
Eurographics Workshop on 3D Object Retrieval (2009)

I. Pratikakis, M. Spagnuolo, T. Theoharis, and R. Veltkamp (Editors)

SkelTre - fast skeletonisation for imperfect point cloud data of

botanic trees

A. Bucksch, R.C. Lindenbergh and M. Menenti1

1Delft University of Technology, Delft Institute of Earth Observation and Space Systems

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract

Terrestrial laser scanners capture 3D geometry as a point cloud. This paper reports on a new algorithm aiming

at the skeletonisation of a laser scanner point cloud, representing a botanical tree without leafs. The resulting

skeleton can subsequently be applied to obtain tree parameters like length and diameter of branches for botanic

applications. Scanner-produced point cloud data are not only subject to noise, but also to undersampling and

varying point densities, making it challenging to extract a topologically correct skeleton. The skeletonisation

algorithm proposed in this paper consists of three steps: (i) extraction of a graph from an octree organization,

(ii) reduction of the graph to the skeleton and (iii) embedding of the skeleton into the point cloud. The results are

validated on laser scanner point clouds representing botanic trees. On a reference tree, the mean and maximal

distance of the point cloud points to the skeleton could be reduced from 1.8 to 1.5 cm for the mean and from 15.6

to 10.5 cm for the maximum, compared to results from a previously developed method.

Categories and Subject Descriptors (according to ACM CCS): I.4.7 [Computing Methodologies]: IMAGE PRO-

CESSING AND COMPUTER VISION/Feature Measurement—Size and shape

1. Introduction

In recent years instruments capable to measure thousands of

distances per second from the instrument to surrounding sur-

faces became available. One such instrument is a terrestrial

laser scanner. These scanners are used to obtain data of large

objects, which are typically represented in a point cloud. A

point cloud is therefore a sampling of a 3D surface. Extrac-

tion of complex botanic tree structures from a point cloud is

difficult for several reasons.

1. varying point density caused by the spherical scan geom-

etry of the instrument in a single scan

2. varying point density caused by the alignment of single

scans into a common coordinate system

3. undersampling caused by occlusion effects

4. noise and systematic errors masking the object structure

Obtaining Object structure/topology can help in various

point cloud applications. Such applications aim at object

identification or analyzing the shape parts of a tree in terms

of size. A skeleton is a one-dimensional description of the

object structure. Skeletons are represented as curves, col-

lections of ordered points or graphs. Their extraction from

a point cloud faces several algorithmical challenges. In

Figure 1: Point cloud from the inner crown of an leafless or-

chard tree. The point cloud is colored by intensity.The three

marked areas show examples of noise where the separation

of branches is even hard by visual inspection

[CM07] a list of 12 desirable skeleton properties is given.

Three of the 12 properties demand special attention, in the

context of skeletonising point clouds of botanic trees. First,

c© The Eurographics Association 2009.

DOI: 10.2312/3DOR/3DOR09/013-020

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/3DOR/3DOR09/013-020


topology preservation of the tree is essential for navigating

to a certain position within the tree. Furthermore, proper

centering of the skeleton within the point cloud enables the

measurement of branch thickness. The third property ad-

dresses the computational efficiency, because a point cloud

of a small orchard tree already easily consists of 300.000

points. This paper introduces a method for (Skel)etonisation

of (Tre)es, here called SkelTre Skeleton, directly from a 3D

point cloud by considering all six principal Cartesian direc-

tions. The algorithm incorporates three main elements. First

an octree is built from which an octree graph is extracted,

representing the connectivity between the octree cells with

respect to the point cloud. In a second step the octree graph

is exploited to retract the point cloud to a skeleton. The third

element is a strategy to embed the skeleton graph into the

point cloud. To achieve better results on the three properties

mentioned above, all three elements have been completely

renewed with respect to [BL08].

Topology preservation is enhanced by using a new noise

robust criterion to decide on proper connections in the oc-

tree graph instead of simple thresholding. The centering is

improved by a new embedding strategy taking the approx-

imate shape of the original object into account. A novel

graph reduction method is introduced on the basis of ap-

proximate surface directions, which are incorporated as ver-

tex labels. These vertex labels form the basis for an in-

creased efficiency, because the new octree graph reduction

rules behave linear in time and need less octree subdivi-

sions to achieve improved results in comparison to a pre-

vious method.Although, this paper focuses on botanic trees,

no restrictions are expected in applications to general shapes

represented as a point cloud.

2. Related work

Skeleton extraction from point clouds, as extensively dis-

cussed in [CM07], includes several classes of methods. This

section gives an overview of methods and points out briefly

their problems and benefits.

Morphological thinning methods organize the point

cloud in a 3D raster of equally sized cells. From this raster

the outer layer is removed until the skeleton remains. Re-

moving the outer layer uses the morphological operations

opening and erosion [Ser82]. This class of algorithms re-

quires a defined inner volume of the object to produce a cen-

tered skeleton. [PSB∗01] introduced a time linear algorithm

using 6 sub-iterations. Its application on tree point clouds

was proposed by [GP04] and later extended to achieve bet-

ter connectedness of the skeleton in case of undersampling

in [Gor06].

Medial axis based approaches use approximations of the

medial axis from the point cloud, e.g. [ACK01]. This class

of algorithms derives a skeleton from a Voronoi space di-

vision. The medial axis is in general a set of surfaces in

3D, but can be reduced to a skeleton [DS06]. Another pos-

sibility to extract the medial axis is the distance transform

[ZKW98],but does not guarantee a connected skeleton. All

cells are marked by their distance to the object boundary.

The set of neighboring maximal distances form the skeleton.

The main disadvantage of the medial axis is its sensitivity to

irregularities on the object surface. These irregularities may

occur because of noise or unsampled parts within the point

cloud.

Geometric methods use a function that is shifted over

the represented surface for the extraction of a skeleton.The

height function is often used to extract the level sets from

a given point cloud, e.g. [VL00]. Placement of additional

vertices in the centroid of the extracted level sets detail the

extracted skeleton. The resulting graph is often referred to

as a Reeb-graph [CMEH∗04]. The biggest problems arising

with these approaches are the rotational dependency of the

height function and the sensitivity of the level set extraction

to the sampling density [CM07].

Graph reduction based approaches, as introduced in

[BL08], extract an initial graph from a spatial subdivision.

This initial graph is reduced by a set of rules to a skeleton.

These rules consider the connectivity between different parts

of the point cloud. Several advantages of such a approach

could be demonstrated: a high robustness to noise on im-

perfect data, a good centeredness and a good connectivity.

Centeredness is achieved by embedding the graph into the

point cloud. Topological correctness is achieved by choos-

ing a proper decision criterion to place connections between

the different point cloud parts and the careful design of the

reduction rules.

3. Mathematical background

To simplify further explanations essential mathematical con-

cepts are introduced in this section.

Let S be a surface of an object represented by its point

cloud Σ. A spatial subdivision of Σ into subsets Σi can be

achieved by an octree.

Definition 3.1 The octree space is modeled as a cubical re-

gion consisting of 2n × 2n × 2n unit cubes, where n is

the subdivision parameter and 2n is the length of the octree

space. Each unit cube has value 0 or 1, depending on whether

it contains data points or not [CH88].

As this paper introduces a graph-based skeletonisation ap-

proach, the notion of the extracted graph to be reduced

should be introduced. The graph extracted from the octree

organization exhibits local grid graph properties.

Definition 3.2 A three-dimensional grid graph is an

m× n× r graph that is the graph Cartesian product of path

graphs on m, n and r vertices [PS03].

c© The Eurographics Association 2009.

A. Bucksch et al. / SkelTre - fast skeletonisation for imperfect point cloud data of botanic trees14



Figure 2: Connecting and labeling of an octree graph. 5

complete octree cells, containing some black data points.

The vertices of the octree graph corresponding to the octree

cells are shown in orange. They are positioned in the center

of gravity of the local point cloud points. The connectedness

of the vertices is based on a robustness criterion.

4. SkelTre skeletonisation algorithm

This paper introduces a linear-time algorithm for computing

a skeleton from an unorganized point cloud of a botanic tree.

Unorganized point clouds contain no neighboring informa-

tion on the points. As an example, consider the alignment of

two partly overlapping point clouds into a common coordi-

nate system. The single point clouds are obtained by a ter-

restrial laser scanner, that measures the points in a line-like

order. After alignment of single point clouds in a union point

cloud, this order is lost. The new algorithm proposes a noise

and systematic error robust process. The resulting skeleton

is a geometrically embedded graph. To extract this SkelTre

Skeleton, an initial graph, called octree graph, is constructed

and further retracted to the SkelTre Skeleton. The edges in

the octree graph are labeled to indicate their direction.

4.1. Octree graph extraction

The octree graph extraction is a two step procedure. First an

octree is generated as in [BL08], followed by the extraction

of an octree graph containing a newly introduced labeling.

4.1.1. Review of the octree generation

Obtaining an octree graph, requires an octree organization as

described in [BL08]. To obtain an octree graph, first the point

cloud Σ is organized in an octree.The octree subdivides the

point cloud by considering how the point cloud is the sides of

the octree cells. A cell side Ei j between two adjacent octree

cells Ωi and Ω j is defined to be shared, if both cells contain

a point within half the size of Ei j .

The subdivision of the point cloud into octree cells termi-

nates if a cell shares three sides or less or if, in case a cell

shares four sides, the four midpoints of the shared cell sides

are in one plane. Avoidance of disconnected cells is accom-

plished by defining a minimum cell size.

Figure 3: Robustness criterion to connect octree graph ver-

tices C1 and C2 by an edge

4.1.2. Extraction and labeling of the octree graph

As stated above terrestrial laser scan data is subject to noise,

systematic errors, varying point density and undersampling.

This can lead to false connections in the octree graph, if the

vertices of the octree graph are simply placed at the center

of gravity of all points belonging to a cell and connected by

an edge, if the common sides are shared. Fig.1 shows typ-

ical noise problems of terrestrial laser scan data and Fig.8

shows various occasions of undersampling. The two aris-

ing problems for placing connections in the octree graph are

wrong additional connections because of noise, which fills

the space between shape parts and missing connections be-

cause data is strongly undersampled due to occlusions. The

criterion to handle undersampling and noise is a decision

criterion to place connections between neighboring octree

cells.

This robust criterion whether to connect two octree graph

vertices, corresponding to two adjacent octree cells, by an

edge, is based on the distances of the cell points to three

suited planes (Fig.3). Let C1 and C2 be the centroids of

the point cloud points in two adjacent octree cells Ω1 and

Ω2. Let C12 be the midpoint of the line segment C1C2. The

three suited planes P1, P2 and P12, are the planes through

the points C1, C2 and C12, perpendicular to the line through

C1 and C2. Let d1, d2 and d12 be the median values of

the squared distances of the points in Ω1, Ω2 and Ω1 ∪Ω2

to the planes P1, P2 and P12. Under ideal conditions the
√

d1,2 of two connected cells would be at least 1
4 of the dis-

tance between C1 and C2 to indicate a connection between

the two corresponding point cloud parts. Therefore we use
1

16 d12 ≤ min(d1,d2) as a criterion to place connections in

the octree graph.

Now that the octree graph is extracted and defined, the

graph should be labeled. A label belongs to an edge, but is al-

ways associated to a vertex. Therefore the label corresponds

to the unique Cartesian direction of the edge from the view

point of one of the two incident vertices vi and v j . Let vi be a

vertex in some graph, and v j a neighboring vertex connected

by an edge ei j to vi.

Definition 4.1 A label associated with an edge of the octree

c© The Eurographics Association 2009.

A. Bucksch et al. / SkelTre - fast skeletonisation for imperfect point cloud data of botanic trees 15



graph indicates the direction of the edge with a direction vec-

tor. The labels for all 3D-directions are:

Left/Right: (±1,0,0),
Up/Down: (0,±1,0),
Front/Back: (0,0,±1).

The resulting octree graph should be interpreted as a bidi-

rectional graph, as every edge gets two labels (Fig.2). Sup-

pose, that two vertices vi and v j are connected, i = 1,2 with

Cartesian coordinates (xi,yi,zi) are connected. Suppose that

x1 < x2 and that both y1 = y2 and z1 = z2. Then the edge ei j

gets the label (1,0,0) and the edge e ji the label (−1,0,0).
Note that the sum of the labels belonging to one edge is the

zero-vector (0,0,0) in 3D.

4.2. Computation of the SkelTre Skeleton

In the following it is described how the octree graph is re-

tracted to a SkelTre Skeleton by merging suited pairs of

neighboring vertices. These pairs are first defined as V-Pairs

and E-Pairs along with the notion of the vertex merging, and

secondly the extraction process is explained.

4.2.1. Definitions

The operations on the graph are intuitively explained as the

collapse of two edges incident to the same vertex. To quan-

tify the reduction we introduce the vertex dimension vdim.

Definition 4.2 The number of distinct associated edge labels

of a vertex vi is called the dimension of a vertex.

Example: In Fig.2, the left outer vertex has dimension 0, the

right outer vertex, and the vertex in the second row have di-

mension 1. The two middle vertices in the upper row have

both dimension 2 Note that one vertex have opposite direc-

tion labels, and the other vertex has labels of different prin-

cipal directions.

In 3D, the dimension of a vertex is at most 6. The con-

vergence towards the skeleton and the preservation of the

shape part elongation is assured by defining a notion of a lo-

cal direction. This direction is defined per vertex as vertex

direction vdir.

Definition 4.3 The sum vdir(vi) over the distinct associated

edge labels of a vertex vi is called the vertex direction.

Each label in 3D is a 3D vector, which allows adding up the

labels. Example:In Fig.2 the left 2-connected vertex vi, with

the associated labels (0,−1,0) and (1,0,0) has vertex direc-

tion vdir(vi) = (1,−1,0). The right two-connected vertex v j

has vdir(v j) = (0,0,0).

The merging of vertices vi and v j along a common edge

is denoted by vi ⊕ v j. The merged vertex inherits all inci-

dent edges from its ancestors vi and v j . If vi and v j were

both incident to a common vertex vc, then the two edges

vivc and v jvc are collapsed to a common edge (vi ⊕ v j)vc.

Under ideal conditions these edges represent the connection

between two connected subsets of Σ. Therefore, the opera-

tion vi ⊕ v j is only performed on vertices representing two

neighboring subsets of Σ with the same direction characteris-

tic, as indicated by the identical edge labels of vivc and v jvc.

Definition 4.4 Two vertices vi and v j both incident to a ver-

tex vc are called a V-Pair if,

1. the labels of edges vivc and v jvc are identical;

2. dim(vi ⊕ v j) ≤ max(dim(vi),dim(v j)).

The two vertices (Fig.4) vi and v j form a V-pair, because 1)

The edge labels vivc and v jvc are identical, and 2) dim(vi ⊕
v j) = 3 is smaller than max(dim(vi),dim(v j)) = 4.

Definition 4.5 A vertex vi forms an E-Pair with a vertex v j

if:

1. dim(vi) ≤ dim(v j);
2. dim(vi ⊕ v j) ≤ max(dim(vi),dim(v j));
3. vdir(vi) 6= (0,0,0) and vi and v j are connected in direc-

tion of one of the non-zero entries of vdir(vi);
4. vi and v j are not a part of an G(1,2,0) subgraph.

The definition of E-pairs and V-Pairs find their reasoning in

the grid graph property of the octree graph. Because of the

underlying octree organization the octree graph is a collec-

tion of various connected grid graphs, as introduced in Def.

3.2. The primary goal is to remove the overrepresented graph

parts from the graph by merging vertices. These graph parts

are mostly G(2,2,0) and G(2,2,2) grid graphs, forming loops.

Three different grid graphs occur locally in the octree

graph and in derived, partially collapsed graph’s. A G(2,2,2)

forming a cubic structure consisting of 12 edges, resulting

from eight connected octree cells in cubical order. Note, that

a G(2,2,2) subgraph contains 8 possible E-Pair configura-

tions. It requires two of these E-Pairs to reduce the cube to a

skeleton. Secondly, a G(2,2,0) forms a loop consisting of 4

edges originating from four connected octree cells, ordered

in a square and is not contained in a G(2,2,2). The third pos-

sible grid graph, G(1,2,0) contains two vertices connected by

an edge belonging to the skeleton, but is not belonging to a

G(2,2,0) or G(2,2,2) loop.

4.2.2. Skeleton retraction

The octree graph is retracted by merging vertices forming a

V-Pair. If no V-Pair is present in the graph to be retracted, a

V-pair is created by an E-Pair. Below it will be shown that

each E-Pair results in at least one V-Pair.

Lemma 4.6 The merging of an E-pair results in at least one

V-Pair.

Proof Let an octree graph be formed of G(1,2,0), G(2,2,0)

and G(2,2,2) subgraphs. A G(1,2,0) is the trivial case be-

longing to the skeleton. A G(2,2,0) contains 4 valid E-Pair

configurations. Consider one arbitrary E-Pair configuration

c© The Eurographics Association 2009.

A. Bucksch et al. / SkelTre - fast skeletonisation for imperfect point cloud data of botanic trees16



Figure 4: Example of a V-Pair configuration. The vertices

are in orange, the dotted lines denote the cell sides and

the labels are shown along the black edges. Note that the

edges loose their rectangular configuration during the merg-

ing process, while their labels remain.

of a G(2,2,0). Merging the two vertices involved in the E-

Pair, reduces the squared structure to a triangle satisfying the

definition of a V-Pair. Every G(2,2,2) subgraph is the union

of the vertices and edges of 6 G(2,2,0) subgraphs, each in-

ducing four valid E-Pair configurations.

Condition 3 in Def. 4.5 ensures convergence toward the

skeleton. Vertex dimension 6 results in vertex direction 0 in

all cases, therefore, the octree graph is reduced successively

from vertices of dimension 5 to 2. This guarantees that first

the G(2,2,2) graph parts are reduced, before G(2,2,0) sub-

graph regions are processed. Another example to depict the

algorithm is to characterize vertices of a certain dimension.

For example, dim(v) = 3 can be either a corner of a G(2,2,2)
with vdir(v) = (±1,±1,±1) or a vertex on the boundary of

G(2,2,0) subgraph with one entry 6= 0 in vdir(v). Therefore,

boundary vertices of a G(2,2,2), which have dimension 4,

are processed before the ’corner’-vertices of a G(2,2,2)
area, and the boundary of a G(2,2,0) region is processed

before its ’corners’ of dim(v) = 2. This assures that the elon-

gation of the object is represented by the final skeleton, and

demonstrates the necessity to take the vertex direction into

account.

By systematically merging higher dimensional vertices

both the amount and the dimension of remaining vertices is

reduced. This ensures fast convergence of the algorithm. As

vertices, which "over-represent" the point cloud, are merged

systematically it is ensured that the final product is a skele-

ton.

4.3. Graph embedding

The desired centeredness of the skeleton is achieved via a

graph embedding. Therefore, the octree graph is embedded

into the point cloud by averaging the points Σi belonging to

an octree-cell. The embedding explained in [PSBM07] was

Figure 5: Example of an embedding. (a) shows a graph be-

fore merging is applied to v1 and v2 and (b) the graph with

the new vertex vnew

adapted to points clouds, because their embedding can be

applied during the computation of the SkelTre Skeleton. Ev-

ery vertex in the octree graph has a initial weight w which is

equal to the number of points belonging to the correspond-

ing octree cell. During the merging process the weighted av-

erage of the 3D positions of two merged vertices v1 and v2

is taken for the position of the newly created vertex vnew.

The weight wnew of vnew is then the sum of the previous

weights, Fig.5. wnew = w1 + w2. These weights are used to

compute the coordinates of vnew into the point cloud. The

position of vnew is calculated as: vnew = w1 · v1+w2 · v2

w1+w2
In

case of different levels of subdivision, the subdivision level

is multiplied to the weight to obtain a centered skeleton as

a result. Embedding can be problematic, if the hull of Σi is

concave, because then the centroid is not necessarily equal

to the weighted average described above. In case of trees

this occurs on vertices, where the skeleton branches. There-

fore a post-processing step is needed for such cases. The

post-processing treats the 3 or more connected vertices of

the skeleton, by investigating the distance of a point subset

to its bounding box. Let the 6 sides of a bounding box of

some Σi be the 6 Cartesian directions. And let every point pi

be closest to one of these sides, then the {x,y,z}-coordinate

component closest to a side of the bounding box is selected.

The corrected vertex coordinate is computed by averaging

selected {x,y,z} values for every coordinate component.

5. Implementation

At this stage an implementation of the algorithm is dis-

cussed. Successively for the vertex dimensions counting

from n = 5 to n = 2, the following steps have to be imple-

mented.

1. Initialize a vertex-list VPairList containing all vertices of

dimension n. For each vertex vi in VPairList test if new

V-Pairs can be formed with its direct neighbors v j , until

c© The Eurographics Association 2009.

A. Bucksch et al. / SkelTre - fast skeletonisation for imperfect point cloud data of botanic trees 17



either a V-Pair is found, or no direct neighbors to test are

left. All V-Pairs found are stored in a list.

2. If during the loop through the vertex list VPairList no V-

Pair was found, go through the vertex list VPairList again.

Whenever possible, an E-Pair is merged to one or more

V-Pairs with the direct neighbors v j of vi, until either an

E-pair is found, or no direct neighbors to test are left.

Each E-pair is merged to one or more V-Pairs which are

added to the list of V-Pairs.

3. All vertex pairs in the VPairList are merged. Directly af-

ter merging it is tested whether the merging resulted in

the creation of new V-Pairs. If so, these are added at the

end of the V-Pairs list.

Input: An Octree graph

Output: SkelTre Skeleton

contains the vertices of the of the processed dimension;

dimList[];

contains found VPairs;

VPairList[];

for dim=5 to 2 do
dimList := {vi|dim(vi) ≥ dim, i = 0...n};

forall vi ∈ dimList do

if De f .4.4 = true for some vk of vi then
add found pair to the end of VPairList;

end

end

while V PairList 6= ∅ and De f .4.5 = true do
{vi,v j}= f irst unprocessed entry in V PairList;

vnew = vi ⊗ v j;

if (De f .4.4 = true for some vk of vnew) then
add found pair to the end of VPairList;

end

if dim(vnew) ≥ max(dim(vi,v j)) then
add vnew to the end of dimList;

end

remove {vi,v j} from VPairList;

end

end

Procedure 1 computeSkeleton

6. Computational Complexity

This section discusses the computational complexity of the

algorithm. In practice, the computation of the skeletons op-

erates on the far smaller set of vertices than the point cloud

consists of. Therefore, we focus on the explanation, that the

graph-reduction of the SkelTre algorithm is linear in time.

A pseudo code to implement the algorithm,procedure com-

puteSkeleton(), is shown in Procedure 1. Let vi be a vertex

of the set of vertices V of the processed graph. The dimen-

sion of vi is denoted as dim(vi) and the number of incident

edges as k(vi). v j denotes a direct neighboring vertex of vi

and c1 ≤ 6 a constant. The procedure computeSkeleton con-

tains an outer for-loop, which is bounded by O(1). As can

be noticed in Procedure 1, dimList is always initialized with

O(V). Note that V is decreasing after every dimension. The

inner while-loop is operating on a subset of V with at most
V
2 operations, which results in O(V

2 ) as an upper bound.

The condition De f .4.5 = true, selects the first unpro-

cessed entry vi in dimList, that fulfills Def.4.5, and therefore

loops through all elements of dimList. We show the influence

of this condition on the inner while-loop for two boundary

cases:

• Case 1: The input graph is a skeleton, e.g. a combination

of G(2,1,0) subgraphs, all connected on only 2 vertices.

This combination will lead to no merge at all; therefore,

the whole inner while-loop of computeSkeleton() stays

O(V) by checking one time De f .4.5 = true.

• Case 2: All dim(vi) are equal within V , e.g. a graph

formed by G(2,1,0) subgraphs, which all are connected

on three vertices. This will lead to exactly one check of

condition De f .4.5 = true in the given example, and c2

calls in general. c2 is bounded by the minimal number of

aligned G(2,2,0) subgraphs in one of the principal Carte-

sian directions.

Now that it is shown that the influence of De f .4.5 = true on

the inner while loop is O(c2) or O(V ), the algorithms over-

all complexity can be calculated as follows from the upper

bound. O(1) · (O(V )+O(V
2 )+O(V )) = O(V ).

7. Results and Practical Validation

The evaluation of the extracted skeletons considers sev-

eral examples and validation parameters. Fig.6 shows point

clouds of 3 trees with different characteristics, all ob-

tained with different terrestrial laser scanners. Tree 1 (4,09m

height) has many small gaps and a huge varying sampling

density, but less points. It was scanned with a pulse based

laser scanner (Leica Scan Station). Tree 2 (2,91m height)

and Tree 3 (3,20m height) were scanned with a phase based

laser scanner (Z+F Imager 5003). Tree 2 suffers from many

occlusions and lots of noise. The inner crown part of the

tree is the previously discussed noise example 1. Tree 3 con-

tains extreme curvatures and very small spacing between the

branches.

7.1. Skeleton Quality

A minimum octree cell size of 5cm is chosen for evaluat-

ing the skeleton quality. No post processing is applied to the

skeleton. Centeredness is analyzed by considering the (av-

erage) Euclidean distance of every point cloud point to the

skeleton. As an indicator of the topology we give the de-

tected number of branches.

7.2. Results

The example of Tree1 shows good connectedness in the 18

detected branches. Even under bad sampling conditions (up-

per red box in Fig.6). The distances to the skeleton show

c© The Eurographics Association 2009.

A. Bucksch et al. / SkelTre - fast skeletonisation for imperfect point cloud data of botanic trees18



p
o

in
t clo

u
d

 an
d

 cen
tern

ess
skeleto

n

Figure 6: The 3 test trees. First row shows the computed skeleton. The second row shows the input point cloud colored by the

distances of the point cloud points to the skeleton. The black point cloud part belonging to tree one shows strong undersampling

due to occlusion.

a symmetric pattern. Tree1 is a single scan, and therefore

not registered from several scans. The skeleton is attracted

to one side (light blue color), because the back of the tree

was not scanned. The sampling density shows a very noisy

pattern already on a single scan. Spurious branches on the

boundary indicate the noise on the object boundary. Simple

removal of vertices with one incident edge adjacent to a ver-

tex with three ore more incident edges solves this problem

in our experience.

The skeleton of Tree2 shows good connectedness on 136

detected branches, but has one erroneous loop caused by

crossing branches in the noisy inner part. Further the uniden-

tified branch from Fig.1 was not correctly modeled. The

distances to the skeleton around the discussed critical part,

where separation of branches was not possible anymore, are

around 6cm.

Tree3 (251 detected branches) contains four loops caused

by crossing branches and some smaller loops from branches

smaller then the predefined minimum cell size. Except for

some extreme cases, the resulting distances of point cloud

points to the skeleton are in the order of 2-4 cm on the

branches. Further a pattern is visible on tree three along the

stem and the branches, which we could only explain by the

instruments behavior.

7.3. Improvements with respect to a previous method

The SkelTre Skeleton is compared to the CAMPINO skele-

ton [BL08] on an imperfect point cloud in Fig. 7 and Fig.

8. The example tree contains noise, undersampling, occlu-

sion effects and varying point density in the indicated ar-

eas. To give a fair comparison between the two graph reduc-

tions the same octree was used as input with an minimum

cell size of 0.1m. Fig. 7 shows the improved centeredness

as distances to the skeleton between the CAMPINO method

on the left and the SkelTre Skeleton on the right. The dis-

tances of the SkelTre skeleton never exceed 6cm on the stem,

while the CAMPINO methods shows distances up to 13cm.

A geometric extraction using the height function would re-

sult in a non-centered skeleton, because some branches are

parallel to the “ground”. In Fig.8(left) an important char-

acteristic on scanned botanic trees is visible. The points in

the strongly undersampled region (a) are in line-like order,

which makes it hard to define a suitable inside of the ob-

ject, as required by some of the algorithms in the related

work section. Fig.8(middle) and (right) show two skeletons.

The SkelTre Skeleton, Fig.8(middle), is colored with the cor-

responding edge labels. The skeletons show that the pre-

vious algorithm, Fig.8(right), did not maintain the branch-

ing structure as good as the SkelTre Skeleton. The example

point cloud, Fig.8(left), contains no loop. The SkelTre Skele-

ton, Fig.8(middle), contains no loops in the resulting graph,

while the CAMPINO Skeleton contains 4 loops caused by

wrong connections in the octree graph.

Both skeletons in Fig.8 contain two unconnected branch

parts because of undersampling and noise, but differ in the

number of branches. The CAMPINO Skeleton extracted 33

branches, but only 25 branches are present in the point cloud.

c© The Eurographics Association 2009.

A. Bucksch et al. / SkelTre - fast skeletonisation for imperfect point cloud data of botanic trees 19



Figure 7: (Left) Centeredness as distances to the skele-

ton with CAMPINO (Right) Improved centeredness with the

SkelTre Algorithm

(left)
(right)(middle)

Figure 8: (left) The reference tree marked with (a) strongly

undersampled region. The branch is already visually not

identifiable as a volume. (b) data gap because of occlusion.

(c) random noise because of combined effects. (d) combined

occlusion and undersampling (e) varying point density (mid-

dle) the extracted SkelTre Skeleton with edges colored by

their label. (right) a comparable result with [BL08]

The SkelTre skeleton has 26 branches. One branch too much

is caused by the marked region c in Fig.8(left).

The same reference tree Fig.8 was used before in [BL08]

and a mean distance to the skeleton of 1,8cm and a maxi-

mum distance of 15,6cm was achieved under optimized con-

ditions. The SkelTre Skeleton improved by almost 20% in

the mean distance to 1,5 cm. An improvement of almost

33% was obtained in the maximum distance to the skeleton,

which reduced to 10,5cm.

8. Conclusion

In this paper the SkelTre skeletonization method has been

presented. The method reduces an initial graph, correspond-

ing to the subdivision of a point cloud by a suited octree, to

the SkelTre skeleton. It could be shown that the graph re-

duction is linear in time, which underlines the efficiency of

the method that is designed to skeletonise real, large point

clouds of botanic trees. Both the correctness and robust-

ness could be demonstrated on several laser scanning point

clouds of trees. Further research will first focus on applying

the retrieved skeletons on the automatic extraction of struc-

tural parameters and sizes of tree parts. The capability of the

method to skeletonise point clouds of a much larger class of

objects is anticipated, but should be further investigated.

References

[ACK01] AMENTA N., CHOI S., KOLLURI R. K.: The

power crust, unions of balls and the medial axis transform.

COMP GEOM-THEOR APPL 19, 2-3 (2001), 127–153.

[BL08] BUCKSCH A., LINDENBERGH R.: Campino - a

skeletonisation method for point cloud processing. ISPRS

J PHOTOGRAMM 63 (2008), 115–127.

[CH88] CHEN H. H., HUANG T. S.: A survey of con-

struction and manipulation of octrees. COMPUT VISION

GRAPH 43, 3 (1988), 409–431.

[CM07] CORNEA N. D., MIN P.: Curve-skeleton proper-

ties, applications, and algorithms. IEEE T VIS COMPUT

GR 13, 3 (2007), 530–548.

[CMEH∗04] COLE-MCLAUGHLIN K., EDELSBRUNNER

H., HARER J., NATARAJAN V., PASCUCCI V.: Loops

in Reeb graphs of 2-manifolds. DISCRETE COMPUT

GEOM 32, 2 (2004), 231–244.

[DS06] DEY T. K., SUN J.: Defining and computing

curve-skeletons with medial geodesic function. In Proc.:

4th EG Symp. on Geometry processing (2006), 143–152.

[Gor06] GORTE B.: Skeletonization of laser-scanned trees

in the 3d raster domain. InProc.: 3DGeoInfo06 (2006).

[GP04] GORTE B., PFEIFER N.: Structuring Laser-

Scanned Trees Using 3D Mathematical Morphology.

IAPRS XXXV, B5 (2004), 929–933.

[PS03] PEMMARAJU S., SKIENA S.: Computational Dis-

crete Mathematics: Combinatorics and Graph Theory

with Mathematica. Cambridge University Press, 2003.

[PSB∗01] PALAGYI K., SORANTIN E., BALOGH E.,

KUBA A., HALMAI C., ERDOHELYI B., HAUSEGGER

K.: A sequential 3D thinning algorithm and its medical

applications. In Proc.: IPMI ’01 (2001), 409–415.

[PSBM07] PASCUCCI V., SCORZELLI G., BREMER P.-

T., MASCARENHAS A.: Robust on-line computation of

Reeb graphs: simplicity and speed. ACM TOG 26, 3

(2007), 58.

[Ser82] SERRA J.: Image analysis and mathematical mor-

phology. Academic Press, London, 1982.

[VL00] VERROUST A., LAZARUS F.: Extracting skele-

tal curves from 3d scattered data. VISUAL COMPUT 16

(2000), 15–25.

[ZKW98] ZHOU Y., KAUFMAN A., W.TOGA A.: Three-

dimensional skeleton and centerline generation based on

an approximate minimum distance field. VISUAL COM-

PUT 14, 7 (1998), 303–314.

c© The Eurographics Association 2009.

A. Bucksch et al. / SkelTre - fast skeletonisation for imperfect point cloud data of botanic trees20


