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Chapter 1
Introduction

Just another framework for pedestrian simulation with complex foundations, cum-
bersome adjustment and limited results? Yes,... It would be audacious to answer
in other terms. Pedestrians, like fish, herds or swarms are interactive groupings of
living organisms, and, therefore, naturally complex. Simulating complex systems
where its components, in our case the individuals, locally interact is a challenging
task by itself. First, the number of local interactions grows exponentially with the
number of individuals, which makes a centralized control of limited usefulness.
There are two approaches to this problem: i) to give each individual autonomy
to manage the local interactions by him/herself, and ii) to forget the local inter-
actions, abstracting the particles into a bigger structure and manage the group
from a macroscopic point of view, similar to the way fluids are modeled. Second,
there is a subtle and exciting problem. Local interactions in complex systems
tend to generate structures. In real pedestrian groups, the interactions create
structures in the behavior and then collective behaviors emerge. This phenom-
ena of pedestrian self-organization is common in real life. For instance when lines
of pedestrians are created to advance in a crowded shopping street, or when the
individuals in a bottleneck divide spontaneously into two groups at the left and
the right-hand sides of a door alternating their access (this is known as the zipper
effect). This problem is reproduced manually by simulations based on the macro-
scopic approach. For simulations based on autonomous agents, this problem is
challenging and its reproducibility indicates that the interaction model is correct

or, at least, valid for that domain.



Facing this state of the art, some questions arose for people involved in this
work: could we leave the burden of the model design to the responsibility of the
individual actors? That is, what would happen if a group of embodied agents,
with physical calibrated-like-pedestrians interactions, learned how to behave in
a group to successfully navigate inside an environment with restrictions? Would
they learn pedestrian-like behaviors? Would collective behaviors emerge? This
work will attempt to answer these and other questions but with a modest goal in
mind: the learned behaviors need to be realistic and plausible, not strictly real

pedestrian behaviors.

1.1 Contextualization of the work

Pedestrian simulation has engaged the attention of researchers over the past few
decades. Different technical areas, such as architecture, civil engineering, and
game development can benefit from the simulation of pedestrians groups. For
instance, in order to check the capacities of the facilities in a building, to prevent
accidents and /or disasters, or to give realism to simulated urban scenarios. With
the advent of computer graphics in the 1980’s, the possibility of representing
virtual pedestrians and groups with different purposes arose. One of the first at-
tempts at simulating collective navigation is found in Reynolds’ Boids (Reynolds,
1987). A Boid is a navigational entity that uses simple rules and the perception of
its local dynamic environment to generate natural aggregate motion like flock of
birds, herd of land animals or school of fish. Nowadays, there are several pedes-
trian simulators used in the architecture and urban planning fields to design
spaces and facilities according to specific levels of service. Another field recently
interested in pedestrian simulation is the “serious games” field. A serious game
is a computer graphics game used to train the player in a skill (like managing
a fire brigade). These systems need to recreate with increasing fidelity the real
environments in which the trainee will develop the skill being learned. Secondary
characters (such as pedestrians in a street) that convincingly simulate their roles
without interfering with the main characters of the animation (Dignum, 2012)
are then necessary.

There are two main approaches for the simulation of pedestrians according



to the level of abstraction: the macroscopic approach and the microscopic ap-
proach (Johansson & Kretz, 2012). In the first, the pedestrians are considered to
be like particles and the model tries to reproduce macroscopic parameters such
as flow, averaged speed or the main direction of the group. In the microscopic
approach, the pedestrians are considered individually focusing on the local in-
teractions of the pedestrians with their immediate environment. This approach
is the most active nowadays in the simulation field because it seems to allow
higher-level decision-making without major modifications of the basic behavioral
model (Rindsfiiser & Kliigl, 2007). The decision-making mechanism is the cen-
ter of interest of the present thesis and thus, the microscopic approach will be
selected for the development of the general pedestrian simulation framework de-
scribed later in this work.

Several microscopic pedestrian models have been developed for simulation.
They can be classified according to how they model the individual behaviors.
A first classification would include: the cellular automata models (Gipps &
Marsjo, 1985), force-based models (Helbing & Molnar, 1995), rule-based mod-
els (Reynolds, 1987), and models based on psychological (Pelechano et al., 2007;
Sakuma et al., 2005) and cognitive factors (Shao & Terzopoulos, 2005). Other
models have been designed and calibrated using empirical data collected from
video sequences or from experiments with real pedestrians (Daamen & Hoogen-
doorn, 2003; Robin et al., 2009; Schadschneider & Syfried, 2011; Teknomo, 2002).
Of especial interest in this work is the Agent-based model (ABM) (Musse et al.,
1998; O’Sullivan & Haklay, 2000). In the ABM’s context, an agent is a computer
system that is situated in some environment, and that is capable of performing
autonomous decision-making in order to meet its design objectives (Wooldridge,
2013). An autonomous agent can take decisions, it is aware of the local en-
vironment and has a motivation in terms of a goal. Artificial intelligence (AI)
techniques can be used to build a decision making module giving the agent flexible
autonomous actions which imply reactivity (the agent can respond to changes),
pro-activeness (the agent exhibits goal-directed behavior) and social activity (the
agent interacts with other agents). In this work I will adopt this model by im-
plementing a framework that will use embodied autonomous agents that learn

to behave inside a multi-agent environment to achieve a navigational goal. An



embodied agent, also known as a situated agent, can sense physical interactions
and constraints inside the simulated world. The embodied agents have additional
intrinsic properties derived from their physical representation. They are capable
of sensing their environment and they can perform actions in order to modify
the environment. These actions generate new sensory stimulation, which, in turn

affects future actions. In the words of Josh C. Bongard in his article (Bongard,

2013)

In non-embodied Al, intelligence is something that arises out of
introspection, while in robotics, the belief is that intelligence will arise
of ever more complex interactions between the machine and its envi-
ronment. This idea that intelligence is not just something contained
within the brain of the animal or policy control of a robot, but rather
is something that emerges from the interaction between brain, body

and environment, is known as embodied cognition.

The use of Al techniques in the field of the pedestrian simulation or pedestrian
modeling is relatively recent. The use of utility functions based on heuristics or
in mathematical frameworks like the random utility theory (McFadden, 1981) is
widely extended in this field to simulate specific behaviors such as pedestrian
shopping. The problem of learning inside a Multi-agent system has been studied
in the survey of Sandholm (2007). In the specific problem of decision-making
applied to pedestrian modeling and simulation fields, works are scarce. The work
of Zhu & Timmermans (2007) proposes the use of Genetic Algorithms (GA)
to implement pedestrian shopping decision-making. In their paper, Kitazawa &
Batty (2004) uses GA to emulate retail movements of shoppers in a large shopping
center. Reinforcement Learning (RL) in navigation of autonomous agents has
been considered mainly in robot domains over collaborative tasks (Fredslund &
Matari¢, 2002; Stone et al., 2005). It is used relatively little in animation and
simulation. Although a more detailed discussion can be found in Section 3.6, I
mention here the work of Blumberg et al. (2002) who created an autonomous
animated dog that was trained using RL to react to acoustic patterns, or the
works of McCann & Pollard (2007); Treuille et al. (2007) focused on the use of

RL for the selection of sequences in animations. At the time of writing, only



the study by Torrey (2010) concerning the use of RL to simulate crowds has
similar insights. In this work I will use well-consolidated RL algorithms to get
independent multi-level decision making modules to guide the embodied agents.
Several important problems arise in common with the robotic world (autonomy of
each learning agent, generalization and adequate representation of the state space,
and efficiency of the learning algorithms among others) which will be considered
in the forthcoming chapters.

Another issue addressed in this work is related to the multi-level behavior
of the agents. Daamen observed that individuals make decisions following a
hierarchical scheme: strategical, tactical and operational (Daamen, 2004). The
destinations are chosen at the strategical level, the route choice is performed at
the tactical level and the instantaneous decisions to modify the kinematic state
are taken at the operational level. Several microscopic simulators that focuses on
the reproduction of the local interactions function at the operational level (Robin
et al., 2009). However, due to the complexity of multi-agent collision avoidance, it
is difficult to generate lifelike group motion following only local rules (Patil et al.,
2011). Most agent models separate the local interactions from the necessary
global path planning. To do this, there are two main approaches. One is to
pre-compute or user-edit a path-planning map that is represented as a guidance
field (Patil et al., 2011) or as a potential and velocity field (Treuille et al., 2006).
The other consists of separating the local and global navigation problems in a
layered model (Sung et al., 2004). If this separation takes place inside the agent
model, it has the advantage that intelligent or psychological properties can be
introduced to the agent behavior (Pelechano et al., 2007). RL also permits the
abstraction of tasks in a layered learning model (Stone, 1998). As a counterpart,
this separation of tasks into different levels means that the emergence of collective
behaviors is difficult to achieve. Therefore, a trade-off between control and realism
must be set. The issue of multi-level behaviors in our framework will be studied
in two experiments. Through these experiments, the presence of tactical and
planning capabilities in the agents’ learned behaviors will be detected indicating
that the learning algorithms solve the navigational problems operating at different
levels intrinsically, without specific software architecture.

To conclude, let me introduce the following thoughts included in the conclu-



sions of Renault et al. (1990) that link with the aim of this dissertation:

As mentioned by Weizenbaum (1976), a real understanding may
be only obtained by experimenting with the world and developing an
internal database representing these experiments. A child builds his
knowledge of the world by experimenting and learning. Weizenbaum
states that it would be necessary for a robot to build its knowledge
database of the world by exploring its environment, because the intro-
duction by hand of appropriate data concerning the world is impos-
sible. A robot walking, like a human being, in the everyday environ-
ment, does not exists and will probably never exists. But a society of
synthetic actors living in a synthetic world with their specific behavior
is for tomorrow or after-tomorrow. This is certainly a new interesting

vivarium for artificial intelligence

1.2 Dissertation outline

This dissertation is divided into the following parts:

e Chapter 2 introduces the state of the art in pedestrian modeling and sim-

ulation. First, different models of pedestrians are introduced indicating

their macroscopic or microscopic nature. Then, the main approaches in

pedestrian simulation are described and related with the model or models

in which they are inspired. The chapter concludes with a review of research

and commercial simulation systems.

e In Chapter 3 the theoretical foundations of Reinforcement Learning are re-

viewed. The presentation is restricted to the areas related directly with the

present work. In this chapter, the algorithms and techniques used in this

dissertation are discussed. Not only learning algorithms are presented but

also techniques for state space generalization and transfer knowledge are in-

troduced. The chapter ends with a view of the application of reinforcement

learning to the simulation field.

e Chapter 4 outlines the motivation and the objectives of this thesis.



e Chapter 5 describes the Multi-agent architecture of the framework. It be-
gins with a functional description of the different modules that compose the
framework. Then, the calibration of the physics module is addressed. Next

to calibration, two experiments are carried out to validate the system.

e Chapter 6 describes two iterative algorithmic schemas based on Q-learning
and Vector Quantization as the generalization method of the state space.
These schemas allow the incorporation of techniques of knowledge transfer
and the study of their impact inside the learning process. They are tested
in two different scenarios and also compared with Helbing’s social forces
model. In this chapter, a study of the dynamics learned is performed using
tools to analyze them at the micro and macro levels. Moreover, the question

of the emergence of collective behaviors is considered.

e Chapter 7 presents new experiments using another learning configuration:
Sarsa(A) with tilecoding as the generalization method of the state space.
This configuration also uses knowledge transfer techniques. The experi-
ments are carried out with the aim of testing that the framework can operate
at higher level (specifically route choice and path finding). Again, compar-
isons with Helbing’s model are carried out. The problem of emergence of
collective behaviors is also addressed with this learning configuration. In
addition, a performance comparison is made between both learning con-
figurations (Q-learning and Sarsa())) in a specific scenario focused on the

influence of knowledge transfer methods in the learning performance.

e Chapter 8 sets out the conclusions and indicates future work.



Chapter 2

State of the art in pedestrian

modeling and simulation

Despite studies about pedestrian movement being more recent than other classic
problems in urban planning and transportation, such as car and public transport,
interest in them has increased dramatically in recent decades. Modeling and sim-
ulation of the dynamic and the behavior of pedestrians are interrelated, but their
interests are different. While pedestrian modeling concentrates on the adjuste-
ment of the model to the data collected from studies with real pedestrians, the
pedestrian simulation field is focused primarily on the appearance of the natural
behavior of pedestrians. Despite these different interests, both activities come
together, especially since the boom in computer graphics in the 1980s. Today,
modelers have the opportunity to check their models in virtual environments with
physical laws and specific requirements. Simulations in these realistic environ-
ments can be useful to check whether the model is able to generate the specific
characteristics of real pedestrian movement. Otherwise, urban environment simu-
lations need models to simulate pedestrians inside them in order to, at least, give
realism to the scenario. In recent times, the requirements have increased with
the new generation of video games and the emergence of a new industry in the
computer graphics field dedicated to serious games. The simulated pedestrians
have to be proactive (that is, they must have some kind of autonomy) and there

is a need to be aware of the scene that is being rendered. Simulation is now im-



posing on models not only new capabilities of reproducing pedestrian movements
but also psychological abilities such as decision-making or/and awareness. In this
chapter, I will describe briefly the main approaches that have been developed
in the two branches (modeling and simulation) of this field of study. The work
presented in this thesis is related to the simulation of pedestrians because, as was
stated in the introduction and it will be indicated in the objectives, the aim is to

generate plausible pedestrian dynamics

2.1 Pedestrian modeling and simulation

Empirical studies of pedestrians groups and crowds began with the works of the
psychologist Gustave Le Bon in the XIX century. Le Bon studied human crowds
and multitudes from the point of view of psychology, specifically in subordination
relationships, stating in his work La Psychologie des Foules (1896) that the indi-
vidual personality in a crowd is submerged and then, the collective crowd mind
dominates. This collective mind is characterized by being unanimous, emotional
and intellectually weak. In the XX century the first studies began in the fifties
with the work of Hankin and Wright in 1958 concerning passenger flow in subways
and Older in 1968 studying the movement of pedestrians on foot paths in shopping
streets. The evaluation methods initially applied were based on direct observa-
tion, photographs and time-lapse films. From the seventies, pedestrian studies ac-
quired great importance. In that decade, the first important works supported by
data appeared. Especially, Fruin’s analysis of the level-of-service concept (Fruin,
1971a), the work of Jake Pauls in evacuation from buildings (Pauls, 1977), the
studies of Templer concerning the movement of pedestrians on stairs (Templer,
1974) and the analytical formulas for crowds extracted from manually collected
data of soldiers movements (Predtechenskii & Milinskii, 1978). In the eighties,
the studies of pedestrians took two different directions: first the studies focused
on the analysis and modeling of the movement of individual pedestrians, groups
and crowds aided by the use of new technologies (mainly image analysis using
videos and CCTV footage); a second direction, as a consequence of the expo-
nential growth of computer graphics techniques from the 80s till now, was the

simulation of pedestrians necessary to generate computer graphic simulations of



3D environments populated by collections of animated virtual humans (Pelechano
et al., 2008). The first branch had a direct application in engineering tasks for
designing pedestrian facilities, calculating capacities, assistance in the egress de-
sign of airports and rail stations and making planning guidelines for emergencies
and evacuations. The second one was important to allow the creation of vir-
tual autonomous agents that offer realistic scenes in virtual worlds, video games,
training systems and educational systems. While the first looks for the correla-
tion of the measures provided by the model with the data of real pedestrians, the
second pursues the resemblance of individual agents’ behaviors with those of real

pedestrians.

2.2 Pedestrian modeling

Pedestrian dynamics is difficult to characterize because it has many influences
from various sources. Walking, contrary to other displacement models, is not as-
sociated with a vehicle, and the underlying infrastructure is highly heterogeneous
(sidewalks, stairs, elevators, crossings, shopping malls, etc.). Besides, environ-
mental factors influence walking (traffic lights, trees and public furniture, adver-
tisements, shopwindows, etc.) as well as the atmospheric conditions (wind, rain,
etc.). Demographic factors (percentage of elderly population and child population
in the group), and sociological factors (handicapped persons) are also important.
On the other hand, walking alone is different to walking in a group. The spatial
presence of others affects the walking speed, and this relationship is not mono-
tonic, in fact, low speeds are associated with very low and very high pedestrian
volume in specific urban environments such as shopping streets. In addition, psy-
chological facts and cultural conventions influence the collective movements of
pedestrians. For instance, the space granted by a pedestrian in a group depends
on the cultural and social characteristics of the interacting pedestrians (Sobel &
Lillith, 1975). For these reasons, it is not possible to unify pedestrian dynamics
under a single model. In this section, I review the main approaches, which are
not necessarily computational models. Following the classic characterization of
pedestrian dynamics, and also other kinds of vehicular traffic, the presentation

distinguishes between microscopic and macroscopic levels (May, 1990).
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2.2.1 Macroscopic characteristics of pedestrian dynamics

From the macroscopic perspective, pedestrian movements are described using
magnitudes like flow, average speed and area module. This type of analysis
derived from vehicular traffic studies, and does not consider direct interactions

between pedestrians.

2.2.1.1 Fruin’s levels of service

Fruin studied macroscopic pedestrian characteristics (Fruin, 1971a,b). The most
important contribution of these studies was the concept of level of service (LOS)
that was initially defined as a criteria for safety in places of public meeting.
Fruin defined the different comfort levels for pedestrian movements based on
these macroscopic magnitudes. Each level of service represents a range of op-
erating conditions where level A represents the best operating conditions and
level F the worst. The criteria to determine the LOS for pedestrian are based on
objective parameters (such as the speed and the average space available) and sub-
jective parameters (such as the pedestrian’s ability to cross a pedestrian stream).

Table 2.1 describes the LOS for pedestrians using macroscopic magnitudes.

Level of service Space Average Flow  rate
(m?/ped) | speed (m/s) | (ped/min/m)

A = Free Flowing > 12.077 > 1.321 < 6.562

B = Minor Conflicts > 3.716 > 1.270 < 22.966

C = Some Restrictions to Speed > 2.230 > 1.219 < 32.808

D = Restricted Movement for Most | > 1.394 > 1.143 < 49.213

E = Restricted Movement for all > 0.557 > 0.762 < 82.021

F = Shuffling Movements for all > 0.557 > 0.762 variable

Table 2.1: Fruin’s Levels of Service for pedestrians

Fruin applied his calculations to urban environments such as city streets under
normal conditions. Thus, in other environments, Fruin’s data do not adequately
describe reality. For example, in crowded environments such as observations
taken at the exits of Wembley Stadium, higher densities than the Fruin’s data

were observed in which the pedestrians moved without restrictions Still (2000).
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2.2.1.2 The fundamental diagram of pedestrian dynamics

The study of the macroscopic parameters continued with the work of Predtechen-
skii & Milinskii (1978). It shows that the averaged speed of the flow of pedes-
trians is not only a function of the density but it is also of the type of path
and the conditions in which the movement takes place. In that work, the de-
scriptive capacity of the fundamental diagram of pedestrian movement is given
an important role. The fundamental diagram for different situations or paths
(horizontal paths, stairs (ascent), stairs (descent) and openings) under different
circumstances: emergency, normal and comfortable conditions was designed.

In the following years, the researchers focused on a deeper study of the fun-
damental diagram. The most comprehensive survey concerning this subject is
the work about free walking (where the pedestrians walk in a space without
restrictions) by Weidmann (1993) who used 25 different studies of pedestrians
under normal conditions to compose his general fundamental diagram. This is a
reference in planning studies for estimating capacities of facilities.

The fundamental diagram of pedestrians in planar facilities has the following

characteristics:

e The velocity decreases with growing density, although the relationship shows

a non-trivial form (Schadschneider et al., 2008).

e There are some important points that characterize the dynamics described
in the diagram. The capacity ! of a facility is directly defined by the max-
imum of the flow/density curve. The free speed corresponds to the mean
maximum velocity. The critical density corresponds to the lower bound for
unconstrained free walking. The jam density corresponds to the point of
null speed and flow (Daamen, 2004).

e [t can be described using an empirical analytic expression known as the
Kladek formula (Lammel et al., 2009):

va(D) = v;(1 — 5~ mar)) (2.1)

IThe capacity of a facility is defined as the maximum sustainable flow rate at which persons
reasonably can be expected to traverse a point or uniform segment of a lane during a specified
time period; usually expressed as persons per hour.
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with v (1/m?) a free parameter, v; (m/s) the speed at free flow, D (1/m?)
the actual density and D,,., (1/m?) the density at which no flow occurs.
Empirical studies showed good results with v = 1.913 m™2, vy = 1.34 m/s
and D, = 5.4 m~2, although it depends on the specific experimental

conditions.

e The net-time headway is defined as

1 1
\/E - \% Dma:’ﬂ

and settles at a constant value around 0.5 seconds (Johansson, 2009).

T:f)/v:(

)/v (2.2)

2 and

e The fundamental diagram can vary significantly in densities < 0.2 m~
> 4 m~2. In low densities, the pedestrians are free to choose their own speed
of movement. With high densities, jams and crowds appear and the flow can
be turbulent and chaotic and it depends on individual circumstances (den

Berg & Bouvy, 1994).

Beyond these common properties, empirical studies with real pedestrians, per-
formed under different conditions, reveal different shapes of the fundamental di-
agram. Figure 2.1 shows empirical fundamental diagrams that correspond with
different studies in planar facilities used as references in planning guidelines. Al-
though all the curves describe the dynamics of real pedestrians walking on a
plane surface, they are different in shape (note for instance the differences in
the ranges of density p for the different curves). Several explanations have been
suggested including differences between uni and multi-directional flow (Navin &
Wheeler, 1969), cultural and population differences (Johansson et al., 2007) or
psychological factors (Predtechenskii & Milinskii, 1978).

The fundamental diagram is a basic tool for engineering methods in the analy-
sis of the real pedestrian flows, the design of pedestrian facilities and the study of
infrastructures such as arenas or stadiums (Nelson & Mowrer, 2002; Schadschenei-
der & Seyfried, 2009). Furthermore, it is used for the evaluation of pedestrian
models (Helbing & Molnar, 1995) and is a primary test of whether the model
is suitable for describing pedestrian streams (Hoogendoorn et al., 2001; Schad-
schneider & Seyfried, 2009b; Steiner et al., 2007). In the context of this work the
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Figure 2.1: Empirical fundamental diagrams for pedestrians in planar facilities.
The curves are extracted from planning guidelines (SFPE Handbook (Nelson and
Mowrer 2002), PM (Predtechenskii and Milinskii 1978), WM (Weidmann 1993),
Older (1968), Helbing, Johansson and Al-Abideen (2007))

fundamental diagram will be considered as a main tool to compare and analyze
the simulated behavior obtained by the RL agents. A methodological description

of the fundamental diagram is introduced in Section 5.4.2.

2.2.2 Microscopic characteristics of pedestrian dynamics

The microscopic level involves individual units with local characteristics such as
speed, position and interactions. Unlike macroscopic characteristics, microscopic
pedestrian characteristics are not well defined. One of the first ideas to char-
acterize the microscopic dynamics of pedestrians was flow performance. It was
used by the TRANSYT software to determine the performance of a traffic net-
work Vincent et al. (1980). Helbing et al. (1997) proposed a flow performance
based on two concepts: efficiency measure and uncomfortableness measure. Both

measures are used as evaluation parameters to optimize pedestrian facilities and
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they describe the interaction among pedestrians and between pedestrians and
facilities. Teknomo (2002). describe them as follows: i) The efficiency measure
E calculates the mean value of the velocity component into the desired direction

of motion in relation to the desired walking speed:

I QS
E=—-N"2 2.3
N 2 e (2.3)

i (2

where v{ is the intended velocity of pedestrian 7, N the number of pedestrians

2 (e
and r; = W is the component of the velocity in the desired direction of
pedestrian 4. ii) The uncomfortableness measure U, reflects the frequency and

degree of sudden velocity changes due to crashes or avoidance maneuvers
7=L > Y (2.4)
N &~ h; '

32 (0 (8)—gi (£))? - 126 (t)
tltT and gz(t) ==h 7 .

to—11
Pedestrian flow performance can be measured through distances, and angles

where 3; =

of moving direction. It can be valued over time as a speed (linear or angular),
as an acceleration or as a rate of the acceleration (jerk). Other parameters have
been proposed as candidates to measure flow performance such as pace index
or variation of the walking displacement but most of them have no significant
impact on the pedestrian flow (Teknomo et al., 2003).

One of the most important problem for microscopic studies is data collec-
tion. Automatic systems have been designed to collect data from video files and
from surveillance cameras as reported in the works (Hoogerndoorn et al., 2003;
Teknomo et al., 2003) but their use is restricted to the research scope. Besides,
parameter extraction is difficult in crowded places or in panic and emergency
scenarios.

There is no hermetic separation between the macroscopic and microscopic
models. Seyfried et al. (2005) experimentally analyzed the microscopic causes
of the velocity decrease in the presence of medium or high densities, such as
the frequency of passing maneuvers and internal crowd frictions. On the other

hand, Kessel et al. (2002) proposed a microscopic model based on the fundamental
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relationship between walking speed and crowd density.

2.2.3 Categorization of the existing pedestrian models

In pedestrian modeling, there are several categories: space representation, pop-
ulation representation, population behavior representation, purpose or availabil-
ity (Kretz, 2007). Among them, population representation that divides the mod-
els between macroscopic and microscopic models has important implications for
software design. The difference between these kind of models is the way to control
the dynamic parameters by the component individuals.

The macroscopic models focus on the problem of space allocation for individu-
als. The individuals have no autonomy either to change their dynamic parameters
(velocity, direction) or to control their interactions. A typical problem to solve
in these macroscopic models is: given a number of pedestrians and a level of
service, provide the space allocation (i.e. width of the facilities) and the flow and
average speed in each facility. Of interest is the reproduction of the observed
macroscopic data (mean speed, flow, density) and, therefore, groups of pedestri-
ans, where these magnitudes are meaningful, are considered. The implementation
of macroscopic models in computer devices has clear advantages with respect to
microscopic ones: low computation time and reduced calibration and validation
effort.

In microscopic models, each individual can control different parameters related
with his/her own dynamics. The most representative is velocity. This control can
be total (in case of an autonomous agent) or partial (defined as a constraint by
means a desired velocity). The possibility of controlling their own velocity leads to
the ability to control the interactions among individuals. Situations such as over
takings, collisions or congestions can be managed. These models may be more
suitable in cases where the geometry of the facility is unusual (and therefore its
capacity is unknown) or when changes in pedestrian behavior affect the pedestrian
flow (Hoogerndoorn et al., 2003). On the contrary, many microscopic models do
not take into account higher levels of behavior such as route choice and their
applicability in simulations has to face computational efficiency problems derived

from the individual control of the simulated pedestrians.
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In the following subsections I present different microscopic and macroscopic
models that constitute trends in the pedestrian modeling area. In this taxonomy,
the classes are not hermetic and specific examples in one model can be included
in another. For example the agent-based model is a generic model where dif-
ferent techniques borrowed from other models can be used, analogously Cellular
Automata is also a generic model where other approaches can be implemented

inside like floor fields (Nishinari et al., 2004).

2.2.4 Discrete choice models

Discrete choice models are a family of macroscopic models that have been applied
in the context of travel decisions (Ben-Akiva & Lerman, 1985; McFadden, 1981;
Train, 2003). These models are based on random utility theory. Following the
work of Bierlaire & Robin (2009), consider a decision-maker n who is performing
a choice among a set C,, € J, of alternatives. The decision-maker n associates
an utility Uy, with each alternative C; and selects the alternative corresponding
to the highest utility. The utility is modeled as a random variable to account for
uncertainty due to various issues such as unobserved variables and measurement
errors. The utility is discomposed in a deterministic term and a probabilistic
error term, €, so that

Uin = Vi, + €in (2.5)

and the probability that individual n is selecting the alternative 7 is

The specifications of V;,, includes the selection of the attributes of ¢ relevant to
n, as well as the socioeconomic characteristics of n. The utility has a functional
form. The complexity of the model comes from the distributional assumptions
about the random variable €;,. The most widely used model is the logic model,
which assumes that the ¢;, are independent across both ¢ and n, and identically
distributed. These assumptions lead to a simple and tractable formulation.

The set of choices that a decision-maker has to consider covers many dimen-

sions of pedestrian behavior. Given an individual at a point of time, the main
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choices to take into account are:

1. Activity choice. This choice focuses on what to do next. In the case of
pedestrians, Hoogendoorn & Bovy (2004) distinguishes between the choice
of an activity pattern performed at the strategic level of decision, from a
scheduling activity performed at the tactical level. However, Borgers &
Timmermans (1986) considers that the choice activity is not planned but

triggered by stimuli in the pedestrian’s environment.

2. Mode choice. This is the most traditional discrete choice model type. Two
types are considered in the literature on pedestrian travelling. First, the
usual transportation mode, where walking is one of the alternatives. For
instance, Ewing et al. (2007) analyzes travel decision of students going to
school. The second type focuses on the choice among stairways, escalators,
or elevators while walking. This type of choice is typically small (less than a
handful of alternatives). It is of increasing interest for health applications in

general and overweight and obesity issues in particular (Eves et al., 2006).

3. Route choice. The choice of itinerary is a critical dimension of pedestrian
behavior. Route choice models are traditionally based on a network struc-
ture. Okada & Asami (2007), incorporated utility at nodes in a pedestrian
flow model, and derived route choice probability using an aggregate logic
model. Seneviratne & Morrall (1985) evaluated the factors affecting the
choice of route and emphasize the importance of distance, while the level

of service, safety or visual attractions appear to be secondary.

4. Choices of speed and next step. The choice of speed depends on the envi-
ronment in which walking takes place. This type of choice can be integrated
into the next step choice or can be taken independently. Many variables may
explain the speed behavior and can be included in the model specification.
Among the macroscopic type, flow and density are considered (Lam & Che-
ung, 2000) and also the type of environment such as crosswalks (Knoblauch
et al., 2007) and airport terminal corridors (Young, 2007). Among the
microscopic type, overtakings, internal frictions and crashes, age and trip

purpose are also relevant.
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Discrete choice models of pedestrians have been successfully used in pedestrian
shopping scenarios to explain behavioral reasons such as why the pedestrian chose
one store rather than another (Zhu & Timmermans, 2007). An open source
freeware named BIOGEME (Bierlaire, 2003) is available for the estimation of
discrete choice models. It allows the estimation of the parameters of several

models including nonlinear utility functions.

2.2.5 Cellular Agent models

Cellular Agent models (CA models) are a main class of computational microscopic
models for pedestrians dynamics. One of the main characteristic of these models
is the explicit representation of the environment as a lattice of cells whose state
includes information about the presence and direction of individuals, and about
environmental obstacles and relevant objects. Their dynamics are rule-based and
usually stochastic. The transition probabilities p;; are defined to one of the neigh-
boring cells (i, 7), where usually either Moore or von Neumann neighborhoods are
used. The transition probabilities for a specific particle are determined by the
position of other particles in its vicinity and they define the model. An example

of the model specification can be seen in Figure 2.2.

0 P(-1,0)| 0

‘ PO, -1 P(0,1)
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Figure 2.2: The possible directions of a cellular agent and the corresponding
transition probabilities in a von Neumann neighborhood.

The following properties define CA models (Kretz, 2007): i) they are discrete
dynamical systems ii) their update rules are local, that is, a cell’s next state only
depends on the neighbor cells and, iii) all the cells are updated synchronously
and the update rules are identical for all cells.

CAs are widely used in traffic simulation. The simulation of a lane of ve-

hicular traffic was proposed in the seminal work by Nagel et al. (1996b). Their
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rule system was extended to a multi-lane model and has been applied to sim-
ulate traffic networks in the TRANSIMS project (Nagel et al., 1996a). CA are
basically one-dimensional. A new rule set was proposed in the work of Blue &
Adler (2001) that adapted the model to pedestrian traffic and extended it to bi-
directional pedestrian flows. In the work of Meyer-Konig et al. (2001) an example

of adaptation of CA models for pedestrian flow is explained. The basic rules are:
1. The floor is divided in quadratic cells of length 0.4 m.
2. Each cell is empty or occupied by one person.
3. Individuals have their own characteristics reflected by a set of parameters.

4. The motion is described by their direction and walking speed and obeys

universal laws.

5. Walking speed and direction might be altered non-deterministically with
certain probabilities. This accounts for psychological and social factors not

directly represented in the model.

6. The walking speed is at most 5 cells/second where every person has an

%
mazx”

upper limit v

7. The positions are updated sequentially, where the current person is selected

at random.

CA models have been used in different pedestrian navigational problems. The
work by Burstedde et al. (2001) defines a CA capable of reproducing several
collective effects of pedestrians such as lane formation, or the evacuation of a
large room. The problem of pedestrians evacuations has been extensively stud-
ied with this model, and also mixed with other models, in different scenarios:
buildings (Yang et al., 2005), with obstacles (Varas et al., 2007), considering
forces (Wei-Guo et al., 2006), fluid dynamics (Gipps & Marsjo, 1985) and using
a bionics-inspired CA model (Kirchner & Schadscheneider, 2002).
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2.2.6 Queuing models

Queuing theory is a branch of stochastic processes inside the operation research
field. It is based on the concept that a queue or waiting line is formed when
pedestrians need more service on arrival at service node than they are provided
with (Rahman et al., 2013). The theory tries to set up a model for the dynamics
of the queues that in our context represent a pedestrian flow or a traffic flow in a
lane. Using queuing theory, pedestrian macroscopic models have been developed
to study pedestrian traffic flows and, in addition, the design of the physical sys-
tems accommodating these flows. One pioneering work was the model proposed
by Lovas (1994). In this model, different pedestrian facilities were modeled as
a network of walkway sections. Pedestrian flow in this network was modeled as
a queuing network process, where each pedestrian is treated as a separate flow
object, interacting with the other objects. The network models the environment,
where the nodes can represent doors, rooms, intersections and the links can be
corridors or other facilities. Because this model is concerned with flow control, it
can be considered within the macroscopic type.

The basic entities which characterize a queuing model are: i) the arrival date,
ii) the service mechanism iii) the queue strategy (e.g. first come first served)
and iv) the number of service nodes. These properties are often referred to
using Kendal notation that consists of several symbols (e.g. M/G/1). The first
symbol is shorthand for the distribution of the inter-arrival times (e.g. Gaussian,
Poisson); the second for the distribution of service times and the third indicates
the number of servers. In this example M/G/1 represents a Poisson distribution
for arrival times, a General distribution for the service and 1 server in the system.

Queuing theory has been used in the past mainly to describe traffic behav-
ior at signalled and unsignalled intersections (Heidemann, 1997; Vandaele et al.,
2000). However in recent times, several queuing models have been proposed for
different pedestrian scenarios. For instance, Li & Han (2011) proposed a grid-
based model of a queue simulation system considering human physiology and
psychology. It was capable of reproducing the traffic shock wave phenomenon ef-
fectively. This phenomenon consist of transition zones between two traffic states

(congestion and free movement) that propagate through a traffic environment as
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a wave. Shock waves are a fundamental property of road traffic congestion and
can be seen by the cascading of brake lights upstream along a highway. The
work by Kim et al. (2013a) models a cinema ticketing booth system. They use
a micro-simulation software called Visim based on Helbing’s social forces model
to simulate pedestrian movements. Their queuing model controls the movements
to reproduce a single queue with a multiple servers system of a cinema ticketing
office. The results conform with the real analyzed data.

Queuing theory is able to calculate and predict the number of people waiting
and the waiting time in the queue spaces. However, it cannot deal with heavy
congestions and complicated movements of pedestrians. In large urban spaces,
lots of kinds of pedestrian movements are merging and intersecting. This converts
the queue spaces into circulation spaces that influence the dynamics of the queue
formation. Queue theory focuses on the queue dynamics and does not consider
external influences. More complex queue models have been developed. That
of Okazaki & Matsushita (1993) takes into account other pedestrian behaviors

outside the queue such as approaching queues and getting out of them.

2.2.7 Navigation fields based models

In Navigation-field based macroscopic models, the space is divided into cells
where relevant navigational information is stored. One class of Navigation fields
are the floor field models. The simplest approach consists of using static floor
fields (Kretz, 2009) that are determined in the initialization phase of the simula-
tion. The type of tessellation selected to discretize the floor is important. In Leng
et al. (2014) a hexagonal tessellation with weights to compensate the non isotropy
of the hexagon in the orthogonal directions is proposed. This compensation is
important for modelling specific scenarios such as crossroads. The static naviga-
tion behavior often leads to unrealistic simulation results (i.e. pedestrians head
very closely towards the congestions until they perceive the congestion).
Another approach takes inspiration from the motion of ants which is based
on processes of chemotaxis, a chemical form of communication. Ants deposit
so-called pheromones to mark their paths. A similar mechanism is used in the

floor field model to take into account the interactions of pedestrians and those
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with the infrastructure (Chowdhury et al., 2005).

In Schadschneider & Seyfried (2009a) a dynamic floor field approach based
on a CA model is presented. In this model, the probabilities of movement are
encoded in the so-called matrix of preference. These probabilities are modified
by two discrete floor field: a dynamic floor field D and a static floor field S.
The first one represents a virtual trace left by moving pedestrians which has its
own dynamics (in terms of diffusion and decay) and leads to broadening and
dilution with time. The static floor S does not change in time and reflects the
infrastructure. In the case of an evacuation, S describes the shortest path to an
exit door. Seitz & Koster (2012) introduces the Optimal Steps Model in which
pedestrians navigate along a floor field constructed by superposing escalar fields.
Three scalar functions express the orientation towards a target, the need to avoid
getting too close to neighbors and the need to skirt obstacles.

Another approach is presented by Hartmann (2010) that uses navigation fields
to indicate the shortest distances to the pedestrian’s target with respect to arbi-
trary metrics (e.g. metrics depending on the local terrain). The author proposes
that if the metric correlates inversely with the expected speed, these distances
could be interpreted as expected travel times. Based on this idea, the author
presents a simulation of the shortest path wvs. quickest path dilemma that will
also be considered in my work in the experimental part. Using a distance met-
ric weighted relative to the local pedestrian density, the agents tactically avoid
congestions using the farthest door from the target.

When the information inside the navigation field represents directions that
satisfy certain constraints, they are denominated vector fields. Gilman et al.
(2005) presents the Dynamic Navigation Field (DNF) as a family of case-based
reasoning algorithms for wayfinding. DNF produces vector fields according to
the spatial situation of the particles. It gives important directional information
to the particle inside the corresponding cell and only relevant information is
calculated in the required spatial situations. This information can directly be
the recommended direction or it can be used to calculate the desired velocity of
the particle or the desired force to apply to it. However, dynamic fields require
continuous updating which is computationally expensive, particularly for large

domains. A general approach to vector fields and their uses in planning can be
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found in the book by (LaValle, 2006).

2.2.8 Fluid-dynamic based models

Under this name, different macroscopic models exist. What they have in common
is the use of mechanics-derived equations of fluids (Navier-Stokes equations of
fluid-dynamics) to represent traffic flow. Therefore, it is assumed that a similarity
between fluid dynamics and different types of traffic dynamics exists. Some of the
most popular are gas-kinetic equations. They were first used for the description
of traffic flow (Prigogine & Herman, 1971) and, some time after, were adapted to
describe pedestrian flows. However, the models that use these equations imply
momentum conservation which is not the case in pedestrian collisions. The gas-
kinetic formulation of pedestrian behavior with Boltzmann-like equations has
some analogies with the description of ordinary gases, but it takes into account
the effect of pedestrian intentions and interactions.

In order to understand the type of similarities found between gases and pedes-
trians, let’s take an example from Helbing (1992a) that describes a dance floor
scenario. On a dance floor like that of a discotheque, two types of motion can
be found: one type represents individuals who want to dance, the second type
represents individuals who look at the dancers and do not want to move, although
they remain on the dance floor. The first type intend to move with high velocity
variance 6;, and they can be assimilated, by analogy, with particles with high
temperature. The second type intend to have low velocity variance 6;, that is,
they have low temperature. Dancers and spectators are in equilibrium only if the
mutually exerted pressure (P = pf) of both groups agrees (P, = P,). As a con-
sequence, the dancers are expected to demonstrate a lower density (p) than the
spectators (p; < pp). This phenomenon can actually be observed in real scenarios
(see Figure 2.3).

Henderson was the first to apply gas-kinetic and fluid-dynamic models to em-
pirical data of pedestrian crowds (Henderson, 1974). Observing the movements
of students on a campus as well as children in a playground, he realized that their
motion fits the Maxwell-Boltzmann distribution that describes particle speeds in

idealized gases. In order to apply this theory to pedestrians, he had to make
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Figure 2.3: Distribution of dancers and spectators on a dance floor, as explained
in the work of Helbing (1992a)

some assumptions and restrictions e.g. the crowd fluid had to be homogeneous,
meaning that each particle (pedestrian) must have the same mass and probability
density function for velocity (Sahaleh et al., 2012). However this model assumes
the conservation of energy and momentum which are not true for interactions
between pedestrians. Helbing (1992a) proposes a better fluid-dynamical based
description of pedestrian movement where anisotropies of pedestrian interactions
and the preferred direction of motion are included. In this work, differential equa-
tions for the spatial density, mean velocity and velocity variance of motion types
are proposed. These equations resemble those of ordinary fluids. The Hughes
model of flow continuum for crowds (Hughes, 2003) is based on well-defined ob-
servations (hypotheses): i) the speed of the pedestrians is determined solely by
the density of surrounding pedestrians ii) pedestrians have a common sense of the
task that they face to reach their common destination and iii) pedestrians seek to
minimize their estimated travel time. This model has been applied especially to
provide assistance in problems characterized by high density crowds such as the
annual Muslim Hajj, or to understand the behavior of the English and French
infantry at the battle of Agincourt (1415).

The gas-kinetic and fluid-dynamic models can include other forces to represent
pedestrian’s intentions. These forces are in charge of changing the pedestrian’s
type of motion. They are guided by stochastic laws which are parametrized
to represent a demand for commodities, location of stores or city center en-
try points (Helbing, 1992a). A hybrid model of this kind is presented in the
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work Helbing (1992b).

2.2.9 Social force model

The “social force model” of Helbing & Molnar (1995) is a microscopic model
where each individual moves as a result of a instantaneous local force which is
the result of several forces (external and internal) that actuate in the pedestrian.
The social force is not exerted by the environment on a pedestrian’s body. Rather,
it is a quantity that describes the specific motivation to act. The resulting force
is a reaction to the perceived information that the pedestrian obtains about the
environment. Following the explanation described in Helbing & Johansson (2009),
the model assumes that each individual « is trying to move in a desired direction
¢? with a desired speed v2, and that he/she adapts their actual velocity o, to the
desired one 770 = v2€Y, within a certain relaxation time 7,. The dynamics of an

e} a~a)

individual « is described by the equation
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where the terms fo3(t) and fai(t) denote the repulsive forces describing at-
tempts to keep a certain safety distance from other pedestrians § and obstacles
1 respectively. The first term of the sum represents a force that corrects the
deviation from the desired velocity (due to an avoidance process or a necessary
deceleration process) within a certain relaxation time. The repulsive forces to
avoid contact or collisions with other pedestrians or objects are implemented as
gradients of a potential field. The potential field for the repulsive force between
pedestrians o and (3, V, g[b] is a monotonic decreasing function of b = b(7%, ) with
potential lines having the form of an ellipse that is directed into the direction of

motion. Thus, the equation 2.8

fous(Fap) = =V Vas[b(Fopls, (2.8)

is the repulsive force between two pedestrians which is typically exponential.

A similar formulation is developed for the repulsive force between a pedestrian
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and an object.

The social force model has been the basis for the development of other ap-
proaches. In the work by Pelechano & Badler (2006), it is used as a low-level
local motion controller that is a part of a more complex model of a crowd were
individuals take on different roles, such as trained personnel, leaders and follow-
ers. This model is used to study a scenario of a building evacuation. In the study
by Zainuddin & Shuaib (2010), the model is modified to incorporate decision mak-
ing capabilities to study unidirectional flows of pedestrians. The work by Mehran
et al. (2009) proposes the use of this model to detect abnormal behaviors in crowd
videos. For this purpose, a grid of particles is placed over the image, and it is
advected using the space-time average of the optical flow. The interaction forces
of the particles are estimated using the social force model which create a force
pattern that can be analyzed in terms of normality. Another proposed model is
the centrifugal force model (Yu et al., 2005). It consists of a new expression for
the repulsive force which differs from the social force model and its variants. It
considers both the headway R_;j and the relative velocity v;; among pedestrians

as part of the definition of the repulsive force

—
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This repulsive force reflects new interesting ideas (Chraibi et al., 2011): i) the
force is anisotropic since its range of influence is reduced to the range of vision
of pedestrians (180°) and, ii) it takes into account the influence of the relative
velocity, i.e. faster pedestrians in front of slower pedestrians do not affect their
movement.

The social force model has been considered to be one of the more successful
microscopic models mainly due to its versatility. It supports the addition of
different forces that can represent different pedestrian’s social or psychological
motivations. For example, the tendency to keep away from dangerous places is
reflected by repulsive forces, while the effect of a stage, or of a window display can
be described by attractive forces. The same applies to the tendency of group or
family members to stay together (Helbing et al., 2005). It has also been adapted

to study specific problems such as escape panic and evacuations (Helbing et al.,
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2000). Another interesting effect that has been successfully modeled inside the
evacuation context is “freezing by heating” (Helbing & Johansson, 2009) where
blocking situations appear inside a corridor when groups of pedestrians walking
in opposite directions experience stress and the individuals begin to fluctuate
in their behavior (the individual is getting nervous). When this situation gets
worse, the individuals block each other and the created congestion becomes a
frozen situation where no individual is capable of going ahead.

Despite their popularity, the social force model and in general force-based
models have problems derived from their Newtonian formulation. Chraibi et al.
(2011), who presents an extensive enumeration of different force-based models,
indicates two main problems. The first one is derived from Newton’s third law
which states that two particles interact by forces of equal magnitudes and in
opposite directions. For pedestrians this is unrealistic since normally the collision
forces between pedestrians are not conservative (e.g. a pedestrian normally does
not react to another pedestrian who pushes into a queue). The second problem
emerges from the assumption that forces acting on a pedestrian are additive
according to the superposition principle of forces. This can lead to undesired
effects when modeling pedestrian dynamics, especially in dense situations (in
form of high velocities). Further problems are related when describing particles
with inertia using the Newtonian model, leading to overlapping and oscillations

of the modeled pedestrians.

2.2.10 Agent-based models

The Agent-based model(ABM) (Musse et al., 1998; O’Sullivan & Haklay, 2000)
is a general-purpose microscopic model which uses agents that interact within
an environment. In the ABM, the agents are in charge of the simulation of the
behaviors of the studied phenomena; it is, therefore, a microscopic approach. The
basic characteristics of this model have been summarized by Bonabeau (2007): i)
agents can exhibit complex behavior patterns and provide valuable information
about the dynamics of the real-world systems that they emulate; ii) agents provide
a natural way to describe complex systems of individual entities with autonomous

behaviors (like vehicle traffic, crowds) and, iii) the natural way of implementing
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the ABM in pedestrian simulation is through a Multi-agent System, where each
virtual agent has encapsulated different behavioral levels (reactive, pro-active)
and exploits them in an autonomous way. ABMs can be considered models of
complex systems. The ABM approach considers that simple and complex phe-
nomena can be the result of interactions between autonomous and independet
entitites. Thus, agents and ABMs should not only be considered as a technology,
but also as a modeling approach that can be exploited to represent some system
properties that are not simply described as the sum of their members’ properties
or functionalities (Bandini et al., 2009).

Of particular interest for this work are the intelligent agents. They have an
autonomous decision making module which creates the particular behavior of the
agent. Wooldridge (2013) distinguishes among four types of architectures for in-
telligent agents: 1) logic based agents—in which decision making is realized through
logical deduction, ii) reactive agents—in which decision making is implemented as
a direct mapping from state to action, iii) belief-desire-intention agents—in which
decision making depends upon the manipulation of data structures representing
the beliefs, desires and intentions of the agent and, iv) layered architectures—
in which decision making is realized via various software layers that represent
different levels of abstraction. These types of intelligent agents are also named
rational agents. A rational agent is able to perform independent and autonomous
actions in order to meet its design objectives, making good decisions about what
to do (Wooldridge, 2000). The concept “making good decisions” implies the max-
imization of a utility function. Finding the optimal solution of a function or
the optimal sequence of actions is often a problem with intractable computa-
tional complexity, therefore, modeling behavior based on full rationality may be
impractical (Rosenfeld & Kraus, 2009). In recent years, the use of agents with
bounded rationality has been extended in Computer Science. Bounded rational
agents do not find the optimal behavior, but rather the non-optimal behaviors
that can fulfill their goals. The agent ceases to be an optimizer and becomes a
satisfier who seeks good-enough solutions instead of optimal ones. This thesis is
related with the concept of bounded rationality because reinforcement learning
algorithms find optimal solutions only after infinite experiences in the environ-

ment.

29



ABM has become very popular over the last decade. Omne of the areas in
which it has been extensively used is in social sciences, where it is used to
model population behaviors (Gilbert, 2007). It has been applied to the study
of racial segregation in American cities (Schelling, 1971), to the understanding
of the development of political opinions (Deffuant et al., 2000) or to examining
the interactions among different factors (friends, advertising, fashion, etc.) that
influence customers to buy a product (Izquierdo, 2007). In the case of pedestrian
simulation, embodied agents (autonomous virtual agents capable of physical in-
teractions) represent pedestrians bringing together different levels of operation
(reasoning, reactive and pro-active behavior) and different levels of interaction
(coordination, negotiation). The ABM approach is an abstract approach that
has, many times, included other models creating hybrid models. Examples of
this mixture can be found in the works by Batty (2003, 2005), which uses a CA
model to define fine scale movement at the pedestrian level in terms of the re-
lationship with neighbor pedestrians, these movements take into account factors
such as visibility, collision avoidance or attributes of other pedestrians. In the
work by Ward (2007), a model of Covent Garden Market in central London is
presented. This ABM uses also a simple social-force model in which agents have
certain tasks to perform such as shopping and entertainment.

Inside the ABMs, an important approach is the Belief-Desire-Intention agent
architecture (BDI agent). The philosophical fundation of BDI has its roots in
practical reasoning. Practical reasoning is defined as reasoning towards actions
as opposed to theoretical reasoning, which is reasoning about beliefs. The key
concepts in BDI architecture are: i) beliefs: what I know about the world; ii)
desires: what I want to do; iii) intentions: how I plan to fulfill the desires. A nice
feature of this architecture is the ability to act in both a reactive and proactive
manner. A BDI agent is a motivated agent that has an internal representation
of the situation and is capable of dynamically changing his/her interests (re-
planning) depending on environmental circumstances or interactions with other
agents. Several works have applied BDI agents to the field of pedestrian simu-
lation. The work by Ronald & Sterling (2005) ilustrates how BDI architecture
adapts naturally to the representation of a pedestrian, where the beliefs can repre-

sent useful information for route planning (e.g the congested main street at lunch
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time), the desires can represent places to go and the planning is developed by
the intentional module. However the authors recognize that it is difficult for this
model to handle continuous events such as stepping. In the paper by Shendarkar
et al. (2008), a methodology involving Virtual Reality with BDI architecture to
construct a crowd simulation is presented. The realistic attributes that govern the
BDI characteristics of the agents are reverse-engineered by conducting human-
in-the-loop experiments inside a virtual environment. The work by Okaya &
Takahashi (2011) applies a BDI model in which human relationships affect at the
stages of the sense-reason-act cycle of agents, and adopts a social forces model to
build the agent intentions. This model is used to generate emergent behaviors in

a crowd evacuation as a result of interactions in the crowd.

2.2.11 Optimization-based models

Under this name, several approaches are gathered. They have the common prop-
erty of representing the goal or behavior to achieve as a function, commonly
named utility function, that has to be optimized. The principle of least effort
from Zipf (1949) (applied to the pedestrian context) proposes the idea that real
pedestrians’ trajectories are created by an optimization process of energy. A
physical consequence of this principle is that pedestrians minimize metabolic en-
ergy when walking at roughly 1.33 m/s, as has been verified in observational
studies (Henderson, 1971). Although other models intrinsically use a notion of
optimization', T will focus in this subsection on the approaches that explicitly
uses a function as a model of the behavior that has to be optimized. The scope of
the model (macroscopic or microscopic) depends on the application of the utility
function. If the utility function is applied to all the pedestrians, based on location
criteria, the model will be macroscopic. On the contrary, if the utility function
is defined for the individuals, as an individual optimization problem, the model
will be microscopic.

In the work by Hoogendoorn & Bovy (2004), the velocities of the pedestrians

are calculated optimizing an utility function W;(t,Z) that reflects the minimal

'For instance, the models that use potential fields or vectorial fields, use implicitly a notion
of optimization when they calculate the gradient of the field in a point of the space.
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expected route cost of walking from the current location ¥ at instant ¢ to the
destination area. Some constraints are imposed to model real circumstances
such as incurring a penalty (¢y) when not arriving at the destination before
the terminal time ¢y or when arriving too early (given by a function of the final
arriving time ¢(7', 7)). The NOMAD commercial pedestrian simulator has been
built with Hoogendoorn’s model. In the context of route choice, Ramming (2002)
proposes a utility function to generate a route choice set in combination with
simulation. Simulation is used to calculate route utilities according to the defined
utility function. This includes perception parameters and weights representing
preferences, where the route with the highest utility is added to the choice set.
The work that implement Zipf’s principle of least effort to model pedestrian
dynamics is that reported by Guy et al. (2012). The authors propose a model
based on the optimization of the caloric energy of pedestians to develop a global
navigation system that avoids collisions. For a given trajectory II, the energy

used by a person is dependent on the squared velocity and can be modeled as

B(IT) = m /H (eI + e4) dt (2.10)

where e,, captures how efficiently calories are used and ey is a person’s rate
of energy consumption when standing still. The minimization of Equation 2.10
under certain velocity restrictions yields a least-effort trajectory that avoid col-
lisions among pedestrians. Moreover, the authors demonstrate that the model
is capable of generating emergent phenomena, specifically lane formation or the
arching congestion around a door or passage as the individuals try to come as

close as possible to the exit in order to minimize the time spent in a congestion.

2.2.12 Models for Crowds

A crowd is a group of individuals who temporarily share the same place and fo-
cus. A common observation on human crowd behavior is that an individual may
behave quite differently in a crowd when compared to acting individually (Zhou
et al., 2010). Therefore, modeling crowds is a specific problem that has its own
characteristics. Contrary to macroscopic models, a crowd can be heterogeneous,

that is, it can consists of people with differing goals and behaviors. This means
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that the individuals within these crowds must navigate to their goals despite po-
tentially congested environments and the conflicting paths of others (Guy et al.,
2012). In addition, the dynamic of a crowd depends on the dynamics and the local
organization of the individuals, which implies that crowds present specific emer-
gent patterns in determined scenarios. Despite these considerations, the explicit
representation of many crowd models in the literature are actually adaptations of
the previous revised models of this section (especially microscopic models). Many
works revised in the previous subsections that consider groups of pedestrians (es-
pecially those related with the social force model and the agent-based model) are
considered in this context as crowd models. In fact, they often appear in the
introductions of papers related to crowds. I will not review those cases that have
been mentioned previously.

A revision of crowd models is made by Zhou et al. (2010). It proposes a
categorization of crowd models based on the size and the timescale of the crowd
phenomena of interest. Attending the first criteria, crowds may consist of thou-
sands (huge-sized), hundreds (medium-sized) or tens (small-sized) of individuals.
The crowd size determines the types of approaches used to model a crowd. Huge-
size crowds treats the crowd as a whole and focus on the global trend of the
crowd using macroscopic approaches. With respect to medium-sized and small-
sized crowds, they are modeled as complex systems whose dynamics results from
local behaviors of individuals and their interactions with the neighborhood. The

dynamics of a crowd is characterized by three factor categories:

1. Physical factors which refer to external characteristics of an individual such
as position or velocity. A crowd model that considers only physical factors

aims to investigate how the movement of an individual affects the group.

2. Social factors like culture, norms or leadership. Social studies are the ar-
eas interested in these kinds of factors. An example is the work by Pan
et al. (2005) that used a multiagent-based framework to demonstrate some

emergent human social behaviors (competing, queuing and herding).

3. Psychological factors such as emotion, happiness or sadness that play an
important role in human decision making. The appropiate framework for

these model is the agent-based model, which considers that individuals have
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their own autonomous decision making module, and the layered models
which incorporate an emotional or psychological layer (Gratch et al., 2009;
Pelechano et al., 2007).

I will follow this characterization of the crowd dynamics to group different
studies concerning crowd modeling.

In the group of crowd models that focus on physical factors, previously revised
models of other approaches that center on crowd problems can be found. A non-
exhaustive list is: (Burstedde et al. (2001); Yang et al. (2005) in CA models, Hart-
mann (2010) in navigation-field models, Henderson (1974) in fluid-dynamics based
models, and Helbing & Johansson (2009) in the social-force model. Also, the stud-
ies concerning evacuations or panic can be included in this group because they
are focused on group patterns and collective behaviors directly derived from in-
dividual behaviors. Examples of these works are Helbing et al. (2005); Waldau
(2002).

In the group of crowd models that include social factors, the work by Manenti
& Manzoni (2011) models groups of pedestrians using fundamental elements de-
rived from sociology. Focusing on the primary structure of local human groups,
they apply methods of network analysis to identify relevant structures in the
crowd. This approach is based on the concept of the crystal group which states
that a crowd is made up of small and rigid groups of individuals, strictly delimited
and of great constancy. The groups do not disappear inside the crowd because a
static relationship exists among its components: family, friendship, working and
so on. The model uses anthropological and sociological elements to study the
dynamics of these crystal groups inside the crowd. Another work that considers
social group structures inside the crowd is that of Qiu et al. (2010) which presents
a MAS-based model in which these social group structures exploit inter and intra
relationships.

In reference to the crowd models that consider psychological factors, Frid-
man & Kaminka (2010) proposes a cognitive model for crowd behavior based on
Festinger’s Social Comparison Theory (SCT). This is a social psychology theory
from the 1950’s which proposes that humans, lacking objective means to evaluate
their state, compare themselves to others who are similar. The authors imple-

ment an algorithmic framework for SCT and demonstrate, empirically, that it
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generates behaviors more in-tune with human crowd behaviors than the existing
non-cognitive models. Moussaid et al. (2011), proposes a cognitive science ap-
proach to the problem. Pedestrians are modeled using behavioral heuristics using
two simple cognitive procedures (based on visual information) to adapt their walk-
ing speeds and directions. This model predicts the emergence of self-organization
phenomena such as lane formation and stop-and-go waves.

Other scientific fields like ethology can provide ideas concerning this issue.
Collective patterns of crowds are not restricted to humans and can be observed
in other biological systems. In the work by Shiwakoti et al. (2011), a mathematical
model for crowd evacuation under panic conditions derived from collective animal
dynamics is proposed. Specifically, the model is developed and validated by
data from experiments with panicking Argentine ants (L. humile). These ants
are reported to display a natural evacuation process because in their natural
habitat (Parana river banks in South America), flooding regularly forces colonies
to evacuate their nests and seek refuge in trees. The experimental investigation
of human crowd stampedes and evacuations is a problem as most experiments are
too dangerous to perform. The authors justify the use of animal models because
data from animals (for example insects) is easy to get and, being living creatures,

they are more life-like than equations.

2.3 Pedestrian Simulation

The microscopic simulation of pedestrians took off in the mid 1980s mainly due to
the increment in computing power. The pioneer works on virtual humans made a
computational approach to this problem possible. Among those early works, Kor-
ein & Badler (1982) focused on goal-directed movements of articulated structures
while Zeltzer (1991) defined frameworks for integrating the different represen-
tation levels (physical, behavioral, social) for virtual humans. In this line, the
concept of behavioral animation that will be assumed and/or developed in many
microscopic models presented in the following subsections is important. This
concept assumes a virtual human, or individual, immersed in a virtual environ-
ment where he/she is able to perceive and interact (Monzani et al., 2004). In the

behavioral animation, each individual has his/her own personality and internal
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motivations for acting. One of the best known application that uses this kind
of animation is the computer game ‘The Sims’, which focuses on the simulation
of virtual humans in everyday life. Many revised approaches in this section use
some kind of behavioral animation to give autonomy to the simulated individuals.

Compared with vehicle simulation, which is one-dimensional, pedestrian sim-
ulation is bi-dimensional. This increase in dimensionality results in more degrees
of freedom which requires more computational power. It has three implications
in pedestrian modeling, following the arguments of Johansson & Kretz (2012): i)
pedestrian modelers have to balance their creativity in using mathematical tools
with respect to computational costs; ii) the refinement of the model in terms of
temporal and spatial resolution can be tuned depending on the computational
power available; and, iii) there is a trade-off among computational time, model
complexity and scale, and accuracy of results.

In this section I will revisit models mentioned in the previous section but con-
sidering them from a computational perspective. As there is not a clear separation
among models, many works should be included in different classes, especially the
agent-based model which could include other approaches such as layered models.
I include crowd simulation as a separate approach due to its importance inside
the general problem of pedestrian simulation. However, many works described in

other subsections refer to (or are applied to) human crowd simulation.

2.3.1 Rule-based simulations

In rule-based simulations, the agents are directed by decisions triggered by rules.
In different works, the rules control different behavioral levels, from physical ma-
neuvers to social or cognitive behaviors. If the rules are centralized in a decision
module common to all the individuals, the system follows a macroscopic ap-
proach. Such kinds of rule-based approaches are useful in pedestrian flow studies
for transport facilities. For instance, Seer et al. (2010) defines a macroscopic rule-
based system to control the flow of simulated pedestrians in critical areas such as
subway stations platforms close to the main soccer stadium in Vienna.

The seminal example of local rule-based microscopic individual simulation is

Reynold’s Boids (Reynolds, 1987). His system is based on a particle model, where
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each individual (boid) has its own orientation and follows specific rules. The rules
describe how a boid maneuvers based on the positions and velocities of its neigh-
bors. The basic rules are separation, alignment and cohesion. With these simple
rules, Reynolds simulated several groups of animals (flocks, herds) with a realistic
appearance in terms of group navigation. This kind of behavioral animation is
almost impossible if a traditional approach is used. In Reynolds’ approach, each
member of the group decides its own trajectory without animator intervention.
The same author applied a similar rule-based approach to the specific problem
of pedestrians (Reynolds, 1999).

The rules do not always control the basic movements of the pedestrian. Musse
& Thalmann (1997) defined a rule-based model that allows virtual humans inside
a crowd to switch groups based on sociological factors. Each group inside the
crowd has its general behavior (which is determined by social rules such as polar-
ization, domination or adding), but individual behaviors are created by a random
process using a probability distribution characteristic of the group. This means
that there is a trend shared by all the individuals of the same group although
each member of the group has his/her own personal behavior.

Other examples include the rule system inside the decision making module
of an agent, which also has other cognitive capabilities. For example, Shao &
Terzopoulos (2005) used a rule-based system for the reactive part of their au-
tonomous pedestrians while a planning algorithm is used to find the shortest

path in the navigational level.

2.3.2 Vision-based approaches

J.J. Gibson is the grandfather of active vision. He stressed in pre-computational
terms the importance of modeling the active observer situated in the dynamic
environment (Gibson, 1979). The concept of active vision was developed by Aloi-
monos et al. (1988), and includes the set of problems in vision under the assump-
tion that the observer is active (an observer is called active when engaged in some
kind of activity whose purpose is to control himself or something). One of the
first computer applications that used active vision inside software-built artificial

animals to give them the ability to move, perceive and understand their virtual
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world was Terzopoulos’ artificial fishes (Terzopoulos & Rabie, 1997). His fishes
are autonomous virtual robots with active perception systems that autonomously
control their eyes and muscle-actuated body.

The problem of animating a synthetic pedestrian may be divided into two
parts (Renault et al., 1990): i) provide the actor knowledge of his/her environ-
ment, and ii) make react him/her within this environment. The first problem
consists of creating an information flow from the environment to the actor. The
approaches that use some kind of visual flow (real or synthetic) to provide in-
formation to the actor about the environment are vision-based approaches. In
Renault et al.’s work, the authors propose synthetic actors with synthetic vi-
sion capabilities. Synthetic vision has advantages over real image understanding,
essentially skipping the problems of pattern recognition and distance detection.
Synthetic vision-based pedestrians are able to avoid obstacles inside a narrow
corridor indicating that this capability is effective in providing a stable solution
to the 'awareness of the environment’ problem. This proposal is also used in
the work of Noser et al. (1995) that extends the idea combining synthetic vision
with a dynamic octree that serves as a 3D visual memory and allows an actor to
memorize his/her environment.

In the paper by Kuffner (1999), the author combines a low-level path planner,
a path following controller and 3D visual perception rendering hardware to guide
the virtual humans inside the 3D virtual environment. The graphics rendering
hardware is used to simulate the visual perception of a character so that it reacts
in response to obstacles in its visual field. This synthetic vision system provides
a feedback loop to the overall navigation internal model that is updated as new
sensory information arrives, and a new navigation plan is computed if necessary.
Peters & O’ Sullivan (2003) has developed a system for the automatic gener-
ation of bottom-up visual attention behaviors in virtual humans. Bottom-up
visual attention refers to the way in which the environment solicits one’s atten-
tion without regard to task-level goals. Their system endows virtual agents with
the ability to pay attention to their surroundings. The approach of Ondrej et al.
(2010) explores a vision-based model for collision avoidance between walkers that
fits the requirements of interactive crowd simulation. The virtual pedestrians

detect future collisions as well as their dangerousness from visual stimuli. The

38



authors show empirically that their visual system reinforces the emergence of
self-organized patterns of walkers. In addition, the visual system improves the
overall efficiency of the walkers’ traffic and allows avoiding improbable locking
situations.

Inside the area of commercial pedestrian simulators, Massive software agents
(http://www.massivesoftware.com) are provided with synthetic vision, but this is

not used to directly control the movement of the agent.

2.3.3 Social force based simulations

The model of social forces has been simulated on computers for a large number of
interacting pedestrians confronted with different situations. Despite the fact that
the proposed model is simple, it is capable of describing observed phenomena
(e.g. simulation of escape panic or emergent collective behaviors) in a realistic
way.

One simplified approach to this model uses forces or potential fields to direct
the navigation of the particles. For instance, Heigeas et al. (2003) used a particle
system to simulate a crowd that congregates in an ancient greek Agora. The
interactions among individuals are modeled as physical forces, specifically mass-
damp-spring force systems to create repulsing forces between walkers and between
a walker and an object. The authors observe the formation of very basic patterns
like jamming and flowing. Wagoum et al. (2010) studied several types of force-
based models from the perspective of computational efficiency to simulate crowds
for an evacuation assistant. Specifically, they studied Message Passing Interface
(MPI) and the Open Multi-Processing application programming interfaces. In the
work by Ali & Shah (2008) three different potential fields to track the movement
of the particles inside a crowd are proposed: i) a static floor field that specifies
the areas of the scene which are attractive in nature (e.g. an exit), ii) a dynamic
floor field that defines the immediate behavior of the crowd in the vicinity of an
individual and, iii) the boundary floor field that defines the influences exhibited
by the barriers in the scene (e.g. walls, no-go areas). The combination of all the
three fields allows individual targets in high density crowds to be tracked.

Although Helbing carried out simulations with social forces models (Helbing
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et al., 1997), they were directed at the visualization of the output of his model
rather than the true pedestrian simulation. Pelechano & Badler (2006) uses a low
level local motion system based on social forces to animate crowds in building
evacuation experiments. The work by Gayle et al. (2009) presents a new approach
to compute collision-free paths for multiple robots (or virtual agents) subject to
local coordination constraints (specifically the initial and final configurations and
possibly some additional coordination constraints). To solve this problem, their
approach generalizes the social potential field method to be applicable to both
convex and non-convex polyhedra. Social potential fields are integrated into a
physics-based motion planning framework which uses constrained dynamics to
solve the motion planning problem.

Pedestrian simulators like STEPS (Yan, 2010) or VISSIM (Almeida et al.,

2013) are based on the social forces model.

2.3.4 Psychological force based simulations

A set of different approaches inspired by Helbing’s social forces model have been
developed following the original idea: to use forces to represent impulses that are
out of the physical level. The work by Braun et al. (2003) extended the social
forces model to deal with different individualities for agent and group behaviors.

In their article, Pelechano et al. (2007) present a microscopic crowd simulation
system named HiDAC, where social forces are combined with psychological and
geometrical rules in a layered behavioral architecture of the agent. The system
is capable of emergent behaviors (agent line formation and pushing behavior).
Pedestrian behavior is sensitive to the current situation, the personalities of the
individuals and the perceived social density. An extension of HiDAC named
OCEAN (Pelechano et al., 2008) provides each agent with a personality model in
order to examine how the collective behavior of the crowd is affected. Each per-
sonality is attached to an automation of the low level process, therefore, different

personalities have different effects in the crowd.
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2.3.5 Agent-based simulations

Agent-based simulation has become increasingly popular as a modeling approach
in the social sciences because it enables one to build models where individual
entities and their interactions are directly represented. It allows modelers to
represent multiple scales of analysis, the emergence of structures and various
kinds of adaptation and learning (Gilbert, 2007). They are flexible in several
aspects such as adding more individuals to the systems, adjusting the complexity
level of individual behaviors or defining different degrees of aggregation. These
characteristics make agent-based systems appropiate for pedestrian and crowd
simulation (Johansson & Kretz, 2012). In the animation and virtual environ-
ments contexts, ABM for pedestrian simulation is an active research field which
considers simulations that can vary from small groups to crowds.

One type of agent-based simulation is that of using real data to calibrate and
specify the movements of the agents. A work by Pettre’s group calibrates a pedes-
trian following model to be used in queue simulation from real data (Lemercier
et al., 2012). Assuming a numerical model (the Aw-Rascle traffic model) they
use real data to calibrate the parameters of the model to represent pedestrians
in a queue. The model fits the real data and the fundamental diagram of the
problem. In the paper by Paris et al. (2007), a reactive method for solving inter-
actions between pedestrians in a crowd is proposed. The approach is predictive.
For each entity, at desired rates, they search for a solution-move satisfying the
constraints and guaranteed to remain valid for the desired time window. The
reachable space is represented as a cone in the (x,y,t) space (including the tem-
poral dimension). The calibration of the system is carried out by analyzing video
captures of real crowd motions. A commercial pedestrian simulator which also
uses this real-data calibration-based approach is Legion (http://www.Legion.com).
Legion is an agent-based pedestrian simulation software based on a large collec-
tion of real pedestrian measurements. Their algorithms have been calibrated and
validated based on this real data, and they are based on the principle of least
effort (Still, 2000). The idea is to optimize the path of each pedestrian over sev-
eral restrictions: first, by the individuals’ speed distribution and secondly, by the

requirement of visiting certain places or sub regions in some order as part of the
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route plan of an individual. The problem is to minimize a cost function based on
the length, total time or total effort satisfying the constraints. The optimization
process uses a type of simulated annealing over a set of allowed paths, randomly
varying them and selecting the cheaper candidates in a iterative scheme.

Another kind of agent-based simulation is made up of geometrically-based
local avoidance models. These models carefully check the absence of future col-
lisions locally, and can be combined with other high-level approaches such as
layered behavioral architectures to enable high-level goals in complex environ-
ments to be achieved. In the works by Olivier et al. (2012); Pettré et al. (2009),
a metric named 'minimal predicted distance’ to detect the critical distance in
order to avoid collisions between walkers is defined. Pettré uses real pedestrian
data to propose a model of collision avoidance with a few parameters that can be
calibrated for different situations using real data. The model is able to correctly
determine if, when and how motion is adapted to solve interactions. A different
approach to the collision problem is described in Feurtey’s thesis (Feurtey, 2000).
This is based on a representation of trajectories in a three-dimensional space with
time as the third dimension (z,y,t). The trajectories of the pedestrians are rep-
resented in this space, and each agent selects his future movements to avoid col-
lisions, minimizing detouring and speed variation. The approach by Karamouzas
et al. (2009) is based on the hypothesis that an individual adapts his/her route
as early as possible, trying to minimize the amount of interactions with others
and the energy required to solve these interactions. Each pedestrian computes if
other pedestrians are on collision course within a certain anticipation time. After
the calculation, each pedestrian makes an efficient move to avoid the collisions,
anticipating future collision situations. The Gamma group from the University of
North Carolina has also considered this problem from another perspective. They
propose ClearPath, a multi-agent collision avoidance method based on convex
optimization and use a discrete optimization method to efficiently compute the
motion of each agent (Guy et al., 2009). The resulting algorithm can be par-
alleled by exploiting data-parallelism and thread-level parallelism. As a result,
ClearPath can handle from tens to hundreds of thousands of heterogeneous agents
in milli-seconds.

Another large group of work on agent-based simulation is focused on crowd
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simulation. This group will be revised in the forthcoming subsection dedicated

to crowds.

2.3.6 Navigation Fields and other global macroscopic nav-

igation approaches

The work by (Patil et al., 2011) applies navigation fields to pedestrian simulation.
They define a navigation field as a function N : R*> — S', S! = [0,27] that
exhibits the following properties: i) it must be free from local minima, except
for the presence of sinks at specified goals (point of arriving), ii) agents should
trace out paths of least effort (minimum cost) to their goals and, iii) these fields
should be almost smooth and should be planned around static obstacles in the
environment. In this work, they define a second layer, called a guidance field,
in which the user can arbitrarily edit his/her preference about navigation. The
guidance field is transformed into a navigation field that is guaranteed to be
free of local minima and which is blended with the existing vector field to be
transformed into a new one.

An alternative data structure to the navigation field is the navigation graph
(Yersin et al., 2005). It represents a set of navigable areas as the nodes of a graph.
Navigation is possible only between connected areas. Velocity fields are computed
based on the environment description given by the navigation graph. The work
by Pettré et al. (2007) also uses navigation graphs for realtime navigation of a
very large number of entities. In this case the graph is the main structure for
a route planning system which uses it to answer navigation queries with a set
of solution paths from which the planned navigation is executed in an efficient
manner.

Continuum flow theory has been applied to crowd simulation mainly. For in-
stance, Treuille et al. (2006) introduce the idea of combining two different fields
to solve the problem of moving large crowds without explicit collision avoidance.
One is a maximum speed field that determines the velocity of an individual at
position #. With this field, preferences for certain paths can be expressed. The
other is a discomfort field so that, all things being equal, people would prefer to
be at point 7 rather than /. This field can be changed dynamically to imple-
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ment collision avoidance between people and other moving obstacles. Another
approach to the continuum theory is flow tiles’ (Chenney, 2004), based on the
design of velocity fields defined in small, confined areas named tiles. Tile fields
can be constructed to meet a wide variety of external and internal boundary con-
ditions. Each flow tile contains a small field, and many tiles can be combined to
produce large flows. The corners and edges of the tiles are constructed to ensure
continuity across boundaries between tiles. The resulting tiling is divergence-free
and hence suitable for representing a range of effects. This technique has not only
been applied to pedestrian navigation but also to simulate river flow and swirling
fog. In the work by Narain et al. (2009) a dual representation (discrete and con-
tinuous) for the crowd is proposed. In the continuous representation, the crowd is
represented as a fluid described by a density and a flow velocity. To simulate the
local interactions, this work defines the unilateral incompressibility constraint, a
macroscopic property of the crowd to the local inter-agent collision avoidance.
This property of the crowd produces a non negative pressure p, which prevents
the flow from converging to a density higher that a value p,,q, such that the
following constraint is satisfied at any point in the crowd p < ppee = p=0.
Another group that has appeared recently presents data-driven methods for
constructing group behavior models based on real crowd video footage. The ap-
proach presented by Lee et al. (2007) is a vision-based method of simulating a
crowd of virtual humans. They record the motion of a human crowd from an
aerial view using a camcorder, extract the two-dimensional moving trajectories
of each individual and then teach an agent model from observed trajectories us-
ing a regression-based method. Another work that also uses computer vision
techniques is that reported by Musse et al. (2007). In this work, the trajecto-
ries of the pedestrians are captured automatically from filmed video sequences
and grouped into similar classes using an unsupervised clustering algorithm. An
extrapolated velocity field is generated for each class. A simulator is used to an-
imate virtual humans, aiming to reproduce the trajectories fed to the algorithm,
avoiding collisions with other agents. One specific technique that uses real data
is the data-driven animation models. This approach emerged from the context
of motion capture techniques to animate virtual actors and avatars. The work

by Courty & Corpetti (2007) proposed deriving a similar approach for crowd
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motions, that is, crowd motion capture. In their framework, the motion of the
crowds is represented as a time series of velocity fields estimated from a video of
a real crowd. This time series is used as an input of a simple animation model

that advect people along this time-varying flow.

2.3.7 Layered-behavior-based simulation

The decision-making process in microscopic simulators can follow a hierarchical
scheme: strategical, tactical and operational (Daamen, 2004). The destinations
and path planning are chosen at the strategical level, the route choice is performed
at the tactical level and the instantaneous decisions to modify the kinematic state
are taken at the operational level. Most agent-based models separate the local
interactions from the necessary global path planning defining the local and global
navigation problems in a layered model (Sung et al., 2004). Making this split
inside the agent model has the advantage that cognitive or behavioral capabilities
can be introduced to the agents.

One of the first layered model for pedestrians is the work by Reynolds (1999).
It presents autonomous agents to be used in games or animations guided by steer-
ing behaviors which are independent of the means of locomotion. The pedestrian
global behavior is composed of three levels: locomotion, steering and strategic
level. The steering level can be used to achieve higher level goals. In this level,
the steering behaviors can be combined to create more complex behaviors, while
the physical development of the pedestrian’s movement is left to the locomotion
level. In the work by Sakuma et al. (2005), a two-layer architecture for the pedes-
trian is presented. The low layer is a navigation system with a reactive behavior
to implement collision avoidance. This navigation is controlled by environmental
information through a vector field. The high level uses a psychological perception
model and virtual memory to perceive the environment and implementing a sort of
mental state of stress to control the collision avoidance system. The work by Shao
& Terzopoulos (2005) on autonomous pedestrians integrates motor, perceptual,
behavioral and cognitive components. Their human characters are defined as a
hierarchical artificial life model, where different layers that progress in levels of

abstraction provides different models of behavior, from reactive to cognitive lev-
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els. This model was tested in a virtual 3D environment representing the old Penn
Station at New York populated with over 600 autonomous pedestrians with five
different types of pedestrians: commuters, tourists, performers, policemen and
soldiers.

Another approach consists of the combination of different models to address
different behavioral levels. The HiDAC architecture by Pelechano et al. (2008),
introduced in Section 2.3.4, combines a social and physical forces model with
psychological and geometrical rules to build the behaviors of individuals inside
a crowd. This combination of a social-forces model with a rule-based model
enables a variety of behaviors like queuing, pushing and falling. The behaviors
are directly managed by the forces model, but HIDAC is also capable of simulating
panic situations, or impatience, because the psychological rules can change the
configuration of the agent’s velocity (in the case of panic) or force the planning

module to find alternative routes (in the case of an impatient behavior).

2.3.8 Crowds simulation

Simulating crowds is a challenging task. In order to execute the simulation ef-
ficiently and effectively, a crowd simulation system should meet certain require-
ments from the computational point of view. These requirements have been
identified by Zhou et al. (2010) as:

1. Flexibility: This refers to the ability to adapt to different situations. A
model is flexible if it is able to embrace changes, especially when these

changes are unexpected. Many crowd models are specific for a situation.

2. Extensibility: A crowd model should accommodate new features (e.g. new

behavioral factors in the decision making module) without much difficulty.

3. Execution Efficiency: This concerns the time needed to execute a crowd
simulation for a given scenario. One especially challenging problem is real-

time crowd simulation.

4. Scalability: This is the ability of increasing the size of the crowd without

loosing significant performance.
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Crowd simulation brings together works that focus on many different prob-
lems. Here, I will present a small selection of the works that have been carried out
so far which I consider relevant because they propose different lines of research
inside this domain.

One approach to the human crowd simulation problem is derived from the
ethology field. The study of social animals (especially those easy to observe and
control such as insects) suggests different strategies for collective displacements
such as pheromone trails in the case of ants or leader following in the case of
flocks. The paper by Banerjee et al. (2005) studies the behavior of ant colonies in
order to derive strategies for crowd stampedes induced by panic. They simulate
a scenario of connected cities in a war affected country. A spatial network based
on frequently used paths is implemented. The individuals generate a pheromone
network that is in fact a potential field that guides the movements of the crowd.
The more transited a path, the more intense is the generated field. By analogy
with ant pheromones, the dynamic field diffuses and evaporates.

Several works have focused on the realtime simulation problem. The work
by Musse & Thalmann (2001) uses a hierarchy composed of virtual crowds,
groups and individuals. They use different animating techniques depending on
the group size, from scripted behaviors, through behavioral rules to external con-
trol. Van den Berg et al. (2008) proposes a formulation that uses a precomputed
road map for wayfinding and combines it with a fast localized navigation for
each agent. The agents sense the environment independently and compute a
collision-free path. Their algorithm performance scales almost linearly with the
number of agents, running at interactive rates on multi-core processors. The
work by Pettré et al. (2006) uses a preprocessing technique giving rise to naviga-
tion graphs which are then used to navigation and simulation tasks. This graph
supports path planning which distinguishes the navigable areas from impassable
obstacles. The simulation model uses local instantaneous population densities to
move fast groups of individuals. The system also uses realtime rendering tech-
niques to be more efficient. Lister & Day (2012) address the problem of crowd
simulation in realtime without proposing a specific technique but instead a bone-
parallel, OpenCL-accelerated interpretation of the traditional character pipeline.

The method does not rely on pre-processing; provides a fine grained control over
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the animation of a crowd and crowd members and user-controlled avatars can be
handled without distinction.

The scalability problem has different points of view. With respect to the
classic scalability problem, that is, the ability to increment the number of indi-
viduals, Qiu & Hu (2013) proposes a crowd model using a spatial activity-based
approach. Contrary to conventional agent-based models where pedestrians make
movement decisions in a time-based manner, this model allows pedestrians to
make decisions only when needed, that is, when there is a significant change in
the pedestrians’ spatial position. This can lead to more efficient simulations and
better scalability. The problem with behavioral scalability, that is, the problem
of adaptively increasing the complexity of the individual behaviors in a crowd, is
tackled in the work by Sung et al. (2004). The authors propose a situation-based
control structure for each agent. Basic agents have limited behaviors. As they
enter new situations, additional, situation-specific behaviors are composed on the
fly to enable agents to respond appropriately. The authors define several behavior
functions that transform a behavior into a set of transition probabilities on the
states. The probabilities of the different functions are calculated in each situation
based on the available information, the history of the agent and his/her position.
The work by Lozano et al. (2009) analyzes different computer architectures to
support virtual environments and proposes a scalable computer architecture to
support thousands of autonomous agents. This architecture consists of a cluster
of computers with a hierarchical client-server software architecture that efficiently
provides consistency.

Another approach to achieve low computational cost behaviors for scalability,
as well as to create extensible systems in terms of the managed behaviors, is to
include behavioral information in the environment. In the work by Gutierrez et al.
(2005) each object in the virtual environment is not only a 3D shape but it is also
a dynamic entity with multiple visual representations and functionalities. The
popular computer game ‘The Sims’ uses a similar approach, because the objects
have information about the correct human behavior that manipulates them. In
the work by de Pavia et al. (2005), the virtual humans that populate a virtual
urban environment are directed following a semantic included in the virtual space.

Thus, children go to school and adults go to work at the usual time. The ontology

48



is included in a basic crowd simulator with collision avoidance. The result is an
urban environment with realistic and coherent population behaviors.

Another problem is the creation of natural individual movements inside the
crowd to make it more credible. The work by Karamouzas & Overmars (2012)
centers the problem on the simulation of small groups of pedestrians. Inspired by
the studies of Moussaid et al. (2011) that states that a crowd is actually made
up of small groups which have their own internal dynamics, Karamouzas defines
groups of three or four pedestrians which follow three different formations (line-
abreast, V-like and river-like). The members of the group have several restrictions
for admissible desired velocities and collision avoidance. For each individual, a
velocity is determined using the optimization of an utility function that depends
on the deviation from the group’s desired velocity, and the minimal predicted
time to collision. Gu & Deng (2011) focuses on the diversification of styles of
motion in the neighborhood of each pedestrian. Their approach dynamically
controls agents’ motion styles to increase a crowd’s motion variety. The idea is to
maximize local varieties of walking styles while maintaining a consistent global
style. An off-line pre-processing algorithm extracts primitive motions from a
motion capture system and stylizes them. The approach shows superior flexibility
when compared to traditional random distribution of motion styles.

Two important books on crowd simulation are Thalmann & Musse (2007)
and Pelechano et al. (2008).

2.4 Commercial and research-oriented pedestrian

simulators

There are a great variety of commercial and research tools for pedestrian and
crowd simulation. In this subsection I will enumerate a set of them that I consider

to be more relevant, although the list is far from being complete.

1. Legion. This is a commercial piece of software by Crowd Dynamics which
implements a multi-agent pedestrian model. It has been applied to civil
planning problems such as evacuation scenarios to improve safety. This

software uses algorithms calibrated based on a large amount of video footage
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observations in 40 different scenarios. Initially it was developed by G.K.

Still using algorithms based on the least-effort principle.

. Massive. This was originally developed by Stephen Regelous for use in
the Lord of Rings trilogy to reproduce the battle scenes with thousands
of warriors. It is an agent-based system where each agent has an Al layer
to drive the motion. This is the leading software for crowd related visual

effects.

. Ped-Sim. This is a microscopic pedestrian crowd simulation system based
on the social forces model. The agents have two layers: the physical layer
that takes care of the physical aspects such as the movement, and the
mental layer which is in charge of the behavior simulation. The mental
layer is configurable with different strategies. It can be used as a stand
alone system which provides its own data (numeric and graphics) or it can
be used embedded in another simulation system as a pedestrian dynamics

engine.

. PEDGo. This is simulation software developed by TraffGo HT of Germany
as the result of a research project by Tim Meyer-Koning and Hubert Kliipfel.
It is able to simulate 10000 people on a domestic computer. It uses a multi-
agent model with vector fields in a discrete space to simulate the microscopic
movements of the pedestrians. PedGo meets IMO MSC.1/Circ.1238 guide-
lines for evacuation analysis for new and existing passenger ships certified

by the See-Berufsgenossenchaft Hamburg.

. PEDROUTE. This is software developed byhe tHalcrow Group Ltd. It
is a macroscopic simulation system which treats the problem using the
continuum flow approach. A central planning unit provides the Origin-

Destination flow matrix and the travel time functions based on the Bureau
of Public Roads model.

. SimWalk. This is software developed by Savannah Simulations of Switzer-
land. It is used for evacuation simulations of crowds. It is based on the
social forces model. It can model relatively large crowds and is used by

several engineering institutes.
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10.

11.

STEPs. This is developed by Mott MacDonald. It is an agent-based tool for
the simulation of pedestrian movement under both normal and emergency
conditions. The software has been validated against NFPA (a standardiza-
tion agency for rail systems). It is able to simulate tens of thousands of
pedestrians on a powerful computer, giving details of velocities and move-

ments of individuals.

NOMAD. This is a microscopic simulation system developed by Serge Hoo-
gendoorn of the Delft University of Technology to assess pedestrian walking
infrastructure. Its agents work at the tactical level and the operational level
developing route choice capabilities and walking behavior. It is activity-
based, implying that the actions of the pedestrians are determined by the

different activities pedestrians have planned to perform.

. Golaem Crowd. This is a tool that integrates into Autodesk Maya. This

tool provides the user with a library of pre-computed pedestrian behaviors
and a set of editors that allow you to edit behaviors to adapt them to specific
requirements and combine this behaviors to create thousands of different

characters.

MassMotion. This is a commercial pedestrian simulation and crowd analy-
sis tool developed by Oasis Software for transport planning. It is an agent-
based simulation system. The agents are able to recognize different situa-
tions in the environment such as congestion or panic and plan alternative
routes. Each agent has his/her personal agenda and develops a schedule

based activity.

RVO2 Library. This is an implementation of the optimal reciprocal collision
avoidance (ORCA) formulation of the Gamma Group of the University of
North Carolina. It is a realtime algorithm for interactive navigation and
planning of large numbers of agents that supports the collision avoidance
capability. It has been included in the video game “Warhammer 40,000:

Space Marine”.

A summary of the different tools is displayed in Table 2.2.
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There are not many independent articles that consider the analysis of existing
commercial tools for pedestrian simulation. The paper by Zhou et al. (2010) offers
a taxonomy of pedestrian software and pedestrian models using two parameters:
crowd size and time scale. A total of four categories are defined combining large
and medium-small sizes with short term and long term. Although the size of
the crowd is an obvious parameter, this is not the case with the time parameter.
For the authors, a crowd simulation model of a long term phenomenon usually
focuses on some intangible social and psychological characteristic rather than the
physical characteristics of the crowd. On the other hand, simulation models of
short-term phenomena usually describe a crowds’ physical characteristics, espe-
cially positions and movement patterns. The authors evaluate and clasify several
pedestrian models and software tools using these criteria. In the paper by Sar-
mady et al. (2007), the authors study the most suitable software package that
meets their requirement for simulating the crowd at the Masjid Al-Haram mosque
in Mecca. The authors categorized the tools into two groups, evacuation and nor-
mal situation oriented tools. They analyzed seven software packages (Simulex,
PedGo, GridFlow, AERI, Legion, STEPs and Simwalk) using four criteria: capa-
bility of simulating large crowds, geometry design tools, model of behavior and

existence of reporting and evaluation tools.
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Name Author Model Use Scale Calib./Valid.
Legion Crowd Dynamics Least Effort principle Civil planning Large Video footage
Massive Stephen Regelous ABM with flow fields Movies Large No
Ped-Sim Christian Gloor Social forces model with | API for third party applications Large No
mental layer
PedGo TraffGo Vector fields in a discrete | Evacuation simulations Large Meet  IMO/MSC.1
space guidelines
PedRoute | Niels Hoffmann Continuum flow model Passengers flow analysis in airports | Large ?
and train terminals
SimWalk Savannah Sim. Social forces model Public transport facilities analysis Large Real world data
STEPs Mott MacDonald ABM with CA principles Pedestrian facilities design Large NFPA validation
NOMAD Serge Hoogendoorn | Layered model Identification of problems in infras- | Large Real data of con-
tructures trolled experiments
Golaem Autodesk Maya Library of precomputed be- | Population generator in graphic sys- | Large No
Crowd haviors tems
MassMotion| Oasis Software ABM with social forces | Transport planning Large Contrasted with data
model of Fruin’s works.
RVO2 Gamma Group ORCA API for third party applications Medium | ?

Table 2.2: Summary of the pedestrian simulation systems. In the column 'Scale’ the classification of 'Large’ means
thousands of individuals. The classification of 'Medium’ means hundreds of agents. The question marks mean that

no information have been found.




Another type of problem considered around pedestrian software analysis is de-
termining the type of simulation techniques used by proprietary software, where
technical information is scarce. A clear understanding of how the model works is
necessary to help the user establish appropriate input parameters and boundary
conditions. The work by Rogsch & Klingsch (2012) proposes a set of test scenarios
and assessment conditions that determine the type of model that a commercial
tool uses. Through the use of these simple scenarios, the user of software for
pedestrian simulation can determine certain important characteristics of the sys-
tem such as: i) how acceleration, deceleration and overtaking are implemented,
ii) the use (or not) of potential fields to direct the trajectories, iii) the correctness
of the implemented boundary conditions especially near the exits inside closed
rooms, iv) route choice capabilities, v) adequacy to the fundamental diagram of
pedestrian dynamics and, vi) the order of updating the pedestrians positions in

each time step (which is important for evacuation modeling).

2.5 Chapter highlights

1. Two basic approaches exist in pedestrian modeling and simulation. From
the macroscopic perspective, pedestrian movements are described using
magnitudes like flow, average speed and area module. It is interested in
crowd movement and shape and it is difficult to model emergent behaviors.
However, it can be computationally efficient and easily scalable for the num-
ber of individuals. The microscopic approach involves individual units with
local characteristics such as speed, position and interactions. When inter-
actions are considered individually, the emergence of collective behaviors is

possible.

2. There are no clear limits among the different approaches that belong to
a group (macroscopic or microscopic). For example Agent-based models
can include individuals who generate their dynamics using the social force
model. Analogously, the social force model can be a layer of more complex

behavioral models that include psychological levels or planning.

3. The fundamental diagram displays at a point the relationship between the
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average speed of pedestrians and the density. It is a basic tool to mea-
sure and compare these macroscopic key indicators of pedestrians streams

quantitatively.

. Many commercial pedestrian simulators exist. Most of them follow a mi-
croscopic model that permits the design of complex behaviors. The field
of applicability of existing pedestrian simulators are mainly architectural
and civil engineering studies, and crowd simulations for movies and video

games.
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Chapter 3
Theoretical Framework

Reinforcement Learning (RL) is a well-founded field in the machine learning area
devoted to solving sequential decision-making problems. The goal is to learn to
control a system so as to maximize a numerical value which represents a long-term
objective. Specifically, the idea consists of using experiences interacting with the
environment to learn the optimal value function. This value function predicts
the best long-term outcome an agent could receive from a given state when it
applies an action and follows the optimal policy thereafter (Santamaria et al.,
1997). In a RL problem, the rewards define the task to learn. For example, in
a RL game problem, an agent could learn to play a game by being told whether
it wins or loses through a reward, but he/she is never given the correct action at
any point in time. In a RL setting, there are two main entities: the controller
and the environment. The controller learns by interacting with the environment
following these dynamics: i) From the environment the controller receives the
current state and a reward associated with the last state transition. ii) The
controller calculates an action which is sent-back to the environment. iii) In
response, the environment makes a transition to a new state and the cycle begins
again. In general, the state transition is an stochastic function. The problem
consists of learning a controller that maximizes the total reward, starting from
any state. In RL theory, the controller is exclusively concerned with the learning
process, leaving the rest of the processes (i.e.sensing) to the environment. In this
work, the controller resides in the agent, setting a relationship between agent and

environment instead of controller and environment. An schema of the process
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Figure 3.1: Scheme of a single-agent reinforcement learning process (Image from
Sutton’s book (Reinforcement Learning MIT Press)

can be seen at Figure 3.1. The following works Busoniu et al. (2010); Kaelbling
et al. (1996); Sutton & Barto (1998); Szepesvari (2010); Wiering & van Otterlo
(2012) focus on the RL foundations.

3.1 Single-agent reinforcement learning

A reinforcement learning problem can be modeled as a Markov Decision Process
(MDP). In the 50’s Bellman proposed a numerical method to solve sequential
decision processes using a recursive functional equation (Bellman, 1957). The
MDP concept was introduced by Howard (1960) in 1960 as a Markov chain in
which each transition represents a criticized decision. The following definitions

introduce the basic concepts:

Definition 1. A Markov Decision Process is a 4-tuple constituted by a state space,
S, an action space, A, a probabilistic transition function P : S x A x S — [0,1]

and a reward function p: S X Ax S — R.

The state signal s; describes the environment at discrete time ¢t. In a state
s¢, the decision process can select an action from the action space a; € A. The
execution of the action in the environment changes the state to s;11 € S following
the probabilistic transition function P(s;, a;,Si41) = Pr{sigy1 =5 | st = s,a4 =
a} that is, the conditional probability of going to state s’ at time ¢+ 1 when being
at time t in state s and performing action a. Each decision is accompanied by an
immediate scalar reward given by the reward function ;11 = p(s, as, $¢41) that
represents the value of the decision taken in state s;. The goal of the process is

to find a policy, that is, a mapping between states and actions that mazimizes a
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function of the reinforcement.

Definition 2. A policy is a probability function w: S x A — [0, 1] where 7(s,a)
gives the probability of selecting action a being in state s. A policy is called

stationary if it does not change over time.

Definition 3. A deterministic policy, also known as greedy policy is one that for
each state of S has probability 1 of taking an action of A and probability 0 of
taking the rest of actions. Formally: Vs; € S Ja; € A| w(si,a;) =1, w(s;,ax) =
0, k#J

The behavior of the agent is determined by its policy which specifies how the
agent chooses the action given the state. The agent’s goal is to maximize at each

time-step t the expected discounted return defined as:
Ry = E{Z Vrejen} (3.1)
=0

where the v € (0, 1] parameter is the discount factor and the expectation is
taken over the probabilistic state transitions'. Figure R, represents the rewards
accumulated by the agent in the long run (Busoniu et al., 2010). The discount
factor can be interpreted as the increasing uncertainty of future rewards because
the more distant the future reward is, the less importance it has in the return of
instant ¢ (note that factor 77 tends to 0 in case of v < 1). This discount factor
has an important effect on the navigational problems (the class of problems that
we are interested in). Figure 3.2 shows a transition graph commonly used to
describe situations in RL problems. The colored circles represent actions and the
large circles represent states. The values are the immediate rewards received to
execute a specific action. To make it easier, imagine a deterministic model where
the transitions do not follow a probabilistic function but they are deterministic
transitions. The agent’s learning process is at discrete time k in state Sy. If
the agent chooses the action Ay, the agent goes to state S and after selecting

action Ay, arrives at the goal receiving an immediate reward of 1. The return

In case where v = 1 the return is named undiscounted and it is common in episodic
problems
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Figure 3.2: Transition graph to show the effect of the discount factor

that obtains state Sj is, according to the Equation 3.1, Ry =0+ v < 1. On the
contrary, when action A is selected, the return is R = 1. Therefore state S
will prefer to select A} action because the return is greater. The discount factor
introduces a preference for the shortest path in terms of the number of actions
selected which has a direct translation to the shortest distance path selection
when the RL problem is a navigational problem.

In an MDP, the necessary information to take correct decision is in the state
signal itself. This means that the history of the agent, that is, the sequence of
states and actions that occurred before are not taken in consideration. It is said
that MDPs have the Markov property.

Definition 4. Markov property.

/
Pr(sigp1 = 8,101 =7 S, a4, 74, S¢—1 ... T1, S0, Qg) =

Pr(siz1 =811 =1 | 8,04, 14) (3.2)

This equality means that the environment’s response at time t + 1 only depends

on the state and action chosen at the immediate previous time t.

If an environment has the Markov property, then its one-step dynamics enables

us to predict the next state and expected next reward given the current state and
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action. An example of a system with the Markov property is chess. In each
moment, the player has all the necessary information to decide, by observing the
current configuration of play without knowing how each piece came to its current

position.

3.1.1 Action-value functions

Almost all RL algorithms in control problems are based on estimating action-
value functions, functions of state and action pairs, that measure how good it is
for the agent to perform a specific action in a given state. The notion of “how
good” is defined in terms of the expected return that the agent can receive in this
state (Sutton & Barto, 1998).

Definition 5. The Action-value function (Q-function) Q™ : S x A — R is the

expected return of a state-action pair given the policy m:

Q" (s,a) = E{R; | st = s,a; = a, 7w} = E{Z Yrisjan | 8= s,a; = a,m} (3.3)

J=0

The action-value functions define a partial ordering relationship over poli-
cies (Sutton & Barto, 1998). A policy 7 is better than or equal to the policy 7/
(m > a')if Q7(s,a) > Q™ (s,a) Vs € S,a € A. There is at least one policy that is
better than or equal to all other policies. This policy is an optimal policy, and we
denote it as 7*. All optimal policies share the same optimal action-value function
that is defined as Q*(s,a) = max Q" (s,a) Vs € S;a € A. An optimal policy is

automatically derived from the optimal value-function:

7*(s) = argmax Q*(s, a) (3.4)

a

One fundamental property of action-value functions is that they satisfy a

recursive relationship:
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Q(s,a) = EAD i | si=s,0,=a} =

J=0

o0
E{ria+ ’YZ’YjTtJer | st =s,a, = a} =
=0

e.¢]
Z P(s,a,8)[p(s,a,s) + 727(3/7 a/)Eﬂ{Z ’Ykrt+j+2 sip1 =8, a1 = d'}] =
s’ a’ 7=0

Z P(s,a,s)[p(s,a,s) +~ Z m(s',a")Q7(s',d")]
) ’ (3.5)

This equation is the Bellman equation for Q™, and expresses the relationship
between the value of function Q™ for an state-action pair and the values of its

SuUCCessors pairs.

Definition 6. The Bellman principle of optimality. From any point (an state-
action pair) on an optimal policy, the remaining policy is optimal for the corre-

sponding problem initiated at that point.

From this definition, to apply the Bellman principle to the Bellman equation
(Equation 3.5) means to select in each state s the action with maximum () value.

With this operation the equation for Q* also known as Q-function is defined as:

Q'(s.0) = 3 Pls.a,)pls. a. ) + 7 max @ (', a")
s (3.6)
Vse S,ae A

Equation 3.6 is a contraction mapping. It has been proved that the optimal
solution of this dynamic programming equation is unique and can be calculated
iteratively by successive approximation (Hernandez-Lerma, 1989). The agent can
achieve the learning goal by first computing Q* and then choosing actions by the
greedy policy, which is optimal (i.e. maximizes the expected return) when applied

to QQ* as expressed in Equation 3.4.
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3.1.2 Solving Q*

The calculus of the maximum action-value function @Q* (or Q-function) depends
on the information available concerning the MDP. Specifically, if the transition
function P(s,a,s’) and the reward function p(s,a,s’) are known, dynamic pro-
gramming (DP) methods can be applied. If the transition function P is unknown,
which means that there is not a model of the dynamics of the environment, RL
methods can be applied!. In the field of pedestrian dynamics, many partial
models have been developed to explain or simulate specific problems, like lane
formations, oscillations, etc. These models generally take the form of abstract
rules or complex dynamic equations that are very difficult to convert to an MDP
problem. This is the main reason why my work will focus on using model-free,
RL-family algorithms.

Basically, there are three classes of DP/RL algorithms: policy iteration algo-
rithms, value iteration algorithms and policy search. They are characterized as
follows (Busoniu et al., 2010):

e Value iteration algorithms search for the optimal Q-function which con-
sists of the maximal returns from every state-action pair. The optimal

Q-function is used to compute an optimal policy.

e Policy iteration algorithms evaluate the policies by constructing their action
value function (instead of the optimal value function) and use these action
value functions to find new, improved policies. These two processes can be

performed simultaneously with each new piece of data.

e Policy search algorithms use optimization techniques to directly search for

an optimal policy.

In this chapter I will focus on the types of model-free algorithms that are
going to be used in the experiments. Specifically, I will introduce a value iteration

algorithm and a policy iteration algorithm.

! Another possibility exists which consists in interacting with the environment to build
a model and then use DP methods to solve the MDP. This approach has been followed in
algorithms like Dyna-Q (Sutton, 1990) and Prioritized Sweeping (Moore & Atkeson, 1993)
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3.1.3 A model-free value iteration algorithm. Q-learning

Q-learning was first introduced by Watkins (1989). It has become the most widely
used algorithm from the Value iteration class. It starts from an arbitrary initial
Q-function @y and updates it using pieces of data tuples collected by interacting
with the environment. These tuples have the form (s;, as, s441,7141). After each

transition, the Q-function estimation is updated using the data tuple as follows:

Qui1(s0ar) = Qulsr, ar) + afregs +ymax Qu(se, @) = Qulse; ar)] (3.7)

where o« € ]0,1] is the learning rate. The term in brackets is the temporal
difference (TD), i.e. the difference between the updated estimate of the optimal
Q-value of (s, ay), (ri1 + ¥ max Q:(st11,a’)) and the current estimate Q(sy, ay).
The Q-learning algorithm belc(;ngs to the family of the TD(0) control algorithms.

As the number of transitions ¢ approaches infinity, Q-learning asymptotically
converges to Q* in a discrete state and action spaces under the following condi-
tions (Watkins & Dayan, 1992):

[e'e) 2 - . e
o > ,qj is finite and Y 77 a; — oo.

e All the state-action pairs are visited infinitely often.

The second condition is satisfied in theory if the controller has a non zero
probability of selecting any action in every state (Busoniu et al., 2010). But
the controller also has to exploit the acquired knowledge to approximate to the
optimal Q-function. This is the exploration-exploitation trade-off in RL. The
agent has to explore the environment to find new better policies but also has to
exploit the acquired knowledge to improve the expected return. The agent has to
decide at each moment whether to act to gain new information (explore), or to
act consistently with past experience to maximize reward (exploit). The solution
to this dilemma is to use an exploratory strategy that balances the exploration
with the exploitation inside the learning process. Actions are selected by using a
probability distribution that changes over time, so that the policy explores more
at the beginning of the learning process and exploits more at the end, becoming
a greedy policy in the final stages. There are two commonly used exploratory

strategies:
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e The e-greedy policy. This strategy selects with probability ¢ a random ac-
tion and with probability (1 —¢) the greedy action (the action that provides
a higher expected return at the moment of the evaluation). In practice, the
policy sets an initial value of € that tends to 0 (greedy policy) at the end of

the learning process.

e Softmax. This strategy follows a Boltzmann distribution where action a on

the tth play is selected with probability

Qi(a)/7

Pry(a) = S e/

(3.8)
where 7 is a positive parameter called temperature. High temperatures
cause an equiprobable choice of actions and at low temperatures the prob-
abilities are different according to the differences in the values of @);. When

the temperature is near 0, Softmax becomes the same as the greedy policy.

Aside from these approaches that need for a prior: discretization of the state
space, other proposals have arised without this restriction like the multi-resolution
exploration (MRE) proposed by Nouri & Littman (2008). In MRE, the level
of generalization of the state space is dynamically adjusted during the learning
process using a hierarchical mapping to identify regions of the state space that
would benefit from additional samples.

The trade-off between exploration and exploitation consists of choosing actions
that are best according to the current state of knowledge, and actions that are
not the current best but improve the state of knowledge and potentially yield
higher payoffs in the future. It combines new experience with old value functions
to produce new and statistically improved value functions in different ways

The Algorithm 1 shows the Q-learning algorithm. The final conditions are
not specified because they depend on the implementation. An episode ends when
a final state has arrived or when a fixed number of action executions have been
performed. The final condition for the algorithm is specified in practice by setting
a number of trials.

The update rule of the Q-learning algorithm uses a greedy policy (rr}lz}x Q(s',a"))

while the algorithm uses another policy for interacting with the environment (an
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Algorithm 1: Q-learning

Data: discount factor v, exploration schedule, learning rate

schedule, number of episodes
Result: Q*
1 begin

2 Initialize Q(s,a) Vs € S,a € A arbitrarily;
3 repeat
4 Initialize s;
5
6

repeat

Choose a from s using a policy derived from @ (e.g.
e-greedy);

Take action a, observe r, s';

Update the Q-function:

Q(s,a) = Q(s,a) + afr + 7 max Q(s',d) — Q(s,a)l;

10 s« s’

o

11 until end condition of the episode;
12 until number of episodes completed;

exploratory policy). For this reason it is said that Q-learning is an off-policy
RL algorithm. Also note that the update rule is very similar to the Bellman
optimization rule shown in Equation 3.6. This is a characteristic of the Value
iteration algorithms. The convergence of the Q-learning algorithm as well as
other off-policy variants were formally proved in Jaakkola et al. (1994); Watkins
& Dayan (1992).

3.1.4 A model-free policy iteration algorithm. Sarsa(0)

The algorithm Sarsa(\) is a model-free policy iteration algorithm proposed by Rum-

mery & Niranjan (1994) as an alternative to Q-learning. Although initially its

name was modified ()-learning, the name Sarsa was introduced by Sutton in 1996.
Sarsa starts with an arbitrary initialized Q-function and updates it at each

step as follows:

Qer1(5t, ar) = Qi(se, ar) + ¢ [rp1 + ¥ Qe(Se41, A1) — Qi(5¢, ay)] (3.9)

where « is the learning rate and v the discount factor.
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The term in brackets is the temporal difference. It is not the same as the
temporal difference used in Q-learning. While the Q-learning temporal difference
is similar to the Bellman optimization rule, the Sarsa includes the action a;q
that is selected by the current policy that is being learned. This is why it is
said that Sarsa is an on-policy temporal difference method. On-policy algorithms
cannot separate exploration from learning and therefore must confront the explo-
ration problem directly. The update rule of Sarsa (Equation 3.9) uses the 5-Tuple
(St, g, Te1, St41, ar1) that makes up the transition from one state-action pair to
the next. This 5-Tuple gives rise to the name Sarsa for the algorithm. Sarsa is
continuously estimating Q™ using the policy that is being learned m. At the same
time, policy 7 is changing because the exploratory policy uses the new updated
Q™. Sarsa converges with probability 1 to an optimal policy and an optimum
action-value function as long as all state-action pairs are visited an infinite num-
ber of times and the policy converges in the limit to the greedy policy (Sutton &
Barto, 1998). A version of Sarsa(0) is presented in the Algorithm 2. It has the

same ending conditions as those for the Q-learning algorithm.

Algorithm 2: The Sarsa(0) Algorithm.

Data: discount factor v, exploration schedule, learning rate
schedule, number of episodes

Result: Q*

1 begin

2 Initialize Q(s,a) Vs € S,a € A arbitrarily;

3 repeat for each episode

4 Initialize s;

5 Choose a from s using a policy 7 derived from @ (e.g.

e-greedy);

6 repeat for each step of the episode

7 Take action a, observe r, s';
Choose a' from s’ using a policy 7 derived from @
(e.g. e-greedy);

9 Update the Q-function:
Q(s,a) = Q(s,a) + alr +7Q(s, ) — Qs, a);

10 s« s’ a«—d;

11 until end condition of the episode;

12 until number of episodes;
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The convergence of the Sarsa(0) algorithm was formally proved in Singh et al.
(2000).

3.1.5 Eligibility traces

As it was indicated above, the goal of the learning process is to find a policy that
maximizes in each state-action pair the expected return defined in Equation 3.1.
The value of this equation is calculated at the end of each episode, when all the
immediate rewards have been collected. This is what the Monte Carlo methods
do (Sutton & Barto, 1998). Given a state-action pair in step t, the value is
updated with the collected rewards from this step till the end of the episode at
step T as shown in Equation 3.10.

Ry =ro1 +Yree + e+ + yT Dy, (3.10)

This type of updating is slow because the immediate rewards have to be
stored and the return R; cannot be calculated until the episode ends. On the
contrary, the TD(A) methods use a part of the sequence of immediate rewards
and substitutes the rest for a estimation using the correspondent value of the
value function. This strategy is called bootstrap. Therefore, the R; value could
be estimated using different expressions depending on the step in which it is
truncated. We refer the different expressions as a one-step target RED, a two-step

target R§2) and so on:

Rt(l) = 111 + YQ(St42, 42)

RP = 11 +yrip + V' Qs113, arts) (3.11)

R =1+ yrees +97rs o+ Q(s0ke1, Grsrg)

In the TD(A) family of control algorithms, the parameter \ gives weights

to the set of n-step targets to get a weighted average (where the terms decay
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exponentially in importance) following the expression called the A-return:

o0
R =(1-X)) A 'R (3.12)
n=1

The term (1 — \) is a normalization factor of weights. When A\ = 0, R}
becomes R,El) that is the expression used in Algorithm 2.

This approach to the problem is known as the forward view. The forward
view itself is not directly implementable because it is acausal, using at each step
knowledge of what will happen many steps later. The backward view provides a
causal, incremental mechanism equivalent to the forward view. In the backward
view of the TD(A) family of algorithms there is an additional memory variable
which is associated with each state, the eligibility trace (Sutton & Barto, 1998).
The elegibility trace of the state-action pair (s, a) at time ¢ is denoted as (s, a) €
R*. Tt is defined as:

Aei_1(s,a)+1 if s =54, a = ay,
e(s,a) = Ae-1(s,a) ' ' (3.13)
yAer_1(s, a) otherwise,

At each step, the eligibility traces for all state-action pairs decay by v\ and
the eligibility trace of the visited state-action pair (s;,a;) is incremented by 1.
The 7 parameter is the discount rate of the return (Equation 3.1). The TD-error

for one decision at time ¢ being at the state-action pair (s, a;) is:

O = Tew1 + YQu(St41, ar1) — Qu(se, ay) (3.14)

This TD error is propagated towards all the state-action pairs according to
their eligibility value which decays with time. Thus, the update rule of the TD

family algorithms is:

Q(s¢,ar) = Q(s¢, ar) + ade(sy, ay) (3.15)

In Algorithm 3, the tabular version of the Sarsa()\) algorithm is displayed.
In Sutton & Barto (1998), it is demonstrated that both, the forward view and

the backward view, are equivalent. There are versions using eligibility traces for
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Algorithm 3: The tabular Sarsa(\) Algorithm.

® N O A W N -

10
11
12
13

14
15
16
17

Data: discount factor «, A, exploration schedule, learning

rate schedule, number of episodes

Result: table Q*
begin

Initialize Q(s,a) Vs € S,a € A arbitrarily;

Initialize e(s,a) =0 Vs € S,a € A;

repeat for each episode

Initialize s, a;

repeat for each step of the episode

Take action a, observe r, s';

Choose a’ from s’ using a policy 7 derived from @)
(e.g. e-greedy);

dr + ’7@(8/7 a/) - Q(Sv a);

e(s,a) «—e(s,a) + 1;

forall the s; € S and a; € A do

Q(si,a;) — Q(s4,a;) + ade(s;, a;) ;

L e(si, aj) < yAe(si, a5)

5« s';

a <« a';

until end condition of the episode;

until number of episodes;
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the two algorithms presented in this chapter: Q(\), the TD(\) version of Watkin’s
Q-learning algorithm, and Sarsa(\), the TD()) version of the Sarsa(0) algorithm.
The algorithms using eligibility traces require more computation that one-step
methods, but they offer significantly faster learning. Thus, it often makes sense to
use these versions when data cannot be repeatedly processed as occurs in on-line

applications such as in the framework presented in this thesis.

3.1.6 Complexity of the RL process

There has been a great deal of theoretical work on analyzing RL algorithms.
The convergence proofs cited above for the Q-learning and Sarsa(0) algorithms
with discrete states and actions spaces, guarantee that under certain conditions,
these algorithms can compute optimal value functions in the limit. But these
convergence results make no performance guarantee after only a finite amount of
experience (Strehl et al., 2006). The work by Even-Dar & Mansour (2003) showed
that the tabular Q-learning algorithm converges to a near-optimal value function
in a polynomial number of timesteps '. This result requires an exploratory policy
that, with high probability, tries every state-action pair every L timesteps (for
some polynomial L). As convergence in the limit is not a realistic situation, it
is necessary to know the convergence properties of the RL algorithms under real
conditions, that is, with a limited number of interactions with the environment.
The sample complexity measures the amount of timesteps for which the algorithm
does not behave near optimally or, in other words, the amount of experience it
takes to learn to behave well. All the algorithms whose sample complexity can be
bounded by a polynomial in the environment size and approximation parameters
with high probability are called PAC-MDP (Probably Approximately Correct in
Markov Decision Processes). The first family of algorithms proved to be PAC-
MDP were those that maintain an internal MDP model: (R, (Brafman &
Tennenholtz, 2002), E* (Kearns & Singh, 2002) and MBIE (Strehl & Littman,
2005) are examples of these kinds of model-based algorithms. The first model-free
algorithm proved to be PAC-MDP was Delayed Q-learning (Strehl et al., 2006)

LA timestep is defined as a single interaction with the environment that produces a tuple
of experience (s, a;,ri41,51,1)
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for a finite state and action spaces.

Although the above statements indicate that the MDPs are solvable in poly-
nomial time, another interesting question arises: is the MDP problem paralleliz-
able? Some optimization problems like minimum spanning tree or the shortest
path problem can be solved by algorithms that use cooperating processors. The
work by Papadimitriou & Tsitsiklis (1987) demonstrates that MDPs problems
are P-complete (this means intuitively that such problems are as hard as any
problem in P). P-completeness is taken as evidence that a problem is not sat-
isfactorily parallelized and is likely to be inherently sequential (Greenlaw et al.,
1995). However, in cases of deterministic MDPs with finite horizon and infinite
discounted horizon, Papadimitriou & Tsitsiklis (1987) demonstrated that they
can be solved very fast in parallel. This means that episodic MDPs and non-
episodic with discounted rewards MDPs which have a step probability function
(probability 1 for one transition specific (s,a,s’) and probability 0 for the rest) are
parallelizable. The drawback is that these problems are less interesting that the
stochastic MDP problems.

The extension of the results for finite state spaces to a richer world models with
an infinite number of states and/or actions is an open issue. In this thesis, the
learning processes are carried out in environments with continuous state spaces
and complex stochastic dynamics. Therefore, I will empirically evaluate the learn-
ing processes using quality indicators such as performance instead of dealing with

the problem of analytically evaluating the convergence to near-optimal policies.

3.2 Multi-agent Reinforcement Learning

Multi-agent systems (MAS) is the sub-field of Al that aims to provide both prin-
ciples for construction of complex systems involving multiple agents and mech-
anisms for the coordination of independent agent’s behaviors. The design of a
Multi-agent system is a complex task from the point of view of the agent’s behav-
ior definition. Although the more extended approach consists of programming
these behaviors in advance, it is convenient that the agents have the capabil-
ity of learning totally or partially the behaviors such that the performance of

the agents and of the whole system gradually improves (Stone & Veloso, 2008).
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Markov games (also known as stochastic games) are the natural extension of the
single RL problem for Multi-agent RL systems (MARL). This framework allows
the whole range of collective situations from fully-cooperative to non-cooperative
games including general-sum games to be defined (Busoniu et al., 2008). In fully-
cooperative games, all the agents share the same reward function and assume
an unique maximum Q-function. Amongst the more representative are Team Q-
learning (Littman, 2001) and Distributed Q-learning (Lauer & Riedmiller, 2000).
In competitive or non-cooperative games, each agent assumes that the rest of
the agents want to maximize their loss following a Minimax strategy. A repre-
sentative example for two agents is Littman’s Minimax-Q algorithm (Littman,
1994). Markov games use the joint actions (the Cartesian product of the agents’
actions) as a part of the definition of the state-action space. Unfortunately, the
exponential dependence in the number of agents and the need to converge to equi-
librium as a basic stability requirement of these games, considerably increases the
computational cost of the learning process.

Another different approach can be taken if the interactions between the agents
are sparse. This approach considers that the agents can learn independently of
each other if the task is independent (the dynamics and rewards for each agent
are independent of the state/action of the other). In the work by Melo & Veloso
(2009) this sparse approach takes into account the fact that the agents can coor-
dinate at specific, local bounded areas of the state space. In their approach, each
agent has two independent Q-learning algorithms. When there is not interaction
with the other agents, a value function () is learned. Whereas, when a coordina-
tion with another agent is necessary, another Q¢ value function is learned that
considers the joint actions and/or states. This last table is sparse and requires
a computational sampling effort of the same order as that which is necessary to
learn ().

Multi-agent systems, where the agents are totally independent learners, have
been studied in several works. For instance, Matari¢ (1994) and Sen et al. (1996)
showed that independent reinforcement learning processes are associated with
robots in a group for grasping and navigational problems. A similar cooperative
multi-robot domain is studied with this independent learning approach in (Fer-
nandez et al., 2005). The work by Claus & Boutilier (1998) empirically shows
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that convergence is possible in cooperative settings for a Multi-agent system with
independent RL processes. Another domain which has been addressed with this
independent-learning approach is the Keepaway Soccer task (Garcia et al., 2010;
Stone et al., 2005). Inside the problem domain of crowd simulation, a small case
study that applies independent learning in a Multi-agent RL framework has been
presented by Torrey (2010). Our work assumes that our pedestrian navigational
problems can be solved using this sparse approach and, therefore, the agents will

be considered as independent learners.

3.3 Generalization of the state space

The tabular Q-learning and Sarsa(\) algorithms are used in discrete state and ac-
tion spaces, where each state-action pair corresponds with an entry in the tabular
value function. The problems where a discrete state space exists are problems
of high abstraction level, or toy problems. In real problems, it is common that,
at least, the state space is described by real-valued features, which means that
the value function should be able to represent infinitely many state-action pairs.
Therefore, techniques that represent the value of continuous state-action pairs
using finite resources are needed.

From the point of view of an MDP, the generalization of the state space is
known as the structural credit assignment problem. This is defined as the task
of figuring out the distribution of rewards across the state space (Connell &
Mahadevan, 1997). The idea is to share the reward received in a state s with all
the states in which, following the same action sequence that from s, will result
in a similar outcome. All the methods for solving this problem are essentially
function approximators of one sort or another (Connell & Mahadevan, 1997).

In general, the convergence to an optimal policy using generalization tech-
niques is not guaranteed. For instance, the great success with learning to play
the game of backgammon (Tesauro, 1992), that used a neural network as a state
generalizer, has not been repeated in other problems. This indicates that us-
ing function approximation in RL does not always work well (Boyan & Moore,
1995). Convergence of TD(A) algorithms using linear function approximators (i.e.

function approximators that use linear combinations of fixed basis functions) was
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studied by Dayan & Sejnowski (1994). They proved the convergence in the mean
for this class of approximators, although the rates of convergence can be too
slow for real-world problems. In a re-visiting of the problem, the work developed
by Tsitsiklis & Roy (1997) proves stronger convergence results identifying desired
characteristics in the TD algorithms such as the on-policy updating, but also
undesired ones such as the use of non-linear function approximators. These con-
vergence issues, makes the use of RL techniques for real problems a challenging
task whose results depend, among other factors, on the problem domain and the
used representation of the state space.

In this work I focus on the problem of state spaces with real-valued features,
leaving out of the discussion the problem of continuous action spaces. In order
to address the problem of continuous state space I will consider two different
approaches: Vector Quantization (VQ), a state-aggregation-based method, and

tile coding, which is a linear function approximator.

3.3.1 Vector quantization

Vector quantization (Gray, 1984) discretizes the continuous state space into a
finite set of states named prototypes, centers or codewords (depending of the
literature) such that the real-valued states are aggregated within each prototype.
All the states aggregated to a prototype have the same value, and the region of
state space that is covered by a prototype is a cell. There are not intersections
between the cells, therefore the quantization generates a partition of the state
space. Formally, a vector quantizer Vi of dimension K and size N is a mapping
from a vector space (in our context, the state space) in a k-dimensional space,
R*, to a finite set C' containing N states, that is, Vg : RF — C.

One important class of vector quantizers are those called Voronoi quantizer
or nearest neighbor quantizer. In this class of quantizers, a metric is defined.
A sensed state is aggregated to its nearest state in C, also called its prototype.
Thus, given C' and a state z € R*, then

Vo(x) = arg ryréig{dist(x, v)} (3.16)
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where dist is the metric used to determine the distance between vectors. In this
work the Euclidean metric will be used. This metric has been proven successful
in RL problems with other domains (Garcia & Fernandez, 2012).

An important concept associated to Voronoi quantizers is distortion. The
distortion of a vector © € R* over a prototype § € C is a measure of the cost
of assigning the vector 7 to the cell characterized by ¢. It is common to use the

squared distance as the distortion, also known as the squared-error distortion.

k

D(Z§) =Y (x: — )’ (3.17)

i=1
The goal is to determine a set of N points in R* (the prototypes or codewords)
so as to minimize the distortion from each data point to its nearest center. There
is no efficient solution to this problem and some formulations are NP-hard (Garey
& Johnson, 1979). One of the most popular heuristics for solving this problem is
based on an iterative scheme to find a locally minimal solution (Kanungo et al.,
2002). Given a data set, first generate an initial set of prototypes and iteratively:
i) classify each data sample assigning it to the nearest prototype; ii) update each
prototype z € C' as the center of mass of all data samples which are assigned to
the cluster represented by z (that is, calculate the centroid of the Voronoi cell of
z). This procedure is known as the Generalized Lloyd Algorithm (GLA) (Linde
et al., 1980; Lloyd, 1982). The convergence can be slow and, in practice, a final
condition related to the distortion is used (generally that the loss of distortion
between two consecutive iterations is less than a quantity #). In Algorithm 4, a
version of the GLA algorithm with an additional stop condition is displayed.
Since the update of the prototypes is a local procedure (it only performs local
variations to get the new prototypes), given an initial codebook Cjy, the algo-
rithm will find the nearest local minimum in the space of all possible codebooks.
Therefore, the initial set of prototypes decisively influence the final result of GLA.
Several initialization strategies have been developed to address this problem. I
will follow a schema that uses the GLAWFT algorithm with random restarts which
appears to be the de facto method (Duda & Hart, 1973). This algorithm builds an
initial set of prototypes taking them randomly from the data sampled set. Next,
the GLAWEFTI algorithm is executed. If the distortion loss between the last two
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Algorithm 4: Generalized Lloyd Algorithm with fixed number
of iterations (GLAWFT)

=

o N O ot ks

10

11
12
13

14
15

Data: Initial codebook with N prototypes Cy, threshold of

distortion loss #, max number of iterations MaxIt, data
set H

Result: C;, D;, GoodCandidate
begin

t—1;

// Last mean distortion

Dy «0;

// Current Mean distortion

D; — 0;

repeat

Dy Dy ;

t—1t+1;

Given C;_; = {y;, 7 =1,..N} find a partition of H in
cells R; such that:

Ve e H. o € R; & dist(y;,x) < dist(yg,x) k #j
Calculate the new prototype of the cell R; averaging the
data that belong to this cell y; = m Yoz R, Z and obtain
the C} prototypes set.

Calculate the mean distortion:

N
1 1
D=~ D(Z, i)
N2 TR 2

€R;

until (D, — D;_1 < 0) OR (t > Mazxlt);
if t < Mazlt then
L GoodCandidate « true;

else

L GoodCandidate < false;
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consecutive iterations is greater than a figure MinLossDistortion, the algorithm
saves the configuration and executes the same instance of the GLAWFT algorithm
again to try to get closer to the local minimum. If not, the current final distortion
is compared with that of the stored candidate named Candidate Distortion and it
is replaced by the new configuration if the current final distortion is smaller than
the stored one. Then, another set of initial prototypes is selected from random
samples and the process begins from scratch. This set of operations is repeated
until a total number of iterations of the GLA, specified in the value Total Numlt,
is exceeded. Thus, the total number of iterations used in an instance of the GLA
algorithm depends on the how fast the initial set of prototypes converge to the
solution. The version of the GLA with random restarts used in this work is de-

scribed in Algorithm 5:
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Algorithm 5: The GLA with random restarts algorithm.
Data: TotalNumlt, MinLossDistortion, MaxIt, the data base H.

Result: CandidateCentroids, Candidate Distortion
1 begin
2 CandidateDistortion «— MAXFLOAT ;
// assume that Currentlteration is actualized by the
GLAWFI algorithm

3 Currentlteration < 0 ;

4 Select randomly from H a set of initial prototypes Cy;

5 while Currentlteration < Total Numlit do

6 { C4, Dy, GoodCandidate } « GLAWFI (Cy,

MinLossDistortion, MaxIt, H);

7 if GoodCandidate = true then

8 Co «— Cy;

9 if CandidateDistortion = MAXFLOAT then

// First Time

10 CandidateDistortion < Dy;

11 CandidateCentroids < Cy;

12 else

13 Initialize Cy with randomly selected samples of H
(restart);

14 if CandidateDistortion > D, then

15 CandidateDistortion < Dy;

16 L CandidateCentroids < Cy;

By using vector quantization, the value function can be represented as a ta-
ble with each entry composed of a prototype-action pair. The main advantage
of the method is clear: the tabular RL algorithms can be directly applicable,
avoiding convergence problems. In this line, Vector Quantization for Q Learn-
ing(VQQL) (Fernandez & Borrajo, 2008; Garcia et al., 2010) is a learning schema

that uses VQ as the generalization method for the state space and the tabular
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version of Q-Learning for the learning process. In VQQL, given a sensed state,
s¢, and a selected action, a;, the Q table entry to be updated is (Vi(s:), at). The
exploration—exploitation trade-off is modeled using an e-greedy policy, although
different strategies could be implemented. The complete algorithm is described
in Algorithm 6.

A trade off is necessary between accuracy and efficiency using VQ with GLA.
In order to achieve accuracy, the cell size of the generalizer should be small to
provide enough resolution to approximate the value function. But, as the cell gets
smaller, the number of cells to cover the space grows exponentially and, therefore,

more data is necessary to estimate each cell value Santamaria et al. (1997).

Algorithm 6: Single-agent VQQL Algorithm
Data: end condition (number of iterations or error

threshold)
Result: Q* and V@
1 begin
2 Generate the set T of samples of the state space S
interacting with the environment using an exploratory
policy;
/* Discretize the state space */

3 Use GLA to obtain a state space discretization C' € S
from the sample set T';

4 Let V@Q : S — C be the function that, given any state in
S, returns the discretized value in C

/* Learn the Q-Table x/
while end condition not reached do
6 Get an experience tuple < sy, a, sy, > by interacting
with the environment;
7 Map the states of the experience tuple using V Q.

Each acquired tuple of experience < s1,a, s9,r > is
mapped to < VQ(s1),a,VQ(s2), 7 > ;

8 Apply the Q-Learning update function to learn a
tabular value function Q: C' x A — R, using the
mapped experience tuple;

The final condition is defined in our case as a fixed number of iterations

determined empirically.
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The VQQL algorithm assumes that dataset T is significant, that is, the dataset
contains the relevant information to represent the whole state space. The VQQL
algorithm and similar approaches, have been used with good results in different
domains (Fernandez & Borrajo, 2008; Garcia et al., 2010; Mahadevan & J.Connell,
1991).

3.3.2 Function approximation and Tile coding

In an RL process, an agent interacts with its environment to collect experience
tuples (s, at, r¢+1) that will be used to approximate a value function. We can un-
derstand each tuple specifying an example of a desired input-output behavior of
the estimated value function. In this sense, each tuple indicates that the value of
the estimated function for the state (s, a;) should be more like r4,;. Viewing the
set of experiences as a conventional training set enables us, in principle, to use any
of a wide range of function approximation methods for value prediction including
neural networks, decision trees or multivariate regression. However, many ap-
proximation methods assume a static training set over which many passes occur.
This makes them difficult to use in an RL problem, where the data is acquired
on-line while the agent interacts with the environment. Besides, the values r; of
the training data are non stationary (they evolve over time) because they have
been generated using bootstrap strategies as commented previously in the dis-
cussion of the TD methods. Methods that cannot easily handle nonstationarity
are less suitable for RL problems (Sutton & Barto, 1998).

A measure of the performance of the approximation function method is the
mean-squared error (MSE) over one distribution P of the inputs. In a learning
problem, the inputs are the state-action pairs (s,a) and the target function to
approximate is the true value function Q*(s, a), so the M .SFE for an approximation

(); using a parameter vector 6 is:

MSE(0) =Y P(s)[Q(s,a) — Q(s,a)]” (3.18)

sES

where P(s) is a distribution weighting the errors of different states, and the 0

vector has a fixed number of real-valued components ¢, = (6},62,...,0N). In an
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on-line RL process, this distribution P is the distribution from which the states in
the training examples appeared in the interaction with the environment. A goal
in terms of the M SFE would be to find a global optimum, that is, a parameter
vector % for which MSE(6%) < MSE(6) V0.

One main strategy to approximate the 0% vector is to minimize the MSE error
of the observed examples. The gradient descent method achieves this by adjusting
the parameter vector after each example by a small amount in the direction that

would most reduce the error of that example:

91&11 = 9_; - %Oév(;t [Q*(3t7 Clt) - Q(St; Clt]2 = é; + OZ[Q*(Sm at) - Q(St, at)]v(;tQ(St, at)
(3.19)

where « is a positive step-size parameter.
Although during the learning process we do not know the true value Q*(s, a),
we can approximate it in each interaction ¢ by the value vy = 7111 +7Q¢(St41, apy1)-
Therefore, the general gradient-descent method for action value function predic-

tion is

97::;1 = 9_; + Oé[Ut - Q(3t> at)]vg”t@(st, at) (3-20)

If v, is an unbiased estimate (i.c. E[v,] = Q*(sq, a;) for each ¢, then 6, converges
to a local optimum if « is a decreasing step size parameter.

When we use a function approximator based on a parameter vector 5, we as-
sume that there are many more states than components of 0. Better approxima-
tions at some states are at the expense of worse approximation to other states. In
this situation, distribution P specifies how these trade-offs should be made (Sut-
ton & Barto, 1998).

Tile coding (Sutton & Barto, 1998; Szepesvari, 2010) is a linear function ap-
proximation with binary, sparse features. It is based on the Cerebellar Model
Articulation Controller (CMAC) structure proposed by Albus (1975). It consti-
tutes a specific case of the parametrized function approximators family where the
functions are approximated with a linear combination of weighted binary-valued
parameters.

In tile coding, the space is divided exhaustively in partitions named tilings.
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Each tiling partitions all the space so there are as many partitions as tilings. Each
element of a specific tiling is a tile and, given a point in the state space, there is

only one active tile per tiling associated to this point (see the Figure 3.3).

tiling #1

tiling #2

N

state space

«—state feature #2——

<+~——— state feature #| ——

Figure 3.3: Tile coding with two tilings. Thicker lines indicate the active tiles
for state s. Image from Whiteson et al.’s Technical Report AI-TR-07-339 of the
University of Texas at Austin 2007

Given m tilings and k tiles per tiling, then m - k tiles exist. A binary vector gz_g
indicates the active tiles in each interaction at time ¢, and the vector g stores the
value of the tiles. Therefore, for each tile i, ¢;(s) indicates if it is active (value
1) or not (value 0) for state s, and a weight stored in a table (i) indicates its
value. If the set of actions is discrete as in my framework, the value function for

each action Q* and state s is represented as a lineal combination as described in
the Equation 3.21.

k

Qi (s) =707 = 07 (i)ei(s) (3.21)

1

s

i

The super index 7" means the matrix transpose.

The code of a point of the state space is given by the binary features ¢(i) that
have value 1, the rest remaining with value 0. Therefore, in practice the sum
of Equation 3.21 is not over all tiles of all tilings since only one tile per tiling is
active in the codification of a state.

Although tile coding was used initially as a a generalizator in a connectionist
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context, it is easy to use it in a reinforcement learning process to form a piecewise-
constant approximation of the value function for each action. Given an MDP, the
value estimate of a state s; in a tuple of experience (s;,a, 711, S¢11) is updated

computing the TD error

AQY 1 (8) =Ty + WQ?/(StJrl) — Q7 (st) (3.22)

and updating the particular expression of the gradient descent equation 3.20

for the case of the linear representation of each ()“:

071 (0) = 07(0) + ¢z( $)AQY () (3.23)

where « is the learning rate. Note that

V5 Qi(st) = Vy; Zea )hi(s)) = ¢ (3.24)

in the particular case of a linear approximator. As stated before, it is not
necessary to update the m -k weights, only the m associated with the active tiles.

The width of the tiles, that is, the number of divisions in each dimensional axis
and the number of tilings determine the granularity of the function approximator.
The denser the tiling, the finer and more accurately the desired function can be
approximated, but the greater the computational costs (Sutton & Barto, 1998).
Thus, there is a resolution/accuracy trade-off in the same way as with VQ.

The algorithm Sarsa(\) described in a previous section can be easily adapted
to use a linear function approximator (see the Algorithm 7). We note as @? the
set of binary components of q; that are active for the state s and the action a.

A critical problem of tile coding is the memory requirement, that is exponen-
tial in the number of dimensions. Using a direct implementation, a value to store
each ¢ corresponding to tile 7 is necessary. In my case, the number of dimensions
depends on the specific scenario, for example in some experiments more than 30
parameters are used to specify the state space. Supposing a uniform division of
each dimension in % pieces, more than k3° tiles would be necessary. One trick to

reduce memory requirements is to use a Hash function. With hashing, a pseudo-
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Algorithm 7: Linear gradient-descent Sarsa(\)

10
11
12

13

14
15

16
17

18
19
20

21

22

23
24
25
26
27

Data:

number of episodes k, finite set of actions A

Initialize 6 arbitrarily and & = 0;
repeat

L

s «— initial state of the episode;
for alla € A do

@5 « binary features present in(s, a);

Q" — iy 0(0);

a <« argmax Q%;

a

With probability €: a < a random action € A;
repeat

€ «— YA€,
for all a’ # a do
for alli € p) do
// Replacing traces
L e(i) < 0;

for alli € p; do
| e(i) — 1

Take a tupla of experience (s, a,r,s');

0 —1r—Q%

// e-greedy policy implementation

for alla € A do
©° « binary features present in (s, a);
Qa - Ziewg’ 0(2)7

a' +— argmax Q%

With probability e: a’ «+ a random action € A;

// end of the e-greedy policy implementation
§ 6 +7Q";

0 — 0 + ade;

a<+—a’;

until a terminal state of the episode arrives;

until complete k episodes;

84



random large tiling collapses into a much smaller set of tiles. It produces new
tiles consisting of non-contiguous, disjointed regions randomly spread throughout
the state space, but that still form an exhaustive tiling (Sutton & Barto, 1998).
The key property that makes the use of hashing feasible is that the state space
is sparse in terms of its use by a policy. This means that high resolution of
the method is needed only in a small fraction of the state space. Although the
change of resolution is not covered in this explanation of tile coding, the study
by Whiteson et al. (2007) proposes an adaptive tile coding where the density of
tiles increases in the more visited regions of the state space.

The convergence of TD()) algorithms with linear approximators has been
widely analyzed. Tile coding with hashing is a simple, computationally efficient
function approximator that has demonstrated broad empirical success in the field

of reinforcement learning (Stone et al., 2005; Sutton, 1996).

3.4 Knowledge Transfer techniques in RL

The goal of knowledge transfer techniques is to transfer an inductive bias to the
current learning task (named the target task) from previous learned tasks (named
the source task), avoiding having to start the learning process from scratch. This
has two main beneficial effects: i) it offsets initial performance in the target task
(which is of great value when operating with robots or harmful /delicate processes)
and ii) it achieves superior performance, faster than learning from scratch. The
knowledge transfer can occur at the initialization of the learning process, during
specific situations or along the whole process. Therefore, in knowledge transfer,
we have three different research issues: i) what to transfer, ii) how to transfer
and iii) when to transfer (Pan & Yang, 2010). Knowledge transfer is also known
by other names such as transfer learning, inductive transfer, metalearning, mul-
titask learning, life-long learning and incremental/cumulative learning amongst
others (Thrun & Pratt, 1998).

Knowledge transfer was first studied in psychology with the works by Thorndike
& Woodworth (1901) which focused on the improvement in the human mind of
one mental skill based on the training of other (similar) mental functions. Also

it has been studied in the machine learning field to transfer between machine
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learning tasks (Caruana, 1995), for planning tasks (Fern et al., 2006) and in the
context of cognitive architectures (Laird et al., 1986).

The taxonomy created by Lazaric (2012) classifies the transfer problems into
three groups according to the problem setting: i) transfer from source to target
with fixed domain ii) transfer across tasks with fixed domain iii) transfer across
tasks with different domains. According with this taxonomy, most of the early
literature on transfer in RL focused on the source-to-target setting, while the
most popular scenario in recent research is the general problem of transfer from
a set of source tasks. In his survey, Taylor & Stone (2009) classifies the existing
transfer methods into five different groups: 1) Methods in which the source and
the target task use the same state variables and actions, 2) Methods with the
same property as group 1 but using a group of source tasks instead of only one
source task. 3) Methods with different state pace or action space between the
source task and the target task, but no explicit task mapping is used, 4) The same
situation as group 3) but inter-task mapping is used 5) techniques that learn the
inter-task mapping.

In group 1) works with different approaches are considered. Asada et al.
(1994); Selfridge et al. (1985) use incrementally complex source tasks to approxi-
mate to the target task. The first one uses a source task that approximates to the
transition function of the MDP of the target task. The second one approximates
to the target task using incrementally harder source tasks in a “learning from
easy missions” paradigm. Other set of works transfer partial policies instead of
complete tasks. These works assume that the task to learn has a hierarchical
structure with several sub-tasks that can be discovered using similarities in the
state space (Andre & Russell, 2002) or a Bayesian estimator (Ravindran & Barto,
2003).

In group 2) all the methods use multiple source tasks. Some methods use
all the experienced source tasks when learning a novel target tasks while others
choose a specific subset of the source tasks. The use of one approach or the
other depends on the assumptions about task distribution: if tasks are expected
to be similar, there is no need to select a subset (Taylor & Stone, 2009). The
type of knowledge transferred among the source tasks and the target task vary

in the different approaches. In the work Perkins & Precup (1999), the transition
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function P : Sx Ax .S — [0, 1] may change after the agent reaches the goal. Upon
reaching the goal, the agent is returned to the start state and another transition
function is drawn randomly from a fixed distribution. The agent is provided with
a set of hand-coded options which assists him in the task learning. The agent
learns a single action-value function over these options allowing it to reach the
goal more quickly in tasks with novel transition functions. In the work of Foster &
Dayan (2004), no options are transferred, but there are sub-tasks that can differ in
the placement of the goal state. The sub-tasks are identified in the learned source
tasks using an expectation-maximization algorithm (EM) (Dempster et al., 1977).
As the sub-tasks represent unchanging problems, they can be used as blocks that
completely solve a part of the new task.

The methods of group 3) allow the source task and target task to have dif-
ferent state variables and/or actions. There are no explicit mappings between
the tasks, but the agent uses abstractions over the MDP that are invariant to
changes in the state and/or action spaces. The work by Banerjee & Stone (2007)
transfers identifying forks in tree-based games: states where the player could
win on the subsequent turn regardless on the opponent’s movement. The values
of the features of the source tasks for these forks are used in a variety of tar-
get tasks. Another approach is Relational Reinforcement Learning in which the
learner reasons about a state in propositional form by constructing first-order
rules. Croonenborghs et al. (2007) uses learned values of specific state-action
pairs to build a relational decision tree. This tree predicts which action will be
executed by the agent in a given state. Lastly, the trees are mined to produce
relational sub-tasks which are directly used in the target task assuming that the
sources/target tasks are similar enough.

In group 4) the methods use inter-task mapping. There are approaches that
assume that this mapping is provided to the learner (Taylor et al., 2007). Another
way is to transfer via learned advice or preferences as in the work of Torrey et al.
(2005). In this work, the system automatically extract such advice from a source
task by identifying actions with higher Q-values than others. This advice is
transferred as relative preferences for different actions in different states.

The group 5 methods) deal with the problem of learning the mapping between

tasks. There are two approaches depending on whether the transition function
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is known or not. If it is fully known, a rule graph (i.e an abstract representation
of a deterministic full behavior) can be obtained. In the work Kuhlmann &
Stone (2007), the learner first trains on a series of source task games, storing not
only the value functions but the rule graphs. When a novel task is presented,
it first builds its rule graph and tries to make an isomorphism with the existing
graphs of the source tasks. Once the relationship between a source task and the
target task is found, the action-value function of the source task is mapped to the
states of the target source. In the work by Liu & Stone (2006) knowledge of the
transition function is not assumed. It uses qualitative dynamic Bayes networks
to summarize the effects of actions on state variables. From this knowledge
structure, a mapping between states and actions can be automatically found
using graph-mapping techniques.

In this work I will use two methods for knowledge transfer which are described
below: complezification and probabilistic policy reuse.

Complexification Taylor & Stone (2007) is a group 4 method that uses inter-
task mapping to transfer the learned knowledge between tasks that differ in the
function approximator (the state space generalizer), or in the learning algorithm.
In a complexification process, the function approximator is changed over time
to allow for more representational power. The agent can learn using a simple
representation initially, and then switch to a more complex representation later.
One case of complexification is represented in Algorithm 8 extracted from the
work by Taylor & Stone (2007). In this case, the algorithm describes the pro-
cess for transferring between value function approximators (FA) with different
parametrizations of state variables. The weights (parameters) of a learned FA
are used as needed when the agent learns a target value function representation.
[ will utilize this algorithm in the iterative schema for VQQL described in chap-
ter 6. The performance analysis of the algorithms in that chapter will prove
that our adaptation of the complexification algorithm significantly improves the
learning processes.

Probabilistic policy reuse (PPR) (Fernandez & Veloso, 2006; Fernandez et al.,
2010) is a group 3 method which generates a library of learned policies that can
differ in the state and the action spaces. The learner improves his/her exploration

by probabilistically including the exploitation of the policies of the library. When
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Algorithm 8: Complexification

1 Train with a source representation and save the learned F'A,,.;
2 while target agent trains on a task with F Asqpger dO

3 if Q(s,a) needs to use at least one uninitialized weight in
FAgrger then
4 Find the set of weights W that would be used to
calculate Q(s,a) with FA,,.;
5 Set any remaining uninitialized weight(s) in F'Aqrget
needed to calculate Q(s,a) to the average of W;

the agent addresses a new task, at every timestep, it can choose to: exploit a
learned source task policy, exploit the current best policy from the target task or
randomly explore. Therefore, the RL process is able to probabilistically bias the
exploration of the domain with a pre-defined past policy. The method introduces
an exploration strategy (m-reuse) able to bias a new learning process with a past
policy. The goal of m-reuse is to balance random exploration, exploitation of the
past policy and exploitation of the new policy. Given a past learned policy mpqst,
the exploratory policy of the learning process for the new task will follow this

schedule:

P choose the m,,s policy
(1—1)e choose an aleatory action (3.25)
(1 —%)(1 —¢€) choose the greedy policy

PPR method also uses in its general form a similarity function that allows
the estimation of the usefulness of past policies with respect to learning the
new task. This function is important to discriminate useful policies from the
created library for a specific problem. Another additional problem is the library
building. In Fernandez & Veloso (2006) the authors present PLPR algorithm, an
incremental method to build a library of policies. When solving a new problem
by policy reuse, PLPR algorithm determines how different the learned policy is
from the past policies as a function of the effectiveness of the reuse. If the past
and new policies are ‘sufficiently’ different, PLPR decides to add the new policy
to the library of policies.
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Algorithm 9 shows a Q-learning version which uses PPR. The v parameter
decays the value of v inside each episode and, thus, so does the influence of the

past policy mpqs in the last steps of the episode.

Algorithm 9: Q-learning with PPR
Data: w5, K, H, ¥, v
Result: W, Q, mew
1 Initialize Q(s,a) = 0Vs inS,a € A;
2 for k=1 to K do
3 Set ¢y « 1;
4 for h=1 to H do
5 With probability of ¥, @ = Tpest(S);
6
7
8
9

With probability of 1 — 1, a = € — greedy(mpew(s));
Receive current state s, and reward 7y p;

Q(s,a) — (1 = a)Q(s,a) + a[r + ymazaQ(s', d')];
Set Ypi1 — Yav;

10 Set s « ¢';

K H
u | W= % > 0 2o Y T

This algorithm also calculates the mean value of the sum of the discounted
returns per episode W. This value can be used as an estimate of how similar the
policy target ey, is to the policy mpqs:.

PPR has been used in different types of problems. Fernandez & Veloso (2013)
demonstrates that PPR contributes to the learning of the structure of a domain.
It can be used to identify classes of similar policies grouping them by their use-
fulness in solving a task. In Chevaleyre & Pamponet (2012), the authors define
adaptive PPR. A new approach based on PPR that optimizes the transfer rate
between tasks to avoid that transfer between dissimilar policies can slow down the
learning. The work by Martinez-Plumed et al. (2013) uses PPR with success in
the context of a learning framework for structured prediction using user-defined
operators and functional programming language for the representation of rules
and operations.

Before concluding this section it is necessary to mention the metrics used
to measure the influence of knowledge transfer methods in the learning process.

There are four main metrics (Taylor & Stone, 2009):
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1. Initial jumpstart. This considers the agent’s initial performance in a tar-
get task. This metric capture the influence of the transferred task in the

performance before learning occurs.

2. Asymptotic performance. This compares the final performance of learners
in the target task both, with and without transfer. It can also be understood

as a measure of the acceleration of the learning process.

3. Total reward. This is the total reward accumulated during training. Im-
proving the initial performance and achieving a faster learning rate will help
the agent accumulate more on-line rewards. This metric is more appropriate

for tasks that have a well-defined duration.

4. Time to threshold. This is the time (or the number of episodes) necessary
to reach a specific performance. The threshold is dependent on the domain

and the learning method.

3.5 Applications of RL

Reinforcement learning has a solid and extended tradition in the fields of robotics
and machine learning. Inside these knowledge areas there are many research and
practical applications that use RL as the core or part of their implementation. I
present a non-exhaustive list of them in different areas that reveals the capability
of RL to be applicable in a wide range of different problem domains. Among
the successes of practical reinforcement learning applications in different fields
I will highlight the work by Kohl and Stone in Robotics to learn quadrupedal
locomotion (Kohl & Stone, 2004), the work by Abbeel et al. (2010) to control an
autonomous helicopter flight and a control system to an autonomous robot for
underwater cable tracking (El-Fakdi & Carreras, 2008). Also of note is the RL
work of Maja Matari¢ in multi-robot domains (Matari¢, 1997). In operations re-
search noteworthy is the work by Rusmevichientong et al. (2006) that uses online
preference data for vehicle pricing, the work on vehicle routing that presents the
H-Learning algorithm (Moody & Saffell, 2001), and Proper & Tadepalli (2006)

which presents a scalable system for product delivery. In games the success of
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using RL to play Backgammon (Tesauro, 1995) is famous although it has been
used in other games to improve performance such as chess (Baxter et al., 1998)
or Go (Ekker et al., 2004). In Economics it has been used in the development of
a trading system (Singh et al., 2002) and in a business simulator (Garcia et al.,
2012). In the field of multi-agent systems, RoboCup Soccer (Stone et al., 2005)
is a recognized forum to test RL in real and simulated autonomous robots with
collaborative tasks. RL has also been used in communication to implement error-
recovery strategies in spoken dialog systems (Frampton & Lemon, 2008), and
in telecommunication networks to predict loss of information caused mainly by
congestion (Esfahani & Analoui, 2008). Moreover, it has been used in mobile
cellular communication systems to allocate the communication resource (band-
width) so as to maximize the service provided to a set of mobile callers whose
demand for service changes randomly (Ranjan & Phophalia, 2008). In Mechani-
cal Engineering, an approximated dynamic programming based strategy has been
designed for realtime energy control of parallel hybrid electric vehicles to develop
a fuel-optimal control (Li et al., 2008).

3.6 Reinforcement learning in animation and sim-

ulation

Although RL has been extensively applied in the fields of Robotics, Economics
and Operations research (see Section 3.5), to the best of my knowledge, the use
of RL in simulation and/or animation is scarce.

Several works use RL in Motion-graphs-based animation. Motion graphs (Ko-
var et al., 2002) are commonly used to represent plausible transitions between
motion segments to create animations. By traversing the graph, natural-looking
and complex motions can be synthesized. Efficient goal-directed traversing of this
data structure can be performed using learned controllers. The work by Treuille
et al. (2007) is the main example of the use of RL in this context. In this work,
a new approach to realtime character animation with interactive control is pre-
sented. Their system has two main components: a motion engine blends through

captured motion clips to reproduce realtime human animation, while a control
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policy determines the best sequence of clips to achieve some multivariate control
objective. The controller is the component that uses RL to efficiently traverse the
motion graph from a specific state. It must decide which sequence best achieves
the motion goal from the initial situation. The proposed goals are 'navigation’,
‘spinning navigation” and ’obstacle avoidance’ and a different controller exists for
each one. The value functions are represented by a linear combination of low-
dimensional basis functions that produce complex user navigation and obstacle
avoidance tasks. This work was extended by Lee et al. (2009) who introduce
weighted interpolation on the motion clips to enable more precise controls with
a significantly reduced amount of data. The RL module constructs intelligent
mechanisms that makes decisions on which sequence of clips to concatenate to
produce effective long term behavior. Moreover, the authors use a basis refine-
ment procedure to enhance the power of the value function near critical decision
boundaries. The refinement can adapt very coarse initial basis functions to cre-
ate effective controllers for highly complex tasks. In Wampler et al. (2010), the
authors extend the previous works with motion graphs adding game theory to
generate two-player adversarial games. The learned controllers take into account
the interactions between the rules of the game and the motions generated from
a parametric motion graph. Another extension of the same research group uses
a space-time planner to determine the sequence in which controllers must be ex-
ecuted to reach the goal location (Levine et al., 2011). By planning in space
and time, the planner can discover paths through dynamically changing envi-
ronments. The work by Tkemoto et al. (2005) tries to bridge the gap between
animation control and high-level control logic. The proposed system consists of
a motion graph and a value function to decide which transitions between anima-
tions to take. The value function is approximated using RL in a discretized state
space. The controller learns a parametric value function for choosing transitions
at the branch points in the motion graph. It is coupled with a global path planner
to create realistic motion in changing environments.

A RL controller can also be used to select frames, or pieces, to construct the
animation. The work by McCann & Pollard (2007) uses RL to pre-calculate a
character animation controller that assembles a motion stream from short motion

fragments. It chooses each fragment based on current player input and the previ-
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ous used fragment. Other work uses value iteration to construct a sample-based
value function that selects frames from a collection of motion capture data to
animate and control avatars that represent boxers sparring (Lee & Lee, 2004).

Specific techniques used in RL have also been adapted to animation and/or
simulation problems. The paper by Lo et al. (2012) proposes a method that
facilitates the application of RL to character control generalizing the state space
definition. Instead of using a specific parametric description of the state space,
the agent perceives the environment directly and uses a hierarchical regression
algorithm that adapts to the complexity of the scene. The value function is
then represented by a set of regression trees (which represents the state space)
associated with every action. The system uses the Fitted-Q algorithm to learn an
action controller that permits an agent to navigate inside a virtual environment
without colliding with the objects. The work by Lee & Popovié (2010) uses inverse
RL to determine the appropriate reward function of several behaviors inside an
RL animation framework. The authors introduce a method for inferring the
behavior styles of character controllers from a small set of examples. From these
modeled controllers, they apply inverse RL to determine the reward functions
that define the behavior. The authors show that the calculated reward function
representing a behavior style can be applied to a variety of different tasks, while
preserving the key features of the style present in the given examples. In addition,
the author can refine, through the use of examples, the behavior so that it has
better generalization properties.

One area of RL that has gained momentum by approaching the simulation
field is Motivated Reinforcement Learning (MRL) (Singh et al., 2004, 2010). Psy-
chologists call behavior intrinsically motivated when it is engaged in for its own
sake rather than being a step forward in solving a specific problem. This be-
havior, if implemented inside a learning system, can provide the capability of
autonomously learning different skills, or designing adaptive agents that respond
to unpredictable changes in their environment, as occur in interactive games.
Singh et al. (2004), use intrinsically motivated RL aimed at allowing artificial
agents to construct and extend hierarchies of reusable skills to give the agent
competent autonomy. Hester & Stone (2012) presents an intrinsically motivated

model-based RL algorithm that learns models of the transition dynamics of a
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domain using decision trees. The experiments demonstrate that the algorithm
learns an accurate model of a domain with no external rewards and that the
learned model can be used to perform tasks in the domain.

Inside the field of games, simulation games such as "The Sims’, 'Black and
White’ and ’'Creatures’ give a human player control over the simulated world.
Players can modify the game environment and interact with the non-player char-
acters in certain ways. Although these games do not use learning techniques,
they are the inspiration to use MRL in virtual reality, as explained in the work
by Merrick & Maher (2006, 2007). The idea is to make games with more in-
game modification capabilities. Specifically, this work focuses on the design of
non-player characters (NPCs) which can respond autonomously to unpredictable
open-ended virtual worlds. The approach uses MRL with context-free grammars
(CFGs) to represent character reasoning in unpredictable, evolving worlds. The
motivation component is based on task independent components such as nov-
elty or interest. It can be used to direct learning towards different tasks without
requiring prior knowledge of what those tasks may be or when they should be per-
formed. The learning procedure is continuous because the character can change
task learning, guided by motivation. The problem is how to represent environ-
ments which may change over time. The authors propose the use of CFGs to
make this variable representation. They apply motivated RL to design adaptive
characters for the Second Life virtual world. This initial work has been extended
in the book by Merrick & Maher (2009), that illustrates the use of motivated
reinforcement learning by applications in simulated game scenarios and in live,
open-ended virtual worlds like ‘Second Life’.

In the area of video games, of note is the Xbox 360 game entitled ‘Project
Gotham Racing 3’. It includes an RL algorithm called Adaptive Modeling and
Planning Systems (AMPS) (Kochenderfer, 2006) developed by the Applied Games
Group of the University of Cambridge (UK). This algorithm is used in the realtime
game to learn from experience to drive simulated cars with the shortest possible
lap times. The learning algorithm is efficient enough to permit frame rates of 60
fps.

The use of RL to create autonomous behavioral characters is anecdotal as far

as I know. Apart from the mentioned works by Merrick et al., Blumberg et al.
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(2002) presents an autonomous animated dog that is trained using RL to react to
acoustic patterns. The use of RL with autonomous agents is considered in Torrey
(2010), who proposed a microscopic framework for learning behaviors that are
a mix of socialization and goal-oriented traffic. Their approach uses a discrete
space and focuses on the learning process but does not address the analysis of

the learned behaviors.

3.7 RL tools

In recent years, the RL researchers community has developed a set of software ap-
plications for providing basic, general-purpose RL frameworks or functionalities.
These applications are mainly conceived to provide an easy-to-manage platform
for new researchers in RL or to experiment with new ideas using simple examples.
The oldest example of these applications is Brian Tanner’s RL-Glue (Tanner &
White, 2009). It provides a standard interface to connect an RL agent with an
environment even if they are written in different languages. It is a low level proto-
col to connect agents and environments and it is single-agent oriented. The user
has to program the agent and the environment capabilities. A second example is
the RL Toolkit provided by the RLAI group of the University of Alberta. It is
mainly a collection of demos to initiate in the world of RL although it also pro-
vides utilities such as the tile coding generalizer and a graphic interface. Another
tool available is Teaching-Box (Ertel et al., 2009), a Java-based Machine Learn-
ing toolkit focused on robot learning with educational purposes that includes RL
algorithms. The University of York has also recently introduced an RL library
named YORLL. It is a research tool to quickly develop ideas in RL that support
multi-agent environments and it is currently under development. RL-Park is an-
other Java RL library developed by Thomas Degris oriented to robotics that uses
Zephyr as a visual debugger.

3.8 Chapter highlights

1. Sarsa(A) and Q-learning are Temporal Difference (TD), general purpose

algorithms which have been used successfully in many different problem
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domains.

. Different variants of these algorithms (the tabular versions and the linear
approximator versions) have theoretical convergence guarantees after infi-
nite visits to the states (convergence in the limit). This fact implies that

the learned solutions are sub-optimal.

. The multiagent approach adopted in this thesis considers the agents as
independent learners. This approach has been used with success in other

problem domains by several authors.

. The use of real-valued features to describe the state space implies the use
of generalization techniques such as vector quantization (an aggregation

method) or tile coding (a linear function approximator).

. The use of knowledge transfer techniques can accelerate and improve the
learning process. They can be classified according to the similarities be-
tween the donor task and the recipient task in terms of sharing, or not,
the state and action spaces, performing, or not, the same task (although in
different state spaces) part of the task (subtask transfer), or the capability

of learning the mapping between the tasks.

. The use of RL in animation and simulation is highly limited. Many works
are dedicated to animation where RL is used to learn controllers capable
of assembling frames, selecting pieces of motions or finding optimal paths
inside a motion graph. Others extend specific RL techniques (such as inverse
RL) or approaches (such as Motivated RL) to the animation field. The use
of RL for pedestrian modeling and/or simulation is restricted, as far as I

know, to the referenced work by Torrey and this thesis.
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Chapter 4
Motivation and Objectives

Pedestrian simulation is an active research area in the simulation field. The
simulation of pedestrians is needed in technical environments, entertainment and
also for optimizing transport systems and public facilities. Training environments
(known as serious games), advanced video games, and movies need the simulation
of pedestrians, from individuals to crowds. Two important commercial examples
are Legion (used in the Sydney Olympic games to assess pedestrian circulation
through the Olympic Park) and Massive (used in The Lord of the Rings and
Avatar to simulate crowds). However, achieving realistic pedestrian behaviors
(individually and as a group) using an agent-based approach (that is, through
the specification of local interactions) is a challenging task. First, because multi-
agent architectures are intrinsically complex and specific restrictions have to be
guaranteed (autonomy in sensing and actuation, decentralized control, message-
passing protocol definition). Second, it is not easy to move a group of pedestrians
without falling into mechanical or choreographic movements that produces a feel-
ing of artificiality. Pedestrian groups have their own dynamic properties that
differentiate them from other natural and artificial moving groups (i.e. the emer-
gence of specific collective behaviors (Helbing, 2004), route-planning based on the
pedestrian’s own knowledge of the environment (Koh & Zhou, 2011)).

In this chapter, the use of RL for pedestrian simulation is put forward and
Section 4.1 enumerates the main reasons. Then, Section 4.2 explains several
considerations that lead to methodological decisions. Lastly, in Section 4.3, the

objectives of this work are set out.
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4.1 Motivation

The main interest for using RL in a pedestrian simulation framework is given
because it is a biologically-inspired approach that provides a new perspective on
the problem of the agents’ behavior definition. In humans, one of the basic learn-
ing types, known in cognitive psychology as operant conditioning, is associative
learning in which the learner associates behaviors with their consequences. In a
later feedback phase, the learner modifies his/her conduct besed on the answers
from the environment. In human beings, early learning tasks such as walking are
based on operant conditioning theory. RL shares the assumptions of this type
of learning. Thus, using RL, the user does not have to specify guidance rules
or other models of behavior for pedestrians. Only high level restrictions over
the behavior of the agents' are included in the framework as feedback signals as
immediate rewards (e.g. reaching the goal is good and the agent gets a positive
reward; going out of the borders is bad and produces a negative reward).

A second reason for using RL is the division between the process to acquire
knowledge (the learning process) and the exploitation of this knowledge (the
simulation process). The learning process can be performed off-line in a first step
and the learned behaviors can be exploited on-line in a second step (simulation).
The learned behavior (also known as the policy of the agent) constitutes the
decision-making unit of each agent and is derived efficiently from the greedy
traversal of the learned value function in simulation time. Therefore, the decision-
making process is highly appropiate for real-time simulations.

The third reason is the capability of generating heterogeneous behaviors. The
learned behaviors are different for each agent, providing variability in the simula-
tion. This heterogeneity is intrinsic to the learned behaviors because each agent
learns from its own experiences interacting with the environment, in contrast to
other models in which the creation of variations is performed by the design of
different sets of rules or stochastic variations of the parameters.

A fourth reason is the fact that policies obtained by RL are capable of operat-

ing at different levels, as demonstrated in many navigational problems in robotics.

!The words ’pedestrian’ and ’agent’ are equivalent when I refer to the entity that learns in
the framework and will be exchanged throughout the text.

99



In Sections 1.1 and 2.3.7, mention was made of the strategies that crowd simu-
lators use to model behavior at different levels. In this work I will study if the
pedestrians’ learned behaviors are complex enough to develop characteristics of
high level behaviors (tactical like route-choice and strategical like route planning)
as well as characteristics of low level behaviors (operational tasks such as collision
management).

Another reason is that RL seems promising to address the problem of gen-
erating emergent behaviors. As explained in Section 2.2.11, several works have
successfully used with optimization processes to generate pedestrian simulations.
Specifically, the work by Guy et al. (2012) recently demonstrated that a pedes-
trian model based on the principle of least effort is capable of generating emergent
collective behaviors. Moreover, Helbing & Johansson (2009) suggests that in real
pedestrians, a learning process exists to optimize the automatic response that
minimizes collisions and delays. Being RL algorithms optimization-based pro-
cesses, they might also be capable of generating emergent collective behaviors.

Finally, RL has an important technical background developed over the last
three decades that provides auxiliary tools to confront the challenges of this work.
One important step was the use of generalization techniques to represent value
functions and/or policies, that allowed the application of RL to continuous state
and action spaces. Many different techniques that come from the machine learn-
ing field can be used, such as clustering methods, memory-based coarse represen-
tations, fuzzy representations, randomized trees or kernel functions. They have
demonstrated their usefulness in RL problems (Garcia et al., 2010), opening up
the possibility of their application to real world problems. Another powerful RL
tool is transfer learning. This field has been experiencing significant growth in
recent years and focuses on defining methods that retain and reuse previously
learned knowledge. Knowledge transfer would greatly accelerate the learning
process if done successfully. Different techniques for transfer learning are used in
this work.

Other RL areas could become sources of new ideas for solving different prob-
lems, although they do not fall into the scope of the present work. For example,
the multiple objective problem is an interesting issue for the domain of this thesis.

In the presence of multiple objectives, the usual RL approach is to consider many
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single-objective control problems and, then, try to combine them. Recently, new
proposals appeared that enable one to learn the control policies for all the linear
combinations of preferences in a single learning process (Castelletti et al., 2012).
Another examples of useful RL techniques in this context are discussed in Future

Work section.

4.2 Methodological positioning

Prior to the presentation of the objectives, a number of considerations that lead

to a methodological positioning are introduced:

e The problem of defining the general dynamics of pedestrians is complex.
The state-of-the-art in pedestrian automatic recognition and tracking tech-
nology does not yet permit the proper and speedy tracking of a crowd of
unaware pedestrians in cluttered environments (Berrou et al., 2007). A
complete description of their highly developed and complicated motion se-
quence is rather difficult (Schadschneider et al., 2008). Therefore, a general
model that describes real pedestrian dynamics is not yet available. Thus,
many works have focused on specific aspects and/or scenarios such as jam-

ming or lane formation in normal or panic conditions.

e Real pedestrians organize inside the groups interacting with the neighbor-
hood (avoiding collisions, adapting speed and direction to the local flow,
etc.). In terms of software architecture, interactions between agents is the

defining attribute of Multi-agent systems.

e In realistic problems, ad hoc interactions can not rely on assumptions re-
garding norms and protocols to reach coordination. In real pedestrian prob-
lems, individuals do not communicate their intentions to their neighbors as
in vehicle traffic. Out of general conventions, such as the assumption of
soft changes in the motion states of the individuals in normal conditions,
prior knowledge about the intentions of the other pedestrians is scarce, and
their communication unlikely. Therefore, the information that agents know

about the others is only provided by the sensors.
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Given the above considerations, in this work the problem is addressed with

the following methodological assumptions:

e No model of the dynamics of pedestrians is available. The agents learn

autonomously from scratch, using model-free RL algorithms.

e Fidelity in the reproduction of the local interactions among the agents is
important. The physical interactions should be calibrated to approach the
real world. Moreover, the agents’ actions should also be calibrated to repre-
sent the modifications of the dynamic state that real pedestrians perform.
These similarities with the real world come from the fact that the physics

module, which manages the local interactions, is calibrated.

e There is no prior information about norms coded into the agents. The

agents learn their individual behaviors without prior coordination !.

4.3 Objectives

The main objective of this thesis is to create autonomous embodied virtual agents
capable of learning behaviors that produce plausible simulations of pedestrians
navigation using a Multi-agent RL framework.

This objective has the following considerations and restrictions:

e Pedestrian navigation is considered in this work as the autonomous move-
ment of a pedestrian, alone or inside a group, modeled as a particle. There-
fore, the kinematics problems associated with human locomotion (consid-
ered as the movement of a body with articulated elements) are not consid-

ered.

e A Multi-agent framework implies a microscopic approach to the problem.
It means that the behavioral rules describing the dynamics and the flow

representation are based on individual entities.

!To consider that sharing the same learning method or the same features for the state space
description is a kind of coordination, should be studied in future research.
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e The generation of plausible behaviors means the creation of visually realistic
navigation situations, analogous to those observed in real human pedestri-
ans, although the data (position and velocities) can be different to real
pedestrians. The result must be a simulation that produces a believable vi-
sual result. Plausibility is not a minor goal in pedestrian simulation. Many
other works are focused on creating realistic pedestrian behaviors such as
(Bonneaud & Warren, 2012; Ennis et al., 2008; Lemercier et al., 2012; Levine
& Popovié, 2012; Peters & Ennis, 2009; Sakuma et al., 2005). However, it
is important to know how far (or near) are the results from the reality or
from other well-known models. Therefore, comparisons with experiments
with real pedestrians and other models using fundamental diagrams will be

carried out.

e The study is focused on planar facilities. This means that facilities like

stairs, ramps or elevators are not considered.

e Pedestrian behavior is only influenced by external factors (other agents or
obstacles in the environment). Internal or personal factors (such as time-

pressure or psychological aspects) are not considered.

In order to achieve this objective, several milestones are proposed:

1. Design, implementation, calibration and validation of a Multi-agent learning

framework.

This milestone confronts different challenges:

e Model the pedestrian simulation problem as an MDP. This requires
solving several representation problems: the feature selection for rep-
resenting the continuous state space, the action definition and the value

function representation in a continuous state space.

e The multi-agent architecture also presents difficulties. A multi-agent
learning environment is essentially non-stationary. This is a charac-

teristic that must be addressed in the different problems.
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e The design and implementation of the framework. The following char-
acteristics indicated by Zhou et al. (2010) for crowd simulation sys-

tems, are desirable:

— Flexibility: the ability to adapt to different situations. The frame-
work should be adapted to the representation of different scenarios
and, therefore, the possibility of configuring the MDP. This implies
the possibility of modifying the agent’s perception of the environ-
ment (that is, different representations of the state space) and an

adaptable virtual environment.

— Extensibility: it should accommodate new features without much
difficulty. To favor this, a modular object-oriented software ar-
chitecture will be defined. This design allows the learning algo-
rithms and the modes of generalizing the state space to be easily
exchanged, which can then be combined to perform comparative
studies. Other modules , such as the physics engine, should also

be easy to change.

— Execution Efficiency: the system will work in two different modes.
In learning mode, the calculus of the learned behaviors are per-
formed. In simulation mode, the exploitation of the learned be-
haviors is carried out by looking up the learned value function
which constitutes an efficient decision-making system compared
with other ABS. Moreover, parallel programming techniques will
be used in order to exploit the parallel architectures of current

workstations.

— Scalability: this is the capability to increase the size of the problem
without losing significant performance. Here, studies of scalability
in the number of agents will be performed in order to test the

robustness of the learned behaviors.

e The calibration and validation of the system is another challenge.
First, the physics engine devoted to simulate agent interactions will
be calibrated with selected and justified real pedestrian values. Then,

validation experiments will be carried out and the results compared
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with similar experiments performed with real pedestrians.

2. Two different learning strategies will be evaluated: one based on the Q-
learning algorithm and another based on Sarsa(\). Specifically, the Q-
learning based strategies will constitute a new proposal in RL to adapt

the VQQL algorithm to necessary requirements for pedestrian simulation.

3. Analysis of the adequacy of the dynamics generated by the learned behaviors
to pedestrian dynamics. This study will be conducted using specific tools
of pedestrian dynamics analysis and also comparing with other well-known

pedestrian model (Helbing’s model).

4. Study of the capability of the framework to: i) generate emergent collective
behaviors and ii) to obtain behaviors capable of operating at a higher level
(tactical level). Several scenarios will be proposed in which the existence
of these capabilities is necessary to solve the navigational problem. These
scenarios are well-known examples in the field of the pedestrian modeling

and simulation.

To summarize, the main contribution of this work is to propose a new multi-
agent reinforcement learning approach to the problem of pedestrian simulation
and to empirically demonstrate that this approach provides positive results in a

set of paradigmatic pedestrian scenarios.
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Chapter 5

System architecture, calibration

and validation experiments

In this chapter I will present an overview of the system architecture, the cali-
bration of the physics simulator and the experiments carried out to validate the
implemented framework. In addition, a section is dedicated to explaining the
main tools used to analyze the experimental results.

A web site has been designed to display the results obtained in the different
experiments described in this and the following chapters. The reader can access

it via http://www.uv.es/agentes/RL/index.htm.

5.1 System Architecture

A first question arises when assuming the main objective of this thesis: is it
necessary to implement a new framework from scratch? In general, the RL tools
and algorithm implementations available for students and researchers (described
in Section 3.7) are mainly single-agent oriented and /or educational oriented. They
are built with the main goal of presenting a simple and fast way of obtaining an RL
application to test new ideas or for academic purposes, and they are not prepared
for large implementations of complex systems such as the problem proposed in
this dissertation. Besides, the desired framework must be capable of selecting the

learning algorithm and the generalization module in order to experiment with
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different configurations. For these reasons, the decision to build a multi-agent
learning framework from scratch is taken.

The architecture presented in this work assumes a continuous environment.
In a preliminary study, a system with a discrete grid-like environment was devel-
oped and used in two different scenarios (specifically, the scenarios used in the
experiments described in the next chapter). The first scenario (closed room with
an exit) gave good results, as was reported in Martinez-Gil et al. (2010), and
demonstrated empirically the possibilities of that multi-agent learning discrete
framework. However, the results in the second scenario (a narrow corridor where
a crossing of two groups of agents took place), revealed that a discrete environ-
ment reduced the navigational problem to a gap allocation problem where the
agents could not develop adequate navigation strategies to solve complex spatial-
organization problems. After these preliminary experiments, a real-valued sensing
and navigation system was developed. The rest of the chapter will explain the
architecture of the proposed system and the calibration and validation tests car-
ried out in order to prepare the framework for further experiments that will be

introduced in the next chapters.

5.1.1 Framework overview

The Multi-agent framework has two kinds of agents: the learning agents who are
embodied agents, and the environment agent, without physical representation.
While the number of learning agents is defined by the experiments, there is only
one environment agent. The framework has two working modes: the learning
mode and the simulation mode. In the learning mode, a learning agent uses RL
to learn a near-optimal value function @(s,a), able to control at each moment
the velocity of the physical representation of the virtual pedestrian. It constitutes
the core of the agent’s decision-making module. In the simulation mode, the
learning agents follow the near-optimal policy 7(s) derived from Q(s,a) using
Equation 3.4. The environment agent works in the same way in both modes. It is
in charge of the 3D virtual environment, where each learning agent is represented
by an embodied virtual pedestrian.

The elements of the MDP that constitute the foundation of the learning algo-
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rithms are spread in the different modules defined in the system’s architecture.
Thus, the transformation of the sensed signal to the state space will be allocated
in one of the learning agent’s modules. The action space is defined in both,
the learning agents and the environment agent and the reward function is im-
plemented inside an environment module. The transition function is unknown
and depends on the physics module and the evolution of the learning agents’
behaviors.

The dynamics of the framework is time-step based. The conceptual archi-
tecture of Weyns et al. (2004) is used with a cycle perception-interpretation-
decision-actuation. At each time slot, ¢, all the learning agents interact with the

environment following these steps:

1. Step 1: Each learning agent ' receives individual raw data from the environ-
ment that describe his current state, s;, and a reward, r;_;, that evaluates
the previous decision a;_; at step t — 1. The reward value will be zero if
the environment does not have information to judge the adequacy of the

action.

2. Step 2: Each agent converts the received raw data into a generalized state

space ;.

3. Step 3: Each agent selects an action a; to be carried out. This is known
as a decision. In the learning mode, the state s;, the reward r;_; and the

previous action a;_; are used by the learning algorithm.

4. Step 4: The environment gets the actions of the agents and executes them.
The new actions modify the dynamics of the embodied virtual pedestrians
and, therefore, the general dynamics of the environment. Then, the scene

is simulated with the new dynamics for the rest of the time slot.

In both modes (learning and simulation), the execution time is divided into
episodes. They have a maximum number of time slots (or decisions), but an agent

can finish an episode without exhausting the number of decisions (e.g. because

IFor economy I will refer to the learning agent as ’agent’ and sometimes 'pedestrian’. The
environment agent will be referred as the ’environment’. In an abuse of notation, sometimes
the environment is only the physical vicinity of an agent (or pedestrian).
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the agent has reached the goal). The duration of the execution time is defined
by fixing a specific number of episodes.

In simulation mode, the environment generates an output file (divided into
frames) with temporal information about positions and velocities of the embodied
virtual pedestrians, which constitutes the input for the graphics engine and the

analysis tools of the pedestrians dynamics.

5.2 Framework description

In Figure 5.1, a functional diagram of the two classes of agents is displayed. The

modules have been enumerated with labels (M;) to be more easily identified.

ENVIRONMENT AGENT

M3 M4 M5
ODE <:> Situation Awareness & :>
Physics Module Reward Function Rewards | communication
Module

(3/ Raw Observation
o .
Actions {}

< ‘ Action
Reward+
LEARNING AGENT Observation
MO M1 ~ M2
Decision Module Feature extraction
] module o
VaIueEFu(;Ictlon Generalized State + + @ Comnl;lgj;l:f:tlon
9.6 Reward Generalization modul
PUra— i
Learning Algorithm Acti L
ction
\ >

Figure 5.1: Functional diagram of the two classes of agents defined in the frame-
work
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5.2.1 Description of learning agent’s modules

There are two abstract tasks in an agent: the calculation of the generalized state
space and the decision-making process. When the learning mode is active, the
decision-making task improves from scratch using the active RL algorithm. When
the simulation mode is active, the decision-making task consists of using the
learned near-optimal policy 7. The cost of calculating 7(s) using Equation 3.4 is
constant, thus, it is an efficient decision-making module appropriate for real-time

simulations or interactive environments.

5.2.1.1 Feature extraction and generalization modules (M;). State

space definition

Each agent receives raw information from the environment sensed by the assigned
embodied virtual pedestrian. This information is transformed into real features
that describe the state of the agent.

The state space for each agent is modeled with the features shown in Fig-
ure 5.2. The states follow a deictic representation. The central premise under-
lying a deictic representation is that the agent only registers information about
objects that are relevant to the task at hand (Agre & Chapman, 1987; Whitehead
& Ballard, 1991). The selection of features that represent the state for the agent
is critical for successful learning. Although several automatic feature selection
methods have been developed for the MDPs (Kroon & Whiteson, 2009; Nguyen
et al., 2013), there are previous works in local pedestrian navigation that pro-
vide feature sets that have demonstrated their utility in navigational problems.
The work of Lane et al. (2007) proposes a deictic representation of the state
space, based on local information, that is particularly suitable for RL naviga-
tional tasks. In this thesis, a selection of features that provide local information
about the agent’s kinematic state, the neighboring agents, and the nearest walls
is proposed. This features set models the observation of a real pedestrian inside a
group. Similar features have been used previously in pedestrian models and they
are considered as relevant for the kinematic description of the pedestrian (Robin
et al., 2009) or to characterize the imminence of the collision (Bierlaire & Robin,

2009). The work by Ondrej et al. (2010) also uses relative positions and orienta-
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tions of neighbor walkers to calculate the conditions that determine a collision.

In the proposed RL framework, the state space representation is fixed but the
number of features that describes the state space is configurable. In each specific
experiment, a subset of these features is selected. For instance, in an environment
without walls, the features related with obstacles sensing are disabled.

The features that represent angular magnitudes are measured relative to the
direction that joins the agent with the goal. Note that the features that describe
the neighbor agents and objects are relative with respect to the agent. Avoiding
absolute measures is advisable to make the description of the states independent
of the specific scenario.

The features that describe the state are real valued, therefore, a generalization
process is needed to represent a usable value function. The framework allows the
generalization module of its agents to be selected. The two types of generalization
methods explained in sections 3.3.1 (vector quantization) and 3.3.2 (tile coding)

have been implemented.

5.2.1.2 The learning module (1)

The RL algorithms implemented are Q-learning (described in Section 3.1.3 and
referenced as Algorithm 1), and the linear gradient-descent Sarsa(\) with eli-
gibility traces (described in Section 3.1.4 and Section 3.1.5 and referenced as
Algorithm 7). The modular architecture of the framework allows the selection
of the techniques used in both the generalization and the learning modules in
different experiments. Additionally, the learning algorithms include knowledge
transfer techniques that will be explained in the specific experiments in the fol-
lowing chapters.

Furthermore, the user can define the exploratory policy for each experiment.
For the experiments described in this thesis I have used a e-greedy policy with
an exponential decreasing value respect to the number of episodes carried out by
the agent (see Section 3.1.3 for a detailed explanation). Although a Softmax-type
exploratory policy has also been tested, it is difficult to tune for a high number of
actions. The results, possibly due to this fact, have shown a poor performance.

On the contrary, the e-greedy exploratory policies are easy to define and have
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Figure 5.2: State space attributes. The reference line joins the agent with its

goal.

112



provided good results in all the tested scenarios.

5.2.2 Environment agent’s modules

The environment agent has several roles in the framework, such as: sensing the
parameters that define the raw state of each learning agent, processing the ac-
tion instructions coming from the agents, criticizing the results of these actions

(through the reward signal), and managing the physics module.

5.2.2.1 Situation awareness and reward function module (},)

The function of this module is double. First, it senses the virtual environment
from the point of view of each embodied virtual pedestrian to collect the pa-
rameters that describe the raw state of the corresponding agent. Each embodied
virtual pedestrian is attached in the learning working mode, to a specific learning
agent. The sensed raw state is processed by the feature extraction module of the
correspondent learning agent as explained in subsection 5.2.1.1. Second, after
observing the physical consequences of the actions carried out by the agents at
time ¢t + 1, it makes a judgment of the suitability of the action selected at time ¢
for each agent. The immediate rewards provided at each time slot by the rewards
module are used in the calculation of the return (see Equation 3.1). The reward
function is designed by the user and defines the behavior of the agent. It is not
necessary to model all the possible cases. When there is no information about
the adequacy of an action taken in a specific state, a value of 0 is returned as the

immediate reward.

5.2.2.2 Physics module (M3)

The physics module is a calibrated version of the Open Dynamic Engine (ODE),
which is a physics software library implemented by Russell L. Smith (Drumwright
et al., 2010; Smith, 2001). ODE uses a first order semi-implicit Euler integrator

which uses, to calculate position g and velocity v, the following equations:
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q(t+1) =q(t) + ho(t + 1)
v(t+1) =v(t) +ah (5.1)

where h is the time step of the integrator and a the constant acceleration in a
timestep. The difference with respect to other integrators is that position ¢ is
a function of the velocity at the end of the time step v(t + 1). This type of
integrator is also used in other physics engines such as Bullet Physics Library or
Box2D because it is stable and fast.

The physics module also implements the execution of the agents’ actions.
An action can be understood as a behavioral force that the agent applies to
itself to modify its velocity vector just as real pedestrians do. The variation of
this velocity vector has been used to control the trajectories in other pedestrian
models (Bierlaire & Robin, 2009) and it is carried out with two types of actions
that actuate simultaneously. Omne type varies the speed; the other varies the
direction. The agent has to choose a pair of actions (one of each type) in each

decision of an episode.

5.2.3 The communication modules

The communication modules (M2 and M5) are the interface between each agent
and the environment. The communication is bidirectional and occurs every time
step. There is no communication among the learning agents. The information
flow can be observed in Figure 5.1. The information is included inside a list data
structure that is transmitted through the MPI (The MPI Forum, 1993) protocol
(described in the next subsection). Figure 5.3 displays the order in which the
information is transmitted in a time step ¢. First, the environment communicates
the reward which corresponds to the action taken at time ¢ — 1 and the sensing of
the reached state s;. In learning mode, this information is used by the learning
algorithm to update the value function. Then, the agent selects an action a;
and sends it back to the environment which executes the action in the physics

simulator. In the simulation mode, the reward information is not necessary and it
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is not calculated by the environment. In this case, a default value is transmitted,

and it is ignored by the agents.

Environment Agent
Transmits the reward correspondent Transmits the action selecte
to the action selected at t-1 attime t

Transmits the raw state
for each agent at time t

‘ | Time step | ‘

- — +
t Time Direction t+l

Figure 5.3: Data communication process between an agent and the environment
in a time step.

5.2.4 Software implementation

Each agent has been designed as an independent computational process which
follows a distributed memory model of parallel architecture that uses MPI. In the
MPI programming model, a computation comprises one or more processes that
communicate by calling library routines to send and receive messages to other
processes. In most MPI implementations, a fixed set of processes is created at
program initialization, and one process is created per processor. Processes can
use point-to-point communication operations to send a message from one named
process to another; these operations can be used to implement local and unstruc-
tured communications (Foster, 1995). The MPI programming paradigm considers
local memory with private memory addresses for each process and communication
between processes using message passing.

The output of the learning mode consists of several files with al data about
the learning process. Specifically, data about mean and standard deviation of
performance, immediate rewards and number of actions used in the episode. In
the simulation mode, the output is currently a text file divided into frames where
the position and velocity of each agent is stored. This file is the input for the
3D graphics module which reproduces the simulation. In learning mode, the
3D visualization module is not active. The coupling of the 3D module to the

simulation output is immediate. However, the decision to dump the information
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into a file was taken in order to have available data to analyze the dynamics of
the simulated pedestrians.

The programming language is C++ with the additional modules of MPI for
parallelization, the ODE physics engine library and Open GL library for the 3D
visualization module. A total of 39 C+-+ classes were defined and implemented
plus a few more files that contain GNU licensed code. These GNU files implements
a random generator, a K-means algorithm and the tile coding generalization
system. The reader can access the web page http://www.uv.es/agentes/RL/
code/files.html where the files of the implemented classes are listed and the

header files with the class definition are available.

5.2.5 The graphics visualizing tool

The visualizing tool takes as input the file with the per-frame positions and
velocities of the agents and visualizes them with the required frame rate. This tool
represents the scene with the same spatial information used by the ODE physics
module, displaying an accurate representation, although not visually appealing.
Two scenarios are represented with this visualization tool in Figure 5.4. The
walls are represented by blue prisms and the embodied agents are represented by
spheres, as discussed in Section 5.3.1. However, any tool that takes this format
as input (which is common in simulation), can display the simulation. In fact,
several simulations have been performed using the Unity Game Engine ® which
can be seen on the web site. Figure 5.5 shows images of the same scenarios

renderized with Unity.

5.3 Model of the physics and calibration

In this section I will explain the models of the different physical elements that
make up the virtual environment, as well as the decisions taken in order to cal-
ibrate them. Calibrating a system means providing correct or justified values
to the parameters of the system according to the problem to be solved. In our
case, the parameters of the physic module have to be adjusted to represent a real

pedestrian environment. The parameters discussed in this section are directly
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http://www.uv.es/agentes/RL/code/files.html
http://www.uv.es/agentes/RL/code/files.html

Figure 5.4: Different scenarios. Left: agents inside a room. Right: crossing of
two groups inside a corridor. The agent’s body is represented as a cube with a
bounding circle that simulates the agent’s boundary. The walls are represented
in blue and the red triangles indicate the goals.

Figure 5.5: Renderized simulations of the above scenarios using Unity Game
Engine ®. Left: two views of the agents inside a room scenario. Right: view of
the corridor scenario.
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related to internal ODE parameters making ODE calibration a straightforward

process.

5.3.1 Model of the Body

The first considerations for designing magnitudes for pedestrians appear in the
book by Fruin (1971b), who suggests that the plane view of the human body can
be approximated as an ellipse defined by the body depth and shoulder breadth
measurements. Human factors studies have shown that the fully clothed dimen-
sions of the 95th percentile of the population (95% are less than this) are 330 mm
in body depth and 580 mm in shoulder breadth. The plan view of the average

2. A similar body

male human body occupies an area of approximately 0.14 m
ellipse equivalent to a standing area of 0.21 m? has been used by the New York
City Transit Authority to determine the standee capacity of its subway cars. The
study by Rouphail et al. (1998) recommends designing a simplified body ellipse of
50 em x 60 cm for standing areas, with a total area of 0.3 m? (roughly the 108%
of the ellipse suggested by Fruin. Figure 5.6 displays these body measurements.
This study was used for the USA Federal Administration in its Highway Capacity

Manual.

BODY ELLIPSE

0.50 m BODY DEPTH

0.60 m

SHOULDER
BREADTH

Recommended pedestrian body ellipse
for standing areas

Figure 5.6: Pedestrian body model dimensions in the Rouphail’s study

In this work, the pedestrians will be modeled as spheres in the ODE physics
engine (with a circular plane section instead of elliptic one) to make collision de-
tection faster and computationally cheaper than the elliptic configuration. How-

ever, the dimensions of the circular plane section are similar to those of the elliptic
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model. Specifically the radius will be 0.3 m giving an area of 0.28 m?, approx-
imating the dimensions recommended in Rouphail’s study. Other studies have
also adopted the circular plane section for modeling the shape of pedestrians for

similar reasons (Bourgois et al., 2012; Johansson et al., 2007).

5.3.2 Kinematics Model

The kinematic model is included inside self-driven many-particle systems. In
these systems, the particles have an internal energy reservoir that feeds an indi-
vidual driving force (Helbing, 2004; Schreckenberg & Wolf, 1998). Examples of
these systems are animal herds, flocks of birds or traffic. Although these systems
are within the class of non-equilibrium systems (open systems that exchanges
energy and mass with the environment), the transport properties of the particles
can be described with simple modifications of Newton’s equation of motion (Hel-
bing, 2004). The net force that actuates in a particle i is the sum of the external

forces over it:

mid = Z F; (5.2)
J

In self-driven particles, another internal force exists to generate the individual

driving motion, therefore:
J

Two different dynamic cases exist. In the first, the particle moves freely with-
out interacting with other objects. Then, the forces actuating over the particles
are:

mad@ = Fypi, — | Nt (5.4)

Where u, is the unitary vector with the direction of the velocity and |N |
is the module of the normal force. The second term of the equation represents
the friction forces with the floor, where iy is the friction coefficient. It is easy

to model the walk of a pedestrian in the absence of obstacles and without the
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intention of changing the velocity. In this case, the dynamic situation is:

The total force of the agent is zero. That is, the agent is creating an internal
force equal and contrary to the friction force to maintain a constant velocity in
the walk, conceptually similar to what real pedestrians do.

In the second case, a collision happens between the agent and another object.

Then the total force over an agent is:
m@ = Fi . — g | Ny, + Fe+ Fyy (5.6)

Where fc is the collision force between the two objects and F;r is the force
of friction between the two objects. The solution to this second order differential
movement equation is solved numerically in the ODE integration module.

The most interesting component of this kinematic model is constituted by the

internal driving force F ¢ .- This force has a dual role in the simulation. First,

TV
it is in charge of compensating the friction force with the floor as stated above.
Second, it is a behavioral force that translates to forces the action that the agent

decides to perform in each step.

o du.
F . — 5.7
driv m dt ( )

Behavioral forces are commonly used in social forces models and, in these con-
texts, they implement different influences simultaneously affecting the behaviors
of pedestrians (Helbing et al., 2001). For instance, the repulsion forces to avoid
obstacles or agents, the attraction forces to simulate intentions (for example to

see window displays or meet other agent) and the need to reach a desired velocity.

5.3.3 Collision models and calibration

Modeling collisions between agents is an important task because many of the
microscopic interactions (local interactions among agents) consist of avoiding or

reacting to the collision of other agents. Of special interest is to model the
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mechanical response of skin because it is the first contact element that participates
in the collision of two embodied agents. Models of the human skin have varied
depending of the study the authors are focused on. The work by Magnenat-
Thalmann et al. (2002) considers fold and wrinkle formation and models the
skin as layers of tissues, each one controlled by an elastic deformation using the

Hooke’s Law:

F=—kz (5.8)

where k is the elasticity constant of the material and x is the elongation (dis-
tance to the equilibrium state) of the object. The work by Waters & Terzopoulos
(1990) is oriented to the computer graphics representation of the face and models
the skin using deformable meshes in a three layers model.

If the graphic representation is not the main goal, the mechanical response of
the skin (taking in account that the skin is a composite of three kinds of materials:
the epidermis, the dermis and the hypo-dermis) can be modeled as viscoelastic
materials (Herman, 2007; Wijn, 1980). A viscoelastic media can be modeled us-
ing the combination of two types of elements: springs and dashpots. The basic
combinations are inspired in parallel and series electrical configurations (Herman,
2007). Specifically, the Mazwell body is a spring and a dashpot in series. The
Voigt body is a dashpot and a spring in parallel and the Kelvin body is a Maxwell
body in parallel with another spring. Each model is valid for different types of
materials and situations. While the Maxwell model is preferred to model the
fusion state of several metallic materials, the Voigt model is more appropiate for
collagen or silicon materials. The Kelvin model, and other more complex com-
binations of springs and dashpots, are more accurate if they are well configured
but they are difficult to solve analytically and hard to compute numerically. The
work of Heigeas et al. (2003) local interactions between pedestrians were modeled
using a mass-spring-damper system. In that work, stiffness and viscosity terms
change with respect to relative distance between walkers.

For the collision model in this work, the Voigt model represented in Figure 5.7
will be selected due to the mentioned similarity of skin with the visco-elastic
materials.

In the visco-elasticity model, the force associated with the spring is given by
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Figure 5.7: The Voigt Model for a visco-elastic media

Hook’s Law (see equation 5.8 ) and the dashpot follows the equation

F=—ct (5.9)

Where v is the velocity in response to the force and ¢ is the viscosity damping
constant. The total force of Voigt system is the sum of the partial forces of each
element. .

- X
F=c—+k¥ 5.10
In a dimension and considering the dotted variable as a derivated of time and

the double dot as the second derivate of time:
mi = —kx — ci (5.11)

k
Pt —it—z=0 (5.12)
m m

Defining wy = \/g y (= 5 \/Cm7 Equation 5.12 is written as:

i+ 2Cwod + wiz =0 (5.13)

The initial condition is z(t = 0) = 0 because the dashpot prevents any immediate
deformation.

Equation 5.13 is the differential equation of the motion of an harmonic oscil-
lator and it is solved numerically by the ODE integrator module.

The parameter ¢ configures three different types of damping (see Figure 5.8):
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o If 0 < ¢ < 1 the system is underdamped and it oscillates with a reducing
amplitude (dampening)

e If ( > 1 the system is overdamped and it returns to the equilibrium without

oscillations.

e If ( =1 The system is critically damped and it back to the equilibrium as

fast as possible without oscillations.

Figure 5.8: The damping ratio parameter

In this work, I will consider an overdamped system in similarity with a colli-
sion between real pedestrians. ODE can model a viscoelastic media through the
configuration of two system parameters (ERP and CFM) that need the value of
the coefficients k£ and c. Knowing only k, the coefficient ¢ can be calculated from

C

the expression ¢ = N

The Young module for the elasticity of the human skin varies in the litera-
ture. The book by Herman (2007) sets a value of 0.3 M Pa (Megapascals) for the
face skin while the work by Magnenat-Thalmann et al. (2002) gives a value of
0.6 M Pa for the deep dermis. Skin thickness is variable depending on sex and
age. Medical studies (Escoffier et al., 1989) work with values between 0.7 and
0.8 em for women, or between 0.8 and 1.0 cm for men aged between 25 and 65.
The paper by Magnenat-Thalmann et al. (2002) sets a value of 1.3cm. I will
consider a value of Ly = 1.0e¢m as a compromise between the different values.

The Young module is defined as:

y = 2 (5.14)
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where A is the cross-sectional area and L is the length when the material
does no suffer any force. Assuming a Young coefficient for the skin of 0.5 M Pa,
and a value of A = 10em?, we can calculate the values for k¥ and ¢ used in
the configuration of the ODE library (See Table 5.1). The relative mass of the
modeled pedestrians has been set to 50 Kg. The crashes between pedestrians
occur in a standing position and not all the mass of the pedestrian is involved,
specifically the torso is the most important part in real pedestrian collisions. The
ground compensates part of the weight of the pedestrian, specifically the foot, or
feet, on the ground and part of the leg. Therefore, the kinetic energy involved in

the crash has to be considered with less mass than the real mass of the pedestrian.

Y 0.5 M Pa

A 0.001 m?

Lo 0.01m

¢ 1.5

Relative mass | 50 Kg

k 50000 Nw/m
c 4743 Kg/s

Table 5.1: Values used in the calibration of ODE physical simulator for collisions
between agents

5.3.4 Friction model and calibration

The ODE library automatically calculates the friction between two bodies in
contact. The contact-point-based model of friction in the ODE library is a sim-

plification of the Coulomb model:
|F < ulN]| (5.15)

Where F, is the tangential force proportional to the force N normal to the
surface where the contact point is applied and p is the friction coefficient. The
resultant tangential force is parallel to the friction surface and is in the opposite
direction to the movement.

The experiments described by Kwiatkowska et al. (2009) using aluminum as

the contact surface with the skin, provides values of 0.5 < 1 < 1.5 in a wide range
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of skin hydration conditions. Other experiments (Masen, 2011; Ramalho et al.,
2007) also give values in the range assigned by Kwiatkowska. I will consider a
value of p = 1.0, as an approximate value for the kinetic friction coefficient of
the human skin'. The friction against the floor will be modeled with the friction
coefficient of rubber against the concrete, imitating the contact of the shoes with

the floor. The chosen values are displayed in Table 5.2.

1L
Friction coeflicient for the skin 1.0

Friction coefficient of rubber against concrete | 0.8

Table 5.2: Values of the kinetic friction coefficient used in the model of friction
forces

5.3.5 Actions model and calibration

The agents’ actions modify its velocity vector to control the trajectories in pedes-
trian models (Bierlaire & Robin, 2009) and mimics the control that real pedes-
trians operate in their trajectory. The actions are taken in pairs. The first com-
ponent of the pair modifies the velocity module (increasing or reducing it) and
the second, the orientation of the velocity vector (clockwise or counterclockwise).
There are 8 different ratios plus the ‘no operation’ option for both the speed and
the angle, resulting in 81 possible combined actions. In this model, each action
is understood as the configuration of the physic impulse I of the behavioral force

from time #; to ts.

2 2

. / it = / (dB/dt)dt = mi(vp — ) (5.16)
t1 tl

In the case of the velocity module (speed), adding or subtracting an abso-

lute quantity is the recommended method for simulating real pedestrians’ speed

variations Bierlaire & Robin (2009). The possible additions or subtractions to

the current velocity are the fractions 1/8, 1/4, 1/2, 1/1 of a reference value a,.s

LOther situations can be modeled (i.e. considering the friction between two clothes) with
adequate values of the parameter p
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that has been set to 1.75m/s following the work by Teknomo (2002). In that
work, this value was obtained from video tracking sequences of real pedestrians
on a walkway. With respect to the angle of the velocity, the work by Steiner
et al. (2007), that describes the calibration of the SimWalk pedestrian simulation
system, states that in normal conditions (free or congested) pedestrians walk in
a smooth trajectory. Therefore, the angle of the velocity vectors between subse-
quent steps is assumed to be small. The authors point out that the maximum
change for walking direction in the SimWalk pedestrian simulator is of /4 ra-
dians. Following that study, I also assign a maximum value of m/4 radians to
the inter-step direction of velocity variation. Therefore, the possible actions are
the addition or subtractions of the fractions 1/8, 1/4, 1/2, 1/1 of the reference
value /4.

The agent cannot be assigned with a negative speed. When the deceleration
produces this situation, the final speed is always 0m/s. Besides, the speed can-
not increase more than the maximum allowed (1.8 m/s), determined empirically
in Teknomo (2002). Therefore, the actions over the speed can produce a positive
and negative value overflow ( Figure 5.9) that is managed by setting the velocity
to the end value.

| | | |
1 Action O |

0 ¥ila W/8 i wi2 N
I
I

L 1 Acticnl
] Action 2

/3 Action 3

8] Wi2 3V/4 TV 15V/le W

Action 4 L

Action 5 L
Action 6 | —
Action 7 /4

Figure 5.9: The range of operation for the actions that modify the speed with a
reference value fixed to half of the maximum speed V. The gray rectangles show
the range of the speed where the action has the same effect (overflow). Above:
operation range for the actions that decelerate. Below: operation range for the
actions that accelerate.

The kinematic module of the environment moves the agents across the plane
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using the velocity vector of each agent. The simulation is discretized in Simulation
Time Slots (STS) of the same size assigned to the agent’s decisions. During one
STS, the agent’s velocity remains constant unless a crash occurs, because the
driving force Fd:w compensates the friction force against the floor. The STS
is the inverse of the number of decisions per second that the agent must take,
and it is a configurable parameter inside this framework. The reaction time is
the time that a pedestrian takes to change his/her kinematic condition when an
event occurs (for example to avoid another pedestrian that suddenly appears in
its field of vision). I will configure the ST'S parameter (where the agent executes
a decision) taking into account the real pedestrian range of response. The work
by Hoogerndoorn & Daamen (2009) states that the reaction time range of a real
pedestrian varies from 0.1 seconds to 0.8 seconds. We set the STS parameter to
0.5 seconds (therefore, the agent takes two decisions per second).

The values for calibrating the actions are summarized in Table 5.3.

Maximum speed 1.8m/s
Maximum change of direction m/4rad
Maximum acceleration module (a,es) | 1.75m/s?
Reaction time (STS parameter) 0.5 seconds

Table 5.3: Values used in the calibration of actions

5.3.6 Calibration of the time step for integration

The accuracy of the Euler semi-implicit integration procedure depends critically
on the selected integration time step. Ideally, it should be near 0 to provide
an accurate algebraic-like calculation. However, it is not efficient because the
integration step is a bottleneck for the simulation process. Although paralelliza-
tion can alleviate the problem, in a scalable framework, the problem does not
disappear. Therefore, a trade off between accuracy and efficiency is necessary.

In order to decide the range of operation of the integration time step, I have
set a simple test where two agents suffer a frontal crash with constant velocity
1.8m/s (see Figure 5.10).

Figure 5.11 shows the mean values of the speed calculated by ODE after the
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Figure 5.10: Collision scenario. Left: start positions. Right: positions after the
collision.

collision (named the bounce speed in the graphics). The logarithmic scale in
the abscissa shows the number of timesteps per second. The means have been
calculated in an interval centered in a power of 10 of the same relative width,
that is, values of 7, 8, 9, 11, 12 around the ten, values of 70, 80, 90, 110, 120
around the hundred, etc. The values tend to converge to the value of abscissa
10000. There is a significant difference in the standard deviation of values around
ten and the rest of the values. However, the mean values are similar for 100, 1000
and 10000 time-steps per second. I will consider a time-step of order 2 (about

100 time-steps per second), a good trade off between accuracy and efficiency.
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Figure 5.11: Averaged values of bouncing speed after frontal collision between
two agents
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5.4 Analysis tools

In this section, I will introduce the tools used to analyze the results of the frame-
work’s main processes: the learning process and the simulation. These tools
will be used, among others, to indicate the level of quality achieved in all the

experiments described in this work.

5.4.1 Tools for analyzing the learning processes

The learning process is divided into episodes. In an episode, each agent tries
to achieve their goal (specifically reaching a point by means of his/her velocity
control) by taking decisions. Each decision is evaluated by the environment, and
this evaluation is used to learn another better control. Therefore, the learning
process is gradual and incremental, being developed along a number of episodes
(thousands of episodes in the experiments considered in this work). The natural
way of representing the evolution of the learning process in an agent is to repre-
sent a performance curve. It displays the performance reached by the agent along
the episodes. If the learning process works, the performance increments its value
with the number of episodes. The typical shape of the curve increases at the
beginning and is asymptotic when the agent has learned enough. The concept
of 'performance’ can be specific in each experiment. In general, it indicates the
number or percentage of successful episodes, whatever this means in each exper-
iment. Other indicators, which are equivalent to the performance, are those that
represent the length of the episode (in number of decisions) and the mean of the
rewards obtained in an episode.

In Figure 5.12, different types of curves that describe a learning process are
displayed. On the top left, a graphic with three curves represents the normalized
percentage of performance obtained. The curve entitled “Mean of performance in
the last 100 episodes” calculates the mean of the successful episodes in the last 100.
Note that the curve oscillates with a frequency caused by the exploratory policy.
Although the exploratory process decreases exponentially, exploration is active in
all the episodes because it is part of the learning process. The curve entitled “Mean
of performance from the beginning” represents the same data as the previous

curve, but the mean is calculated using all the data from the beginning. Thus, the
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final performance is lower than the other curve. The curve entitled “Mean curve
of performance from the beginning for all agents” represents the mean curve of the
mean performance from the beginning for all the agents involved in the learning
process. In this curve, the standard deviation is displayed in several points of
the curve indicating the variability of the different agents’ learning processes.
It is higher at the beginning because the learning curve oscillates notably at
the early stages and reduces at the end. The shape of the curves is typical in
a learning process. In a first stage, exploration prevails over exploitation and
learning improves fast. In a second stage, the curve is increasing at a very slow
pace which indicates that the agent has learned. In the case that the learning

process fails, the shape of the curve would decrease from a point.
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Figure 5.12: Different ways of monitoring the evolution of a learning process. Top
and left: mean performance. Top and right: mean length of the episodes. Down:
mean reward of episodes.
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The curve on the top right of Figure 5.12 represents the mean length of the
episodes from the beginning of the learning process for an agent. As the learning
process progresses, the curve decrease because the policy improves directing the
agent to the goal. The curve at the bottom of Figure 5.12 represents the mean of

the return achieved from the beginning in the successive episodes for an agent:

N

_ 1 _
Ry = NZvl’rli (5.17)

i=1

where N is the number of the episodes considered, v is the discount factor, /;
is the length of the episode 7 and 7, is the reward at the final state of the episode
t. This curve increases because the episodes are shorter and the probability of

being successful increases with the number of episodes.

5.4.2 Tools for analyzing the pedestrian dynamics. The

fundamental diagram and the density map.

The fundamental diagram has already been introduced in Section 2.2.1.2. It is a
tool that uses the relation between two macroscopic quantitative parameters to
validate and calibrate the pedestrian models: the flow J and density p (Schad-
schneider & Seyfried, 2009b). Due to the hydrodynamic relation J = pvb, where
v is the average velocity, there are three equivalent forms: J(p), v(p),v(J). In this
work, the second one will be used because the velocity is primary data obtained
from the experiments.

The definition of density in this field is pedestrians per area unit. In a certain
area A, usually a rectangle, the number of people inside it, N, is counted. The

density is then

D= 1 (5.18)

This classic definition of density is appropiate for fluids with > 10'® par-

3. However, pedestrian streams are not infinitely many particle

ticles per mm
systems and the individuals are not adimensional points but they are discrete
and extended in space. The calculus of density has problems of definition espe-

cially at the borders of the measured space. There are two types of problems
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with the measurement of density caused by the borders: spatial and tempo-
ral. The spatial problem consists of defining when a pedestrian is inside the
measured surface. Counting or not the presence of a pedestrian who has half
of their body outside the measurement area can significantly alter the density
value. The temporal problem is related with the fact that pedestrians near the
border can oscillate between being inside and outside the measurement area,
generating great deviations of the mean density values. Other definitions of lo-
cal density have been proposed to manage with finite particles. A way to define
values of density in a point is to consider that every individual ¢ produces a den-
sity distribution p;(Z) | [ p;(Z)dZ = 1. Examples of these kinds of functions are

the step function p;(Z) = for |& — ;|| < r, a linear function of distance

2m~2
pi(Z) = max(0, h(r — ||& — 7;]|)), or a gaussian. Recently, the work by Steffen &
Seyfried (2010) proposes assigning a personal space to every pedestrian using a
Voronoi diagram. This last approach minimizes the density scatter and allows
a resolution down to individual level. In this work, I will follow the definitions
given in Helbing’s work (Helbing et al., 2007). Previous studies of this author
carried out in the real scenario of the Jamaraat Bridge (Mina, Saudi Arabia),
where a massive ritual happens as part of the pilgrimage to Mecca, showed that
the densities calculated with the following definitions agree with the actual aver-
age density. The local density is obtained by averaging over a circular region of

radius R. The local density at place 7= (x,y) and time ¢ was measured as:

=250 =1 (5.19)

where 77 (t) are the positions of the pedestrians j in the surrounding of 7" and

frt) =7) = eflfp[ 175 — 711/ R?) (5.20)

is a gaussian, dlstance—dependent Welght function.

The local speeds have been defined via the weighted average:

Z 03 f(r3(t) —7)
> fr(t) — 1)

while the flow has been determined according to the fluid-dynamic formula

S(7 ) = (5.21)
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Q7 t) = p(F,t)S(7,t) (5.22)

The capacity of a surface to allocate pedestrians, and therefore the maximum
density, depends, among other factors, on the shapes and sizes of the pedestrians.
In similar circumstances, groups and crowds made up of pedestrians with different
morphology (such as groups formed by people of different sexes and different ages)
generate higher densities due to the best fitting of the body volumes. The body
model of the agents in this work is a sphere of the same radius for all the agents
(see Section 5.3.1). This fact generates densities reached by the system which
are lower than in real pedestrian studies. Figure 5.13 represents different density
situations generated with the agent shapes used in this work (using Equations 5.19
and 5.21). It is difficult to find densities with values higher than 2.2, although it

is possible because the effective radius is greater than the geometric radius.

A

Figure 5.13: Groups of embodied agents with different densities inside a measure-
ment area of radius 1 m. A: density = 0.95 Ped/m? B: density = 1.9 Ped/m?
C: density = 2.2 Ped/m?

A density map indicates the spatial distribution of the agents during the
experiment. It is a histogram that shows the occupancy of the physical space.
The space is divided into tiles and the number of times that the tile is occupied
along time is counted. The density map reveals the patterns of movement present
in the navigational problems (paths, cloggings, etc.) showing the zones frequently

occupied by the pedestrians.

5.5 Validation Experiments

Two experiments have been designed to validate the proposed framework with ex-

isting empirical studies in real pedestrian dynamics. The first is a 1-Dimensional
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pedestrian motion that is compared with a similar experiment described by
Seyfried (Seyfried et al., 2007). The second is a 2-Dimensional open field sce-
nario that is compared with two studies Weidmann (1993) and Mori & Tsuk-
aguchi (1987). The fundamental diagram was used as the primary analysis tool
to check whether the calibrated framework generates results comparable with
those of real pedestrian dynamics. These experiments have been selected because
they represent the simplest collective scenarios. However, the validation process
can be extended to the rest of the experiments explained in the following chapters,
where evidence of the similarities with the dynamics of other pedestrian models

are presented.

5.5.1 Line walking

The work by Seyfried et al. (2007) uses sets of real pedestrians (students and
administration staff of the Jalich Research Centre, Germany) placed inside a
closed oval circuit with a total length of 17.3 m and being 0.8 m wide. There
is a measure area 2 m long, placed in a straight corridor of the circuit. The
pedestrians are placed uniformly inside the closed circuit and are instructed not
to pass each other and not to hurry. The study takes measurements of sets with
15, 20, 25 and 30 pedestrians as they repeat the circuit several times.

To reproduce this experiment, I have designed a straight corridor the width
of which is equal to Seyfried’s section straight corridor measurement. The agents
are a single group of 30 individuals placed in a line that begins at the middle
point of the corridor to avoid border effects. The goal, that is, the place where
the agents have to learn to arrive, is situated near the left end of the corridor.
The dimensions of the measure section are equal to those in Seyfried’s experiment
and it is placed near the goal. A screen shot of the proposed environment set up
is displayed in Table 5.4.

The behaviors of the learning agents have been modeled using the rewards
shown in Table 5.4. The agents are able to move forward and backward and
they are rewarded negatively if they go backward. Also, the property of moving
straight to the goal without veering between the walls is rewarded positively mea-

suring the value of the angle of the agent’s velocity. The agent is rewarded with
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Goal reached 100
Crash against another | -10

agent
Crash against a wall | -1
Rearward Movement | -15

Velocity with small | 0.1
angle respect to the
goal

(a) The environment (b) Values of the immediate re-
wards

Table 5.4: Virtual scenario and reward values of the line walking experiment

a value of 0 when the selected action does not have the immediate consequences
reported in the table.

The features of the state space in this experiment include the kinematic de-
scription of the two nearest neighbors (the agent in front and behind) and the
features that describe one obstacle. The left graphic of Figure 5.14 shows the
learning curve of the learning processes for 30 agents. The performance counts
the times that an agent has reached the goal from the beginning. The shape of
the curve indicates that the learning process has converged.

In the right graphic of Figure 5.14 the fundamental diagrams are displayed
for both the Seyfried experiment! and our results. The density is calculated by
counting in each frame the number of agents or fraction of agents present in the
measured section (2 m long). The speed values of both experiments are means
of the data that fall in the same range of density values. The values in our
experiment have been provided by the simulation of 100 trials.

Considering the number of pedestrians, our graphic should be restricted to
the range of values of the Seyfried experiment with 30 pedestrians. However,
our results cover all the range of values of density and velocity that appears in
the experiments by Seyfried with a different number of pedestrians. There are
two main reasons for this situation. First, the experiments are not exactly the
same. The fact that the pedestrians in the Seyfried experiment walk inside a

closed circuit provides a stationary mode of walking that is not possible in an

!The data for the Seyfried’s experiment are available at the URL://http.ped-net.org
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Figure 5.14: Line walking results. Top: Mean performance in the learning pro-
cess. Data are the average of the learning performances of all agents. Performance
counts the number of episodes in which an agent reaches the goal. Bottom:
Fundamental diagram. The points are averages provided by Seyfried’s public
database and averages of 100 simulations in case of the RL framework. The
standard error of each point is displayed.

open circuit like our proposed corridor. This facilitates the existence of gaps in

the line which in turn generates low densities. Second, there are psychological
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aspects that influence the behavior of the human pedestrians. Specifically, the
fact that the test subjects in the Seyfried experiment have a global knowledge of
the scenario means that their behavior was regular and predictable. A human
tester in a closed line that has no possibility of passing will adapt his/her velocity
to keep a reasonable space so as not to invade the vital space of other neighbors.
The agents in our experiment, although negatively reinforced when crashing into
a neighbor, do not have this global information of the whole situation and lack
psychological restrictions. As positive indicators, we can observe that similar
mean speeds are obtained for both, our agents and the real pedestrians in low
and high densities. Moreover, the mean velocity decreases with the increment
of the density in both experiments which is a characteristic of the fundamental
diagrams of pedestrians (Schadschneider & Seyfried, 2009b).

The graphic visualization of the simulations in a 3D virtual environment
also shows good behavior by the agents who perform a credible simulation of
pedestrians through the corridor. The reader can see an example at URL http:

//www.uv.es/agentes/RL/1line.htm.

5.5.2 Walking without restrictions (open field walking)

In this experiment, walking on a bidimensional surface without obstacles is consid-
ered. I will compare the results with two works with real pedestrians. Weidmann’s
diagram (Weidmann, 1993) summarizes the data of 25 different pedestrian config-
urations without obstacles. This diagram is a reference for many other studies of
pedestrian dynamics in planar facilities. We have also considered for comparison
the experiment by Mori-Tsukaguchi (Mori & Tsukaguchi, 1987), performed in an
open space (without obstacles) with data from photographs of flows of commuters
in downtown Osaka City'.

In our experiment, the bidimensional environment consists of a plane measur-
ing 40 x 40 m (see Table 5.5 for a picture of the actual environment). The agents
are placed far from a point that constitutes the goal. The only restriction to the
free movement of an agent is the presence of other agents in the vicinity.

In this experiment, a group of 45 agents have learned to reach the goal in

!Data available at the URL http://www.ped-net.org
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Goal reached 100
Crash against another | -10
agent
Velocity with small | 0.1
angle respect to the
goal

(a) The environment (b) Values of the immediate re-
wards

Table 5.5: Environment and reward values of the open field experiment

presence of other agents who have the same goal. The features that describe
the state space includes the description of the kinematic characteristics of the 7
nearest neighbors, and do not include obstacle descriptions. The learning curve
displayed in Figure 5.15 (left) is a mean of the 45 learning curves of the agents.
The shape of the curve indicates that the learning process has been successful.

The values of the immediate rewards that model the behavior of the agents
are introduced in Table 5.5. Specifically, the third value of the table models the
tendency to a smooth trajectory reported in Steiner et al. (2007).

In Figure 5.15 (right), the databases of Weidmann and Mori-Tsukaguchi to-
gether with our data in the range of densities achieved in our experiment are
displayed. The values of our agents fit with those of Weidmann’s and Mori-
Tsukaguchi databases, with velocities slightly higher. A similar tendency of data
is observed and the curves have comparable shapes with a decreasing trend as
stated for all fundamental diagrams of pedestrians.

The visualization of the simulations gives, as in the previous experiment, a
reasonable grade of plausibility. The reader can see a video at URL page http:
//www.uv.es/agentes/RL/plane.htm.

5.5.3 Conclusions

The results indicate similarities in the learned dynamics of the agents with those
of the real pedestrians. The fundamental diagrams, used for comparing our re-

sults with the others described, share the characteristic of decreasing speed with
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Figure 5.15: Top: learning process with 45 agents in the open field experiment.
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increasing density that is an important property the pedestrian dynamics. The
visualization tests also support the results of the fundamental diagrams, showing

realistic motion by the agents.

5.6 Chapter Highlights

The framework has two working modes: learning mode and simulation
mode. In learning mode, the policies of the agents are calculated. In
simulation mode, the agents exploit these policies to generate the agents’

behaviors.

Each agent is an independent computational process that exchanges infor-
mation with the environment. There is not data communication between

agents.

The calibration of the physics module consists of the specification of the
dynamic parameters involved in collisions and interactions. These values

come from studies with real pedestrians.

The validation has been carried out using two scenarios: a line walking

scenario and an open field scenario.

There are several important concepts to remember:

— Decision: this is the selection of an action that a learning agent takes

in a time step.

— Episode: this is the execution time defined by a number of decisions

given to an agent to perform a task. Sometimes it is also named ’trial’.

— Performance: this normally counts the times that an agent has reached
the goal given a number of trials, that is, the number of successful
episodes from the beginning to this stage. The definition can vary

with the experiment.

e The results have been compared with available real pedestrian data from
similar experiments. The comparisons indicate that the generated funda-

mental diagrams have the basic characteristic of the decrement of velocity
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with the density. Moreover, in the second experiment similar curves have
been obtained. The visualization of the simulations show plausible learned

behaviors.
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Chapter 6

Learning approaches based on

VQQL

Applying RL to pedestrian simulation requires solving two important issues: fac-
ing the multi-agent problem and the generalization of the state space. In the
works Fernandez & Parker (2001); Fernandez et al. (2005), it was shown that a
cooperative task can be mapped to a single reinforcement learning problem in a
multi-robot domain with a continuous state space. The authors used vector quan-
tization (VQ) as the state space generalization system, and demonstrated that a
single RL process using a state space description with relevant attributes to the
task (that include information about the other robots), can develop cooperative
capabilities. At the other end, our preliminary work (Martinez-Gil et al., 2010),
showed that a multi-agent system, where each agent carried out an independent
RL process, was capable of converging in a navigational scenario without explicit
coordination. In this work, the authors used a discrete state space which was
inadequate in other scenarios, limiting the scope of application of this approach.

In this chapter a new methodology is introduced that addresses the two is-
sues. It proposes the use of two algorithmic schemas, Iterative VQQL (ITVQQL)
and Incremental VQQL (INVQQL), which differ in the way of addressing the
problem of multi-agent learning. The algorithms use VQ as the generalization
technique and, additionally, both use knowledge transfer techniques to accelerate

the learning process. These algorithms are tested and compared with the VQQL
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algorithm (see Section 3.3.1) as a baseline in two scenarios. In the first, agents in
a closed room need to reach the single exit producing and solving a bottleneck.
In the second, two groups of agents inside a corridor need to reach their goal that
is situated on opposite sides (they need to solve the crossing).

The first scenario is suitable to study learned behaviors from the point of
view of local interactions, because multiple and different interactions appear at
high densities as happens inside a congestion produced by a bottleneck. Thus, I
focus on the analysis of the dynamics of the learned behaviors, using the metrics
described in Section 5.4.2, and comparing the results with Helbing’s social forces
model. Additionally, the problem of scalability in the number of agents is also
considered. In the second scenario, an emergent collective behavior consisting of
the formation of lanes has been obtained as a solution to the problem of crossing.
This result shows that the agents’ dynamics, which are the result of individual
learning processes using local interactions, have acquired collective organizational

capabilities.

6.1 Modeling the problems

This section describes the modeling options taken to define the considered navi-

gation problems as MDPs.

6.1.1 The scenarios

The first scenario consists of a group of agents inside a closed room with a door.
The agents have to learn how to reach the door and leave the room. Because of the
reduced dimensions of the exit compared with the number of agents, a bottleneck
is produced in front of the door. Moreover, a waiting crowd is formed upstream of
the bottleneck forming a shell-shape distribution where several pedestrians com-
pete for the same gap. This problem is described in several studies (e.g. (Helbing
& Johansson, 2009)). The virtual environment is a 225 m? room with an aperture
of 0.8 m (which represents the door) in the center of one of the sides. The limits
of the square are defined by walls, as shown in Figure 6.1.

The second scenario is a narrow corridor in which two groups of four agents
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each, have to cross to reach to the opposite end. Lane formation is an emergent
collective behavior that appears in real situations where the pedestrians’ move-
ments are constrained by borders (real or not) such as on urban sidewalks or
corridors (Helbing et al., 2005). In real-world situations, pedestrians with op-
posite directions of motion do not equally distribute over the cross section of
a congested walkway. On the contrary, pedestrians organize into lanes with a
uniform walking direction. This phenomenon maximizes the averaged velocity in
the desired direction of motion, reducing the number of encounters with pedes-
trians moving in the opposite direction. The virtual environment is a corridor
15m long by 2m wide. Each group of agents is placed at one end of the corridor
and their goal is to reach the opposite end. Thus, a crossing must be produced.

(see Figure 6.1).

Figure 6.1: Images of the different scenarios. Left, first scenario: closed room
with an exit. Right, second scenario: crossing inside a narrow corridor. Red
triangles represent the goal.

6.1.2 State space

When representing the state space of a scenario, there is always a trade-off be-

tween accurately representing the kinematical situation around the agent and the
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burden of dimensionality. In the first scenario (closed room), the number of max-
imum sensorized neighbors is seven, and can be varied in one of the algorithmic
schemas (see the next section). Seven neighbors is an upper bound for the num-
ber of people nearest to a pedestrian in situations of high density (=~ 2 ped/m?)
that are expected in this scenario (see Figure 5.13)'. This value sets the num-
ber of different possible configurations of the state space to eight (sensorizing 0,
1, 2, 3, 4, 5, 6 and 7 neighbors). In the second scenario, the number of max-
imum sensorized neighbors is four. A narrow corridor is more limited in terms
of movements than a wide room, therefore I have considered relevant a number
of neighbors that could be in contact directly with the agent. Four neighbors
homogeneously distributed in the vicinity of an agent occupy practically all his
sides. The number of sensorized static objects (walls) is always fixed at two. The
maximum number of features describing one state space is 28 in the first scenario

and 23 in the second scenario.

6.1.3 Immediate rewards

The behaviors of the agents are modeled according to the immediate payoffs listed
in Table 6.1. In the first scenario, the payoff function models the prevention
of collisions as an important task which a navigation controller must take into
account. However, crashing into another agent is punished less than crashing
into a wall, to lessen the shading effect of the frequent crashes in the bottleneck
over the rest of the immediate rewards. The ignorance about the effects of other
interactions is modeled with an immediate reward of value 0. In the second
scenario, the immediate reward is simpler. It ignores crashes into agents and
walls. In this domain, empirical tests were carried out with the rewards of the

first scenario giving worse performance than the test with the proposed reward.

LOther works set a variable active perception distance for a pedestrian depending on pa-
rameters like the instant local density and the angle of vision (Bourgois et al., 2012; Ondrej,
2011). In the case of (Bourgois et al., 2012), an empirical formula is proposed for this distance
that depends on the total number of sensed agents. According to this formula, for 20 sensed
agents (approximately the number of learning agents in our first scenario), an active distance
of 1.25 m is given. With this active distance of perception, an agent in density conditions of
2 ped/m? would perceive less than 10 neighbors which is similar in magnitude to my proposal.
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First Scenario (closed room)
Crash into other agent -0.1
Crash into a wall -2.0
Reach the goal +100.0
Default 0.0
Second Scenario (Crossing in a corridor)
Reach the goal +100.0
Default 0.0

Table 6.1: Description of the values of the immediate rewards for both scenarios.

6.2 State space generalization

The states are generalized using Vector Quantization (VQ), which has been
demonstrated to be an accurate approach for state space generalization and trans-
fer learning in RL frameworks Fernandez & Borrajo (2008); Garcia et al. (2010,
2012). The use of VQ requires the definition of the number of prototypes to use,
that is, the resolution of the state space. Typically, a coarse discretization com-
posed of a reduced number of prototypes does not have enough expressiveness
to represent the optimal value function. On the other hand, too many states
introduce the generalization problem, although with a finite number of states. In
order to fix the resolution of the space in both scenarios, two sets of experiments
were carried out, testing different numbers of prototypes to represent the state
space. In each scenario, a set of six experiments is performed with a specific
number of prototypes: k = {512, 1024, 2048, 4096, 8192, 16384}, with the
same configuration. In each experiment, the agents perform a series of random
walks in the environment to get unbiased sensorization data. Then, the dataset
is used to build the vector quantizer with a fixed number of prototypes. The
sizes of the datasets ranges from 20000 samples in the case of 512 prototypes to
70000 samples in the case of 16384 prototypes. The calculated vector quantizers
are different for each agent because they gather their own dataset and perform
independent learning processes. Therefore, each agent uses its own vector quan-
tizer in the VQQL learning process. Figure 6.2 shows the results from the set of
experiments performed with the first scenario (the results for the second scenario

are omitted because they are equivalent). In these experiments, the agents have
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to learn to leave the room in a number of episodes'. In each episode, the agents
are placed randomly inside the room and a maximum number of steps (the same
in all the episodes and for all the agents) is given to get to the goal. At each
step, the agent must take a decision (action) to adjust its velocity to the current
local situation in the environment. In Figure 6.2, the x axis shows the num-
ber of episodes executed, and the y axis represents the normalized percentage of
successful episodes, that is, the percentage of agents that leave the room. The
quality of the learned behaviors is given by the asymptotic value of the curves at
the end of the process. Note that the performance increases with the number of
prototypes used in the quantizer (the resolution of the quantizer). However when
duplicating the number of prototypes, the time for the assignment of the dataset
to the clusters in each iteration of GLA is also duplicated. Therefore, when few
prototypes are used, the learning process is faster, although the results are far
from optimality. On the contrary, when many prototypes are used, the learning
process is slower but the asymptotic performance increases. This conclusion is
reflected in Figure 6.2, where the curves with a low number of prototypes have
a high initial slope (which means fast learning), but the asymptotic part of the
curve is lower than the curves with a high number of prototypes (which means a
worse learning performance). The best trade-off between performance and com-
putational cost was set to 4096 prototypes for the first scenario (agents in closed

room) and 8192 for the second scenario (crossing in a corridor).

6.3 Description of the algorithms

The application of VQQL-based schemas to pedestrian navigation faces three
challenges. The first one arises because pedestrian simulation is a multi-agent
environment. Therefore, we first need to decide how many agents should learn
from scratch. It is easy to understand that if we set 100 agents to learn from
scratch, rarely will they be able to learn an effective policy. This is due to the fact
that the learning agents could modify their policies while learning, which makes

the environment non-stationary. Furthemore, a study of whether they should be

!The term ’trial’ situated in the abscissa of the graphics has the same meaning as the term
‘episode’ in the text
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Figure 6.2: Analysis of the resolution for a VQ. Learning curves obtained in
the first scenario using the VQQL algorithm and vector quantizers with different

numbers of prototypes. The curves are the means of 18 learning processes (18
agents).

introduced into the environment from the beginning or gradually added is needed.
However, this produces a second challenge: the agents can perceive a different
number of agents in different situations, and therefore the space representation

should be different. Therefore, two different situations can arise:

e Situation 1 (S1). The different descriptions of the state space are inherent
in the incremental setting of the agents. For example, in a learning process
for five agents, the space representation should consider the description of
at most four neighboring agents. But in a learning process with six agents,

the space representation should consider five neighboring agents.

e Situation 2 (S2). The evolution of the episode in time creates a variable
perception of neighbors. When the agents are gradually reaching their goal,

the rest of the agents can perceive fewer neighbors around.

The third challenge is that a random exploration of the environment does
not produce a representative dataset with which to generate a correct set of
prototypes for the VQ space generalization method. As stated in Section 3.3.1,
the VQQL algorithm assumes that the dataset is significant, that is, the dataset
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contains the relevant information to represent the whole state space. This is not
the case with our domain, where a random walk can bias the exploration towards
irrelevant states. Therefore, it is not interesting to model the whole state space
uniformly, but rather the point is to get the states that are informative to solve
the problem. Other domains, like a helicopter (Garcia & Fernandez, 2012; Garcia-
Polo & Fernandez, 2011) have a similar problem, random exploration produces
helicopter crashes, so it is unfeasible. Therefore, a process to select better datasets
is necessary.

The decisions taken to address these challenges are included in the following

explanation of the iterative schemas.

6.3.1 The iterative schemas

The iterative schemas consist of a pipeline of N learning processes carried out over
the same problem, where the knowledge learned in an iteration is transferred to
the next iteration. Two different approaches have been defined: Iterative Vector
Quantization for Q-Learning (ITVQQL) and Incremental Vector Quantization
for Q-Learning (INVQQL). Both perform different iterations of the VQQL algo-
rithm’s basic steps (computing the vector quantizer and learning the Q table)
but in different ways, as described below. Additionally, in the two schemas, the
learned policies in an iteration are used to gather a policy-biased dataset for
building a new state space model that will be used in the next learning process.
This process is referred to in this text as policy transfer and is carried out in Line
11 of Algorithm 10. However, the schemas differ in the way of placing the agents
in the scenario and, hence, in the number of agents learning at the same time
in each iteration and with the configuration of the vector quantizer. Specifically,

regarding the number of agents per iteration:

1. The ITVQQL schema puts the same number of agents for every learning
iteration. Moreover, it models the state space with one set of prototypes

with a fixed number of features to represent the neighboring agents.

2. The INVQQL schema puts the agents into the stage beginning with one
agent in the first iteration and incrementing by one more agent in each

following iteration to reach the total number of agents in the last iteration.
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Regarding the definition of the vector quantization:

1. The ITVQQL approach represents the state space using prototypes with
a constant number of features, which means that different perceptions (in
terms of sensorized neighbors) must be described with the same space vector
and therefore with a fixed number of features (this problem appears in
situations (S1) and (S2)).

2. The INVQQL approach uses different space vectors to represent the differ-
ent perceptions in term of the neighborhood (0, 1,2, ... neighboring agents).
Therefore a collection of vector quantizers with their respective sets of pro-

totypes with different number of features is used.

The description of both schemas are grouped under Algorithm 10. From
Line 2 to 6 of the algorithm, the counters, the quantizer, and the policies are
initialized for each agent. The loop begins in Line 7. Each iteration is an entire
learning process where the sub-steps described in Lines 9 to 12 correspond with
the execution of VQQL. The step described in Line 12 is an entire Q-learning
process. In this step, the initialization of the Q-tables, as well as the parameters
of the exploratory policy, are carried out. Next, an iterative process with a fixed
number of episodes is performed to get an approximation of the optimal policy
for the problem. The number of iterations, IV, should be configured differently
for each schema. For the INVQQL schema, the number of iterations, IV, agrees
with the total number of agents with which the experiment was planned. For
the ITVQQL schema, the number of iterations, N, are enough to achieve a good
learning performance (see curves for ITVQQL schema in Figure 6.4, Figure 6.5
for the first scenario and Figure 6.7 for the second scenario). In the experiments
presented in this chapter, the same number of iterations is used for both schemas
to set similar experimental conditions and to compare the results.

In Algorithm 10, the decisions that differentiate the schemas have been un-

derlined and are explained in the following enumeration:

1. ITVQQL. A fixed number of learning agents is set in Line 3. Therefore,
no new agents are included in Line 8. There is no specific transfer between

quantizers in the step of Line 11. The state space representation has a fixed
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Algorithm 10: The ITVQQL/INVQQL schemas.

Data: The number of iterations N
Result: The sets Qny and Vi (The final value function of
Q-learning and the vector quantizer respectively).

1 begin
2 1< 1
3 Set p to the initial number of agents in the environment;
4 for £k +— 1 to pdo
5 V¥ (s) =0 //initial vector quantizer of agent k;
6 7t = random //initial policy of agent k;
7 repeat
8 Decide whether or not to include new agents. Set p consequently.;
9 for k — 1 to p do
10 Collect a dataset TF for agent k using policy 7¥ ;, with
Vz‘liﬁ
11 Build V¥ using TF for agent k following a transfer learning strategy;
12 Learn Q¥ Vk,1 < k < p and hence the policies 7¥ using
Q-Learning (with the option of using transfer of value
functions).;
13 1—1+1;
14 until : = N;

number of features. The problem discussed in (S2) is solved by setting

unobserved features to random values'.

. INVQQL. The interactions between the agents are learned gradually by in-
creasing the number of agents from one iteration to the next. This can be
understood as a kind of shaping (Sutton & Barto, 1998), where a more com-
plex task is achieved through the learning of easier tasks, which are oriented
towards the solution of the final task of ultimate interest. In Line 3, there

is no agent at the beginning (p = 0). In Line 8, one agent is added in each

In Machine Learning, many different approaches are used to fill in unobserved features.
We have studied some of them, specifically random imputation and mean imputation, obtaining
similar performances.
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iteration. The novelty here is that this schema calculates a different VQ for
each state space of different dimensionality incrementally. The calculated
VQs are transferred to the next iteration in the step described in Line 11,
avoiding their recalculation. For instance, in the first scenario, a learning
process of eight agents has inherited the previous VQs which models the
space state sensorized by 7, 6, 5, 4, 3, 2, and 1 agents. In the first scenario,
the number of prototypes increases in the first eight iterations (of a total
of 18 iterations), modeling the eight possible different configurations of our
experimental setting. In the second scenario, the number of prototypes

increases during the first four iterations (of a total of 8 iterations).

An additional problem arises in Line 10 when using the policies learned in one
state space configuration to collect data in a space with a newly added agent and,
therefore, with another state space configuration. The policy transfer between
spaces with a different number of features is carried out using a projection. A
projection can be understood as a selection of features I' : R™ — R® where m > s.
Therefore, the projection is from the higher dimensional state space to the lower
dimensional one. The set of vector quantizer V, and the value functions (), of the
previous iteration can be used to collect biased experiences in the highest dimen-
sional state space. The difference between two spaces of different dimensions in
our scenarios is always constituted by the features that describe a new neighbor
agent in the higher dimension space. In practice, the projection is carried out by
deleting this new set of features. Such mapping between different state spaces
has been evaluated successfully in previous transfer learning problems (Fernéan-
dez et al., 2010; Garcia et al., 2010) and state abstraction problems (Chiu & Soo,
2008).

As defined above, INVQQL goes a step further because the prototypes learned
in previous iterations, where the state configurations are different in terms of the
neighbors perceived, are transferred to the next iteration. In this way, the whole
range of different state configurations are covered. In Table 6.2, the properties of

each schema are summarized.
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Feature ITVQQL | INVQQL
Number of prototypes Fixed Variable
Number of features per proto- | Fixed Variable
type

Number of agents per iteration | Fixed Variable
Inter-iteration policy transfer Yes Yes
Inter-iteration prototype trans- | No Yes

fer

Inter-iteration value function | Yes Yes
transfer

Table 6.2: Summary of the settings of the schemas.

6.3.2 Value function transfer procedures

In this section, using the transfer of the value function learned in a previous iter-
ation as the initial values for the value function of the next one is proposed. The
source task and the target task are the same but with different state representa-
tions. This problem can be considered a simple case of those described in Taylor
et al. (2007). In that paper, the authors focused on the problem of representation
transfer, that is, how to transfer the learned knowledge between tasks that dif-
fer in the function approximator (the state space generalizer) or in the learning
algorithm. Specifically, they call the transfer of an inter-task value function be-
tween different representations of the state space complexification. The transfer
proposed here is a form of complexification and it is described in Algorithm 11.
The idea is to initialize the target QQ table (Qarget) With the learned values of the
source Q table (Qsource). The transfer is performed using a metric for the similar-
ity between the prototypes of the source and the target vector quantizers. Thus,
for each prototype of the quantizer associated to Qi4rget, the nearest prototype
of the quantizer associated to Qsource i calculated. Then the values of Qgource
are transferred using this association. In the experiments, the algorithm uses the
Euclidean metric to determine the similarity between the sets of prototypes. In
this case, the transfer requires the two Q tables to have the same dimension and
parametrization. Although the initial values are the same as those of the learned
values of the previous iteration, the set of prototypes used in the new configu-

ration is different to the previous ones and the epsilon-greedy policy begins the
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Algorithm 11: Simple Complexification with a Q-table
1 begin
2 Train with a source representation and save the learned
Q-table and the vector quantizier Qsource; Vsource;
forall the prototypes qjy.ge; € Crarger do
4 Find prototype qgource € Csource | Injin”qgarget

_ ”
Qsourcells

5 Qtarget (qgargeﬁ actz'onk) =
Qsource (@ ourees aCtiony) Yactiony;

new iteration with high rates of exploration. Therefore, the new process is not
in any case a mere continuation of the previous learning process.

Several metrics to evaluate transfer learning methods have been proposed (Tay-
lor & Stone, 2009). In the present paper, the following metrics are considered for
testing in the performance curves: i) Jumpstart: the improvement in the initial
performance of an agent. ii) Asymptotic Performance: the improvement in the
final performance. iii) Time to Threshold: the learning steps needed by the agent
to achieve a pre-specified performance level.

The results of the evaluation will be shown in the next section.

6.4 Experimental set-up and performance results

for the learning process

This section describes the learning results in terms of mean performance.

6.4.1 Closed room with an exit scenario

In all the learning schemas described above, the number of iterations performed
is 18 (N = 18). ' Each iteration has been set empirically to 50,000 episodes.
An episode ends when all the agents reach the goal or when a maximum of 150
decisions have been taken. The learning algorithms have the same parameter con-

figuration in all processes and this is summarized in Table 6.3 for all agents. The

'In the experiments, I will show that 18 iterations is a value large enough to ensure conver-
gence in all the proposed scenarios
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0% 0.9
o 0.4

€ 0.4 (initial value)

Table 6.3: Specific values for the learning parameters which are common to all
the experiments in the first scenario.

value of € is decremented exponentially with the number of episodes following the

—episodes

k
depends on the total number of episodes. All the agents learn simultaneously.

expression exp( ), where k is a constant to regulate the decay whose value
That means that all the agents are in the same step of the same episode. This
configuration favors a similar progress in learning for all the agents, palliating the
intrinsic non-stationarity nature of the environment.

The dataset gathered in each iteration to learn the vector quantizer (step
described in Line 10 of Algorithm 10) is generated using a e-greedy policy to
avoid the overfitting of the training data to the previously learned policy: if the
learned policy is used fully greedy, the state space visited may be excessively
restricted by the policy, so adding a small amount of noise in the action selection
can reduce this effect. Before using the GLA algorithm, the collected data are
standardized (each feature has zero mean and standard deviation equal to 1).
In Figure 6.3, the effect of the refinement of the VQ)s along an execution of the
ITVQQL schema in the first scenario is shown. The graphics display the values
of two features of the 4096 prototypes that constitute a V(Q. Specifically, in the
X-axis, the speed of the agent is represented while in the Y-axis the distance
to the goal is displayed. Because the features are standardized values, negative
values for distances and speeds appear. The prototypes of the first iteration
(on the left) and those of the last iteration (on the right) are displayed. In the
first, the prototypes are distributed quite homogeneously in the space because the
data are collected using a random policy as indicated in Line 6 of Algorithm 10.
In the graphic on the right, a high density of prototypes in the region of low
speed and low distance to the goal is observed, showing the bias in the collected
data generated for a learned policy. The prototypes located in the high density
region are probably generalizing states of agents placed near the door, where low

distances are associated to low speeds due to the bottleneck.
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Figure 6.3: Influence of learning in the distribution of prototypes in the features
space. Visualization of the prototypes calculated for first iteration (left) and last
iteration (right) when ITVQQL schema is used in the room scenario. The speed
(in the x-axis) and the distance of the agent to the goal (in the y-axis) features
are displayed. Prototypes of the left graphic are calculated using data collected
with a random policy. Prototypes of the right graphic are calculated using data
collected with a learned policy correspondent to the penultimate iteration.

Figures 6.4 and 6.5 summarize the results of the learning processes for the
schemas without and with transfer of value function respectively. Each point
represents the averaged final performance reached by the agents when they use
a greedy policy over the learned value functions in that iteration, that is, an
iteration of the loop in Line 7 of Algorithm 10. For each iteration, a simulation of
100 episodes without learning calculates the performance of the value functions.
The performance is measured in terms of the percentage of successful episodes
in the simulation. In Figure 6.6, the shapes of the performance curves for one
learning process along all the episodes can be seen. The mean performance given
by the learned value functions calculated in this process will constitute a point
displayed in the curves of Figures 6.4 and 6.5. As an example, the ITVQQL
averaged curves displayed in Figure 6.6 correspond to iteration number three,
and the averaged performance of the resulting value functions becomes the point
of abscissa number 3 in Figures 6.4 and 6.5. The VQQL algorithm is included
for comparison. VQQL is not iterative, and the graph displays a learning process

of 900,000 episodes, which is the total number of episodes completed by the
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other schemas in the 18 iterations. Each point in the VQQL curve is calculated
using the state of the value functions in the corresponding number of episodes
(first iteration equals 50,000 episodes, second equals 100,000 episodes, and so
on). Table 6.4 shows the specific configuration of the parameters described in

Table 6.2 for the experiments.

Key ITVQQL | INVQQL VQQL
Episodes 50000 50000 900000
I[terations 18 18 1
Prototypes 4096 From 4096 to 32768 | 4096
Features per prototype 28 From 7 to 28 28
Agents per iteration 18 From 1 to 18 18
Inter-iteration prototype | 0 4096 0
transfer

Table 6.4: Specific settings for the learning experiments in the closed room sce-
nario.

In the ITVQQL schema, the first point in the curves (with and without trans-
fer) shows lower performance than those in INVQQL because the second uses
one agent while the first schema uses 18 agents. Note in Figure 6.4 that after a
short number of iterations, the learned policies do not improve the performance.
A similar curve appears in Figure 6.5, although a slight increment with fewer
oscillations is seen.

The INVQQL schema works with a state space with eight possible feature
configurations (from 0 to 7 sensorized neighbors), creating eight sets of 4096
prototypes to quantify each state space configuration. The first eight points
in both graphs decrease in their performance because the dimensionality of the
state space grows with each iteration (because a new neighbor is sensorized). At
iteration eight, the highest dimensionality is reached and the process begins to
improve. This improvement appears in INVQQL without transfer due to the fact
that the new VQs stop growing in size and a process of refinement along the
rest of the iterations begins. In INVQQL with transfer, the process of transfer of
value function begins and adds its effect to that explained before. Note the jump
between iterations eight and nine in Figure 6.5, where the transfer is applied for

the first time. In this schema, the use of a transfer of value function positively
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Figure 6.4: Performance of the learning processes for all schemas without transfer
of value functions in the closed room scenario. Performance is calculated using a
greedy policy over the learned value functions. A simulation with greedy policy
without learning, with a total of 100 episodes with 18 agents per iteration was
carried out to calculate each point. Points are sorted by iteration number inside
the learning process.
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Figure 6.5: Performance of the learning processes for all the schemas with transfer
of the value functions in the closed room scenario. Again, the performance is
calculated using a greedy policy over the learned value functions. A simulation
with greedy policy without learning, with a total of 100 episodes with 18 agents
per iteration was done to calculate each point. The points are sorted by iteration
number inside the learning process.
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modifies the performance curve.

The VQQL curve in Figures 6.4 and 6.5 represents the performance of one
iteration of the algorithm with a number of episodes equal to the addition of
the episodes for all the iterations in any other schema. Obviously there is no
transfer of value functions. The e parameter for exploration is adjusted to the
number of episodes as well as the learning ratio parameter a. The first point
of the curve (iteration 1) is lower than in the rest of the schemas because at
this point this algorithm has a high rate of exploration. In comparison with the
curves in Figure 6.2 that also correspond to a VQQL learning process (although
with different configurations), the performance results are higher here because we
display the mean performance of a greedy policy which exploits the value function.
On the other hand, the graph in Figure 6.2 displays the mean performance of a
process that uses exploration, especially in the early episodes, which causes a
decrease in the total performance. The same effect explains the lower values in
Figure 6.6 of the iterative schemas compared to the values reached in Figures 6.4
and 6.5.

Figure 6.6 compares, for each schema, the performance curves of the learn-
ing processes with and without transfer in the last iteration. The three metrics
introduced in Section 6.3.2 (i.e., jumpstart, asymptotic performance and time to
threshold) are easily checked in the graphs. The jumpstart is very clear in both
schemas. This means that the transferred knowledge accelerates the new learning
process. This conclusion is supported by the fact that the curves with transfer
are crescent'. The time to threshold is also highly influenced by the transfer.
The threshold has been set to 0.7 (70% of success) as a limit where the good
behavior begins. Note that the processes with transfer substantially advance the
arrival at the threshold saving at least half the number of necessary episodes for
the ITVQQL schema, this being much more dramatic in the INVQQL schema.
The asymptotic performance is also improved with the transfer in the ITVQQL
schema and more strongly in the INVQQL schema. Summarizing the transfer
results, the acceleration of learning exists in the ITVQQL schema and it is espe-
cially important in the INVQQL schema. In the case of the INVQQL schema,

'If the transferred knowledge was not useful, the agent should unlearn it and the learning
curves would have a decreasing zone.
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it seems to be connected with the fact, discussed above, that it uses, in the dis-
played iteration, 32,768 prototypes, while the other schemas use 4096 prototypes.
Therefore, the number of states to explore and evaluate in the INVQQL schema
requires more episodes to get enough experience, and this problem is alleviated

with the knowledge transferred.
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Figure 6.6: Comparison of performance curves for learning processes with and
without transfer of the value function for INVQQL (left) and ITVQQL (right).
These curves correspond to the last iteration and averages over 18 agents.

From the previous evaluation, two main conclusions can be drawn:

1. It has been empirically proved that the learning processes converge in both

learning schemas, for the considered domain.

2. The transfer of knowledge especially benefits the INVQQL schema in the
learning task. In this schema, this high benefit reveals that the chosen
number of episodes per iteration were not enough to learn properly, probably
due to the size of the QQ table’s being greater than the sizes of the other

schemas. The transfer of knowledge alleviates this lack of episodes.

6.4.2 Crossing inside a corridor scenario

Eight agents (N = 8) are divided in two groups that move counterflow inside
the corridor. Each iteration has 50000 episodes. The INVQQL schema needs 8
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iterations to insert one by one the total number of learning agents, therefore the
number of iterations has been set to 8 in both schemas so as to be comparable in
number of learning processes, as in the first scenario.

The dynamics of the episode have been described in the previous subsection
with the first experiment. Tables 6.5 and 6.6 summarise the configuration of
learning parameters !. In this problem, a learning rate decreasing with the num-
ber of iterations was used. As indicated in Table 6.5, the value of a begins in the

first iteration to 0.3 and decreases to 0.1 in the last iteration.

0.9

from 0.3 to 0.1
1.0 (initial value)
1.0 (initial value)

< " e

Table 6.5: Settings for the learning parameters common to all the experiments
in the second scenario.

Key ITVQQL | INVQQL VQQL
Episodes 50000 50000 400000
Iterations 8 8 1
Prototypes 8192 From 8192 to 40960 | 8192
Features per prototype 24 From 8 to 24 24
Agents per iteration 8 From 1 to 8 8
Inter-iteration prototype | 0 8182 0
transfer

Table 6.6: Specific settings for the learning experiments in the second scenario.

In this scenario the experiments are carried out with transfer of value func-
tions proved in the first scenario that equal or increase the performance of the
schemas and accelerate the learning process. The graphics for the performance
are displayed in Figure 6.7 (left). The INVQQL schema begins with a 100%

performance because in the first iteration only one agent is learning. The shape

! Assuming that a soft variation in the values of the parameters produce a soft variation
in the learning performance (the experiments agree with this assumption), the way to find the
values for the learning parameters consists of a coarse search inside the allowed values followed
by a refinement over the candidate with better performance.
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is similar to that of the first experiment because the agents are introduced in-
crementally in the iterations. The first iteration of the VQQL schema has the
lowest performance because, in this stage of the learning process, the exploratory
policy is still dominant. As ocurred in the first experiment, the ITVQQL with
transfer achieves a higher performance in the last iteration compared to the rest.
The asymptotic shape indicates that not all the iterations were necessary for this
schema.

In order to accelerate the learning process, the probabilistic policy reuse (PPR)
transfer technique is used (see Section 3.4 for a description of the method, and
specifically, Equation 3.25 and Algorithm 9). In this problem, the policy 7pas:
always suggests the use of an action that drives the agent towards one side of the
corridor '. Contrary to other works, the policy 745 does not come from a previous
learning process carried out in this or another similar task, but it comes directly
from real experience. In this case, PPR does not transfer learned knowledge
strictly, but it is used as a way of introducing knowledge from experience. It is
important to note that PPR is used as a way of efficiently exploring the space of
policies to find a solution for the crossing problem. If the agent does not find it
useful to follow the policy 7. in a state, it will learn a better policy because the
exploratory policy is active throughout the whole learning process. In Section 7.4,

a more exhaustive analysis of the benefits of using PPR in this task is performed.

6.5 Pedestrian simulation

In this section, the policies learned from the point of view of the pedestrian
simulation are analyzed. The value function learned by each agent in the last
iteration of the processes is used in the simulation tests for two reasons: i) They
represent the culmination of their respective learning iterative schemas ii) In the
last iteration, the number of agents is the same for both iterative schemas. The
analysis of the simulations focuses on different aspects in both scenarios. In the
first, the focus is on the dynamics. A macroscopic and a microscopic study of

different metrics to characterize the learned dynamics is presented. In the second,

!Specifically, the policy mpqs: chooses randomly from the set of actions that turns the agent’s
velocity vector towards the right side of the corridor
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Figure 6.7: Top: Learning process performance for all the schemas with transfer
in the crossing scenario. Performance is calculated using a greedy policy over the
learned value functions. A simulation with greedy policy without learning, with
a total of 100 episodes with 18 agents per iteration was performed to calculate
each point. Points are sorted by iteration number inside the learning process.
Down: Probability functions used in PPR transfer technique

we focus on the emergent collective behavior, therefore a macroscopic study is

performed to determine the shape of the emergent lanes and its influence on the

performance. In both, a comparison at the macro-dynamic level with the Helbing
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social forces model is performed. The reader can complement the data provided
in this analysis by viewing several videos at URL http://www.uv.es/agentes/
RL/index.htm

6.5.1 Simulation metrics

To evaluate the quality obtained in our simulations, three different kind of metrics

have been used:

1. Local interactions (microscopic level): Velocity wvs. collision distance corre-

lation.

2. Macro-dynamics (macroscopic level): Fundamental diagram of pedestrians

(speed ws. density relationship) and density maps.

3. Performance: Path length, number of decisions per episode and number of

fails (episodes where the agent did not reach the goal).

Firstly, the micro-dynamic metrics are used to analyze the local interactions
of the pedestrians, by measuring the speed controller reactions under specific
situations. The most interesting situation to analyze here is the collision response,
so we have correlated the distance to the nearest neighbor with agent speed, in
order to study this important relationship.

Secondly, macro-dynamics are also very interesting to evaluate the behavior of
the simulated group, and it is also an easy way to contrast the proposed schemas.
In this case, we use density maps to represent the space allocation during the
simulation, and the fundamental diagram that summarizes the local interactions
that agents have learned in a single diagram. Other works on pedestrian modeling
that have used similar metrics are Daamen & Hoogendoorn (2003); Steiner et al.
(2007); Still (2000).

Some scalability tests have been performed in the simulation experiments
for the first scenario. To scale in the number of agents, each simulated agent
uses one copy of one of the learned value functions with its corresponding vector
quantizer. In simulation, there are as many different behaviors as agents in the

learning process, therefore several agents use the same learned policy. Thus, in
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this section, all the experiments for the first scenario with more than 18 agents
use copies of the original set of value functions and vector quantizers. Before
reassigning a copy of a behavior to an agent for the n-th time, the rest of the
behaviors have had to be reassigned n — 1 times.

Finally, different performance-oriented metrics have also been included, such
as path lengths, the number of required decisions, and the number of fails, which

are also interesting for comparing the schemas.

6.5.2 Local interaction analysis for the first scenario

In this section, I analyze the micro-behavior of the agents in the first scenario
and focus specifically on the agents’ learned capacity to regulate their speed when
interacting with the environment. These interactions represent the normal navi-
gation conflicts and situations produced in collision avoidance scenarios for em-
bodied autonomous agents. For this analysis, two parameters of the agent’s state
space have been observed: the speed of the agent and the distance to the nearest
neighbor. In a collision scenario, it seems reasonable that both parameters would
have some correlation. That is, when the distance is shortened, the agent should
reduce its velocity, and viceversa. Nevertheless, this is not always expected, since
these parameters do not give a complete description of the local situation. For
example, the nearest neighbor might be approaching from behind, therefore the
agent could accelerate if no other agent is in front; or, in other situations, if the
distance to the neighbor is large, the proximity of a wall could force a reduction
in the agent’s speed. Therefore a positive correlation is expected between these
two parameters although it should not be a total correlation. In Figures 6.8
and 6.9, these parameters have been plotted for one agent in an episode and for
different learning schemas. The graphics tell the story of an agent in a episode.
The schemas have used the transfer of value functions in the learning phase. The
graphs show representative cases of a simulation without scaling in the left col-
umn (18 agents) and scaling by five (90 agents) in the right column. Note that
each graph represents an individual episode, therefore the number of steps is dif-
ferent in each one, depending on the random initial positions and the different

local interactions that appear in it. For the same reason, the scales of the Y axis
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for the velocity and the distance are different in each graph. For the purpose
of comparison, two more experiments have been added, as shown in Figure 6.9.
In that figure, the first row represents the results for the basic VQQL schema
while the second row presents the results of the RANDOM experiment, where
the agents take random actions in each decision step, that is, they use no learned
knowledge. The VQQL and RANDOM experiments have the same number of
agents and the same configuration as the other schemas.

The curves of the graphs of Figures 6.8 and 6.9 have two different zones in
terms of the collision situation. The zones of minimum distance, with a value
around 0.6 m, represents a situation where the neighboring agent is practically in
contact with the observed agent. In this situation, a continuous acceleration (to
avoid the neighboring agent) or deceleration (due to a new approach and possible
crash) creates the speed oscillations in these zones of the curves. Note that the
frequencies of the oscillations are not comparable in a simple observation of the
graphs because of the different number of decisions in the presented episodes.
In comparison, in the RANDOM experiment (Figure 6.9), the speed oscillations
are present at any value of the distance. For example, in the graphic of the
left column for the RANDOM experiment, between decisions number 0 and 20,
the nearest neighbor is far from the agent but the speed oscillates from 0 to a
maximum value of 1.0 with high frequency. This effect does not happen with an
agent with a learned policy as observed in the VQQL graphic (Figure 6.9 above).

In the left VQQL graphic, a similar situation as described for the RANDOM
experiment between decisions number 1 and 7, is observed. However, in the
VQQL graphic the speed increases monotonically and decreases when the distance
becomes small. On the other hand, the curves show that, in general, the speed
is increased by the agent in the zones of the curves where the distance to the
nearest neighbor increases, reaching the maximum allowed speed (1.8 m/s) when
the distance is large enough. See for example the zones at the beginning of the
curves in the left column for all the learning schemas. The horizontal sections
in the region of maximum speed match the regions of the distance curve where
the distance is large: this is considered to be a good indication of the stability
of the learned behavior (for example, see this situation in the left column graph

of the ITVQQL schema around decision 7, and also in the left column graph of
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Figure 6.8: Local interaction results for an agent in an episode. All the schemas
have used transfer in the learning phase. The order of the displayed schemas are:
ITVQQL in the first row, INVQQL in the second row. First column is without
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the INVQQL schema around decision 26). Also, this property appears in the
VQQL baseline curves (in the right column in decisions 3,4 and 37, 38) although
the length of the sections are shorter than in the other schemas. In contrast,
the RANDOM graphs do not have this property (see for example the erratic
behavior of the speed at the beginning of the episode in the left column although
the nearest neighbor is far away). In the graph in the right column (for the
RANDOM experiment), the same situation appears. Note the lack of correlation
between the speed and the distance around decision number 50 and in number
200. Therefore, there is a high difference at the microscopic level between a
random policy and a learned policy (independently of the learning schema).

A study of the correlation between the pairs of speed and distance is also
given in Table 6.7. In order to fit the size of the table, the names of the schemas

have been abbreviated in all the tables. They correspond as follows:

o [T means ITVQQL.
e IN means INVQQL.
e TF IT means ITVQQL with knowledge transfer.

e TF IN means INVQQL with knowledge transfer.

The study assumes that a correlation factor greater than 40.5 means a sig-
nificant correspondence between the two parameters. The scenarios are very
different, varying with the number of agents, because the local interactions are
different in situations with high or low densities (see the comments to the funda-
mental diagrams of Figure 6.10 in the next subsection). Therefore the data in the
two rows of Table 6.7 are not directly comparable, because it is to be expected
that high density interactions are more frequent with 90 agents than with only
18. For 18 agents, the percentage of episodes with a correlation greater than
+0.5 is higher in the experiments with learning than in the RANDOM control,
with higher percentages in the I'T and TF IT schemas with respect to IN and
TF IN schemas and VQQL. When 90 agents are used (second row), the highest
correlation is also observed in IT and TF IT schemas. Because the neighbors
are closer to the agent than in low density situations (the distance to the near-

est neighbor is often the minimum value possible), speed oscillations often occur
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as explained before in the graphs in Figure 6.8 and Figure 6.9. This justifies
a decrease in the correlation index between the two parameters in the data of
the second row (90 agents). Note that the learned behaviors have correlation

percentages significantly higher than the RANDOM control in both rows.

#Ag. | IT IN TF_IT TF_IN VQQL RANDOM
18 773% 371%  79% 46.5% 45.7% 1.72%
90 48.8% 12.4%  48.6%  12.1% 41.8% 1.1%

Table 6.7: Percentage of episodes in which the selected speed and distance to the
nearest neighbor of an agent have a correlation coefficient greater than 4+0.5. The
data comes from the simulation of 100 episodes with 18 agents each (a total of
1800 episodes) in the first row and with 90 agents (a total of 9000 episodes) in
the second row.

6.5.3 Macro-dynamics

This section gives the fundamental diagram and the density maps obtained in the
experiments and their comparison with the Helbing model for the same config-
uration. The used implementation of the Helbing model is described in Helbing
et al. (2000), although the panic component has been disabled to resemble these
experiments. The fundamental diagram summarizes the micro-behavior recently
set out, showing the relation between the speed and the density of all the agents
involved. They are important for evaluating a pedestrian model. The left column
of Figure 6.10 shows the fundamental diagram for all the schemas, specifically
the average and the standard deviation of the speed values measured at different
densities. The data was measured in a position in front of the door within a
circular area of radius 1m.

In all the experiments, the fundamental diagrams show that the velocity de-
creases when the density increases, which is a fundamental property of pedestrian
dynamics. The range of velocities in the INVQQL and ITVQQL schemas are
higher than in the VQQL schema. Specifically, with high densities the velocity
decreases to 0.2 in the INVQQL schema and to less than 0.4 in the ITVQQL,
whereas at high densities the velocity is 0.6 aproximately for the VQQL. This may
indicate different dynamics of the VQQL with respect to the other two schemas
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at high densities. Furthermore, in both, the schemas and VQQL, the standard
deviation decreases with the density, indicating that the agents have learnt to
choose small variations of velocity in high densities (that is, in a crowded situa-
tion). In a low density situation, an agent has more opportunity to modify the
velocity vector, because collisions are less likely: therefore the standard deviation
is high. This is also considered a positive characteristic in terms of the control
of velocity. The Helbing experiment shows the same property: with increasing
density, speed decreases.

The right column of Figure 6.10 shows the density maps in the selected con-
figurations. A density map is a histogram that counts the number of agents
occupying a spatial zone along the time of the experiment, and therefore reflects
the use of this zone. In these graphs, the X and Z axes represent the spatial
positions in the room. The square room has been divided by a 25 x 25 grid. The
Y axis represents the occupation of the space in terms of the number of times
that a unit square of the grid has been occupied in the 100 episodes of the exper-
iment. The shell-shaped pattern in front of the door is a typical collective effect
of clogging in the kind of bottlenecks studied in pedestrian dynamics (Helbing,
2004; Schadschneider et al., 2008). Here, the bottleneck is clearly represented in
the surface shape close to the door for all the experiments, including Helbing’s
experiment. Note the absence of significant heaps in other zones of the space,
highlighting the absence of any wandering around the room. This is a common
characteristic with Helbing’s model.

With respect to the scalability, note that the mentioned characteristics of the
results explained above are tested in an environment with 90 agents whereas the
number of agents in the learning process was 18. This means that the approach is
robust to scaling in the number of agents (note that the scaling is performed with-
out additional learning, only sharing the learned value functions by the agents)
and is capable of generalization in terms of the persistence of the learned dynam-
ics. This statement is also corroborated by the results of Table 6.9 as discussed
below.

A sequence of a simulation is presented in Figure 6.11. The agents learned
using the ITVQQL schema in an environment with 18 agents. In the simulation,

the number was scaled 5 times (90 agents).
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Figure 6.11: Four moments of a simulation for the closed room with the ITVQQL
schema and 90 agents. The temporal sequence of stills is sorted alphabetically.

A similar sequence is represented using Unity rendering engine in Figure 6.12.

Note the shell-shape of the group of agents in front of the exit, which minimizes
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the distance to the goal.

6.5.4 Performance

The next tables characterize the different schemas with respect to the scalability
in the number of agents. The learning tasks were performed with 18 agents.
Table 6.8 shows the length, in meters, of the agents’ paths. The lengths
are practically constant with the scaling (read the data by columns), suggesting
that similar behaviors occur independently of the scaling factor. Specifically, the
agents tend to avoid detours in their trajectories. This behavior is also observed
in real pedestrians and has been reported in Helbing et al. (2001). There is little
difference in the use or not of transfer for the ITVQQL and the INVQQL schemas.

HAg. IT IN TF IT TF IN VQQL
18 | 144+7 20+£21 15+7 18410 15+11
36 | 13+5 18415 1547 1848 15+17
54 | 14+6 18413 16+£8 19+10 15411
72 |1546 18412 16+£8 19+11 15410
90 | 1547 18411 1749 20+11 17410

Table 6.8: Averaged lengths and standard deviation for the paths in meters. The
averages are over 100 episodes and for all the agents.

Table 6.9 displays the averaged number of agents who fail to exit by the
door and its correspondent median. A statistical analysis was performed using
the Statgraphics software package. A Kruskal-Wallis test using the medians was
conducted to determine statistical significant differences among the experiments
because neither the raw data nor the transformed data adjusted to a normal

distribution. We can observe the following main results:

1. The means of all the schemas remain similar when a scaling with 54, 72 and
90 agents is performed. This fact suggest the possibility that the scalability

results could be similar with a higher number of agents.

2. In the experiments with 18 agents (without scaling), the schemas with trans-
fer are statistically different from the schemas without transfer and also from

the VQQL. This shows that transfer has a significant impact when it is used
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Figure 6.12: Rendered scenes of the simulation for the closed room with an exit
experiment with the ITVQQL schema and 90 agents. The images are divided in
two views of the same scene. The temporal sequence of stills is sorted alphabeti-
cally.
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HAg. IT IN TF_IT TF_IN VQQL  P-value
18 1b(24) 4c¢(42) 0a(1.0) 0a(29) 16 (2.8) 0

36 lab (65) 4¢(48) 0a(28) 350bc(62)  0ab(68) 4x107°
54 la(64) 4b(6.0) 0a(3.6)  4b(64) 10 ab (15.7) 7 x 10720
72 lab (9.4) 4b(5.6) 1a(3.9  4b(6.6) b(22.1) 4x 1078
90 | 1ab(10.3) 4b(6.0) la(41)  3b(65) 18 5 ¢ (25.0) 4 x 10710

Table 6.9: Medians and means (in parenthesis) for the agents that do not reach
the door (fails) when scaling up the number of agents. The means are averaged
over 100 episodes (N=100) and are considered a measure of performance. Median
values separated by different letters for the same number of agents (within a row),
are significantly different (P < 0.05) according to Kruskal-Wallis test.

without scaling. When the number of agents is scaled up, the I'T and the
TF IT are statistically classified as a different group with respect to the
IN and TF _IN schemas. The VQQL is placed in a different group from the

TF IT schema in three of the five experiments.

3. The means in the VQQL are significantly higher than the others when
scaling up the number of agents. Thus, it behaves the worst in all the

experiments.

Reading by rows, the TF _IT schema has the best performance (lowest mean)
in all the configurations. Note the positive effect of the transfer of knowledge
in the TF _IT schema when the number of agents is scaled up, as opposed to
the lack of such an effect in the TF IN schema when scaling. However, if we
compare the rows for 18 agents for both schemas with and without transfer, we
can see that both improve the performance using transfer. This agrees with the
performance results for 18 agents in the learning processes (see Figure 6.4 and
Figure 6.5).

From previous evaluations one can draw several conclusions:

1. The analysis of the graphs of speed and distance to the nearest neighbors,
which are related to the microscopic behavior of the agents, shows that all
the schemas provide behaviors with a correlation between the curves. The

observation of individual episodes also reveals that the controller tends to
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remain unchanged when the distance to the nearest neighbor is large, which

is considered to be a rational behavior.

2. The fundamental diagrams and density maps reveal that the main charac-
teristics of the pedestrian dynamics and collective behavior appear in all
the schemas. These tests, which are mainly related with the macroscopic
(collective) behavior, do not exhibit any significant differences between the

two schemas.

3. The scalability tests displayed in the tables show properties of real pedes-
trian behavior and demonstrate empirically that the learned behaviors are

generalizable to other configurations with more agents.

4. The results shown in Table 6.9 indicate that the VQQL baseline algorithm
performs worse (highest mean) than the rest of the schemas when scaling
up the number of agents. Also it shows that the TF IT has the best
performance (lowest mean) in all the experiments with a different number

of agents.

6.5.5 Macroscopic analysis for the second scenario

In the crossing scenario I am interested in studying the emergence of collective
behaviors. Specifically the formation of lanes as the emergent behavior that solves
the crossing. Our scenario is 2m wide, therefore, only three agents are necessary
to obstruct the corridor. Without an organization of the groups, clogging is a
difficult problem to solve.

The solution found by the agents in the learning schemas (TF _IT, TF IN)
and in VQQL, has the same structure. The agents that belong to a group form
one line in anticipation of the moment of crossing as can be seen in the sequence
of images in Figure 6.13. The reader can see some videos of the results at URL
http://www.uv.es/agentes/RL/index.htm.

In this scenario, the performance is measured considering whether all members
of the group have reached to the goal. Thus, only the episodes in which the
crossing has been solved successfully are taken into account. This performance

measure is more restrictive than that used in the first scenario, where how many
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C

Figure 6.13: Four moments of a simulation from crossing scenario with TF IT
schema. The temporal sequence of stills is sorted alphabetically.

agents reached to the goal is measured. The results in Table 6.10 indicate that
not all the episodes solve the crossing. Although the lanes appear in all the
episodes, the lane formation needs to anticipate the instant of the crossing to
avoid clogging that the agents cannot solve with the limited time given to each
episode (80 decisions, that is, 40 seconds in simulation time). The TF _IT schema
has the highest performance with significant statistical difference with respect to
the TF IN schema and the VQQL baseline.

In Figure 6.14, the density maps are displayed. As in the first scenario, the
maps are built accumulating the positions of the agents in 100 episodes. The flat
zones at the borders are the space occupied by the walls. Note the two high den-
sity zones near the walls that correspond to the lane formations. The high values
of the histogram in those zones reveals that lane formation occurs often (actually
in all the episodes) and with a similar structure in all the schemas (including
the VQQL algorithm). This fact together with the results shown in Table 6.10
reveal that lane formation is not sufficient by itself to solve the clogging, it is also
necessary for the lanes to appear before the crossing. In order to emphasize the
differences between the schemas, a side view of the map is included in the right
column of Figure 6.14. In the side view, the shape of the middle region of the
corridor in terms of densities can be seen. It can be observed that the VQQL
experiment has the highest density in the middle zone of the corridor, meaning
the existence of cloggings in this zone. The TF _IT schema has the lowest density

in the middle of the corridor, suggesting that the anticipation in lane formation
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TF IT TF IN VQQL P-value
81 a 52b  63c¢  0.0000

Table 6.10: Mean of the number of episodes that end successfully from a series
of 100 episodes. A successful episode means that all the agents reach the corre-
sponding goal. Ten series have been carried out. The data was analyzed with an
ANOVA test. It proved that the means are significantly different (P < 0.05). The
letters classify the different groups according to Duncan’s multiple range test.

has been learned better.
From the results gathered we extract the following conclusions for the second

scenario:

1. The emergence of the lanes occurs in all the learning approaches evaluated.

In all the cases, the lanes have a similar structure.

2. The TF _IT performs better than the TF IN schema and the VQQL base-
line experiment. The ANOVA test shows significant differences in the re-

sults.

6.6 Conclusions of the experiments

Two different algorithmic schemas have been designed to increase the performance
of the VQQL algorithm. Each one proposes a different strategy to address the
problem of achieving an adequate description of the state space for the task as well
as how the problem of multi-agent learning is dealt with. In addition, different
techniques of knowledge transfer have been used to accelerate the learning process.
In both scenarios, ITVQQL with transfer (TF _IT) performs better than the
others for the studied configurations. Specifically, it gives the best performance
in the first scenario when scaling up the number of agents as well as in the second
scenario in the number of solved crossings. Although the studied scenarios in
this chapter are different enough to indicate the broad usability of the ITVQQL
with transfer algorithm, it is especially useful in domains in which the random
exploration of the state space does not lead to quantizers with a good enough

representation of the state space to find the optimal policy.
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Figure 6.14: Density maps of the schemas for the crossing scenario. The data
come from 100 simulations. The high density areas at the sides are created by the
emergent lanes. The right column shows a side view of the same map to compare
the density of the middle region of the corridor. Note that the graphics have not
the same scale.
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From a macro-dynamics point of view, the speed-density relation in the funda-
mental diagram and the emergence of a basic collective behaviors (lane formation
in the corridor and shell-shaped organization in the closed room scenario) result
as a consequence of the policies learned. Specifically, the collective behaviors
indicate a conformance with real pedestrian studies and other pedestrian models.

For the first scenario and from a micro-dynamics perspective, the speed con-
troller seems to be stable in high density situations (where many local interactions
occur). The learned behaviors in the first scenario are robust to scalability in the
number of agents. Furthermore, the comparison at the macroscopic level with
the Helbing pedestrian model of social forces shows similarities with our results
in terms of the fundamental diagrams and the density maps in the first scenario.
These similarities with the Helbing model support the idea that our agents have

developed plausible behaviors of pedestrians.

6.7 Chapter highlights

e Two schemas based in the VQQL algorithm are presented: ITVQQL and
INVQQL, which adopt different strategies of learning. ITVQQL learns the
same problem with a fixed number of agents in each of its iterations tranfer-
ring the value function and improving the VQ in each iteration. INVQQL
learns the problem by gradually incrementing the number of agents in each
iteration. Therefore, the learning problem increases the difficulty in each

1teration.

e The schemas are tested in two scenarios (a closed room with an exit and
a crossing inside a corridor). The dynamics analyzed in the behaviors ob-
tained for the room scenario indicate pedestrian-like responses at both the
macro and micro levels. The results for the corridor scenario indicate the

emergence of collective behaviors.
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Chapter 7

Learning approaches based on
Sarsa(\) with tile coding.

Following the objective of this thesis to demonstrate the utility of RL for pedes-
trian simulation, in this chapter another different configuration including different
scenarios will be tested. Specifically, Sarsa()) as the learning algorithm and tile
coding as the state generalization system will be used. The reader can find a
discussion of the algorithms and methods in Section 3.3.2, and a description of
the basic algorithm in Algorithm 7. Two important differences with respect to
the algorithms used in the previous chapter appear: i) Sarsa()) is an on-policy
algorithm while Q-learning is off-policy. This property is related with the fact
of using, or not, a separate exploratory policy from the learning policy and was
discussed in Section 3.1.4. ii) Tile coding is a linear function approximator that
assigns the specific state to a codified region of the state space, contrary to VQ,
which is a state-aggregation-based method.

The studied scenarios are also different with the exception of the crossing of
two groups of pedestrians inside a narrow corridor, also considered in the previous
chapter. The new scenarios are; i) choice of the shortest path vs. quickest path;
ii) two agents who move in opposite directions inside a maze. These scenarios
are included to demonstrate that the learned behaviors are not only capable
of controlling the local interactions but they generate higher levels of behavior,

specifically, tactical behaviors. Thus, the learned behaviors adapt to the level
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required by the pedestrian scenario. The shortest path vs. quickest path, presents
a route choice problem where the agents can select the quickest path, making
a detour, and avoiding a bottleneck that represents the shortest path option.
The maze represents a classical planning problem where avoiding local minima
situations is necessary to reach the goal.

The narrow corridor scenario, studied in the previous chapter, will be revisited.
The reason for repeating this experiment is double: first, I will demonstrate
that the emergence of the expected collective behavior also appears with this
configuration (or, in other words, it is configuration-independent). Second, I will
use it as a comparison testbed. Specifically, I will compare the performance of
the two approaches (ITVQQL vs. Sarsa with tile coding) and study the influence
of knowledge transfer techniques on it.

I will also compare the shortest path vs. quickest path and the narrow corridor
experiments with the Helbing model in similar microscopic conditions. As in the
previous chapter, this comparison reveals the level of similarity of the dynamics

developed by the learned behaviors with those generated with Helbing’s model.

7.1 Modeling the problems

In this section the proposed problems are modeled as MDPs.

7.1.1 The scenarios

Firstly, the scenarios of the experiments are introduced. These scenarios model

common situations for real pedestrians in urban environments.

The shortest path vs. the quickest path scenario

In the problem of the shortest path versus the quickest path, an agent has to
choose between two exits to reach the goal. One exit is near the goal and the other
is situated farther from it. If the number of agents is large, a jam is generated
in front of the exit that is next to the goal. However, another alternative path is
available which detours the group using the other exit. Assuming that the extra

effort to perform the detour is small, some of the agents at the borders of the
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jam can decide to follow the detour instead of remaining inefficiently waiting.
This problem happens in different situations in real life (for example pedestrians
hustling through a station hall as they are late for a train) and it differentiates
pedestrian dynamics from other vehicle dynamics (Johansson & Kretz, 2012).
The layout of the environment in this experiment is a wall with two exits that
divides a space in two areas. The agents are placed in the first area with the
following dimensions, width 18 m and depth 6 m, and the goal to reach is placed
in front of one exit in the second area. The exits are 1 m wide, allowing only one
agent at a time to traverse them. The two exits are separated by distance of 6 m.
The distances from the nearest exit and from the farthest exit to the goal are

1.5m and 6.2m, respectively (see Figure 7.1).

The crossing inside a corridor scenario

The crossing inside a narrow corridor scenario has already been explained in
Section 6.1.1. In this case, the same configuration is adopted. An image of the
scenario’s layout, as well as a rendered image of a simulation can be seen in

Figure 7.1.

The maze scenario

Real urban pedestrians find mazes in several common situations. In a congested
avenue, vehicles create mazes that pedestrians have to solve to cross the road. In
certain railway crossings, pedestrians find fences which build mazes that require
them to approach the crossing by turning left and right in order to force the visual
detection of the presence of a train. To leave the maze, the virtual embodied agent
needs to plan the trajectory. A greedy strategy, like that in which the agent always
chooses the straight path, can leave him/her stuck in a local minimum. Path-
planning is a necessary task in crowd simulation commonly placed in the high level
agent’s behavior model (Pelechano et al., 2007) or in the environment (Treuille
et al., 2006). In our approach, path planning' is a consequence of the RL dynamics

and is intrinsic to the learned controller. The exploration policy intrinsically

In this work, path planning should be understood as a path finding capability. This
approach is far from traditional planners which provide optimality and completeness guarantees.
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Figure 7.1: Images of the scenarios for the experiments. The first three images
correspond to the shortest path vs quickest path, the corridor and the maze ex-
perimental scenarios. The last three images are stills of simulations correspondent
to these experiments. These simulations are renderized with Unity.
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assumes the task of planning when forcing the agent to explore different actions
in a given state. In this experiment, the virtual environment is a square 4 x4 m in
which three walls have been appropriately situated to create a maze. Two agents
are situated at the beginning of the episode in two adjacent corners of the square,
and their goals are placed in the diagonally opposite corners. The agents move

across the maze in opposite directions (see Figure 7.1).

7.1.2 State space definition and generalization

The number of features that describe the state space for each experiment is dif-
ferent. In the shortest path vs. quickest path, each agent senses 7 neighbors and
two objects (the two nearest walls). In the corridor scenario, each agent senses 4
neighbors and two objects. In the maze scenario each agent only senses the other
agent and the two nearest walls. When an agent cannot detect the necessary
neighbors to complete the perception, (as discussed in Section 6.3), the problem
is solved by setting unobserved features to random values (random imputation).

The tile coding generalization system also needs to be adjusted in the number
of tilings and the number of partitions of each dimension. Each scenario needs
its own study. The selected values are indicated in the parameter tables for each
experiment in the corresponding section. As an example of this value-selection
work, a study of the number of tilings for the shortest path vs. quickest path with
28 agents is displayed in Figure 7.2. As in the case of the selection of the number
of prototypes in the VQ method, a trade-off is necessary between the number
of tilings and the computational efficiency. In this case, the comparatively high

performance achieved by 128 tilings justifies its use in the experiments.

7.2 Learning results

In this section, the configuration, as well as the performance achieved by each
learning process, is described. There is not a fixed pattern to define the configu-
ration of parameters and the strategies to be used in the learning process because
each scenario has its own challenges that have to be specifically addressed.

The curves that describe the learning results in the following experiments,
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Figure 7.2: Influence of the number of tilings on performance in ‘shortest ws.
quickest path’ scenario. The curves are means of 28 agents.

represent the mean curves of the performance values of the last 100 episodes.

7.2.1 Shortest vs. Quickest path

On the right of Figure 7.3, the main parameters of the learning process for this
scenario are specified. The learning phase has 23 agents, that is a sufficient
number to produce the bottleneck in front of the nearest exit to the goal. The
learning process has been empirically fixed to a duration of 50000 episodes.

The left of Figure 7.3 shows the learning curve of the mean percentage of
success of 23 agents. An agent successfully solves an episode when he/she reaches
the goal, independently of the chosen path. As indicated previously, each point
in this curve represents the mean percentage of success for the last 100 episodes.
The final asymptotic region of the curve, with a percentage of success of more

than 90%, indicates that the agent has learned to solve the problem.
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0 10000 20000 30000 40000 50000
Episodes
Key Values
Number of learning agents 23
Number of episodes 50000
Parameter A of Sarsa Algorithm 0.9
Learning rate 0.001
Influence of future rewards (7) 0.9
Initial value of Epsilon (¢) 0.9
Number of tilings in Tilecoding 128
Reward when leaving the valid area | -10
Reward when the goal is reached +100

Figure 7.3: Learning process for ‘shortest vs. quickest path’ experiment. Top:
Mean percentage of successful individual episodes. Curve shows the mean and
standard deviation for 23 agents. Bottom: Configuration values.

7.2.2 Crossing in a corridor

The crossing scenario is a problem of spatial organization in which anticipatory
maneuvers of the pedestrians in each group can play an important role in solv-
ing the problem. A way to facilitate the search for a solution is to give useful
information during the learning process. We have used Policy-Reuse (PPR) to
introduce information in the learning process (see Section 3.4 for a description

of the method, and specifically Equation 3.25). In this case, the existing policy
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Tpast cONsists of using actions that moves the agent towards the right side of the
corridor. This policy was also used in the twin experiment in Chapter 6. The
idea is to set similar learning conditions to make the results comparable. Hence,
the decay pattern for PPR is the same as that used in the ITVQQL experiment
with the corridor in the previous chapter. The specific values of the learning
parameters for the crossing experiment as well as the probabilistic curves used in
PPR are displayed in Figure 7.4.

The averaged percentage of successful episodes for the 8 agents with and
without using Policy-Reuse is shown in Figure 7.5. The use of PPR has a positive
effect on the learning processes as the agents learn faster. For example, at episode
10000, the percentage of success with PPR is about 75%, whereas in the same
episode without PPR it is about 40%.

Key Values
Number of learning agents 8
Number of episodes 50000
Parameter \ of Sarsa Algorithm 0.9
Learning rate 0.004
Influence of future rewards () 0.9
Initial value of Epsilon (¢g) 1.0
Number of tilings in Tile coding 64
Reward when the goal is reached | +100

1 T T T T

Probabilities

1
0 10000 20000 30000 40000 50000
Trials

y — € m-m=--- greedy --------

Figure 7.4: Learning configuration in the ‘crossing inside a corridor’ experiment.
Top: Values for the main parameters of learning processes. Bottom: Probability
functions for Policy-Reuse transfer method.
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190



7.2.3 Pedestrians in a maze

The right of Figure 7.6, shows the table with the values of the parameters that
make up the experiment. To the left of Figure 7.6 the percentage of successful
episodes for each agent is shown. The curves show each agent’s independent
learning process. The agents do not learn at a similar pace throughout the pro-
cess. This asynchrony derives from the fact that the goal is discovered at different
times by each agent. As each agent perceives the other agent as part of the en-
vironment, a fast improvement in the policy of an agent creates a non-stationary
environment for the other agent, who has more difficulties learning. A careful ad-
justment of the learning rate (the o parameter) alleviates the problem. Despite
this fact, the percentage of success for both agents at 50000 episodes is about
90%, which indicates that the problem has been solved.

100 T
90 b
80 | i)
70 | |
80 - ‘ ;

it
50 | f
40 -

Agent1 —p |
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o L bl ,Mﬂww'!\},mkn. .

o] 10000 20000 30000 40000 50000 60000 70000
Episodes

Mean percentage of successful episcdes

2

=]

q

o

Number of learning agents 2

Number of episodes 70000

Parameter \ of Sarsa Algorithm 0.9
Learning rate 0.007

Influence of future rewards () 0.9

Initial value of Epsilon () 0.3

Number of tilings in Tilecoding 32
Reward when leaving the valid area | -5.0
Reward when the goal is reached | +100

Figure 7.6: Learning results for the maze. Top: mean percentage curves of
successful episodes for each agent. Bottom: values of the parameters.
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7.3 Simulation results

In this section, we analyze the performance of the framework with the specific
configuration on the described scenarios. The results are illustrated with videos
that can be seen at URL http:://www.uv.es/agentes/RL.

7.3.1 Shortest path vs. quickest path

In Figure 7.7, the density map created by the learned behaviors is displayed. The
two flows of pedestrians who go through the exits towards the goal are visible.
Note in the perspective view, the clogging created around the exit of the shortest
path (similar to a mountain with two peak) and the flow that deviates towards
the quickest path represented by the shaded area between the values Z=-4 and
Z=2. The flat areas at X=0 correspond to the walls (where occupancy of the
space is not possible). The flow of agents that use the quickest exit surrounds
the longest flat area. In the side view, the ridge that connects the two heaps that

represent the exits, also shows the trace of the agents that use the quickest path.

Shortest exit Goal Quickest exit

Y(counts)

16000
14000
12000
10000
8000
6000
4000
2000

Figure 7.7: Density map for the ‘shortest vs. quickest path’ experiment with 23
agents. Perspective and front views. Data are from 100 simulations.
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Figure 7.8: Fundamental diagrams for a clogging in front of an exit with 23
agents. Left: ‘Shortest wvs. quickest path’ experiment measured in front of the
quickest path exit. Right: Helbing’s model for a similar clogging in front of an
exit.

In Figure 7.8, the fundamental diagrams for Helbing’s model and the frame-
work corresponding to a clogging in front of an exit, are displayed. The data in
Helbing’s curve comes from the experiment of a closed room with an exit described
in the work by Helbing et al. (2000) with the code available at URL://http.-
pedsim.elte.hu. Although the set up of the experiment is not the same, the mea-
sured points for both diagrams are placed in front of the exit in which clogging
is created (in Helbing’s experiment there is only one exit, in our experiment this
corresponds with the shortest path exit). The diagrams compared show common
characteristics: first, a decreasing shape of the curves when the density increases,
which is an important characteristic of pedestrian dynamics. The decrease in
speed at high densities is coherent with a state of congestion. Second, the stan-
dard deviations of both curves decreases with increasing density which indicates
the restriction of the choice of possible velocities in a state of high density. The
curves shapes are similar, indicating comparable dynamics.

Table 7.1 summarizes the different performance obtained with 1000 episodes.
In this table, individual average performance percentage (percentage of times that

an agent reaches the goal) and collective average performance percentage (average
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Individual averaged performance percentage 98.6 £ 0.6

Collective averaged performance percentage 72.3+4.5

Averaged outputs through the shortest path (23 agents) | 17.0 £ 2.0 (73.9%)

Average outputs through the quickest path (23 agents) | 4.0 £ 1.6 (17.4%)

Table 7.1: Performance analysis in simulation for the ’shortest vs quickest path’
experiment. Mean and standard deviation. Individual averaged performance
percentage counts the times (of 100 episodes) that an agent has reached to the
goal (independently of the path). Collective averaged performance measures the
times (of 100 episodes) in which all agents arrived at the goal (independently of
the path choice). Values are averages of 10 experiments. For averaged outputs,
the whole set of 1000 episodes with 23 agents each have been used.

percentage of episodes in which all agents reach the goal) are shown. While the
individual percentage gives a measure of the quality of the individual learned
behaviors, the collective percentage indicates the percentage of valid simulations
(in which all agents reach the goal). The figures in the table show that more than
98% of the agents solve the problem and the 72.3% of the simulations end with
all the agents finding the goal. In addition, 17.4% of the agents were able to find
the alternative route to the shortest path.

In Figure 7.9, a temporal sequence of a simulation with 23 pedestrians is
displayed. The high density in front of the exit corresponding to the shortest
path, generates a detour of some peripheral pedestrians towards the quickest
path. Only the agents situated on the left side of the clogging select the detour,
as expected. Note in images B and C of the sequence how two agents situated at
the left border of the clogging use their quickest path selecting the farthest exit
from the goal. When clogging disappears, the agents again choose the shortest
path. This situation can be seen with the pair of agents to the right of the
shortest path exit in image D of the sequence. Note how they disappear in image
E indicating that they used this exit to reach the goal.

In Figure 7.10, a sequence of stills from a simulation renderized with Unity is

displayed.

194



Figure 7.9: Sequence of stills from a simulation in the ‘shortest vs. quickest path’
experiment. The lines show the trajectories of agents. The temporal sequence is
sorted alphabetically.
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Figure 7.10: A sequence of rendered images of the ‘shortest vs. quickest path’
experiment. Each image presents two different views of the same instant. The
temporal sequence of stills is sorted alphabetically.
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7.3.2 Crossing in a corridor

In this scenario, a comparison of the results obtained using the developed frame-
work (with and without policy-reuse) and using Helbing’s model is performed.
The density maps are displayed in Figure 7.11. The density map generated by
the framework with PPR shows two high density areas that correspond to the
lanes. As can be seen in the first row of Figure 7.11, the lanes appear near the
walls of the corridor represented in the density map by two flat zones at both
sides. On the contrary, the center of the corridor has a low occupancy. In the
second row, the map for the experiment without PPR is displayed. The lanes
also appear at both sides of the corridor, near the flat zones that indicate the
presence of walls. The occupancy of the center is higher than that obtained in
the previous experiment. Moreover, the occupancy of the sides is not as clear
as before. These facts indicate that the agents do not create the lanes with the
same anticipation and decision than in the experiment with PPR (the agents use
the central area of the corridor more often). This is also supported by the re-
sults showed in Table 7.2. The third row corresponds to the Helbing experiment.
The density map reveals that the space occupancy is different. The two groups
of agents try to get to the center of the corridor instead of deviating towards
the walls as occurs in my framework. This is an expected behavior because the
presence of the walls generate repulsive forces that deviate the agents towards
the center. When the individuals from both groups meet half way to the goals,
the repulsive forces between the agents allow them to approximate to the walls
solving the crossing. Therefore, large occupancy is visible on the map in the
center of the corridor where the two groups of agents meet. The presence of lines
in Helbing’s model is shaded by the central interaction zone.

Figure 7.12 shows two fundamental diagrams corresponding to the framework
of the crossing experiment using PPR (left) and Helbing’s model (right). The
measurement point has been chosen in the center of the corridor with a radius
that covers the whole width of the corridor in both experiments. The range of
densities in Helbing’s diagram cuts with a density of 0.9 1/m?. This indicates that
the crossings do not create congested situations. In our framework, the densities

are higher than in Helbing’s experiment indicating more congested situations. On
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Figure 7.11: Perspective and front views of density maps for the ‘crossing inside
a corridor’ experiment. With PPR (first row). Without PPR (middle row) and
experiment with Helbing’s model (bottom row). The data of Helbing model have
been collected from the implementation described in Helbing et al. (2000). The

configuration is the same that the other

two experiments.

198



Speed (m/s)
T

1
Speed (m/s)

0.8 1
Density (1/m2)

L L L L L
0.4 0.5 0.6 0.7 0.8
Density (1/m2)

0 I I

0.2 0.3 0.9

Figure 7.12: Fundamental diagrams of the ‘crossing inside a corridor’ experiment
in the center of the corridor with 8 agents. Left: Framework

for a measure point
experiment. Right:

Helbing’s experiment.

Individual average per-
formance percentage

Collective average per-
formance percentage

With PPR 96.0 = 0.8 80.0 = 3.1
Without PPR 929=£1.0 67.9+4.2
Helbing 100 100

Table 7.2: Performance values for simulation in the crossing experiments. Mean
and standard deviation. The individual performance percentage counts the times
(of 100 episodes) that an agent has reached to the goal. The collective perfor-
mance measures the number of times (of 100 episodes) in which all the agents
arrived at the goal. The values are the average of 10 experiments.

the other hand, the main characteristics of the diagrams described in the previous
experiment also appear in this one, revealing similarities in both models.

In Table 7.2, the performance results of the crossing experiment are displayed.
Data show the important influence of PPR in the collective performance, that is,
in the rate of right episodes (those in which all the agents arrive at the corre-
sponding goal). On the contrary, the influence is not important at the individual
level, stressing the coordination role of the PPR transfer technique in the learning
process. In the case of the Helbing experiment all the episodes are successful.

In Figure 7.13, a sequence of images of a simulation is displayed. Note the
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Figure 7.13: A simulation of the ‘crossing in a corridor’ experiment using learned
behaviors. The temporal sequence of stills is sorted alphabetically.

anticipatory organization in lanes at B and C (that is, the agents do not wait
for the imminence of a crash to organize, as occurs with models based on forces
or potential fields). The videos of several simulations can be seen at http: :
//www.uv.es/agentes/RL.

The reader can find a video of special interest at http: ://www.uv.es/agentes/
RL/crossing_sarsa.htm that reproduces two simulations of the crossing prob-
lem with the Helbing model and the Sarsa(\) approach. In this video, one can
appreciate the different solutions that both approaches provide for the problem.
Figure 7.14 contains a sequence from this video. Two different views are shown
in each image. The top view shows two corridor scenarios. The left scenario dis-
plays the simulation of the learning framework. The right scenario displays the
simulation of Helbing’s model. In the bottom view, the corridor on the top shows
the simulation of the learning framework. The corridor at the bottom shows the
simulation of the Helbing’s model. In Helbing’s model, the agents tend to occupy
the center of the corridor where the collisions occur. Whereas, in the Sarsa()\)
approach, the agents have learned to anticipate the crossing and two lanes are

created before the crossing occurs.
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Figure 7.14: A simulation in the ‘crossing in a corridor’ experiment using learned
behaviors with Sarsa algorithm and Helbing’s model. Each image presents two
views of the same instant. In the top view, simulation with Sarsa corresponds to
the left corridor. In the bottom view, simulation with Sarsa corresponds to the
above corridor. The temporal sequence of stills is sorted alphabetically.
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7.3.3 Pedestrians in a maze

In this experiment, the use of fundamental diagrams and density maps are not
appropiate because only two agents are present in the scenario, and therefore,
the ranges of density are very short. The view of the learned behaviors shows
that the agents have learned to exit from the labyrinth, which implies the use
of path planning capabilities (in terms of the definition of a path that solves the
problem).

Table 7.3 shows the individual and collective percentages of successful episodes.
Note the high percentages of success (> 95%) in both performance measures

which indicate that the agents have learned the task.

Individual average performance per- | Collective average performance per-
centage centage
98.1£1.0 96.8£1.5

Table 7.3: Performance results in simulation for labyrinth. Mean and standard
deviation. Individual performance percentage counts the times (of 100 episodes)
that an agent has reached the goal. Collective performance measures the number
of times (of 100 episodes) in which both agents arrived at the goal. The values
are the average of 10 experiments.

Figure 7.15 shows a sequence of an episode in simulation. Note in image D
of the sequence that the agent coming from the left side executes a maneuver
to avoid a collision with the other agent, situated near the wall. This control
maneuver corresponds to the operational level. The trajectories of the agents
are not symmetrical because each agent learns independently and, therefore, the
control of the movement is different for each agent.

In Figure 7.16, a simulation with Unity is displayed. Note how the agents

avoid the collision.
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Figure 7.15: Maze experiment. Temporal sequence of stills is sorted alphabeti-
cally. Goals are situated at the bottom of the maze
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Figure 7.16: Simulation with Unity of the maze experiment. Temporal sequence
of stills is sorted alphabetically.

7.3.4 Conclusions of the experiments

These experiments empirically demonstrate that the framework solves the navi-

gation problems at different pedestrian behavior levels (tactical and functional).
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Thus, the 'shortest vs quickest path’ scenario demonstrates the capability to solve
navigation problems at the tactical level, because the learned behaviors reproduce
the situation of the choice between the shortest and the quickest path. The re-
sults of the labyrinth experiment demonstrate capabilities of combining local and
global navigation to find a path that solves the problem.

In the crossing scenario, the emergent behaviors (lanes formation) have been
created. This implies that the emergence of this collective behavior in this prob-
lem is independent of the learning approach (ITVQQL or Sarsa).

The comparison of the fundamental diagrams with Helbing’s social forces

model reveals similarities in the generated pedestrian dynamics.

7.4 Performance comparison of ITVQQL and Sar-
sa()) with tilecoding (TS) in the ‘crossing in-
side a corridor’ scenario

It is difficult to answer the question of what is the best configuration of those
studied in this work. First, because it would be necessary to perform studies in
many more different scenarios. Secondly, because several parameters of the set
up of the different configurations represent trade offs between efficiency and com-
putational cost and, therefore, the configurations are not prepared to obtain the
best possible performance but to give good results in a limited time of computa-
tion. However, if we restrict the study to a case, it is possible to analyze different
setups and give an idea about the strengths and weaknesses of the approaches.
In this section, the influence of the different transfer learning techniques used
in the performance is studied. As transfer of knowledge is a way of introducing
information in the system, its influence on the results sheds light on the learning

efficiency of each configuration.

7.4.1 Experimental setup and results

Six case studies have been designed combining two basic configurations, ITVQQL,
described in Section 6.3.1 and Sarsa(A) with tile coding (this will be abbreviated
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as TS in this section), described in Section 3.3.2 and the basic algorithm de-
scribed in Algorithm 7. Table 7.4 shows the characteristics of each one with its

corresponding label.

Config. Cases Algorithm | Gener. method | TVF | PPR
ITVQQL IT-ALL Q-Learning VQ Yes | Yes
IT-NOPR Q-Learning VQ Yes No

IT-NOVF Q-Learning VQ No Yes
IT-NOTHING | Q-Learning VQ No No

TS TS-ALL Sarsa(\) Tile coding No | Yes
TS-NOTHING | Sarsa()) Tile coding No No

Table 7.4: Case studies considered in this section with their characteristics. The
acronym TVF means "Transfer of Value Function” and PPR means "Probabilistic
Policy Reuse’.

Figure 7.17 shows the performance (mean percentage of times that an agent
reach its goal independently of the rest of agents) obtained at the end of each
learning process. At the first iteration, the IT-NOVF curve has a similar value
to the I'T-ALL curve because in that iteration both experiments have the same
configuration (there is no value transfer). A similar situation occurs with the I'T-
NOPR and IT-NOTHING curves. The gap between the IT-NOPR/IT-NOTHING
curves and the curves that use PPR, indicates that the bias provided by the pol-
icy mpest through PPR is very useful for the learning process. Observing all the
iterations, the IT-ALL curve (which represent the process that uses both transfer
learning techniques) attains the highest values. This iterative schema reaches the
asymptote in the third iteration (therefore, it would be sufficient to stop at this
iteration).

For the IT-NOPR curve, the iterative schema is useful from iteration 1 to 7.
This fact shows that the transfer of the value function needs more iterations when
used alone than when used in combination with PPR.

The performance of the IT-NOVR curve remains with soft oscillations along
the iterative process. It is partially justified by the fact that PPR is providing the
same information in all the iterations. However, an increment would be expected
by the consecutive refinement of the VQ as the iterative process progresses (but

this is not observed). The same occurs in the IT-NOTHING experiment, possibly
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because the learning processes are not long enough to generate better VQs be-
tween consecutive iterations. The low values obtained with IT-NOTHING with
respect to those observed in the rest of cases reveals the benefits of using both

transfer techniques.
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Key Values
Number of agents 8
«Q From 0.3 to 0.15
v 0.9
Initial value of € 1.0
Iterations 8
Episodes per iteration 50000
Reward Goal reached 100
Number of prototypes 8192

Figure 7.17: Top: Averaged performance for the ITVQQL schema (number of
times that an agent reach its goal independently of the rest of agents). Each
point is the average performance of all agents at the end of each iteration of
learning process. Means are over 8 agents. Down: Common configuration for the
cases of study derived of the ITVQQL schema.

In Figure 7.18, the results of the T'S approach are reported. Two curves that
represent data collected from a single learning process, using PPR (TS-ALL)
or not (TS-NOTHING) are represented. The initial gap between both curves is
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typical in a knowledge transfer process. In the TS-ALL curve, the beneficial effect
of PPR is clear throughout the process with higher performance with respect to
the TS-NOTHING case.
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Reward Goal reached 100
Number of tilings 64

Figure 7.18: Top: Averaged performance for the TS schema (number of times
that an agent reach its goal independently of the rest of agents). Each curve is
the average performance of all agents throughout a single learning process. Means

are over 8 agents. Down: common configuration for the case studies derived of
the TS schema.

The analysis of the simulation performance is displayed in Table 7.5. Now
the performance measures the percentage of correct simulations, that is, the sim-
ulations in which all the agents reach the corresponding goal. The results for
the IT-ALL and TS-ALL cases show that the performance is similar for both
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Schema Label Performance in simulation
ITVQQL IT-ALL 81 +4
IT-NOPR 304
IT-NOVF 8+ 2
IT-NOTHING 0
TS TS-ALL 80+ 3
TS-NOTHING 68 +4

Table 7.5: Analysis of the performance in simulation. Mean and standard devi-
atiation of the percentage of episodes that end successfully from a series of 100
episodes. In a successful episode, all the agents reach to the correspondent goal.
The mean of ten series is displayed.

schemas when using transfer of knowledge. On the contrary, when no transfer
techniques are used, the performance of the TS-NOTHING is significantly higher
than IT-NOTHING. These results indicate that the TS schema is more efficient,
in terms of learning capabilities, than I'TVQQL in this problem.

The IT-NOPR and TS-NOTHING cases, that do not use PPR, have lower
performance with respect to IT-ALL and TS-ALL cases (30 and 68 vs. 81 and
80). The percentages are relevant enough to indicate that the emergent collective
phenomena depends on whether the additional information is provided by the
PPR transfer method. From this data, we can also conclude that the influence
of the use of PPR is higher in the ITVQQL schema than in the TS approach.

The low value for IT-NOVF with respect to the other cases that include trans-
fer of value function (IT-ALL and IT-NOPR) indicates that the use of this kind
of knowledge transfer has a strong influence in the performance of the ITVQQL
schema. For the IT-NOTHING case, a value performance of 0 is obtained. This
reveals that the crossing problem is not solved correctly, and, in simulation, lane
formation can not be clearly observed.

In Table 7.6 a comparison of the CPU time for the learning processes of the two
schemas is shown. The experiments were executed on a Altix UltraViolet 1000
Silicon Graphics server with 64 CPU Xeon Serie 7500 hexacore, 2,67 GHz and 18
MB of L3 on-die memory with a total of 384 cores and 960 GB of RAM memory
(also known as 'Lluis Vives’). Each agent of the framework runs in a different

core unit. The time consumed by the process that gives the best results for
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Schema Label CPU time (secs) | CPU time (hh:mm:ss)
ITVQQL | IT-ALL 7315 02:01:55
IT-NOPR 9578 02:39:38
IT-NOVF 9128 02:32:08
IT-NOTHING 9094 02:31:34
TS TS-ALL 4201 01:10:01
TS-NOTHING 4250 01:10:50

Table 7.6: CPU time for one learning process in different cases. The ITVQQL
schema CPU times are estimates for one iteration (50000 episodes) in order to
make measurements comparable with the T'S schema CPU time. The best result
of each schema is bolded.

each approach is bolded. The time for the ITVQQL family is an estimate. Only
the execution time of the whole iterative process (8 learning iterations of 50000
episodes each) was available in the hardware system. In order to make the time
comparable with that of the TS configuration (a single learning process of 50000
episodes), the total CPU time consumed by the eight iterations is divided to get a
per-iteration estimation. From this table we can extract two main conclusions: i)
the iterative processes are computationally more expensive than the T'S processes
for this problem. This is likely due to the cost of the VQ calculation. ii) the use
of transfer of knowledge techniques accelerate the learning processes in all the

cases, as expected.

7.4.2 Conclusions of the experiment

From the results of the experiments described in the previous section we can

derive the following conclusions:

e Lane formation is an emergent collective behavior that appears indepen-
dently of the learning/generalization approach used. However, it requires
a learning bias in the exploration process, which is provided through the

PPR method.

e The ITVQQL and TS schemas show similar performance results in simula-
tion when the transfer learning techniques are active. ITVQQL uses more
CPU time than TS in this problem.
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e The use of knowledge transfer techniques improves the performance of both
schemas. Specifically, the transfer of value function technique is important
in the TRVQQL schema. However, TS is more efficient than ITVQQL in

this problem when knowledge transfer techniques are not used.

The emergence of collective behaviors, independently of the learning algorithm
and generalization method, suggests that our RL multi-agent framework is robust,
in term of its configuration, to address pedestrian simulation problems.

Although the TS configuration seems more efficient that the ITVQQL con-
figuration, it would be unwise to prefer one over the other. First, because more
experiments would be needed to make a reliable statement and, secondly, be-
cause there are not guarantees that the algorithms were optimally tuned, which

is a common problem when comparing complex parametrized systems.

7.5 Chapter highlights

e In this chapter, the Sarsa(\) with tile coding configuration of the framework
is studied. The new experiments carried out analyze the capability of gen-
erating learned behaviors that function at higher levels than the operational
level (the level where the local interactions are considered). The ‘crossing
inside a narrow corridor’ scenario is also revisited. The results indicate that
the learned behaviors are complex enough to solve situations (route choice
and path planning) that require higher levels of abstraction in pedestrian
simulation. Moreover, the comparison of the fundamental diagrams with
those of the Helbing model in two experiments indicates similarities in the

dynamics.

e A comparison between the ITVQQL schema and Sarsa(\) with tile coding
is performed in the corridor scenario. Six case studies are carried out using
different configurations of transfer of knowledge techniques. The experi-
ments reveal that transfer of knowledge techniques are important in order

to achieve good performance marks in both schemas.
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Chapter 8

Conclusions and future works

In this chapter I will set out the contributions of this work to the state of the art
in pedestrian simulation, RL and Multi-agent RL. Additionally, several proposals

for future work will be indicated.

8.1 Conclusions

The main contribution of this thesis is the proposal of a new approach to the
problem of pedestrian simulation. Through several experiments, this work has
demonstrated that Multi-agent RL operating in calibrated-like-pedestrian em-
bodied agents can generate plausible pedestrian behaviors in different scenarios.
This new approach has different benefits (variability of produced behaviors, fast
decision making in simulation time, behaviors capable of operating at different
levels and producing emergent collective behaviors). However, the most impor-
tant benefit is transferring the responsibility of designing the pedestrian behaviors
from the user to the learning system.

The first challenge was the design, implementation, calibration and validation
of a multi-agent learning framework in a continuous state space. The implemented
framework uses the MPI communication protocol to build parallel programming-
based software which is flexible enough to allow for experimentation with different
learning algorithms and different generalization techniques. The calibration of
the physics module was achieved by designing a model of collisions based on the

human characteristics of the skin, as well as a model of pedestrian dynamics.
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The learned dynamics obtained in simple scenarios showed similarities with real
pedestrian dynamics which validates the system.

Two different learning strategies have been implemented: one based on the
Q-learning algorithm and another based on Sarsa(\). In the first strategy, two
VQQL-based schemas (ITVQQL and INVQQL) were compared in two different
scenarios. First, the learning experiments demonstrate that both are convergent
and capable of finding policies that carry out the proposed tasks. In the first
scenario (closed room with an exit), a deeper study (at the macro and micro
levels) of the learned dynamics indicates robustness for scalability in the number
of agents. Moreover, the comparison at the macroscopic level with Helbing’s so-
cial forces model shows similarities with our results in terms of the fundamental
diagrams and density maps. This supports the idea that our agents have devel-
oped plausible pedestrian behaviors. With the second scenario (crossing inside a
narrow corridor) it is shown that the iterative schemas are capable of generating
emergent collective behaviors, which is an indicator of quality.

The Sarsa(A) with tile coding schema has been tested in scenarios where
higher level of behavior (tactical) were needed to solve the task. The learned
behaviors are capable of solving the problems (route choice and path finding),
because these high level skills were acquired. Additionally, comparison with Hel-
bing’s social forces model indicates similarities among the fundamental diagrams
in both approaches. The crossing scenario has been revisited using this learn-
ing schema and a similar emergent collective behavior appeared. This suggests
that the emergence of collective behaviors could be independent of the learning
approach. Additionally, the comparison between ITVQQL and Sarsa(\) schemas
in the narrow corridor scenario reveals the influence of transfer of learning tech-
niques on the performance of the algorithms. The results indicate that the Sarsa
schema is more efficient than the ITVQQL schema in this scenario.

Finally, the observation of the simulations (different simulations can be found
in (http://www.uv.es/agentes/RL) reveals that agents have developed plausible

pedestrian behaviors in the different scenarios.
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8.2 Future work

As with any work that has covered its early stages, further research in a number of

directions is needed. I propose several directions that I consider to be important.

Concerning calibration.

It would be interesting to use real pedestrian dynamics data to calibrate or guide
the learning process. The use of real data in the learning process could give
stronger support to the idea that the introduced approach could actually become
a model of pedestrian navigation. In this framework, it is difficult to use statistical
methods to adjust parameters because there is no direct influence of the learning
parameters on the dynamics. However, RL techniques exist that can be used to
exploit the information provided from real examples. Batch reinforcement learn-
ing (Kalyanakrishnan & Stone, 2007; Lange et al., 2012) learns the best possible
policy from a fixed set of a priori-known transition samples. After a, likely non
trivial, transformation task of real pedestrian data in experience tuples, Bath RL
would learn a policy based on real data. This policy could be then transferred to
the RL framework using PPR or other knowledge transfer techniques. Databases
exist with real data collected from motion capture and video tracking that rep-
resent real interactions among pedestrians(Metoyer & Hodgins, 2004) which can
be used to test the framework with other real situations.

A similar idea is introduced in learning from demonstration (LFD) techniques.
A demonstration in this context consists of sequences of state-actions pairs that
are recorded during the teacher’s demonstration of the desired behavior (Argall
et al., 2009). LFD algorithms utilize this data set of examples to derive a policy
that reproduces the demonstrated behavior. In the work by Taylor et al. (2011)
human demonstrations are transferred into a baseline policy for an agent and

refined using reinforcement learning.

Concerning authoring capabilities.

A drawback in this approach is the lack of editability or authoring of the learned

behaviors. The learning process is carried out autonomously and without super-
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vision by each agent. The result is a learned value function which is not easy to
modify, which constitutes an important issue in behavioral animation for virtual
environments. The problem of authoring (the capability of the user/author to
control the final animation) has to be situated during the learning process and
not after it has finished. There are several ways of integrating human feedback
with RL. One way to address the problem is to treat human feedback as a shaping
reward (Knox & Stone, 2008; Tenorio-Gonzalez et al., 2010). The idea of reward
shaping is to provide an additional reward representative of prior knowledge be-
yond that supplied by the underlying MDP (Ng et al., 1999). This reward has
the form of a potential function that is defined over a source s and a destination
state s’. Another approach, policy shaping (Griffith et al., 2013) treat human
feedback as direct information about policies that can be used as policy advise.
Another type of shaping consists of giving the learning agent a series of relatively
easy problems building up to the harder problem of ultimate interest. This idea
is used in (Randlov & Alstrom, 1998), to learn how to ride a simulated bicycle.
Another approach to the problem consists of using LFD techniques, com-
mented on above, to provide a correction of the executed behavior. In this case,
the expert would carry out demonstrations about the behavior that should be
modified. In Nicolescu & Matari¢ (2003), the correct discrete action provided by
a human teacher updates the structure of a hierarchical neural network of robot
behaviors. The same occurs in Chernova & Veloso (2008), where the correction
updates an action classifier. A work that has already implemented this idea in
an RL framework is Dinerstein et al. (2007). In this work, the user demonstrates
the desired behavior by dictating the agent’s actions during an interactive ani-
mation. Later, when the agent is to behave autonomously, the recorded data is

generalized to form a continuous state-to-action mapping.

Concerning new experimental tests.

Once the usefulness of the RL techniques in the pedestrian simulation domain
has been proved, other experiments will be reproduced and tested in order to

validate the power of the approach. They can be classified as:

e Reactive experiments. Focused mainly on local interactions. The work
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by Shao & Terzopoulos (2005), proposes different routines based on basic
reactive behaviors: static obstacle avoidance, avoidance in a complex turn,
separation maintenance inside an organization, close neighbors avoidance.
The work by Kim et al. (2013b) also uses these basic behaviors to build
more complex scenarios such as two bottlenecks scenario or the cluttered

office scenario.

e Anticipated collision avoidance experiments. Results in the crossing and the
maze scenario provided evidence that these anticipatory maneuvers appear.
A candidate is pair-interaction in a crossing, proposed and analyzed by Paris
et al. (2007); Pettré et al. (2009) to better understand the anticipation
process. In this scenario, two agents cross in a small squared area using

different spatial configurations.

e Emergent behaviors experiments. In the paper by Pelechano et al. (2007)
several emergent behaviors are proposed such as line organization or push-
ing. Other collective behaviors are proposed in the paper by Helbing et al.

(2005) such as roundabout traffic patterns at intersections.

e Imitating social behaviors. To develop group patterns similar to a meeting
with friends, queuing at ticketing areas or selecting an unoccupied seat,
described in the work by Shao & Terzopoulos (2005).

e High level behaviors. Other route-choice scenarios will be proposed. For
instance, the work by Asano et al. (2010) describes several studies with real
pedestrians in this kind of problem using a reproducible railway station

scenario.

In addition, a scalability study from hundred to thousands of agents could
be addressed to analyze the robustness of the learned behaviors. Scalability is
not a problem at the architectural level. The framework is prepared to use a
blackboard architecture to share the learned value functions in simulation time.
Given N agents and V learned value functions, N/V agents will share the same
value function and its associated generalization system. Several challenges arise

in this study such as maintaining the consistence of the scaled scenario in terms
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of density, or managing with situations where an agent remains in a bad learned

area of the state space (including strategies to detect these areas in learning time).

Concerning design improvement.

Another interesting line to open up consists of the modeling of internal and psy-
chological motivations in the agents. Scenarios like panic evacuations or impa-
tience in a queue are challenging to model with this approach. Related to this,
one direction of research is to study the incorporation and management of new
perceptions in the definition of the state space that make the agent aware of inter-
nal or psychological characteristics of neighbors and him /herself. Furthermore,
the definition of new actions oriented to the modification of the features corre-
sponding to these internal states would be advisable. How these new internal
capabilities could affect high-level and low-level agent behavior is an interesting
consideration.

Concerning the learning configurations, the libraries of learning algorithms
and generalization methods should be extended. A wide collection of algorithms
available is a tool to discover affinities between learning/generalization algorithms
and problems. This could be a method to discover patterns in problems that are

satisfactorily solved with the same configuration.

Concerning tool availability.

A work of dissemination of the approach introduced in this work is also necessary.
Although visibility is already present on the web site designed for this purpose
(and referenced many times in the text), it is necessary to provide the research
community with an operative version of this work in order for it to be checked
with or against other pedestrian simulation approaches. Therefore, a work of
documentation of the tool, arrangement of software packages and some kind of

open source software license is also required.
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8.3 Publications derived from this work

Below, there is a list of the publications directly derived from this work. The

cites are ordered by date.
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2012.
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2014. Elsevier. DOI: 10.1016/j.simpat.2014.06.005
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Appendix: Resumen de la Tesis

Doctoral

Introduccion

Esta Tesis Doctoral se centra en el estudio, desarrollo y aplicacion de apren-
dizaje por refuerzo (RL) al dominio de la simulaciéon de grupos de peatones.
El aprendizaje por refuerzo es una rama del Aprendizaje Automatico dentro de
la Inteligencia Artificial. Su campo de aplicacion se extiende sobre los proble-
mas de optimizacion que son modelados como Procesos de Decision de Markov
(MDP) (Busoniu et al., 2008; Kaelbling et al., 1996; Sutton & Barto, 1998). Un
MDP es un modelo de toma de decisiones secuencial en el que cada decision viene
acompanada de un valor, llamado recompensa inmediata, que senala su idoneidad
dado el estado en que se encuentra el proceso. El objetivo del MDP consiste en
optimizar una funcién de esas recompensas. En el caso méas general el proceso
es estocastico tanto en las transiciones entre estados como en las recompensas,
desconociéndose el modelo de transicion.

La simulacion de peatones y en general el modelado de las dinamicas de pea-
tones han adquirido interés en los tltimos anos en la medida en que el campo
de la simulacién se ha extendido a otras areas. Asi se utilizan simulaciones con
modelos de grupos de peatones en entornos arquitectéonicos para estudiar y dise-
nar la accesibilidad de los mismos. En obras como estadios, puentes peatonales,
auditorios etc. se realizan estudios de simulacién para analizar la respuesta del

edificio o de la instalacion frente a casos de panico, evacuaciones o picos eventua-
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les de uso. También el uso de peatones se ha extendido a los entornos virtuales y
videojuegos ya que son parte integrante de las simulaciones en ambientes urbanos.

Existen actualmente diferentes modelos de peatones (Bierlaire & Robin, 2009)
con diferentes aproximaciones (macroscopicas y microscopicas) y orientaciones
(hacia peatones individuales o hacia grupos de peatones e incluso multitudes).
Entre los més conocidos se encuentran los modelos de fuerzas sociales de Hel-
bing (Helbing & Molnér, 1995), los modelos basados en reglas de Reynolds (Rey-
nolds, 1987), el modelo de colas de Lovas (Lovas, 1994), los modelos de multitudes
de Still (Still, 2000) y los modelos basados en mediciones sobre peatones reales
de Daamen (Daamen & Hoogendoorn, 2003), Teknomo (Teknomo, 2002) o Bier-
laire (Robin et al., 2009).

En el presente trabajo se plantea una nueva aproximacion en el campo de la
simulaciéon microscopica de peatones, basada en sistemas multiagente que usan
aprendizaje por refuerzo. En esta propuesta, la tarea es el aprendizaje individual
y autonomo por parte de cada agente con entidad fisica (embodied agent) de
un control de velocidad que le dirija en la navegacién por un entorno virtual.
La aproximacion propuesta tiene caracteristicas que la hacen interesante para la

simulacion de peatones. Concretamente:

1. No es necesario disponer a priori de un modelo de interacciones ni de com-

portamiento, ya que esto es el objetivo del aprendizaje.

2. El uso de aprendizaje por refuerzo representa una opcion prometedora pa-
ra la generacion de comportamientos colectivos emergentes, al estar éstos

relacionados con procesos de optimizacion.

3. Las politicas de navegacion obtenidas por aprendizaje por refuerzo son ca-
paces de operar a diferentes niveles, como lo prueban experimentos hechos

en robética.

4. Una vez el sistema multiagente ha aprendido, la simulaciéon del comporta-

miento individual es poco costosa computacionalmente.

5. Los comportamientos son aprendidos individualmente por cada agente, con
lo que se dispone de un conjunto de comportamientos diferentes que dan

més realismo a la simulacién que si fuera una repeticion del mismo esquema.
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Objetivos

El objetivo de esta tesis es la creacion de agentes auténomos capaces de apren-
der comportamientos que produzcan simulaciones plausibles de navegacion de
peatones, utilizando una aproximacion multi-agente basada en aprendizaje por
refuerzo.

Para realizar este objetivo se consideran los siguientes hitos en el trabajo de

esta tesis:

1. Diseno, desarrollo, calibracion y validacién de un marco de trabajo multi-

agente con capacidades de aprendizaje.

2. Evaluaciéon de dos estrategias de aprendizaje diferentes: una basada en el

algoritmo Q-Learning y otra basada en el algoritmo Sarsa(\).

3. Estudio de la adecuacion de los comportamientos dinamicos generados a la
dindmica de peatones real. Para ello se usaran herramientas especificas del
campo de la simulaciéon de peatones y comparaciones con otro modelo de

peatones.

4. Estudio de la capacidad del sistema de generar comportamientos colecti-
vos emergentes asi como que dichos comportamientos tengan capacidades
de operar en los niveles tacticos y estratégicos. Para ello, se propondran
escenarios especificos en los que el control a esos niveles es necesario para

la resolucion del problema de navegacion.

En resumen, la principal contribucién de este trabajo consiste en proponer
una nueva aproximacion al problema de la simulaciéon de peatones basada en un
enfoque multi-agente con técnicas de aprendizaje por refuerzo y demostrar empi-
ricamente que esta aproximacion proporciona resultados positivos en un conjunto

de problemas paradigméticos en la navegacion de peatones.

Metodologia

La implementacion del marco de trabajo y experimentacion exige el diseno y

codificaciéon de un software flexible que permita la incorporaciéon de los diferen-
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tes algoritmos y técnicas que pretendemos experimentar. De tal manera que los
modulos sean facilmente intercambiables para favorecer la experimentacion con
configuraciones diferentes. Por ejemplo, es necesario que tanto los algoritmos
de aprendizaje de los agentes como los algoritmos de generalizacion del espacio
de estados se configuren en médulos de tal manera que sean intercambiables y
extensibles. Igualmente, es necesario que el simulador del entorno fisico sea inter-
cambiable para hacer méas flexible y potente la simulacion de diferentes entornos
virtuales. Desde este punto de vista de la modularizaciéon, podemos distinguir

tres unidades funcionales en la arquitectura que va a ser propuesta:

1. La entidad “Agente” en el que se deberan desarrollar interfaces y submodu-
los para incorporar técnicas de generalizacion, algoritmos de aprendizaje y

conocimiento aprendido

2. La entidad “Entorno” encargado de la simulaciéon del entorno virtual y de
la sensorizacion de los agentes virtuales. Igualmente posee un moédulo de
evaluacion y recompensa de las acciones que emprenden los agentes y que

es la base del aprendizaje por refuerzo.

3. El modulo de paso de mensajes entre el entorno y los agentes

El sistema se ha desarrollado bajo el modelo de programacion paralela MPI.
Bajo este modelo, cada "Agente’ es una entidad auténoma que realiza de manera
individual y original el proceso de aprendizaje, observando al resto de agentes
como parte del entorno. Igualmente, el 'Entorno’ es un agente tnico y separado
que esta a cargo de la simulacion fisica del mundo virtual asi como de la ejecucion
de las acciones sugeridas por los agentes sobre dicho mundo virtual y de la critica
de estas mismas acciones. El uso del protocolo MPI permite el flujo de informa-
cion entre los agentes y el entorno. La propia paralelizacion aumenta la eficiencia
de la ejecucion al distribuir la carga en diferentes nicleos de computacion (ideal-
mente un agente por nicleo). Ademés de la eficiencia, esta arquitectura favorece
la escalabilidad en el nimero de agentes.

La calibracion del sistema se ha realizado bésicamente en dos aspectos. La

primera se ha centrado en calibrar el simulador del entorno fisico que forma parte
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del entorno virtual antes mencionado. Para ello se extraera de fuentes bibliogra-
ficas los datos correspondientes a peatones humanos necesarios para modelar y
calibrar los parametros del simulador fisico. La segunda area corresponde a la
calibracion de las acciones que ejecutan los agentes virtuales (basicamente la mo-
dificacion de su impulso) para que correspondan a reacciones humanas. Para la
validacion de los experimentos se escojeran entornos ya estudiados por trabajos
relevantes dentro del campo del modelado de peatones y la simulacion. Existe
una amplia bibliografia en este campo. Como candidatos podemos nombrar el
trabajo sobre movimientos de peatones en fila de Seyfried et al. (Seyfried et al.,
2005) y el trabajo en areas abiertas de Weidmann (Weidmann, 1993).

Para la consecucion de los objetivos, se han desarrollado dos grupos importan-
tes de experimentos con dos configuraciones de aprendizaje diferentes que incluyen
ademaés técnicas de transferencia de conocimiento (Taylor & Stone, 2009). La pri-
mera configuracion estudia dos variantes del algoritmo VQQL (Fernéndez et al.,
2005) denominadas ITVQQL y INVQQL sobre dos escenarios distintos (salida de
un grupo a través de una puerta y cruce de dos grupos en un pasillo estrecho).
A través de estos experimentos se estudian las caracteristicas dindmicas de los
comportamientos aprendidos y se comparan con el modelo de fuerzas sociales de
Helbing (Helbing & Molnér, 1995). La segunda configuracion consiste en el algo-
ritmo de aprendizaje Sarsa(\) con el método de generalizacion tile coding (Sutton
& Barto, 1998). Sobre esta configuracion se realizan experimentos en escenarios
donde la planificacion y el comportamiento a nivel tactico son relevantes. Estos
nuevos escenarios son, concretamente, un escenario con dos salidas donde cada
peaton puede elegir entre el camino méas corto y el camino mas rapido y un labe-
rinto donde los agentes deben poseer capacidades de planificacion para encontrar
la salida. Ademas, se revisita el escenario del cruce de grupos en el pasillo para
compararlo con los resultados obtenidos con la primera configuracion. Se analiza
en dicho escenario la influencia de las téccnicas de transferencia de conocimiento
incluidas en los algoritmos de aprendizajes.

Todos los experimentos son analizados a partir de los datos generados por un
numero determinado de simulaciones. Se utilizan herramientas de anéalisis espe-
cificas de dominio del modelado y simulacién de peatones, como es el diagrama

fundamental (Weidmann, 1993), que establece la relacion entre densidad en un

224



area y las velocidades que alcanzan los peatones en ella. Otras herrramientas uti-
lizadas para el anélisis de los resultados son los mapas de densidad (histogramas
que miden el uso de la superficie) y los anélisis de rendimiento (en términos del

namero de agentes que logran el objetivo por episodio).

Conclusiones

La aportacion fundamental de este trabajo es la presentacion de una nueva apro-
ximacion para la simulacion de peatones. A través de los diferentes experimentos
realizados, se demuestra empiricamente que esta nueva aproximacion multi-agente
basada en RL es capaz de generar comportamientos plausibles de peatones en tér-
minos visuales y de adecuacion a las dindmicas observadas en los peatones reales
y de otros modelos. Los comportamientos aprendidos tienen las ventajas de ser
naturalmente heterogéneos, de poder manejar diferentes niveles de coportamiento
(como el operacional y el tactico) y de ser computacionalmente eficientes. Sin
embargo, el mayor beneficio de esta aproximacion consiste en el desplazamien-
to de la responsabilidad del diseno del comportamiento de los peatones desde el
usuario hacia el sistema.

En el desarrollo de este trabajo se han logrado diferentes hitos:

e Se ha disenado y construido un sistema multi-agente que utiliza aprendizaje
por refuerzo para obtener agentes virtuales con comportamientos dirigidos

a la simulaciéon de peatones.

e Se ha calibrado y validado dicho sistema comparédndolo con otros experi-

mentos similares sobre peatones reales.

e Se han desarrollado nuevas estrategias algoritmicas basadas en el algoritmo

VQQL con el fin de adaptarlo al problema multi-agente.

e Se han disenado y realizado experimentos en escenarios que requerian para
su correcta solucién de caracteristicas observadas en peatones reales tales

como comportamientos emergentes y comportamientos a diferentes niveles.
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e Se han comparado los resultados en los diferentes escenarios con los obte-

nidos por el modelo de Helbing en similares escenarios.
Como trabajo futuro se presentan otros desafios:

1. Aplicar técnicas de RL para incluir en el proceso de experiencia tuplas de
experiencias de peatones reales. Esto puede hacerse a través de técnicas
de RL como el aprendizaje basado en ejemplos o el RL por lotes (Batch
RL) (Kalyanakrishnan & Stone, 2007; Lange et al., 2012).

2. Dotar al sistema de capacidades de edicién de los comportamientos. Esto,
por la naturaleza de RL, debe hacerse dentro del mismo proceso de apren-
dizaje y no cuando éste ya ha terminado. Existen técnicas de RL como el
aprendizaje por demostracion Nicolescu & Matari¢ (2003) o el modelado de
las recompensas (reward shaping) (Ng et al., 1999) que pueden ayudar a

esta tarea.

3. Es necesario hacer pruebas en otros nuevos escenarios para corroborar la
capacidad de afrontar diferentes clases de problemas de esta aproximacion.
Podemos detectar varios tipos de escenarios donde es interesante hacer estos

experimentos:

e Experimentos reactivos. Centrados en el anélisis de las interacciones
locales. Los trabajos de Shao & Terzopoulos (2005) analizan varios

escenarios que pueden ser reproducidos.

e Experimentos de anticipacion de colisiones. El trabajo de Pettré et al.
(2009) propone determinados escenarios pare comprender mejor estos

procesos de anticipacion.

e Experimentos de comportamientos emergentes. Los trabajos de Hel-
bing et al. (2005); Pelechano et al. (2007) describen nuevas situaciones

que implican la aparicion de este tipo de comportamientos.

e Comportamientos a alto nivel. El trabajo de Asano et al. (2010) pro-
pone nuevos casos donde la capacidad de eleccion de rutas tiene im-

portancia para la resolucién del problema.
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4. Queda, por dltimo, indicar un trabajo de diseminacién de esta nueva apro-
ximacion al problema. Aunque la visibilidad del trabajo ya esté presente en
el sitio web referenciado a lo largo de este trabajo, es necesario proporcionar
a la comunidad de investigadores una version operativa de la herramienta.
Por lo tanto, es necesario retomar el trabajo de documentaciéon y organiza-

cion del software bajo algin tipo de licencia Open Source.
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