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Abstract
Besides other main criterias like size, infiltration and anatomical district, the sideness of tumor and local metas-
tases (i. e., malignant lymph nodes) is very crucial for head and neck tumor assessment. An automatic sideness
determination may speed up tumor staging noticeably. Inspired by preliminary work of others we present a modi-
fied approach for the estimation of the midsagittal plane based on surface meshes. The suitability of the computed
result being used in the course of TNM classification was tested in a case study, in terms of an according automatic
determination of the sideness for segmented lymph nodes and tumors.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]:
Scene Analysis . Shape

1. Introduction

The assessment of anatomical and pathological structures
based on imaging techniques plays a vital role in surgical
diagnostics and therapy planning. Looking for potential ab-
normalities, medical doctors exert their through the years ac-
quired expert knowledge to detect discrepancies between a
given acquisition of a region of interest and its typical ap-
pearance within the respective modality. Such aberrances in
particular become manifest in an alteration of coloration, ho-
mogeneity or shape. But also atypical dissymmetries may
indicate potential anomalies.

The median or midsagittal plane constitutes a special ref-
erence in this regard, in particular in respect of growing
computer-assisted diagnostics. It can, for example, be used
for alignment with respect to some reference system (like
the Talairach frame [TT88], for instance) or provide a basis
for registration (either of similar structures or against some
given atlas). It may also serve as starting point for a dissym-
metry analysis, like it is done in Mancas et al. [MGM05],
for an automatic localization of potential tumor areals in the
head region.

In the context of segmented anatomical and pathological
structures, a reasonably good estimation on location and ori-
entation of this plane in many cases already allows a correct

determination of the sideness for several individual struc-
tures in a fully automatic manner. This is in particular im-
portant in the course of tumor staging (TNM classification),
since the laterality of overall lymph node affection is cru-
cial for finding and assessing suitable treatment and ther-
apy options (cf. Figure 1). Laterality here refers to the side-
ness of affected lymph nodes relative to the tumor: ipsilateral
(same side), contralateral (opposite sides), unilateral (only
one side, either ipsi- or contralateral), bilateral (both sides).
This particular use case shall be the main focus of the fol-
lowing study.

2. Related Work

The issue of symmetry determination has been considered
repeatedly in the pertinent literature on general and medical
image processing. In the medical context the main focus of
interest has thereby been on the brain. A good survey on this
topic is provided by Prima et al. [POA02].

For the determination of such a symmetry plane, two ba-
sic strategies can be distinguished which arise from the si-
multaneous anatomical and symmetrical nature of the data.
On the one hand, a search for specific landmarks or other
morphological features with subsequent fitting can be con-
ducted. Brummer [Bru91], for instance, applies the Hough
transform principle to detect the interhemispheric fissure.
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Figure 1: Result for the computation of an estimate for the
midsagittal plane, based on a given bones’ surface mesh. If
the estimate is reasonably good, it allows for automatic de-
termination of the sidnesses of other anatomical structures,
such as tumor (middle) and lymph nodes (left and right).

On the other hand, the objective can be the determina-
tion of a plane that (more or less) maximizes some respec-
tive symmetry criteria. Common approaches in this regard
are non-rigid registration of a (3d) dataset against ists mir-
ror image (cf. Prima et al. [POA02]) or the computation of
a matching by maximizing the cross-correlation under ro-
tation and translation (cf. Liu et al. [LCR01]). Also his-
tograms were sometimes used as pivotal criteria (cf. Man-
cas et al. [MGM05]). In all these cases gray-level or edge
images were used as data.

Alternative methods range from using statistical measures
(cf. Thirion et al. [T∗98]) over algebraic approaches (cf.
Keller et al. [KS04]) up to so-called generalized symmetry
transforms (cf. Reisfeld et al. [RWY95]) and reflective sym-
metry descriptors (cf. Kazhdan et al. [KCD∗03]).

The idea of using symmetries in the orientation histogram
for identifying symmetries in the original (2d) image space
was first presented by Sun [Sun95]. In the optimal case,

the reflective symmetry axis of the original image is also a
symmetry axis in the (circular) orientation histogram along
which the two half histograms should match each other by
reflection. A least-squares fitting of the histogram against its
stepwise rotated mirror image should therefore give a good
approximation of the symmetry axis’ orientation.

This basic idea can not only be extended from 2d to 3d, it
can also easily be adapted to arbitrary surface meshes instead
of only gray-level image data. Sun et al. [SS97] discuss these
use cases exemplarily. However, they do not examine quality
nor reflect on usability of the obtained result (in terms of the
symmetry plane) subsequently.

Figure 2: Top: 3d EGI for bones’ surface mesh shown in
Figure 1. Bottom: Corresponding 3d orientation histogram.
To account for the viewing angle, the bin value is double-
coded, in the length of the peak and in the color of the face.
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Figure 3: Tessellation of the unit sphere to yield the bins for a 3d spherical histogram. Left: Initial icosahedron. Middle: After
first and second subdivision. Right: After joining triangular faces’ centerpoints to hexagons and pentagons.

3. Materials and Methods

For our investigations we used segmentations of neck and
head in terms of surface triangle meshes. Voxel-based seg-
mentations in this regard can easily be transformed into
equivalent triangle meshes without significant extra cost (us-
ing e. g. Marching Cubes or related methods). The goal was
to compute an estimation for the midsagittal plane based on
a given segmentation of the bones of head and neck. For this
resulting plane, the correctness of an automatic sideness de-
termination of the remaining segmented structures should be
evaluated.

Regarding the computation of midsagittal plane we ba-
sically oriented ourselves on the approach due to Sun
et al. [SS97]. First of all, a principal component analysis is
performed to compute barycenter and main axes of the seg-
mented bones.

This step is motivated by the fact that in the (the-
oretical) case of perfect symmetry it holds (cf. Mi-
novic et al. [MIK92]):

• Any plane of symmetry of a body is perpendicular to one
of the principle axes.

• Any axis of symmetry of a body is a principle axis.

In the first instance, however, it is not clear which of the
principle axes is the respectively qualified one for our aim.

To determine the orientation of the symmetry plane, Sun
et al. [SS97] in the next step map the surface mesh’s face
normals onto the unit sphere. To account for the fact that the
mesh may not necessarily be homogeneously meshed, each
normal is weighted by the area of the corresponding face.
One obtains the so-called Extended Gaussian Image (EGI,
see Figure 3, top), which is subsequently being discretized
to a spherical 3d orientation histogram (Figure 3, bottom).

This kind of discretization is done by tessellating the unit
sphere with some convex polytope of desired resolution.
Any face or cell of the polytope corresponds to one bin of
the histogram. Each vector of the EGI has a direction and a
length. The direction defines a ray that intersects the poly-

tope in one of its faces and thus determines the target his-
togram bin. The length of the vector determines the value
that is contributed to that bin. Regarding the tessellation of
the sphere it is desirable to achieve an (almost) regular poly-
tope. Unfortunately, perfect regularity is not possible, except
for the five platonic solids. A good approximation, however,
can be achieved by recursively subdividing the triangular
faces of an icosahedron (see Figure 3). In each recursion
step, any triangle is split into four smaller triangles by join-
ing the midpoints of its three sides with a new edge for each
pair. Then the new vertices are projected back onto the unit
sphere. When the desired resolution is reached, the triangu-
lar faces are finally transformed into pentagonal and hexag-
onal faces: The center points of any two adjacent triangles
are joined and then projected back onto the unit sphere. The
previous triangle representation is simply discarded.

Although this procedure indeed yields a quite homoge-
neous tessellation of the unit sphere, the resulting polytope
is not regular. In fact, the largest available symmetry group
is the one of the initial icosahedron. Apart from this group,
there are hence no further reflection transformations that
map the tessellated sphere onto itself. This in turn prevents
the possibility of directly matching 3d histograms in the
way it can be done in R2, namely by progressively rotat-
ing the histogram’s mirror image in some suitable canonical
scheme. Instead, for any individual rotation a new histogram
actually needs to be computed from scratch from the EGI.
This procedure is very expansive, as it amounts to process-
ing the whole EGI (which is as complex as the given input
mesh) over and over again.

To avoid this computational complexity, Sun et al. [SS97]
follow a simplified strategy. They consider the directions of
the histogram bins as candidates for a possible symmetry
plane normal. When testing a selected bin for its degree of
symmetry, the histogram is just mirrored at the plane orthog-
onal to the bin’s face normal (by applying the corresponding
Householder transformation). The bin directions of the mir-
rored histogram fall into corresponding bins of the original
histogram. Based on this correspondence, the correlation of
the set of bin values is computed.
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Figure 4: The error that is introduced by Sun et al. [SS97].
Red edges mark the bins of the original histogram. Blue
edges mark the bins after reflection on the plane correspond-
ing to one selected face.

This procedure is problematic for multiple reasons. First
of all, reflection on the selected plane will not necessarily
map the histogram frame onto itself, i. e. the two histogram
frames (original and mirror) may not fit each other. This
issue described in the previous paragraphs is completely
disregarded. In fact, none of the planes considered by Sun
et al. [SS97] is able to fulfill this criterion. In consequence,
mirroring the histogram and transferring the histogram val-
ues to the new bins may assign normals to a cell that would
not have contributed to that bin if the histogram was rather
built on the mirrored EGI. Figure 4 shows that this differ-
ence can be significant for some of the bins. Red edges mark
the bins of the original histogram, blue edges mark the bins
after reflection. In some cases the red and blue bordered bins
fit almost perfectly, while in other cases they differ a lot.

Even both extreme cases do occur. The highlighted red
cell, for example, will receive no bin value from the ro-
tated histogram, since each of the three intersecting blue
bordered cells assigns its bin value to somewhere else. For
the highlighted blue cell in turn the bin value will be as-
signed to one of the three intersecting red bordered cells.
Each of these cells, however, already receives the bin value
from another cell of the rotated histogram. Hence, the pro-
cedure will cause some bins to stay empty while other bins
will be charged twice.

Finally, testing all bins for their corresponding plane’s de-
gree of symmetry in order to find the most suitable one,
turns out to be still quite expensive. With increasing reso-
lution of the tessellation, the number of bins can become
very large. Moreover, computing the histogram’s mirror im-
age and mapping the mirrored bin values back to the orig-
inal histogram cannot be done in linear time. It amounts to
looking up every mirrored bin direction in the original his-

togram, which even by using a hierarchical approach will
take at least O(n · logn). In order to keep the computational
cost low, Sun et al. [SS97] at this point consult the initially
determined three principal axes and reduce the global search
to a local search in the neighborhood of these directions.
More precisely, for each of the three principal axes, the cor-
responding cell plus its five to six respectively adjacent cells
are examined. Altogether, only 18–21 planes are assessed
regarding their suitability for serving as a symmetry plane.

It should be noted that Sun et al. [SS97] do not clarify to
which resolution their sphere is tessellated. This resolution,
however, determines the angle between normals of adjacent
cells and thus between the corresponding plane orientations
that will be considered. Based on the figures in their arti-
cle, we can only assume that Sun et al. [SS97] have used
a subdivision level of 3 for their tessellation (see also the
histogram shown in Figure 5, bottom). For this setting, the
directions of two adjacent bins (i. e., the corresponding plane
normals) differ by 7.9°, and neither smaller nor larger angles
are considered, except for the other two principal axes and
their local neighborhood.

The most crucial issue on Sun et al.’s approach [SS97],
however, is that no kind of orientation normalization is be-
ing applied to the data, the EGI, or the orientation histogram.
This directly leads to the observation that the quality of
fit that can be achieved for the to-be-determined reflection
plane is inevitably sensitive to the orientation of the data. In
fact, the possible plane orientations are restricted to the fixed
directions of the histogram bins. So, within the catchment
area of a particular bin, the input data can be continuously
rotated, while the absolute orientation of the computed re-
flectional plane stays fixed. That is, the plane does not rotate
in alignment with the input data. Moreover, there must hence
be a critical angle for which a tiny variation in the data orien-
tation will cause the algorithm to snap to another bin (which
does not even have to be a neighbor of the previous bin). The
effect will be a discontinuous jump of the plane orientation
by (at least) the angle described in the previous paragraph.

To treat the several issues raised by the approach due to
Sun et al. [SS97], we adapted their method in three relevant
points. The first of all is yet rather a minor change. In lieu
of using face normals we instead refer to the surface mesh’s
vertex normals for building the orientation histogram. Ac-
cordingly, as corresponding individual weight we use the
sum of the areas of all incident faces. The preference for
vertex normals over face normals is, among others, due to
the fact that for certain mesh generation methods the result-
ing face normals may be highly restricted in their direction.
When performing Marching Cubes on a binary mask, for ex-
ample, only 256 different configurations may appear, which
in turn will result in only a handfull of different face normal
directions. Vertex normals, on the contrary, show a much
more homogeneous and smooth distribution, which should
slightly improve stability.
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1 1 1
Figure 5: Left: 2d orientation histogram for the bones’ surface mesh shown in Figure 1. Middle: The same histogram and its
mirror image. Right: Least squares matching of the histogram and its stepwise rotated mirror image. The optimum was found
for a rotation of 348° = -12°, i. e. the symmetry axis is at -6°.

As a second change, we apply an initial transformation to
achieve a normalized orientation of the data. The three prin-
cipal axes (which were also computed by Sun et al. [SS97],
but not used in that way) constitute an orthonormal basis and
induces a corresponding basis transformation that we apply
to the given surface mesh. We yield a transformed represen-
tation of the data that is always in alignment with the prin-
cipal axes and centered at the origin. Note that the princi-
pal component analysis (PCA) is thereby not performed on
the mesh’s vertices but rather on its faces (i. e. triangles).
This is in particular important if the mesh does not feature
a reasonably uniform resolution, as a vertex-based PCA will
drift towards considerably denser parts of a mesh. In practice
we use the implementation provided by the Computational
Geometry Algorithms Library (CGAL) [AP09], which com-
putes the 3× 3 covariance matrix internally in closed form
and not by reducing the mesh to its vertex set or by point
sampling the object.

The probably most important adaption, however, is that
we decided for a different way of reducing the search space.
Rather than considering only a few selected orientations on
a 3d histogram, many orientations on three 2d histograms
are instead examined. The basic idea is that if the data is
very symmetric with respect to the symmetry plane, then
we should observe the same symmetry also for a projection
along any support vector of that plane. (Just have a brief look
at Figure 1 or 6 and imagine following a polar orbit around
the mesh that stays within the plane and keeps the mesh cen-
ter as focus.)

After applying the initial principal axis transformation,
the data is aligned in such a way that its principal axes co-
incide with the x-, y-, and z-axis respectively. We project the
mesh normals along each of this three axis (by simply omit-
ting the corresponding coordinate for the 3d normal vector),
yielding the orientations with respect to the xy-, xz-, and yz-
plane. The directions of the 2d-vectors are sorted into bins of

1° width, thus obtaining a circular orientation histogram for
each of the three principal axes. For each of these histograms
the mirror image is constructed and then stepwise rotated.
Rotating the mirrored histogram by 1° thereby means rotat-
ing the corresponding reflectional plane candidate by 0.5°.
Note that, in contrast to 3d histograms, each rotation step for
the 2d histogram takes only constant time to be computed.
A least squares matching over all rotations delivers the angle
with largest degree of symmetry (Figure 5). Among the three
results (according to the three axes x, y, and z) we choose the
minimal-valued one. Applying the inverse transformation of
the initial orientation normalization finally yields the desired
approximation of the reflectional symmetry plane.

4. Evaluation

For the estimation of the midsagittal plane we use a segmen-
tation of the bony structures of head and neck. The reason is
that they can be expected fairly symmetric and are not prone
to deformability. Moreover, at least when dealing with CT
imaging, bones are pretty easy to be segmented based on
their gray value. This can be done even fully-automatically.

Once having the symmetry plane estimated, one can easily
determine the sideness of the remaining anatomic structures
(Figures 1 and 6). Given a corresponding surface mesh, one
simply needs to perform a 3d orientation test for each mesh
vertex, i. e. evaluate the sign of a 4× 4 determinant. If all
these determinants are positive, the mesh is completely to
one (e. g. the left) side of the (oriented) plane. If all deter-
minants are negative, though, the mesh is completely to the
other (e. g. the right) side. Finally, if both signs show up, the
mesh crosses the plane.

To evaluate the presented algorithm, a case study on 10
datasets was conducted, each case providing segmentations
of head and neck structures. Besides bones, tumor and lymph
nodes, also further structures were contained, such as blood
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Figure 6: Example for a tumor that has correctly been de-
tected violating the midline. To enhance perception for the
structures of interest, bones are visualized transparent.

vessels, muscles, trachea or thyroid/cricoid cartilage. Due to
their lack of relevance for the particular use case of TNM
classification, however, these structures were not considered
any further. The segmentations were created by our clini-
cal cooperation partner, using a medical research tool for
manual and semi-automatic segmentation for CT datasets
[DDPS08,DTP∗08]. They were provided in terms of surface
triangle meshes.

For each dataset, in less than 3 seconds not only an esti-
mation of the desired midsagittal plane could be computed,
but also the sideness of tumor and lymph nodes could be
determined. Altogether, 10 tumors and 134 (not necessarily
affected) lymph nodes were tested for their sideness. Only
three times, the sideness for a lymph node has been deter-
mined being opposite to the one stated by the medical doc-
tor. In these cases, however, the lymph node’s location with
respect to the (real) midsagittal plane has actually been as-
sessed marginal close by the medical expert.

Four times a violation of the midline by the tumor has
been correctly detected (cf. Figure 6) – in the fifth case, how-
ever, the medical doctor decided in favor for the tumor still
being one-sided only. (In case of a detected midline viola-
tion, though, a decision on the primary side has not been
made by our application.) Two times a lymph node against
medical assessment was classified as centric. For overall
TNM classification, however, this did not have any effect,
as centric lymph nodes are regarded ipsilateral by definition,
which in turn was the correct medical conclusion in these
two cases.

5. Discussion

We presented an approach that allows for computing an esti-
mation of the midsagittal plane, based on a segmentation for
bones of head and neck given in terms of a surface triangle
mesh. The primary intention was to provide a tool for auto-
matic sideness determination of tumor and lymph nodes in
the way it is needed for tumor staging (TNM classification).
Empirical tests on 10 clinical datasets have shown that the
quality of the result (i. e., the midsagittal plane’s computed
location and orientation) in these cases was basically suffi-
cient to either yield a correct determination of the laterality
of lymph node affection or to point out a potential borderline
situation in terms of a midline violation.

None of the singular cases with expert opinion differing
from the computed sideness test result actually led to a mod-
ified overall assessment, subsuming the individual laterali-
ties over all affected lymph nodes to a single compound lat-
erality rating for TNM classification. The potential error that
may have been introduced by restricting the orientation his-
tograms to 2d appears negligible. Altogether, the approach
has shown basically suitable for the desired purpose in medi-
cal application, in particular concerning its low required run-
ning time.

Compared to Sun et al. [SS97], our approach offers sev-
eral advantages. First of all, position and orientation of the
computed plane relative to the given data is insensitive to
position and orientation of the latter. Moreover, the 2d his-
togram’s sectional disc does not suffer from the problem
of lacking reflectional self-symmetry that emerges for the
sphere tessellation of a 3d histogram. Applying the rotation
step for a 2d histogram takes only constant time, while not
even linear time is sufficient for the 3d histogram of Sun
et al.’s approach [SS97]. Altogether, a much greater explo-
ration of the search space can be achieved by less computa-
tional effort. In particular, the angle between two consecu-
tive examined planes differ by only 0.5° (note that rotating
the mirrored histogram by 1° means rotating the reflectional
plane candidate by 0.5°), in contrast to the ≈ 8° in case of
Sun et al. [SS97].

However, it should be noted that the data based on which
the symmetry plane was estimated, was more or less benign.

© The Eurographics Association 2010.

114



Ivo Rössling et al. / Estimation of the Midsagittal Plane for Sideness Determination of Malignant Structures of Head and Neck

In fact, the segmented bony structure did not contain too vast
artifacts that may have distracted the symmetry plane esti-
mation significantly. In particular, the data was not truncated
asymmetrically due to the bounds of image acquisition.

It remains open for future work to conduct a detailed anal-
ysis on the effective error and its quantification. In particular,
a study on the average deviation of the plane computed to
another plane given by a medical expert regarding their po-
sition and orientation should be conducted. Apart from that
it is to examine to what extent the presented approach shows
robust or sensible in the presence of rather insufficient data
quality. Besides the already mentioned imaging artifacts and
acquisitionally caused truncation, this also covers potential
settings of atypically non-symmetric anatomy.
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