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Abstract

This paper presents a technique for performing
volume morphing between two volumetric datasets in the
wavelet domain. The idea is to decompose the volumetric
datasets into a set of frequency bands, apply smooth
interpolation to each band, and reconstruct to form the
morphed model. In addition, a technique for establishing a
suitable correspondence among object voxels is presented.
The combination of these two techniques results in a
smooth transition between the two datasets and produces
morphed volume with fewer high frequency distortions
than those obtained from spatial domain volume morphing.

1. Introduction and motivation

Recently, 3D metamorphosis, the process of
simulating the deformation of one 3D model to another,
has gained popularity in animation and shape design.
Previously published techniques [5, 6] deal mainly with
the metamorphosis between two polygonal-based models.
The general method of these algorithms is to displace the
vertices, edges, and faces of the first model over time to
coincide in position with the corresponding vertices, edges,
and faces of the second model. However, establishing the
suitable correspondence among surface elements is
complex. In addition, these algorithms generally impose
topological restrictions on the models in order to maintain
the face connectivity during morphing.

Motivated in part by the difficulties presented in
morphing surface-based 3D models and in part by the
desire to morph sampled/simulated datasets directly, the
volume graphics [4] approach represents the 3D models in
voxel space and performs volume morphing between the
two volumetric models. One of the main advantages of this
approach is that the topology restriction on the datasets is
eliminated, since there is no explict topology description of
the volume and the voxel correspondence can be directly
established between any two volumes. However, the
problem of finding the appropriate correspondence among
voxels still exists. One naive solution is simply to cross-
dissolve between the two volumes over time. In other
words, to morph from modelg(x, y, z) to f (x, y, z), a new
modelkt(x, y, z) = (1 − t)g(x, y, z) + t f (x, y, z) is formed.

Although simple, this method is often ineffective for
creating the smooth transition from one model to another.
For example, given two concentric spheres with identical
iso-values but with different radii, an ideal morphing from
the larger sphere to the smaller one should be a sphere with
constant iso-value but a gradually shrinking radius. But
the naive technique described above would generate a
sudden shrinkage from the large sphere to the small one at
a certain timeT when a surface rendering method is
employed. This is because when 0≤ t < T, the region
between the two spheres has the density value above the
iso-value, and at timet = T, the density values of the
region uniformly drop below the iso-value.

Another problem when performing volume
morphing is that the direct interpolation of the high-
frequency components in the models might cause
distortion and unsatisfactory results. Hughes [3] deals
with this problem by performing volume morphing in the
Fourier domain. Basically, his approach takes the first
volumetric model, gradually removes the high frequencies,
interpolates over to the low frequencies of the second
model, and then smoothly adds in the high frequencies of
the second model. Although effective in reducing high
frequency distortion, the technique does not solve the
problem of unsmooth transformation of iso-surfaces
because the Fourier transform does not localize in spatial
domain. In Hughes’ implementation, in order to have a
smooth transition during morphing, the voxel values of the
entire volume are modified according to the distance to the
nearest iso-surface. Hence, new datasets need to be created
solely for the morphing application.

In this paper, a technique for performing volume
morphing in the wav elet domain is introduced. Since
wavelet transform localizes in both frequency domain and
spatial domain, the problems of high frequency distortion
and unsmooth transformation can be alleviated
simultaneously. The idea is to decompose the volumes
into a set of frequency bands, apply smooth interpolation
between the volumes to each band, and then reconstruct
the morphed volume. Furthermore, the decomposition and
reconstruction processes are accomplished in a
multiresolution fashion so that high frequency distortion



can be adjusted to the desired level. By taking advantage
of the spatial information within each frequency band, we
can extract and correspond the object voxels of the first
model to the object voxels of the second model
intelligently. In the next section, the volume
correspondence problem is presented. In Section 3
wavelet theory is briefly introduced. Wav elet application to
volume morphing in described in Section 4.

2. The correspondence problem

Unlike polygonal-based modeling, where every
surface element of the mesh contributes to the modeling of
a part of an object, voxel-based modeling captures not
only the object itself but also the space surrounding the
object. Hence, in order to have a gradual deformation
from one object to another, it is essential to map only those
voxels which belong to parts of an object. In our
implementation, iso-values are used to distinguish these
voxels from empty space. The algorithm for solving the
correspondence problem is first described in 1D space,
followed by the extension of the algorithm into 3D space.
Given an objectA in a 1D raster and an objectB in another
1D raster, the first step of the algorithm is to classify these
two rasters into segments of object and non-object.
Without loss of generality, let objectA consist ofm object
segments, objectB consist of n object segments, and
m ≥ n (Figure 1). As in the case of surface-based
morphing, the two important quality criterion are
maintaining the correct topology and minimizing the shape
distortion during transformation. First, to satisfy the
topology criterion, each object segment inA can be
mapped to only one object segment inB. This restriction
is needed to ensure that the number of object segments
does not increase during morphing. Under the condition
that the first criterion is satisfied, object segments ofA
should be distributed onto object segments ofB as
"evenly" as possible to minimize the shape distortion.

.
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Figure 1: 1D Correspondence Problem

Formally, the 1D correspondence problem is stated as
follows. Given:

A =



a1a1′, a2a2′, . . . , amam′




,

(1)B =



b1b1′, b2b2′, . . . , bnbn′




, m ≥ n

determine:

P = { p1, p2, . . . , pn} and

(2)W = { w1, w2, . . . ,wn}

where

pi =




x j , . . . ,xk




, 1 ≤ i ≤ n, 1 ≤ j ≤ k ≤ m,

(3)and xl ∈A for j ≤ l ≤ k

(4)wi =
j ≤ l ≤ k
Σ (al ′ − al )

subject to:

1. (xu∈pi1 Λ xv ∈pi2 Λ i1 < i2) → (u < v)

(5)for all u, v

and

(6)2. min
n

i=1
Σ







wi

(bi ′ − bi )
−

m

i=1
Σ(ai ′ − ai )

n

i=1
Σ(bi ′ − bi )







2

.

In Equation 2, the setP represents the partition ofA‘s
object segments into n partitions, and the setW represents
the corresponding weight for each member ofP. As
shown in Equation 4, the weight for each partition is the
total length of object segments within each partition.
Equation 5 guarantees that the partition is in consecutive
order from left to right. Equation 6 insures that object
segments of A are "evenly" distributed onto object
segments ofB by minimizing the variance.

In our implementation, dynamic programming has
been used to solve the 1D correspondence problem. Once
the correspondences have been established for the object
segments inA andB, each object segment inB needs to be
partitioned to accommodate the corresponding object
segments fromA. For example, if



.

Correspond_3D  (  A,  B  )

Volume_Data  *A,  *B;

{

for  each  non-empty  scan line  v  in  u 

v’    =  the  corresponding  scan  line  in  u’ ;

}

}

}

Y2  =  Object_Segments  (   u’  ,  Y_AXIS  );

Correspond_1D  (   Y1,  Y2  );

{

X1  =  Object_Segments  (   v     ,  X_AXIS  );

X2  =  Object_Segments  (   v’   ,  X_AXIS  );

Correspond_1D  (  X1,  X2  );

Z1  =  Object_Segments  (  A,  Z_AXIS  );

Z2  =  Object_Segments  (  B,  Z_AXIS  );

Correspond_1D  (  Z1,  Z2  );

for  each  non-empty  scan plane  u  in  A

{

u’  =  the  corresponding  scan plane  in  B;

Y1  =  Object_Segments  (   u   ,  Y_AXIS  );

Figure 2: Pseudo-code for the 3D Correspondence

(7)pi =



aj aj ′, . . . , akak′





then segment bi bi ′ of B needs to be partitioned into
k − j + 1 sub-segments of lengths

(8)



(aj ′ − aj ) r , . . . , (ak′ − ak) r





where

(9)
r =

(bi ′ − bi )
k

l= j
Σ(al ′ − al )

.

The correspondence problem in 3D space is
essentially accomplished by applying the above 1D

correspondence algorithm, which we call Correspond_1D,
to each of the three principal axes in an nested fashion.
The 3D correspondence algorithm, described in the
pseudo-code presented in Figure 2, establishes a mapping
from object scan-planes ofA to object scan-planes ofB,
from object scan-lines ofA to object scan-lines ofB, and
finally from object voxels ofA to object voxels ofB. With
these correspondence relations, volume morphing is
achieved through the interpolations over time of the
corresponding scan-planes, scan-lines, and voxels.

3. Wav elet theory

Generally, the high frequency components in 3D
functions represented by volumetric data tend to generate
small wiggles on the iso-surfaces of the models [3]. If the
morphing algorithm described above isdirectly performed
in the spatial domain, these wiggles could cause distortions
on the iso-surfaces of the intermediate functions (see
Figure 3a). Recently, wav elet theory, which is rooted in
time-frequency analysis, has been widely used in a variety
of applications, such as shape description of volumetric
objects [8] and radiosity [2]. Since a wav elet transform has
local property in both spatial and frequency domain, it is
an ideal solution to the problem of high frequency
distortion during morphing. In this section wav elet theory
is briefly introduced, then in Section 4 the wav elet-based
morphing algorithm is presented.

Multiresolution signal analysis decomposes a
function into a smooth approximation of the original
function and a set of detailed information at different
resolutions [7]. Formally, letL2(R) denote all functions
with finite energy; the smooth approximation of a function
f ∈L2(R) at any resolution 2i is a projection denoted as
A2i : L2(R) → V2i , V2i ∈L2(R), and the detail off at any
higher resolution 2j is a projection off onto a subspace
O2 j of L2(R) denoted as P2 j : L2(R) → O2 j , j ≥ i .
Consequently, the finest detailed information is contained
in P2 j with the highest resolution. By choosing the
appropriate projection functions such thatO2 j are
orthogonal to both each other andV2i , we hav eV0 = L2(R)
and L2(R) = +1

j = i O2 j + V2i ( when O2 j is the orthogonal
complement ofV2 j , V2 j+1 is written asV2 j+1 = V2 j + O2 j ).
For the discrete functions, it can be proven that there exist
two families of functions:

(10)ψ j , n = 2− j /2ψ (2 j t − n) n ∈ Z

(11)φ j , n = 2− j /2 φ (2 j t − n) n ∈ Z,

which constitute the orthonormal basis ofV2 j and O2 j ,
respectively.ψ j ,n are called wavelets and φ j ,n are the
correspondingscaling functions.



Using wav elets and scaling functions, thediscrete
detail signaland discrete approximationat resolution 2j

are respectively defined as:

(12)(D2 j f ) n = 2− j /2 < f (u), ψ j ,n >

(13)(Ad
2 j f )n = 2− j /2 < f (u), φ j ,n >

and the detailed information and smooth approximation
are:

(14)PO2 j
f = Σ∞

n = − ∞(D 2 j f ) n ψ (2 j t − n)

(15)A2 j f = Σ∞
n = − ∞(Ad

2 j f ) n φ (2 j t − n).

Instead of calculating the inner products in Equations 12
and 13, a pyramidal algorithm [7] is applied for the
decomposition of the function (Figure 4a), where
H = H(−n) and G(n) = G(−n). The impulse response of
the filters used is defined as:

(16)H(n) = < 2−1 φ (2−1 u), φ (u − n) >

(17)G(n) = < 2−1ψ (2−1 u), ψ (u − n) >

By repeating the algorithm for−1 ≥ j ≥ −M , both the
discrete detail signal and the discrete approximation at
resolution 2j can be computed. Using the same pair of
filters, the original discrete samples can be computed by
the reverse pyramidal algorithm, as shown in Figure 4b.
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Figure 4: Wav elet Decomposition and Reconstruction

Wa velet theory can be easily expanded to any
dimension by constructing high dimension orthonormal
wavelets using the tensor product of several subspaces of
L2(R) [7, 8]. To decompose or reconstruct a 3D function,
the one dimensional pyramidal algorithm described in
Figure 4 is applied sequentially along the principal axes.
Since the convolution along each axis is separable, for a
volume of sizen3, the decomposition and reconstruction
can be implemented inO(n3) time, which is asymptotically
optimal. Figure 5 shows that the smooth approximation of
a volume at resolution 2j+1 decomposes into a smooth
approximation at resolution 2j and the discrete detail
signals along seven orientations. Since the wav elets and
scaling functions are orthogonal, the multiresolution
representation

(18)(Ad
2−M f , (D i

2 j f ) −M ≤ j ≤ −1, 1≤ i ≤ 7)

has the same total number of samples as the original signal
Ad

1 f .

4. Wav elets for morphing

Equation 10 and Equation 11 indicate that both the
wavelets and scaling functions are the translation and
dilation of a mother functionψ (t) or φ (t). It can thus be
proven that the wav elet decomposition has the property of
both spatial and frequency locality. The algorithm shown
in Figure 4a can be interpreted as the separation of the
detailed information, which corresponds to high pass
filtering, and the generation of a smooth function, which
corresponds to low pass filtering. In addition, a signal that
is nonzero only during a finite time span has a wav elet
transform whose nonzero elements are concentrated
around that time. For a 3D volume, this means that the
spatial information, which is essential for volume
morphing, is maintained in wav elet domain.
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The basic idea of wav elet-based morphing is to solve
the correspondence problem between the general shape of
the objects without the interference of high frequencies. To
achieve this, the two volumesf andg are first decomposed
into smooth approximation at resolution 2−M and the
detailed information:

(A2−M f , (PO2 j
f ) −M ≤ j ≤−1) and

(19)(A2−M g, (PO2 j g) −M ≤ j ≤ −1).

Next, the direct morphing algorithm, which is described in
Section 2, is applied on the smooth approximation
A2−M f andA2−M g to generate a smooth approximation
A2−M k of an intermediate model. Then, the same
correspondence relations found betweenA2−M f and A2−M g
are employed for the interpolation between the detailed
information of f and g to generatePO2 j k. Finally, the
morphed modelk is reconstructed from the smooth
approximationA2−M k and detailed informationPO2 j k.

To establish the correspondence between the smooth
approximationA2−M f and A2−M g, a natural approach is to
first reconstruct the smooth approximation of the functions
from the discrete approximationsAd

2−M f and Ad
2−M g at

resolution 2−M back to the original resolution using the
expansion of Equation 15 in 3D. Then, the correspondence
problem can be solved at the original resolution. This
approach can generate good results, but is computationally
expensive because of the reconstruction process.

Another approach is to directly establish the
correspondence between the discrete approximationAd

2−M f
and Ad

2−M g (see Figure 6). The reason why this method is
reasonable is that the filterH used in the decomposition
can be seen as a low pass filter. Consequently,Ad

2−M f and
Ad

2−M g can be interpreted as the representation of the
original functions at a lower resolution, and the
correspondence betweenAd

2−M f and Ad
2−M g presents the

relation between the general shape of the two objects. In
addition, given the correspondence, since the scaling

.
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Figure 6: Wav elet Morphing Algorithm

functions ψ (2 j t − n) are all the translations of a single
function ψ (2 j t), interpolation before or after
reconstruction using Equation 15 would generate the same
intermediate model. Unlike the first approach, there is no
need to reconstruct the smooth approximation at the
original resolution. In addition, since the time of solving
the correspondence problem depends on the size of
volume, it is much cheaper to establish the correspondence
at a lower resolution.

As for the high frequency components, the discrete
detail signals are interpolated at the same resolution and
the same orientation using the same correspondence
relation found between the smooth approximation. Again,
the theoretical base of this approach is the spatial and
frequency locality of the wav elet transform. To establish
the correspondence betweenDi

2 j f and Di
2 j g when j > M ,

we treat the subvolumes with size of (2j−M )3 as unit
volume elements inDi

2 j f andDi
2 j g.

Once we have the multiresolution representation,
different interpolation schedules, similar to [3], are applied
at different resolutions. The effect is the blending of the
general shape of the two models, with the gradual removal
of the high frequencies of the first model and the gradual
appearance of the high frequencies of the second model.
This is demonstrated in Figure 3b and Figure 7b, where
schedules are designed so that finer details of the first
model disappear faster than the coarser details, while the
coarser details are blended in before the finer details for
the second model.

An advantage of wav elet multiresolution
representation is that the detailed information along seven
different orientations is separately saved in
Di

2 j f (1 ≤ i ≤ 7). Although not implemented yet, different
schedules can be designed for the detail signals at the same
resolution but with different orientations, since visual
sensitivity depends not only on the frequency components
but also on the orientation of the stimulus [7]. In
summary, by designing different schedules, high frequency



distortion can be adjusted to the desired level (ev en
magnified, if desired) and different morphing effects can
be achieved.

Another flexibility of the wav elet-based morphing is
the wide selection of wav elets that can be employed, since
there is an infinite number of wav elets with different
characteristics. In our implementation, the Battle-Lemarie
wavelet is used for its symmetry and exponential decay.

5. Results and conclusions

We hav e presented a technique for performing
volume morphing in the wav elet domain. The advantage
of our method over a Fourier volume morphing [3] is that
our approach not only effectively reduces high frequency
distortion, but also establishes a suitable correspondence
between the two volumetric datasets without the data
modification process.

The wav elet-based morphing technique presented
can be applied to sampled, simulated and modeled
geometric datasets. Tw o sequences of morphing from a
CT scanned lobster to an MRI head are illustrated in
Figures 3a and 3b. In Figure 3a, volume morphing is
performed directly in the spatial domain, while in Figure
3b our technique of wav elet-based volume morphing is
applied to the datasets. The alleviation of high frequency
distortion is most apparent during the middle stages of the
animation in Figure 3b, where the morphing is performed
mainly on the general shape of the models. Similarly, the
comparison between spatial and wav elet-based morphing
for geometric datasets is shown in Figures 7a and 7b,
where in these two sequences a binary voxelized goblet is
morphed into a binary voxelized torus. It is shown that in
these two figures the correct topology is maintained during
morphing. Furthermore, in Figure 7b our technique of
wavelet-based morphing gradually alleviates the high
frequency distortion caused by the aliasing existed in the
original binary voxelized models. Binary voxelized models
were used here just to demonstrated the effectiveness of
the wav elet-based volume morphing. In practice, volume-
sampled voxelized models [9] are used as original models,
resulting in even smoother wav elet-based morphing.

The multiresolution representation of the volume
can be explored for an adaptive morphing. We are
currently building a "previewer" so that the morphing can
be interactively performed at low resolutions. This kind of
"preview" tool is very useful for adjusting morphing
parameters in the interpolation schedules. By taking
advantage of the spatial locality property of wav elet
transform, subvolumes of the models can be selected for
morphing. Thus, similar to 2D feature-based morphing [1],
3D features of one volume can be extracted and mapped to

the desired feature of another. We are currently developing
a user interface to accomplish this task. Other future work
includes the investigation of the wav elet selection for the
specific morphing effect, and the design of interpolation
schedules for the information along different orientations.
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Figure 3a: Spatial Domain Volume Morphing from a CT Lobster to an MRI Head.



Figure 3b: Wav elet Domain Volume Morphing from a CT Lobster to an MRI Head.



Figure 7a: Spatial Domain Volume Morphing from a Binary Voxelized Goblet to a Bi nary
Voxelized Torus.



Figure 7b: Wav elet Domain Volume Morphing from a Binary Voxelized Goblet to a Bi nary
Voxelized Torus.


