Eurographics Symposium on Parallel Graphics and Visualization (2013)

F. Marton and K. Moreland (Editors)

Scalable Parallel Feature Extraction and Tracking for
Large Time-varying 3D Volume Data

Yang Wangl, Hongfeng Yu?, Kwan-Liu Ma'

1University of California, Davis
2University of Nebraska-Lincoln

Abstract

Large-scale time-varying volume data sets can take terabytes to petabytes of storage space to store and process.
One promising approach is to process the data in parallel, and then extract and analyze only features of inter-
est, reducing required memory space by several orders of magnitude for following visualization tasks. However,
extracting volume features in parallel is a non-trivial task as features might span over multiple processors, and
local partial features are only visible within their own processors. In this paper, we discuss how to generate and
maintain connectivity information of features across different processors. Based on the connectivity information,
partial features can be integrated, which makes it possible to extract and track features for large data in parallel.
We demonstrate the effectiveness and scalability of our approach using two data sets with up to 16384 processors.

Categories and Subject Descriptors (according to ACM CCS): 1.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics 1.4.6 [Image Processing And Computer Vision]: Segmentation—Region growing

1. Introduction

The accessibility to supercomputers with increasing comput-
ing power has enabled scientists to simulate physical phe-
nomena of unprecedented complexity and resolution. These
simulations generate large-scale time-varying data that can
take tera- or even peta-bytes of space to preserve. Such stor-
age requirements will be not sustainable towards the forth-
coming exascale computing. One promising solution to the
problem is to reduce the data by storing only features of in-
terest. Extracted features require storage space that can be
several orders of magnitude smaller than raw data.

However, it is a non-trivial task to extract and track fea-
tures embedded in large data. Large simulation data are typ-
ically presented and processed in a distributed fashion, sim-
ply because of the shear size. A feature can span over mul-
tiple distributed data blocks, and its distribution can evolve
over time. Existing research effort on feature-based data vi-
sualization has mostly focused on extracting features us-
ing quantitative measures, such as size, location, shape, and
topology information. These methods can extract partial fea-
tures among individual data blocks, but cannot directly as-
semble partial features to provide integrated descriptions,

(© The Eurographics Association 2013.

DOI: 10.2312/EGPGV/EGPGV13/017-024

unless the distribution of partial features can be captured and
traced efficiently over time.

Efficiently capturing the distribution of features is chal-
lenging with respect to increasing numbers of features and
computing nodes. In this paper, we present a scalable ap-
proach to generating feature information and tracking fea-
ture connectivity information using parallel machines. Com-
pared with the existing approaches that gather the global fea-
ture information in a single host node, our approach only in-
volves local covered data blocks of target features. This re-
quires less communication overhead and avoids the potential
link contention. We demonstrate the effectiveness and scala-
bility of our method with two vortical flow data sets on large
parallel supercomputers with up to 16384 processors.

2. Related Work
2.1. Feature Extraction and Tracking

Feature extraction and tracking are two closely related
problems in feature-based visualization. Conventional ap-
proaches extract features from individual time steps and then
associate them between consecutive time steps. Silver and
Wang [SW97] defined threshold connected components as

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV13/017-024

18 Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data

their features, and tracked overlapped features by calculat-
ing their differences. Reinders [RPS] introduced a predic-
tion verification tracking technique that calculates a predic-
tion by linear extrapolation based on the previous feature
path, and a candidate will be added to the path if it corre-
sponds to that prediction. Theisel and Seidel [TS03] repre-
sented dynamic behavior of features as steam lines of crit-
ical points in a higher dimensional vector field, such that
no correspondence analysis of features in consecutive time
step is required. Ji and Shen [JSWO03] introduced a method
to track local features from time-varying data using higher-
dimensional iso-surfacing. They also used a global optimiza-
tion correspondence algorithm to improve the robustness of
feature tracking [JS06]. Caban et al. [CJR0O7] estimated a
tracking window and compared feature distance of textural
properties to find the best match within the window. Bre-
mer et al. [BBD*07] described two topological feature track-
ing methods where one employs Jacobi sets to track criti-
cal points and the other uses distance measures on graphs
to track channel structures. Muelder and Ma [MMO09] intro-
duced a prediction-correction approach that first predicts a
feature region based on the centroid location of that in the
previous time steps, and then corrects the predicted region
by adjusting the surface boundaries via region growing and
shrinking. This approach is appealing for its computing effi-
ciency and the reliability in an interactive system. Ozer and
Wei presented a group feature tracking framework [OWS™]
that clusters features based on similarity measures and tracks
features of similar behavior in groups. However, it is difficult
to obtain the global feature descriptions if a single process-
ing node cannot hold the whole volume, unless the descrip-
tions can be shared and merged in an efficient way.

2.2. Parallel Feature Extraction and Tracking

To boost the speed for feature tracking in data-distributed
applications, Chen et al. [CSP03] developed a two-stage
partial-merge strategy using the master-slave paradigm. The
slaves first exchange local connectivity information using
Binary-tree merge, and then a visualization host collects and
correlates the local information to generate the global con-
nectivity. This approach is not scalable since half of the pro-
cessors will become idle after each merge. It is also unclear
how the host can efficiently collect local connectivity infor-
mation from the slaves, since gathering operations can be
expensive given a large number of processors.

2.3. Parallel Graph Algorithm and Applications

Graph-based algorithms have long been studied and used
for a wide range of applications, typically along the
line of divide-and-conquer approaches. Grundmann et
al. [GKHEI1O0] introduced a hierarchical graph-based ap-
proach for video segmentation, a closely related research
topic to 3D flow feature extraction as video can be treated
as a space-time volume of image data [KpJSFCO2]. In their

Feature Sets

Extracting Creatfolcléllpdate N Creatélélgrl)date || Feature
Local Feature Connectivity Info Connectivity Info || Tracking
— T Connectivity Tree Connectivity Grapﬁ l
Local Volume Storage
Data Partition Display

Figure 1: The major steps of our parallel feature extraction
and tracking process.

work, a connected sequence of time-axis-aligned subsets of
cubic image volumes are assigned to a set of corresponding
processors, and the incident regions are merged if they are
inside the volumes window. The incident regions on window
boundary are first marked as ambiguous and later connected
by merging the neighboring windows to a larger window,
which consists of the unresolved regions form both win-
dows on their common boundary. This approach is not ap-
plicable for a memory intensive situation since the allocated
volume size before merging might already reached the mem-
ory capacity. Liu and Sun [LS10] made a parallelization of
the graph-cuts optimization algorithm [BK04], in which data
are uniformly partitioned and then are adaptively merged to
achieve fast graph-cuts. These approaches are suitable for
shared-memory but not message-passing parallelization due
to their frequent shifting on data ranges.

3. Methodology

Figure 1 depicts the major steps of our parallel feature track-
ing process. The data is loaded and distributed among pro-
cessors. Along with features extraction, the local feature
connectivity information is generated within each processor
and then merged to obtain the global description. Finally,
the features are tracked based on the global connectivity in-
formation, and the connectivity information is updated over
time accordingly. We represent the global connectivity infor-
mation in a distributed fashion to avoid communication bot-
tlenecks and to enable scalable feature extraction and track-
ing.

3.1. Overview

It is challenging to extract and track features of large time-
varying volume data in parallel. Although a feature can be
extracted partially on a processor using the conventional
methods, we first need to build the connectivity information
of the feature across multiple processors. Such information
allows us to obtain the global description of a feature from a
set of neighboring processors, and enables more advanced
operations such as statistical analysis and feature similar-
ity evaluation. Second, such connectivity information can be
dynamically changed with features evolving over time. We
need to update and maintain the connectivity of features in
an efficient fashion to track highly intermittent phenomena.

(© The Eurographics Association 2013.

Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data 19

However, building and maintaining connectivity informa-
tion of features typically requires intensive data exchanges
among processors, and thus incurs extra communication
costs. To address this issue, we adopt the master-slave
paradigm [CSPO3], but carefully design our parallel feature
representation and schedule inter-processor communication
to prevent the host from becoming the bottleneck. The local
connectivity information is computed and preserved only by
the slaves where the correspondent features reside. Hence,
there is no global connectivity information maintained at the
host. The host only serves as an interface to broadcast the
criterion of features to the slaves. In this way, the computa-
tion of merging local information is distributed to the slaves,
effectively reducing the potential communication bottleneck
on the host.

In addition, our approach does not need to set a barrier
to wait for all connectivity information to be sent back to
the host. Therefore, if there exist features that span over a
large number of nodes but are not explored by a user, the
potentially long computation time for these features will not
block the whole process. This makes it ideal for an interac-
tive system where users can select the features of interest and
instantly receive visual feedback as the features evolve.

Without loss of generality, for each time step, we parti-
tion the volume data into a regular grid of blocks. We then
distribute the data blocks among processors with each pro-
cessor is assigned to one block.” In general, a feature can
be any interesting object, structure, or pattern that is con-
sidered relevant for investigation. Here, a feature is defined
as the collection of voxels enclosed by a certain iso-surface.
Given a sufficiently fine grained partitioning, some features
can cross multiple data blocks.

We consider the following two factors in our communica-
tion scheme design for better performance and scalability:

® Ncom : The number of communications required to build
the connectivity information;

® Nyroc/com : The number of processors involved in each
communication.

3.2. Extracting Partial Local Features

Volume features can be extracted using conventional tech-
niques such as region growing, geometry or topology based
clustering, or other domain specific algorithms. In this work,
we use a standard region-growing algorithm [Loh98] to
identify partial features in each data block. This is done by
first spreading a set of seed points inside each data block, and
then growing the voxels into a set of separate regions, each
regarded as a single feature. Since the data is distributed, a
feature can cross multiple blocks, and each processor is not
aware of the partial features identified on the other proces-
sors in this stage.

T Our method can be easily extended to the case that each processor
is assigned to multiple data blocks.

(© The Eurographics Association 2013.

block a block b cross-section

Figure 2: Two features cross two blocks and share the same
centroid on the cross-section.

Algorithm 1 Match of two partial features f and f '

’

if abs(Peensroid — Prentroia) < 1 and abs(Ppin — P,y;,) < 1

and abs(Puax — P,;m) < 1 then

return f matches f
end if

3.3. Matching Partial Local Features

For the features across multiple blocks, their cross-sections
in both sides of the adjacent blocks should match. There-
fore, we can connect two partial features by comparing their
cross-sections on the corresponding boundary surfaces. That
is, two adjacent processors can find the possible matches of
the partial features through exchanging and comparing their
boundary voxels. Using a ghost area that stores the boundary
surface belonging to a neighbor may help to achieve voxel-
wise matching for the partial features. However, maintaining
such ghost areas requires frequent inter-process communi-
cation and is considerably expensive for interactive applica-
tions.

To reduce communication cost and accelerate compari-
son, we use a simplified method to detect matches. We first
represent the cross-section on a boundary surface as:

® P..ur0ia: The geometric centroid of the cross-section of
the feature;

® P, and Ppgx: The minimal and maximal coordinates of
the cross-section area.

For two partial features, we then compare their geomet-
ric centroids. If the difference is larger than 1-voxel off-
set, we consider that they belong to different features. How-
ever, only considering geometric centroids is not sufficient
to match two features. In some special cases, two different
features can have the same geometric centroid on the bound-
ary surface, as shown in Figure 2. Therefore, we also need to
consider the min-max coordinates of the cross-section areas
to detect bipartite matching of partial features, as shown in
Algorithm 1. In this way, we only need to exchange 3 co-
ordinate values, which in most cases are sufficient to detect
feature connection across a boundary in practice.

20 Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data

<

MALHIINT
MMM

<A

.
]
.

block block

six neighbors six neighbors

features features

Figure 3: Top: Two blocks with four features across the
blocks. Bottom: The tree structure used for maintaining lo-
cal connectivity information, where the root node is encoded
with the block index, its child nodes are encoded with the
indexes of its neighboring blocks, and the leaves of each
first level child node represent the local partial features. The
leaves should match the ones residing on the corespondent
neighboring block, which are indicated by the dashed lines.

3.4. Creating Local Connectivity Tree

Based on our method to match the partial local features,
we can abstract the local connectivity information using a
tree structure. As shown in Figure 3, each data block has
six direct neighbors (the outermost blocks have less), each
with a shared boundary surface. The connectivity tree is
constructed by taking the block as root and its six adjacent
blocks as its first level child nodes. A leaf is appended to a
first level node if and only if a local feature touches the cor-
responding boundary surface. Note that a feature can touch
multiple boundary surfaces and thus be attached to multiple
first level nodes.

Each voxel in the local data block has a unique global
index, and thus each leaf can be encoded using 3 integers
(global index for Pousroids Pmin and Prax). We use Peopsroid
as the feature index, and sort the sibling leaves according to
the indexes in ascending order. In addition, the root and the
first level child nodes can be encoded with the indexes of cor-
responding data blocks, which are irrelevant to the number
of features-on-boundary (henceforth referred as Ny;,). There-
fore, the overall spatial complexity of a local connectivity
tree for each data block is 8(3 * Ny), which is typically neg-
ligible compared to the volume size.

From the perspective of temporal complexity, the creation
of a local connectivity tree does not introduce an extra com-
putational cost as it can be done along with the region grow-
ing process. The values of P, rid> Pmin and Puax are up-
dated only if a feature reaches the boundary surface.

3.5. Creating Global Connectivity Information

After a local connectivity tree is created within each data
block, their leaves need to be exchanged and merged to ob-
tain the overall description of a partitioned feature. The ex-
changing and merging process is decisive in that its effec-
tiveness largely affects the overall performance and scalabil-
ity of the feature tracking algorithm as a whole.

3.5.1. Representation of Connectivity Information

Based on the tree structure of the local connectivity informa-
tion, the global connectivity information can be described as
a graph that connects the local connectivity trees, as shown
in Figure 3. To facilitate data exchanges among processors,
we adopt the linear representation techniques [Sam90] and
represent the global connectivity information into a feature
table. Each feature has a global unique ID. The table is in-
dexed by the feature IDs and each entry lists the processors
that contains the corresponding partial local features. Given
this simple representation, once a user selects a feature, each
related processor can query the table to identify the other
processors that need to be communicated to collectively op-
erate on the selected feature.

3.5.2. The Centralized Approach

One possible solution to build the global feature table is to
directly use the master-slave paradigm. When the feature ex-
traction process is done, all local connectivity trees are gath-
ered to the host processor. Then the host starts to merge the
leaves from each connectivity tree and matches the partial
features to build the global feature table.

The merit of this centralized approach lies in that it re-
quires inter-processor communication only once; that is,
Ncom =1 for each processor. Moreover, the global feature ta-
ble can be preserved in the host, and it can directly respond
to feature queries without collecting information from the
slaves again. However, this approach has an obvious draw-
back. Since all local connectivity trees are sent to the host,
the number of processors involved in each communication is
Nproc/com = Np, and there exists potential contention, both in

p
communication and computation, on the host.

3.5.3. The Decentralized Approach

A better solution is to decentralize the gathering and merging
process from using a single host processor to exploiting all
available processors. After the feature extraction process and
the creation of local connectivity tree are done, an all-gather
process starts to exchange all local connectivity trees among
processors. Each processor first collects a full copy of all
local trees and merges the leaves to obtain the global feature
table. However, this approach does not actually resolve the
contention problem since every processor acts like the host
and still need to gather and merge all local trees.

We observe that for a real-world data set, it is rarely the

(© The Eurographics Association 2013.

Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data 21

PEO PE1 PE2

foo foa |1
oo fou |1 foa |2
stage 1 | o1 | 01 foor | 01
age
foor| 0,1 fo012| 0,1,2 fo2| 1,2
s) faor | 01 foor | 01
tage
fo 02| 0,1,2 fo 012| 0,1,2 fo012| 0,1,2

Figure 4: Construction of partial global feature table with
three processors and two features. There are two communi-
cation stages. At each stage, each processor only communi-
cates with its immediate neighbors. Each entry of the table
is indexed by the feature IDs and lists the processors that
contain the corresponding feature.

case that all features span over every data block. In addition,
it is unnecessary for each processor to construct a global fea-
ture table to contain all features. Each processor only needs
to construct a partial table that records the other processors
sharing the same set of features. Thus, it is possible for a
processor to communicate with a small set of processors to
construct the needed portion of the table. However, we also
observe that each processor has no information of the partial
features identified on the other processors. Thus, a processor
is not initially aware of other processors that can be directly
communicated with gather the partial features.

Based on these observations, we design an iterative ap-
proach that uses a multi-stage communication scheme. Dur-
ing each stage, each processor only communicates with its
immediate neighbors to exchange and propagate the fea-
ture connectivity information. This could be considered as
a higher level of region growing process that starts from one
seeding block and grows to adjacent blocks by exchanging
and merging connectivity information in a breadth-first fash-
ion until all cross-boundary features are connected.

Figure 4 gives an example of the procedure to construct
a partial global feature table with three processors and two
features. We can see that the feature fa is identified by the
processors PEO and PE1, and the feature f}, is identified by
PEO, PE1 and PE2. Initially, each processor constructs a par-
tial global feature table initialized with only the local fea-
tures with their local IDs, such as f; o, f, 2, and so on. In
the first stage, PEO exchanges the local connectivity tree with
PE1, and PE1 exchanges the tree with PE2. After exchang-
ing trees, each processor independently matches the partial

! For simplicity, we use an example of 1D partitioning. However,
the procedure can be easily extended to 3D cases.

(© The Eurographics Association 2013.

features, and updates the corresponding feature IDs and en-
tries in its table. For example, the ID of f,; has been changed
to f,_o1 on both PEO and PE1, and the entry contains the
same processor list. However, since the information for f;,
has not been propagated between PEO and PE2, its ID is
different on the three processors. In the second stage, each
processor still only communicates with its immediate neigh-
bors, and the information of f}, has been propagated to PEO
and PE2 through PE1. Now the f;, ID and its processor list
are all the same on the three processors. After an extra com-
munication, each processor detects there is no further infor-
mation sent from its neighbors, and the construction of the
partial global feature table is completed.

After constructing its partial global connectivity table for
any selected features, each processor can easily find other
corresponding processors. For example, in Figure 4, if f, is
selected, PEO and PE1 can mutually find that one another
belongs to the same communicator, while PE2 is excluded.

The reason we choose the six-direct-neighbor paradigm is
because it can minimize the communication cost. It takes a
maximum of 3n — 1 communications, where n denotes the
maximum processor number among the axes. This corre-
sponds to the maximum communications needed for prop-
agating the information of a feature that covers the whole
domain, although this is extremely unlikely in practice. The
temporal complexity for garnering all necessary leaves is
hence as low as 0(13/Npmc), and the number of processors
involved in each communication is a constant of maximum
SiX, i.6., Nproe/com < 6.

Another optional paradigm is to let each processor com-
municate with its 26 neighbors, including the adjacent di-
agonal blocks. Communication with the adjacent diagonal
block takes as much as half the time for any block to reach
its furthest diagonal. However, Ny, /com 18 also increased to
26. For data sets where features only span over a small num-
ber of blocks, the 6-direct-neighbor paradigm outweighs the
26-neighbors paradigm in communication complexity.

3.6. Updating Global Connectivity Information

To track features, we can construct the global connectivity
table for each time step. However, if the time interval is suf-
ficiently small for generating the data, volumetric features
may drift but should not change drastically in size, shape,
or location. We assume that the changes of each feature are
within the range of one block. Based on this assumption, we
can optimize feature tracking by incrementally updating the
global connectivity information over time.

As depicted in Figure 5, each processor constructs a par-
tial global feature table at time step ¢;. Meanwhile, we main-
tain a communicator, C, which contains the corresponding
processors for each feature. For example, feature f. spans
over PEO, PE1, and PE2. These three processors have the
same table entry with respect to f;. The table of PE3 is empty
at t;. PEO, PE1 and PE2 belong to the same communicator C.

22 Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data

PEO PE1 PE2 PE3
\
o 1

T 01,2]

Stage 0

fu,2| 0,1,2 | fwz| 0,1,2 |

b

t, \:
i+1 i

Stage O] | | [fio 012] [fof 012] [Ra [3 |
sl | | [l 12 | [halt2] [L]3]
stage2] | | [n] 12 | [l 123 | [m] .23 |
stage3[| | [l 123] [l 123 | [m] 1,23 |

Figure 5: Update of partial global feature table with four
processors and one feature. Feature fc is extracted and ad-
Jjusted in Stage 0 followed by three communication stages to
record the possible shrinking and expanding of the feature.

For the next time steps, #;1 1, each processor continues to
predict and correct boundaries as to extract partial local fea-
tures. For the existing features, their IDs are retained in the
partial global feature table. For the new features, their IDs
are added into the table. Lastly, IDs are erased from the ta-
ble if the corresponding features drift away from that block.
As shown in Figure 5, f; leaves PEO and enters PE3. In this
case, the table of PEO becomes empty, and the table of PE3
adds a new entry. At this step, the feature ID on PE3 is not
the same as the others, as the feature has not been matched
yet. In addition, PEO, PE1 and PE2 still belong to C.

Next we start to update the connectivity information. In
the first stage, PEO, PE1, and PE2 perform an all-gather
operation within their communicator C to update the con-
nectivity. PEO is then removed from the corresponding en-
try on PE1 and PE2, and is also removed from C. In the
second stage, each processor exchanges the local connectiv-
ity information with the immediate neighbors as the decen-
tralized approach in Section 3.5.3. The information of f. is
propagated between PE2 and PE3. In the third stage, all the
processors in the communicator C perform an all-gather op-
eration again to update the connectivity. The information of
fe is propagated to the rest of processors C, and now PE1,
PE2, and PE3 have the same table at #;; 1. Given the unified
information, we can then update the communicator C by in-
cluding PE3 with respect to fc.

This update procedure can be easily extended to the cir-
cumstances with more processors and features. We note that
the cost of collective communication is marginal within a
communicator of limited size. By leveraging this nice prop-
erty for each feature, we only need at most three stages to up-

Figure 6: Left: The volume rendering of a single time step of
the combustion data set; Right: Selected features of interest
extracted and tracked overtime.

Figure 7: Left: The volume rendering of a single time step
of the vortex data set; Right: Selected features of interest
extracted and tracked overtime.

date the connectivity information, independent of the length
of the feature.

4. Results

We test our feature extraction and tracking algorithm using
the NERSC Hopper cluster on two datasets. A 400 time steps
256° vortex data set obtained from a combustion solver that
can simulate turbulent flames, and a 100 time steps 10243
vortex data set synthesized from the 128% volume data set
used in the other works [SW97,JSWO03, JS06]. In the com-
bustion data set, each voxel contains the magnitude value of
vorticity derived from velocity using a curl operator. As time
evolves, vortical features may vary from small amassed blob
features to long curly features that span over large portion of
the volume. Figures 6 and 7 show the examples of identified
and tracked features in these two data sets, which match the
non-parallelized tracking results. We ignore the I/O cost and
only focus on the computation time in our study.

Time for extracting features (Texracr):

Because we use region-growing based algorithm to ex-
tract features, given a fixed specification of feature, the com-
putation time is determined by the size of the volume as well

(© The Eurographics Association 2013.

Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data 23

Figure 8: Average computation cost per time step for feature
extraction. The left two plots are shown in linear scale, and
the right plots are shown in logarithmic scale. The speedup
is nearly linear with the number of processors.

as the number of processors being used. Once the volume
data and its partitioning (the size of each data block) is deter-
mined, the computation time for extracting residing features
remains approximately the same. In post-processing, the size
of each data block decreases with the increasing number of
processors, and hence so does the time spent on extract-
ing features. As depicted in Figure 8, Toxrracr decreases log-
linearly as the number of processors increases.

Create Local Connectivity Tree (T¢reare):

Despite the size of each data block, the computation cost
for creating and updating local connectivity tree is depen-
dent on the number of the features extracted within the orig-
inal volume, or more precisely, the number of features that
touches the boundary surfaces of their residing data block.
As shown in Figure 9, similar to Texract, Tereate decreases
as the number of processors increases, and as the number
of features-on-boundary decreases. For both the combustion
and vorticity data set, it takes an average of 0.1 seconds to
create the local connectivity tree, approximately 0.5% of the
time of Texrracr using the same amount of processors. The
Tereate | Textract ratio increases but does not exceed 1% in our
test, and hence, T¢reaze 1S NOt considered as a bottleneck.

Create Global Connectivity Information (Tierge):

We also compared the performance for both centralized
and decentralized approach in creating global connectivity
information, which is the major factor related to the scala-
bility of our algorithm. Though the number of features-on-
boundary decreases as more processors involve, the commu-
nication cost for the centralized approach increases as N

(© The Eurographics Association 2013.

Figure 9: Average computation cost per time step for creat-
ing local connectivity tree. The speedup is nearly linear with
the number of processors. The time cost is approximately
proportional to the number of features-on-boundary.

Figure 10: The comparison of the average computation cost
per time step between the centralized and the decentralized
approach. The centralized approach works well for a small
number of processors while the decentralized approach ex-
ceeds after a certain number, e.g. 128 processors for the
combustion data set, is used.

increases. As shown in Figure 10, the centralized approach
is suitable for scenarios that only a small number of proces-
sors are required, while the decentralized approach outper-
forms when a large amount of processors are used. From
the overall performance perspective, when Tinerge €xceeds
Textract after using a certain amount of processors, 2048 for
instance in Figure 11, the overall execution time rebounds
for the centralized approach. On the other hand, the decen-
tralized approach scales well up to 16384 processors for the
combustion data set, as the communication cost is as low as

O(/Np)-

24 Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data

Figure 11: The comparison of the average computation cost
per time step for different approaches to global connectiv-
ity information generation. The centralized approach scales
up to 2048 processors but the merging time outweighs the
extraction time when using more processors, The decentral-
ized approach scales linearly up 16384 processors for the
combustion data set.

5. Conclusion

We present a scalable approach to extracting and track-
ing features for large time-varying 3D volume data using
parallel machines. We carefully design the communication
scheme such that only minimal amounts of data need to
be exchanged among processors through local communica-
tions. The features are tracked in parallel by incrementally
updating the connectivity information over time. Compare
to the naive centralized solution, our decentralized approach
can significantly reduce the communication cost and ensure
the scalability with up to 16384 processors. To the best of
our knowledge, no prior approaches can extract and track
features at this scale (in terms of the number of processors).

Our approach shows performance that is as scalable as
large scientific simulations. In the future, we plan to inte-
grate our approach with large simulations and conduct ex-
perimental studies on in situ feature extraction and tracking
during a simulation execution. The study can possibly enable
scientists to capture highly intermittent transient phenomena
which could be missed in post-processing. In addition, we
would like to investigate the feature-base data reduction and
compression techniques to significantly reduce simulation
data but retain the essential features for scientific discovery.
Our paralle] feature extraction and tracking approach builds
a solid foundation for these future studies.

6. Acknowledgment

This work has been supported in part by the U.S. National
Science Foundation through grants OCI-0749227, CCF-
0811422, OCI-0850566, and OCI-0905008, and also by the
U.S. Department of Energy through the SciDAC program
with Agreement No. DE-FC02-06ER25777 and DE-FC02-
12ER26072, program manager Lucy Nowell.

References

[BBD*07] BREMER P.-T., BRINGA E. M., DUCHAINEAU
M. A., GYULASSY A. G., LANEY D., MASCARENHAS A.,
Pascucct V.: Topological feature extraction and tracking. Jour-
nal of Physics: Conference Series 78, 1 (2007), 012007. 2

[BKO4] BoOYKOV Y., KOLMOGOROV V.: An experimental com-
parison of min-cut/max- flow algorithms for energy minimization
in vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence 26, 9 (2004), 1124-1137. 2

[CJRO7] CABAN J., JOSHI A., RHEINGANS P.: Texture-based
feature tracking for effective time-varying data visualization.
IEEE Transactions on Visualization and Computer Graphics 13,
6 (2007), 1472 -1479. 2

[CSP03] CHEN J., SILVER D., PARASHAR M.: Real time fea-
ture extraction and tracking in a computational steering environ-
ment. In Proceedings of High Performance Computing Sympo-
sium (2003), pp. 155-160. 2, 3

[GKHE10] GRUNDMANN M., KWATRA V., HAN M., EssaA 1.
Efficient hierarchical graph-based video segmentation. In Pro-
ceedings of Computer Vision and Pattern Recognition (2010). 2

[JS06] Ji G., SHEN H.: Feature tracking using earth mover’s dis-
tance and global optimization. In Proceedings of Pacific Graph-
ics (2006). 2,6

[JSW03] J1G., SHEN H.-W., WENGER R.: Volume tracking us-

ing higher dimensional isosurfacing. In Proceedings of IEEE Vi-
sualization (2003), pp. 209-216. 2, 6

[KpJSFC02] KLEIN A. W., PIKE J. SLOAN P., FINKELSTEIN A.,
COHEN M. F.: Stylized video cubes. In Proceedings of ACM
SIGGRAPH Symposium on Computer Animation (2002). 2

[Loh98] LOHMANN G.: Volumetric Image Analysis. Wiley &
Teubner Press, 1998. 3

[LS10] Li1ulJ., SUN J.: Parallel graph-cuts by adaptive bottom-up
merging. In Proceedings of Computer Vision and Pattern Recog-
nition (2010), pp. 2181-2188. 2

[MMO09] MUELDER C., MA K.-L.: Interactive feature extraction
and tracking by utilizing region coherency. In Proceedings of
IEEE Pacific Visualization Symposium (2009), pp. 17 -24. 2

[OWS*] OzEeRr S., WEI J., SILVER D., MA K.-L., MARTIN P.:
Group dynamics in scientific visualization. In Large Data Anal-
ysis and Visualization (LDAV), 2012 IEEE Symposium on. 2

[RPS] REINDERS F., POST F. H., SPOELDER H. J. W.: Visual-
ization of time-dependent data using feature tracking and event
detection. 2

[Sam90] SAMET H.: Applications of Spatial Data Structures:
Computer Graphics, Image Processing and GIS. Addison-
Wesley Publishing Company, 1990. 4

[SW97] SILVER D., WANG X.: Tracking and visualizing turbu-
lent 3d features. IEEE Transactions on Visualization and Com-
puter Graphics 3,2 (1997), 129-141. 1,6

[TS03] THEISEL H., SEIDEL H.: Feature flow fields. Proceed-
ings of the symposium on Data ... (2003). 2

(© The Eurographics Association 2013.

