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Abstract
We present an interactive rendering method for isosurfaces in a voxel grid. The underlying trivariate function
is represented as a spline wavelet hierarchy, which allows for adaptive (view-dependent) selection of the desired
level-of-detail by superimposing appropriately weighted basis functions. Different root finding techniques are com-
pared with respect to their precision and efficiency. Both wavelet reconstruction and root finding are implemented
in CUDA to utilize the high computational performance of Nvidia’s hardware and to obtain high quality results.
We tested our methods with datasets of up to 5123 voxels and demonstrate interactive frame rates for a viewport
size of up to 1024×768 pixels.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Visible line/surface algorithms

1. Introduction

Volumetric datasets are a widely used representation of
three-dimensional data in a variety of applications, such as
medical visualization, engineering, and computer games. Di-
rect volume rendering [EHK∗06] is a suitable approach to
display volumetric data in many cases. However, the user is
often interested in an isosurface instead, i.e., a surface satis-
fying f (x,y,z) = c, where f (x,y,z) represents the volumetric
data at the point (x,y,z) in object coordinates. Depending on
the application, this can have different interpretations, e.g.,
the boundary between a bone and its surrounding tissue or
a region of constant pressure in a simulated combustion en-
gine. By modifying the constant c over the range of f , the
user can investigate the entire dataset and thus gain insight
into its geometric and topologic properties.

A convenient form of volumetric data is a voxel grid,
which is a set of samples on a regular grid in 3D-space. For
a well-defined isosurface to exist, we assume an appropriate
interpolation of the samples, which approximates the origi-
nal function in the continuous domain. Common choices in-
clude polynomial (e.g., tri-linear or tri-cubic) interpolation
functions, for which the isosurface becomes a piecewise al-
gebraic surface, where each piece is defined as

f (x,y,z) = ∑
0≤i, j,k≤d

fi jkxiy jzk = 0, (1)

with fi jk given and d being the surface’s degree along each
dimension, resulting in an overall degree of 3d.

Due to the advance of data acquisition technologies such
as computed tomography (CT), the datasets investigated by
researchers become increasingly larger. It is often neither de-
sirable nor feasible to use the entire available data for visu-
alization, instead, only a properly chosen subset of the origi-
nal data is used. The wavelet transformation [Chu92] is well
suited for this purpose, since it decorrelates data and allows
the selective removal of irrelevant data, while maintaining
a good approximation of the original data. Even after sim-
plifying the data, isosurface rendering remains a demanding
task. Recent programmable graphics hardware [LNOM08]
provides sufficient computational power to accomplish it in
real-time due to the highly parallel nature of the problem.

We present a wavelet-based hierarchical representation
of volume data, from which an approximation of the input
data can be reconstructed according to the current viewing
parameters. The wavelet basis functions are written in the
scaled Bernstein form, which allows simple algebraic ma-
nipulation by convolution [SR03]. Performance critically de-
pends on proper code optimization (in particular loop un-
rolling), which we accomplish by an advanced preprocess-
ing mechanism.

2. Related work

Ray casting algebraic surfaces [Han83] is traditionally re-
lated to rendering a single polynomial, for which the task can
be greatly accelerated [RS08]. Organizing piecewise poly-
nomial functions (splines) in tetrahedrons offers the abil-
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ity to render more complex surfaces of low degree [LB06].
This approach can even be extended to isosurfaces of vol-
ume datasets when an appropriate transformation step is ap-
plied [KOR08,KZ08]. Unfortunately this limits the approach
to volumes of smaller extent, as the memory footprint of the
data is strongly increased.

These approaches are somewhat related to the well-known
Marching Cubes algorithm [LC87], which also tries to ex-
tract a surface description – in this case a triangle mesh –
for a given isovalue. Follow-up methods [TPG99, ABJ05]
achieve better quality and are still used frequently.

Direct isosurface renderers allow the user to interactively
modify the isovalue. Mostly based on shaders, hardware fea-
tures are exploited such as fast texture filtering or rasteriza-
tion of bounding geometry. Using fast tri-cubic texture fil-
tering [SH05], it is possible to render high order filtered iso-
surfaces of big datasets at real-time frame rates [HSS∗05].
This direct isosurface renderer directly works on raw voxel
data, which makes it a good candidate for integration into a
mixed direct volume and isosurface rendering system.

A common problem in volume rendering is the huge
amount of data required for high-quality rendering. One
possible solution is compression, e.g., by using wavelets
[Chu92, SDS96], which is well covered in the literature
[Wes94, GLDK95, KS99]. If the wavelet transform is used
to reconstruct a mixed resolution representation, areas of in-
terest can be displayed in more detail. Special care needs to
be taken at the boundaries between different resolutions to
avoid cracks in the surface. Thus wavelets are often used on
previously extracted surfaces and not directly on the volume
dataset [GSG96, WKE99, BDHJ00, LHJ07].

Resolution boundaries in volume datasets are easily han-
dled with linear wavelets [UHP00]. The reduced quality of
linear filtering is less apparent when constructing surface
normals with C1 continuity [KWH09]. Wavelets can fur-
ther be used to analyze data and truncate unneeded coeffi-
cients, e.g., high frequency information or irrelevantly sized
basis functions, as shown in [WB97]. Given a multireso-
lution description of the data, a good out-of-core memory
management strategy is desired for rendering volumes of ar-
bitrary size. Recently Crassin et al. showed a shader based
approach [CNLE09] for direct volume rendering, on how to
use GPU memory as efficiently as possible whilst reporting
information back from the rendering process itself.

3. Our method

The core of our method is an algebraic surface renderer,
which is embedded in a framework that can handle piecewise
algebraic surfaces and therefore is able to render isosurfaces
of voxel datasets.

3.1. Rendering algebraic surfaces

We begin the discussion with a general overview of algebraic
surface rendering. The two core steps of common algebraic

surface raycasters, which typically also form the bottleneck
for higher order surfaces, are composition and rootfinding.
Given a viewing ray

r(t) = p+ t ·v, (2)

one is interested in the description of f along the ray:
( f ◦ r)(t) (composition). After subtracting the isovalue c,
a rootfinder is used to identify the first root position t0 of
the polynomial ( f ◦ r)(t)− c = 0, which represents the in-
tersection of the viewing ray and the isosurface. We offer
an efficient approach for the composition step, which shows
a tremendous speedup in comparison to naive implementa-
tions.

3.2. Composition of a univariate polynomial

The composition ( f ◦ r)(t) transforms a trivariate polyno-
mial of maximum degree 3d (e.g., tri-linear, tri-square. . . ),
into a univariate polynomial. A straightforward implemen-
tation of the composition in power form is the substitution
of the ray equation (2) into the surface definition (1). The
expansion of this equation yields an expression for all poly-
nomial coefficients. To reduce the number of computations,
one can extract terms appearing more often and only com-
pute them once. Still this approach needs a lot of operations
and too many registers to fit into a GPU based framework
(see Table 1). To obtain a more efficient structure, we write
the composition with convolution operators [SR03]:

f (t)→ f =
d

∑
i=1

d

∑
j=1

d

∑
k=1

fi jk · ri
x ∗ r j

y ∗ rk
z ,

with rx = [px,vx] being the coefficient sequence of the (lin-
ear) polynomial describing the x-component of the ray in
equation (2), ry, rz defined likewise, and f being the coeffi-
cient sequence of the resulting polynomial f (t) of degree 3d.
The power expressions are n-fold convolutions, which are
computed incrementally, i.e., ri

x = ri−1
x ∗ rx (this is equiva-

lent to the Horner scheme for polynomial evaluation), and
similar for r j

y and rk
z . Reordering leads to

f =
d

∑
i=0

ri
x ∗

d

∑
j=0

r j
y ∗

d

∑
k=0

fi jk · rk
z︸ ︷︷ ︸

fi j︸ ︷︷ ︸
fi

An important property of this structure is the fact that no
more than one factor fi j and fi needs to be available at the
same time (i.e., the memory used to store f00 can be reused to
store f01, and so on), leading to less consumption of register
space and therefore better parallelism.

The Bernstein form of a polynomial is often used for root
finding, as it shows good numerical properties [FR87]. Our
approach can also be derived in the so called scaled Bern-
stein form proposed in [SR03]. This offers a uniform data
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representation through the rendering pipeline, better stabil-
ity for the composition, and also avoids basis changes from
power form to Bernstein form for root finding:

f̃ =
d

∑
i, j,k=0

b̃i jk · q̃d−i
x ∗ ũi

x ∗ q̃d− j
y ∗ ũ j

y ∗ q̃d−k
z ∗ ũk

z

=
d

∑
i=0

q̃d−i
x ∗ ũi

x ∗
d

∑
j=0

q̃d− j
y ∗ ũ j

y ∗
d

∑
k=0

b̃i jkq̃d−k
z ∗ ũk

z , (3)

with ũ being the ray component in scaled Bernstein form,
and q̃ = 1− ũ.

For a single dimension, the composed scaled Bernstein
coefficient sequence c̃ can be obtained in a recursive manner
(similar to the Horner scheme for the power form):

c̃ =
d

∑
i=0

b̃iq̃d−i ∗ ũi

= b̃d ũd + q̃∗ (b̃d−1ũd−1 + . . .+ q̃∗ (b̃1ũ+ b̃0q̃)).

Applying this substitution to the three sum terms in eq. (3)
saves a large amount of computational work. However, the
expression q̃d−k ∗ ũk in the sum over k is computed repeat-
edly, so precomputing and reusing it (for k = 0 . . .d) further
reduces the number of operations. The same argument ap-
plies to the sum over j. See Table 1 for an overview of the
different methods. The difference of 2 to 3 orders of mag-
nitude in performance between the naive approach and our
proposed structure is due to the fact that our structure eas-
ily fits into the register space of the GPU. See Section 4
for more results, including a comparison with other meth-
ods [SH05, RS08].

method naive PF SB0 SB1 SB2
mul 1839 234 741 687 720
add 990 360 483 490 558
reg 135 27 72 60 66

time 1 3.6e-3 26e-3 23e-3 22e-3
MSE 162.3 22.6 5.15 4.78 4.78

Table 1: Comparison between different algorithms for
trivariate to univariate composition ( f ◦ r)(t) of random
polynomial data. Operation count is taken from the opti-
mized machine code of the CUDA compiler. Execution time
is stated relatively to slowest method, mean squared error
is scaled by 10−12 and relative to the coefficients. PF stands
for power form and SBx for scaled Bernstein form with terms
q̃d−k ∗ ũk precomputed for the x innermost loops. The naive
approach is described in the beginning of Section 3.2.

3.3. Root finding

The first intersection of a viewing ray with the isosurface
corresponds to the first root of the polynomial f (t)− c.
We focus on four different root finding algorithms: [LR81],
[MR07], a regula falsi method using De Casteljau subdivi-
sion for root isolation and a Sturm Series [LS75] based ap-
proach working in power form.

The Bernstein form offers a control polygon for a
given polynomial, which has variation diminishing prop-
erty. [LR81] is based on the idea of subdividing the control
polygon using the de Casteljau algorithm at the intersection
of the control polygon with the zero axis. This algorithm
can be implemented with constant memory usage and with-
out index operations. [LR81] shows quadratic convergence
speed with quadratic complexity for each step due to the de
Casteljau algorithm. For volume rendering, a fixed number
of 3 to 7 iterations, depending on the chosen interpolation
type, seems to be sufficient and does not produce any visible
artifacts.

On the other hand, [MR07] is based on knot insertion,
which requires index operations, and the used memory
grows with every iteration step, limiting the maximum num-
ber of iterations. [MR07] shows linear convergence speed
with linear complexity. Our optimized version of this algo-
rithm is more than 10 times slower than our [LR81] imple-
mentation.

A root isolated from all others can be found using simpler
methods, like regula falsi or binary search. Our implemen-
tation of this root finder combines both to guarantee expo-
nential convergence for the second phase of the rootfinder.
Although the second phase of this algorithm outperforms
our [LR81] implementation when a root has been isolated,
the isolation step itself is (due to diverging branches) not as
well suited for the CUDA architecture as our [LR81] imple-
mentation.

Root finding is not limited to polynomials in Bernstein
form only, and as we are able to formulate all other parts
of the pipeline using power form, we also implemented a
root-finder in power form. We use the Sturm Series, which
can be used to count multiplicities of roots in a given inter-
val. When subdividing the search interval in a binary man-
ner, one can also identify an exponential convergence with
constant memory consumption. The Sturm Series, which is
computed only at the beginning of the algorithm, is evalu-
ated once during every iteration step. Therefore, and due to
little branching, the algorithm is especially fast for an in-
creasing iteration count. On the other hand, the numerical
problems, which are natural for power form implementa-
tions, are getting more severe for more iterations. The second
down side of the algorithm is its high memory consumption,
as the whole Sturm Series needs to be kept in memory during
the entire execution.

For a comparison between the root-finders see Table 2.
We suggest to use the [LR81] implementation, as it shows
the best overall characteristics of the tested rootfinders.

3.4. Rendering many trivariate polynomials

As the size of common voxel datasets is steadily increas-
ing, it is common to face datasets of 5123 voxels and more.
Therefore the need for good empty space skipping strate-
gies and a multiresolution approach naturally arises. Still
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method [LR81] [MR07] RF Sturm
reg 42 30+9d +2i 43 73

time 0.076 1.0 0.062 0.077
MSE 0.003 0.034 0.016 0.003

max err 0.66 0.85 0.99 1.0
Table 2: Performance of different root finders for degree 9
(tri-cubic): Execution time and maximum error are relative
to worst result indicated by 1.0. Mean squared error is rela-
tive to the search interval. Note: only a few iterations (i) for
all methods were considered, as our [MR07] implementation
reached the limit of shared memory.

there will be thousands of voxels active at the same time.
For a smooth isosurface, higher order interpolation is re-
quired, e.g., tri-cubic interpolation is needed for smooth re-
flections. From an algebraic point of view, this corresponds
to a trivariate polynomial for each voxel, which is influenced
by (d +1)3 data values.

Our approach shows good frame rates for this scenario,
as every ray can work through the whole rendering pipeline
independently from all others. One problem when tack-
ling huge datasets with algebraic methods is storing the ex-
plicit description of every single polynomial in memory,
which would increase the memory consumption by the factor
(d + 1)3. Normally, one just desires to interpolate the given
data, for which it is possible to work directly with the orig-
inal representation. When a different description is needed,
the data describing the current voxel can be transformed on-
the-fly.

In our case, however, this transformation corresponds to a
basis transform only. Tri-linear filtering and its natural ex-
tensions like tri-cubic filtering, are based on the B-spline
polynomials. From another point of view, this means that the
polynomial of a certain voxel is given in the B-spline basis
by the data values surrounding the voxel.

The basis transform from the one dimensional B-spline
basis to either the one dimensional scaled Bernstein basis
or power basis corresponds to a multiplication of the ba-
sis vector with a matrix of size (d + 1)× (d + 1). Aiming
at matrices containing several zeros and ones, the matri-
ces can be scaled with a constant factor, thus reducing the
number of required operations. For a one dimensional basis
transform only 6 and 8 multiplications are needed for transi-
tion to scaled Bernstein basis and power basis, respectively.
The N-dimensional basis transform can be constructed from
N · (d + 1)N−1 one dimensional basis transforms, as the N-
dimensional basis itself is just a tensor product of the one
dimensional basis. This basis transform can be efficiently in-
tegrated in our Horner Scheme for composition, which also
shows this separation of single dimensions.

For handling big datasets, knowledge of the underlying
data and the location in memory is required. We store all
meta information in an octree. Similarly to [WFM∗05], ev-

ery node stores a conservative estimate of the minimum and
maximum value appearing in its subtree to quickly identify
regions which do not contain the isosurface (empty space
skipping). Each leaf corresponds to a group of b3 adjacent
polynomials, where b is a trade-off factor between more ef-
ficient empty space skipping and memory requirement of
the tree structure. The min/max values at leaf nodes can
be estimated using the convex combination property of the
B-spline basis and are propagated towards the root of the
tree. During rendering, we use a GPU-enabled version of the
parametric octree traversal algorithm proposed in [RUL00].

3.5. Wavelet transform

For large datasets, it is not useful to display the entire data at
full resolution. Depending on the current view, the resolution
of distant parts can be decreased to improve rendering per-
formance (see Figure 1 and 6 and Table 3) with little impact
on visual quality.

Figure 1: View-dependent multiresolution scene spanning
several levels of the wavelet hierarchy with octree nodes su-
perimposed (indicated by the wireframe cubes).

To enable a multiresolution data description, we perform
a wavelet transform on the volume dataset using polynomial
spline wavelets [CDF92] with different degrees and the least
possible number of vanishing moments to keep the support
of the filters as small as possible. Since the basis functions
(i.e., wavelets) are B-splines, they naturally fit into the above
discussion regarding rendering of piecewise algebraic sur-
faces. Moreover, due to the continuity properties of B-spline
wavelets, the reconstruction (and hence the isosurface) is
guaranteed to be continuous as well, thus avoiding cracks
in the surface.

An approximation of the original data is a linear combi-
nation of a subset of the available basis functions, weighted
by the corresponding wavelet coefficients. The levels of the
octree form a set of nested vector spaces (much like the
wavelets themselves [SDS96]). Hence octree nodes (start-
ing from the root) are expanded as needed until the vector
space spanned by the currently expanded nodes contains the
desired approximation.
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However, a straightforward implementation would be in-
efficient for two reasons. First, distributing spline coeffi-
cients within a wavelet’s support into all intersecting octree
nodes involves a scattering memory access pattern. Though
possible on recent GPUs by means of atomic operations,
such an approach suffers from performance penalties due
to bus locking. Instead we proceed by traversing the octree
hierarchy and gathering all contributions of wavelets which
intersect the octree node under consideration. As the number
of coefficients influencing a single node grows cubicly with
the support of the one dimensional wavelet (e.g., 175 influ-
ence coefficients for the tri-cubic case), we make use of the
separability of the B-spline wavelet basis and sequentially
perform the transformation in x-, y-, and z-direction. This
reduces the computation to three times the number needed
in the one dimensional case (e.g., 3× 7 coefficients have to
be considered in the tri-cubic case).

A second issue is the granularity at which the wavelet re-
construction is carried out. Although possible, it is not feasi-
ble to keep track of activation and influence of every single
wavelet. Only tasks which can be subdivided into a sufficient
number of similar subtasks can be implemented with maxi-
mum performance on SIMD hardware. We therefore operate
on chunks of k×k×k nodes (we choose k = 8) and evaluate
the view-dependent error metric for every chunk (such that
all nodes within the chunk can be processed efficiently in a
similar way).

One CUDA kernel is used for the convolution along each
dimension, the first kernel is additionally responsible for
evaluating the error metric and checking the neighborhood
along the other two dimensions to analyze if this chunk
needs to be reconstructed. We use a simple error metric
which activates a chunk if it can possibly contain the current
isovalue (min/max comparison with rendertree entry) and if
s
c > ε, where s is the node diameter, c is its distance from the
camera, and ε is a user-defined threshold.

Nodes which are not activated do not add any data to the
reconstruction, and their detail coefficients can be set to zero.
If all detail coefficients contributing to a chunk are zero,
the output corresponds exactly to the data at the next lower
resolution level, sampled with twice as many points along
each dimension. Therefore we can omit reconstruction of all
chunks which are neither activated nor needed to maintain
continuity. Since the support of some wavelets in an acti-
vated chunk extends into neighboring chunks, these neigh-
bors also have to be reconstructed and used for rendering to
maintain continuity.

The CUDA kernels for all three dimensions each consist
of blocks of k× k threads. Each thread computes a one-
dimensional convolution with the wavelet filter kernels (low
pass and high pass). One block is responsible for a beam of
k× k voxels along the current convolution direction. Recon-
struction is applied to one chunk after the other, deactivated
chunks are simply skipped (see Figure 2). At each recon-

full reconstruction compute convolution
skip deactivatedmaintain continuity

Figure 2: Processing scheme for selective wavelet recon-
struction, the arrows indicate the execution of a single
thread block in the CUDA kernel. Boxes do not refer to oc-
tree nodes, but to chunks of k× k× k nodes as explained in
Section 3.5.

struction step it is assured that all needed data resides in reg-
ister space before the convolution is carried out. Data fetched
for the reconstruction of the previous chunk is reused.

3.6. Code optimization

A key factor for good performance is full utilization of
computational resources, which in the CUDA context in-
cludes the necessity of high arithmetic intensity [LNOM08].
A straightforward implementation of the equations in Sec-
tion 3.2 yields code containing several nested loops with the
trip count known in advance. However, while the CUDA
compiler is designed to detect such static program flow
constructs and optimize the code accordingly (e.g., unroll
loops), it fails to do so in this particular case due to the de-
pendency of inner loop limits on outer loop indices.

Hence the resulting program performs dynamic looping,
which, however, is very inefficient for two reasons. First, a
certain overhead is associated with loop counter manipula-
tion and conditional branching. Second, and most impor-
tant, since indirect addressing is not supported in register
space, the indexed quantities (e.g., polynomial coefficients)
are stored in off-chip memory, which has significantly higher
latency and lower bandwidth than the on-chip register file.

To overcome this problem, we added a code transforma-
tion step to our build framework which is invoked before the
CUDA compiler. It manipulates the code similar to the stan-
dard C preprocessor, but also supports loop control struc-
tures. We thereby “flatten out” the entire static control flow
of the program, which generates 81 times faster code for the
tri-cubic composition and subsequent root finding than with
dynamic branching. Without this optimization, this part of
the algorithm is the bottleneck of the system, consuming
88± 5% of total frame time for tri-cubic rendering. After
optimization, it only contributes 30±5% to the frame time,
overall performance has been improved by a factor of ap-
proximately 17. The remaining 70±5% are mainly made up
of traversal and data transfer time.
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4. Results

The test framework for our implementation consisted of an
Intel Core i7 and an NVIDIA GeForce GTX 285 with 1GB
of graphics memory running on both Microsoft Windows
Vista and Linux.

4.1. Single algebraic surface rendering

Although our technique for rendering piecewise algebraic
surfaces is not optimized for rendering a surface described
by a single equation, we still want to draw a comparison to
the frustum form approach. [RS08] showed that several op-
erations can be saved when pre-computing common terms
for all rays hitting the same polynomial, which can be ef-
ficiently implemented by means of matrix multiplications.
Figure 4 shows a comparison to our approach for different
view port sizes as well as different polynomial degrees. We
believe the main reason for our approach outperforming the
frustum form is found in better resource utilization.

4.2. Isosurface rendering for volume datasets

When it comes to interactive isosurface rendering of volume
datasets, [HSS∗05] is – as far as we know – still the refer-
ence. Their approach relies on fast tri-cubic texture sampling
[SH05], which is constructed using fixed-function hardware
supported tri-linear texture sampling. Root-finding is accom-
plished by drawing samples along the ray and refining the
(thus isolated) root using binary search. The step length for
the isolation part of the algorithm is chosen as high as possi-
ble, depending on the maximum frequency occurring in the
data. Our approach, on the other hand, needs to check every
voxel that can possibly contain a hit. We also benefit from
low frequency data using the wavelet transform to reduce
the number of voxels if possible. The rendering performance
scales linearly with the number of voxels that are checked.

We tested our approach with various examples, show-
ing interactive frame rates for large datasets (see Table 3
and Figure 5). Tricubic texture sampling outperforms our
method, but shows considerable artifacts due to the lim-
ited precision of the texture interpolation hardware (9 bits
[NVI08]). In volume rendering applications, and in partic-
ular for tasks such as virtual endoscopy, closeup views are
often desired, where a few voxels make up for a big part of
the screen area. In these situations, 9 bits are often not suffi-
cient for high quality renderings, introducing artifacts which
may be distracting or misleading (see Figure 3). The qual-
ity of our approach, on the other hand, is independent of the
voxel sizes, it is even faster for bigger voxels.

5. Conclusions and future work

We demonstrated the suitability of spline wavelets for the
representation and direct rendering of multiresolution piece-
wise algebraic surfaces in the CUDA framework. Any
desired level of continuity can be obtained by choos-
ing wavelets of appropriate order, cubic wavelets (for C2-
continuity) already provide good results in terms of visual

Bucky Dragon Foot Vertebra
tri-linear 31.2 fps 9.8 fps 4.6 fps 6.6 fps

tri-square 16.3 fps 6.9 fps 2.8 fps 5.3 fps
tri-cubic 7.1 fps 4.6 fps 1.5 fps 3.5 fps

sampling 29.8 fps 18.3 fps 12.0 fps 4.7 fps

Table 3: Performance measurement for datasets from Fig-
ure 5 and 6: Viewport size 1024× 768; first three methods
correspond to our approach using different degree for inter-
polation (no multiresolution applied); sampling is our im-
plementation of [SH05] using our octree structure for empty
space skipping. The relatively low frame rates for sampling
approach occur as it has been configured for high visual
quality – still some difference to the true solution is visible.

full 6(b) 6(c) 6(d) 6(e)
reconst. 7.23 8.72 9.25 6.11 6.92

rendering 225 219 161 115 89.3
MSE 0 24 45 57 176

chunks 100% 73% 40% 12% 6%
Table 4: Performance measurement for view dependent
wavelet selection of datasets from Figure 6. Reconstruction
and rendering times are given in ms, MSE is scaled by 103

and calculated over all colored pixels. Fully reconstructed
Dragon dataset 1283 consists of a total of 4681 chunks.

quality. An octree storing the wavelet coefficients proved to
be an efficient way to select relevant basis functions.

The actual ray/surface intersection is performed in the
scaled Bernstein form, which results in simpler expressions
at the same numerical stability as the frequently used (clas-
sical) Bernstein form. Moreover, all static flow control con-
structs are resolved before the source code is compiled to
aid the optimizer in producing efficient machine code. Our
method is more accurate (though slower) than a texture hard-
ware based intersection algorithm [SH05], and it is more ef-
ficient than a dedicated algebraic surface renderer [RS08] in
a typical volume rendering configuration.

Data organization in an octree opens a number of opportu-
nities for future improvements. Since irrelevant subtrees are
pruned during traversal, it is not necessary to upload the en-
tire tree to GPU memory at once, only those parts required
for the current frame have to be available. If transmission
cannot keep up with the rate at which data are needed for
visualization, e.g., due to disk I/O (out-of-core rendering) or
network delay (progressive transmission), the visual quality
of the rendered images gradually degrades.
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(a) tri-linear
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(b) tri-square
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(c) tri-cubic (d) tri-cubic surface

(a): x + y+ z+ xyz−1 (b): 4(x2 + y2 + z2)+16xyz+(xyz)2−1 (c,d): x2 + y2 + z2− (xyz)3− x2y−1

Figure 4: Comparison between the frustum form (FF) approach [RS08] and our implementation for raycasting a single alge-
braic surfaces. Both approaches were configured to work with 6(d +1) iterations of an [LR81] rootfinder.

(a) Bucky Ball 323, tri-cubic (b) Foot Dataset 2563, tri-cubic (c) Vertebra 5123, tri-cubic

Figure 5: Example of different sized volume datasets used for evaluation. See Table 3 for a performance comparison.

(a) 100% (b) 73.1% (c) 40.0% (d) 12.5% (e) 6.3%

Figure 6: Dragon dataset: View dependent Wavelet Reconstruction greatly reduces rendering time (see Table 4), while remain-
ing good visual quality. Note: higher quality reconstruction with the same amount of data could be accomplished, but this would
have less influence on rendering speed.
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(a) tri-cubic sampling (b) our approach

(c) closeup view (d) difference

Figure 3: Vertebra dataset (see Figure 5(c)); inside view of
an artery close to an aneurysm found in a human head: Fast
tri-cubic sampling [SH05] (a) produces artifacts due to low
number of bits used in interpolation hardware (see (c) for a
closeup view), which may be both distracting and misleading
for diagnosis. (d) shows the difference of normals between
(a) and (b).
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