRF) methods for novel-view synthesis.
- 3DGS uses a splatting-based scene representation to achieve accelerated photorealistic rendering.
- The effectiveness of 3DGS depends on the quality and quantity of initial Structure-from-Motion (SfM) points.
- This is a challenge particularly for scenarios with a **limited number of input images**, where sparse and inaccurate point clouds can lead to suboptimal training convergence and result in visual artifacts.
- → This work advances novel-view synthesis, enhancing 3DGS results with improved Gaussian initialization via a dense and accurate point cloud reconstructed by "Dense Feature Matching for SfM" (DFM4SfM).

RELATED WORK

To enable 3DGS for scenes with few training images:

- [ZFJW23] proposed a proximity-based re-distribution of 3D Gaussians supported by monocular depth-information to optimize Gaussian training.
- It reduces **overfitting** and **visual artifacts** for sparse image data by relocating initial Gaussians, but it is not able to accelerate training convergence.

DENSE FEATURE MATCHING FOR SfM (DFM4SfM)

Seibt et al. [SVRLCL23] introduced a novel approach to enhance conventional SfM with robust and accurate dense feature matching.

The pipeline is based on a **homographic decomposition** of the image space through **iterative rematching**, which improves **precision** and **density** of the point cloud reconstruction using...

- a) iterative rematching of remaining features,
- b) positional refinement of matching feature points in the target image,
- c) extrapolation of additional feature matches (in critical image areas).

Further pipeline steps, specifically for SfM:

- d) **Global Refinement:** Extension of positional refinement to a multi-view approach, enhancing pose estimation and 3D reconstruction accuracy.
- e) Global Extrapolation: Considering multiple neighboring views to increase matching recall and reconstruct even denser 3D structures.
- f) Utilizing of a precomputed "sparse connectivity graph" for (d) and (e).

PIPELINE OVERVIEW

Fig. 1: UML-based activity diagram of enhanced DFM4SfM pipeline.

ENHANCING DFM4SfM FOR 3DGS

Main contributions of this work are enhancements for DFM4SfM to improve 3DGS rendering, especially for low-image scenes:

- a) Grid-based feature detection for **well-distributed** point clouds, capturing both foreground and background details using a coarse-to-fine detection approach per grid cell.
- → Assures a more uniform and denser splat initialization for faster convergence by also considering image areas with visually less significant features.

Fig. 2: Comparison of traditional feature detection (left) and proposed method (right).

- b) Estimation of geometrically plausible feature matches (p, p'_2) to supplement a multi-homography decomposition strategy via adjacent **sealed matches** (m, m') from previous rematching iterations.
- → Enhances homography estimation for wide-baseline image pairs with complex visual structures or multiple depths.
- → Minimizes **sparse** and **potentially incorrect**3D Gaussian initializations of traditional SfM approaches, typically caused by fundamental matrix degeneration.

Fig. 3: Geometric plausibility check with adjacent sealed matches and adjusted candidate ranking.

→ Enhanced DFM4SfM results in a more robust multi-plane recovery in 3D space, generating a denser and more precise point cloud for 3DGS initialization, accelerating training convergence and improving rendering results.

RESULTS

- Benchmarks on Intel i9 14900KF CPU, 64GB RAM, NVIDIA RTX 4060 GPU.
- NeRF-LLFF datasets [MSOC*19] with ~10,000 initial keypoints per image.
- COLMAP's default 3D reconstruction and fine-tuned feature matching compared to DFM4SfM's expanded matching.
- DFM4SfM reconstruction contains 213% more 3D points than default COLMAP while tripling processing time.

	NeRF-LLFF (8 Scenes)						
Metrics	3DGS	O	urs	DFM4SfM w/o Improvements			
SSIM ↑	0.77	0.86	+11.7%	0.83	+7.8%		
PSNR 个	23.14	26.62	+15.0%	25.94	+12.1%		
LPIPS ↓	0.20	0.13	-35.0%	0.16	-20.0%		
Time ↓	32:05	27:44	-13.6%	28:33	-11.0%		

Tab. 1: Results for 3DGS and 3DGS initialized with improved DFM4SfM (Ours) and w/o improvements on NeRF-LLFF for 30k training iterations.

		NI	l+ o wo	SSIM 个		PSNR ↑		LPIPS ↓		Time ↓	
	N	Iters	3DGS	Ours	3DGS	Ours	3DGS	Ours	3DGS	Ours	
Fern (NeRF-LLFF)	16	30000	0.68	0.83	21.16	24.40	0.25	0.16	36:58	34:47	
	12	30000	0.54	0.75	18.13	22.60	0.32	0.21	27:16	21:55	
	9	30000	0.52	<u>0.69</u>	17.58	20.33	0.33	<u>0.25</u>	25:07	20:35	
	<u>.</u>	6	30000	0.48	0.65	16.60	18.86	0.38	0.27	21:23	19:19
	3	30000	0.33	0.47	13.38	14.75	0.52	0.44	19:37	18:34	
	16	15000	0.69	0.82	21.34	24.17	0.24	0.16	15:54	15:43	
		16	5000	<u>0.72</u>	0.84	22.07	24.50	0.24	<u>0.17</u>	03:43	04:15
	16	1000	0.57	<u>0.76</u>	19.59	<u>23.66</u>	0.51	0.26	00:37	00:45	
	16	500	0.50	0.66	17.68	21.68	0.61	0.41	00:19	00:25	
	16	100	0.49	0.53	15.91	19.01	0.59	0.57	00:04	00:06	

Tab. 2: Results with varying number of images (N) and 3DGS training iterations (Iters) for the scene Fern.

<u>Underlined</u>: Proposed method (Ours) surpassing 3DGS's best result with lower N or Iters.

Fig. 4: Visual comparisons on sparse image data from NeRF-LLFF: 3DGS without (top) and with the proposed method (bottom).

UNIVERSITÄT WÜRZBURG

Acknowledgement
This work is funded by the

No. 01IS23007B).

Federal Ministry of Education

and Research (BMBF Germany,

REFERENCES

[KKLD23] Kerbl B., Kopanas G., Leimkuehler T., Drettakis G.: 3d gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics. (2023).

[MSOC*19] Mildenhall B., Srinivasan P. P., Ortiz-Cayon R., Kalantari N. K., Ramamoorthi R., Ng R., Kar A.: Local light field fusion: practical view synthesis with prescriptive lines. ACM Transactions on Graphics. (2019).

[SVRLCL23] Seibt S., Von Rymon Lipinski B., Chang T., Latoschik M. E.: Dfm4sfm - dense feature matching for structure from motion.

In IEEE International Conference on Image Processing Workshops. (2023).

[ZFJW23] Zhu Z., Fan Z., Jiang Y., Wang Z.: Fsgs: Real-time few-shot view synthesis using gaussian splatting, 2023.