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Abstract:
Computer Graphics continues to battle the challenging question: “How quickly and effectively

can a designer transform a mental concept into a digital shape, which is easy to refine and

reuse?” Traditional techniques of sculpting and sketching continue to be among the quickest and

most expressive ways for designers to visually manifest their ideas. This course traces the

evolution of interactive shape design from traditional media to the state of the art in digital

modeling techniques, both in commercial software and academic research. The course will cover

the gamut of hardware devices and interaction paradigms used in digital modeling and their

underlying mathematical representations of shape. The audience will be presented with the

properties of various implicit, explicit and hybrid shape representations and the capabilities,

limitations and implementation details of current algorithms for interactive shape creation and

manipulation. The goal of this course is to impart the audience with both an understanding of the

big open questions as well as the skills to engineer recent research in interactive shape modeling

applications.
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Industrial motivation for interactive shape modeling: a case
study in conceptual automotive design

Karan Singh
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Abstract
As Computer Graphics makes rapid strides in various aspects of digital shape modeling it is easy to lose per-
spective of the larger motivations for digital shape modeling in design and animation. This chapter provides a
high level view of shape modeling illustrated within the space of conceptual automotive design. Automotive de-
sign provides a unique perspective on digital shape modeling, where digital models are critical to downstream
production processes but automotive designers almost exclusively work with sketches, clay and other traditional
media. Design iterations that transition between physical and digital representations of a prototype are thus a big
bottleneck in the industrial design lifecycle. In this chapter we propose a top-down approach, starting with the
design desirables and suggesting modeling paradigms that harness skills and creativity of designers.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Geometric modeling,
User Interaction

1. Introduction

Computer Graphics continues to battle the challenging ques-
tion: How quickly and effectively can a designer trans-
form a mental concept into a digital object, that is easy
to refine and reuse? If hearing, speech and sight are anal-
ogous to the audio IN, audio OUT and video IN of an elec-
tronic device, the essence of our problem is that humans do
not have an explicit video OUT.

This is a problem of great industrial importance today.
Designers almost exclusively prefer traditional design tech-
niques of sculpting and sketching, instead of computer aided
digital styling tools that operate on mathematical representa-
tions of geometry. Most manufacturing processes, however,
use digital models making design iterations a big bottleneck
in an industrial design lifecycle. The majority of industry-
based surface modeling research is, therefore, focused on
incrementally making existing digital styling tools more de-
signer friendly, while the root of the problem lies deeper.

The fundamental pitfall is that current digital tools are
unable to decouple the creative process from the underly-
ing mathematical attributes of the surface representation. As
an example, when modeling an object using a network of
bi-cubic or higher order polynomial spline surface patches,

concepts like patch resolution, topological connectivity and
continuity across surface patches constrain the creativity
of the designer. The solution is to start from scratch with
a designers perspective and develop computer interaction
paradigms that harness their skills and creativity. These in-
teraction techniques will in turn define the requirements of
the underlying mathematical representations of geometry.
Studies have shown that designers and people in general ab-
stract shape as aggregations of complex surface attributes,
that we will collectively call surface-features that are inde-
pendent of any geometric model representation.

Conceptual modeling should, therefore, focus among
other things on the development of new mathematical repre-
sentations or adapting existing ones, to capture the essence
of shape as perceived by designers. To be able to make tan-
gible progress towards such a goal we must first mathemat-
ically quantify this essence of shape in terms of geomet-
ric surface-features. Design methodologies in industry are
both complex and diverse and it is important to have a well-
defined process to study and within which to evaluate pro-
posed solutions. This chapter will focus on the early stages
of conceptual automotive design, which has been slow in
adapting to the use of digital styling tools, despite being a
trendsetter in digital modeling for the engineering phase of
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its design lifecycle. Design iterations and revisions that tran-
sition between physical and digital representations of a pro-
totype are currently one of the big bottlenecks in the design
lifecycle of an automobile.

The remainder of this chapter is organized as follows:
Section 2 discusses the generally desirable properties of
systems for conceptual design. Section 3 illustrates these
properties within the automotive design space. Section 4
then proposes a framework for conceptual automotive design
based on commonalities observed from the current work-
flows in practice at various automotive design centers. Cur-
rent trends in geometric shape representation and interactive
shape modeling are then discussed in the context of their
applicability to the automotive design framework. Section 6
provides concluding remarks.

2. Conceptual modeling desirables

Newer generations of industrial designers are increasingly
savvy with digital modeling techniques. Their design ed-
ucation, however, continues to be grounded in traditional
sketching and sculpting techniques, which embody a num-
ber of desirable properties that any digital modeling system
should embrace.

• Abstraction from underlying surface math
Most mathematical surface manifolds are represented at
some point by a discrete set of points (control points for
parametric or subdivision surfaces, vertices for polygon
meshes) that often become handles for shape manipula-
tion. This not only exposes the designer to the understand-
ing of the mathematics and topology of the shape repre-
sentation but also forces the learning and usage of tools
that may not have been considered intuitive when decou-
pled from the geometric representation. Designer interac-
tion paradigms should thus be defined such that the user
is oblivious of the underlying mathematical surface rep-
resentation. [Sin99] provides an example of such design,
where the user interacts with sweeps just like in the physi-
cal world (see Figure 11) but the underlying curve manip-
ulation is accomplished through splicing and fitting cubic
spline curve segments.

• Invite interactive creative exploration
Often digital modeling tools are made easy to use by nar-
rowing their scope to a specific design space. As exam-
ples, two successful sketching systems Teddy [IMT99]
and SKETCH [ZHH96] simplify the inference of a 3D
model from sketched curves by making assumptions of
the user design space. While SKETCH is tuned to create
simple analytic shapes, Teddy is focussed on the creation
of smooth organic forms. Design innovations are often the
result of serendipitous exploration. Design tools should
thus be interactive and easy to use without compromis-
ing their power of creative expression, as far as possible.
A major advantage of interactive digital modeling tools is
the ability to undo an operation allowing users to experi-

ment without fear of making mistakes. It is thus important
that increased complexity and sophistication of a model-
ing tool does not come at the expense of its interactivity.

• Allow for precision and constraints
Industrial design models typically need to adhere to var-
ious engineering constraints before they can be manu-
factured downstream. Integrating such constraints early
into the conceptual design process eliminates costly itera-
tions in the design lifecycle, where models need to be re-
designed because they violate some insurmountable con-
straint.

• Workflow mimics traditional design media
Sketching and sculpting with physical media are both easy
to use and creatively unfettered approaches to visual com-
munication. Digital modeling techniques could do well to
capture the modalities that make these approaches suc-
cessful. Systems such as [IMT99],[TBSR04], for exam-
ple, strive towards the modeless fluidity of sketching and
exploit traditionally used gestures to invoke various com-
mands as part of the sketching process

• Leverages domain expertise
Designers often have skills in using specialized physi-
cal devices for conceptual design that digital modeling
approaches should attempt to benefit from. Many auto-
motive designers, for instance are proficient tape artists
[BFKB99], a skill that allows them to lay out designs on
large surfaces using tape of varying thickness and tension
(see Figure 4).

3. Automotive design process

The current automotive design lifecycle is 3-4 years, of
which as much as half is spent in the early stages of concep-
tual design. Automotive designers largely work in traditional
media and hand their designs off to modellers. Modellers
are technically skilled people that create digital models with
surfacing software, using the physical designs as a visual ref-
erence. These designs are then evaluated both digitally and
physically using rapid prototyping technology and the en-
tire process iterates towards a converging design. In addition
to the general desirables of a conceptual modeller there are
many aspects of shape modeling that make the automotive
design space unique.

Figure 1: Curvature continuous surfaces

• Curvature continuous shapes
Automobile surfaces display a high degree of continuity,
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Figure 2: Automotive design constraints

Figure 3: Editing a physical model prototype

Figure 4: Digital Tape Drawing [BFKB99]

Figure 5: Sculpting with motion capture [She04]

Figure 6: Manipulating curves with ShapeTape [GBS03]

barring a few sharp features that run along the character
lines of the design. Many automotive designers think in
terms of the shape, size and location of specular highlights
on the design and for these highlights to be smooth and
unbroken, the surfaces needs to be at least C2 continuous
(see Figure 1).

• Character or flow lines captured intrinsically
Character and flow lines that define the principal curva-
tures along surfaces are an important characteristic of au-
tomotive design.

• Embodies geometric, surface and style constraints
While automobile design can be far more free-form than
say marine or airplane design (due to fluid and aero-
dynamic constraints), the designs must adhere to cer-
tain constraints. These constraints can be geometric, such
as hard points or dimensions on the engineered design,
surface constraints, such as the circular shape of wheel
arches, or stylistic, such as a signature look and feel for
an entire family of automobiles (see Figure 2).

• Flexible re-use of legacy data
Automotive designs do not change radically over short pe-
riods of time. It is thus important for design tools to facili-
tate the evolution of models and support the re-use of parts
of designs that have already been engineered. Operations
such as cut and paste play an important role is data re-use
(see Figure 7).

• Interfaces digital and physical modeling
Given the production lifecycle and costs that go into au-
tomotive design it is unlikely that a design will ever be
approved without the creation of physical prototypes. De-
sign updates are often made on these prototypes making
it important to build better bridges between physical and
digital modeling techniques (see Figure 3).

• Large scale displays and novel interaction devices
Equally important to the automotive design process are
design visualizations at the true scale of the models. This
implies the need for large scale display devices [WB00]
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that are capable of displaying an automobile to scale. A
number of high degree of freedom input devices today
such as a flock of birds [TG02],[LKG∗03], motion capture
systems [She04] (see Figure 5) and ShapeTape [GBS03]
(see Figure 6) show potential at emulating current large
scale modeling techniques in practice in automotive de-
sign (see Figure 4).

4. A proposed framework for automotive design

We now distil these observations and a study of various au-
tomotive design pipelines in practice into a proposed frame-
work for conceptual automotive design illustrated in Fig-
ure 7. We broadly structure current and projected modeling
technology and techniques into three stages of rough model
generation, model refinement and model presentation.

4.1. Rough Model Creation

Sketches (on paper or using a pen and tablet), physical sculp-
ture, character lines and basic parameterized shapes typi-
cally form the creative input to this earliest phase of digital
model creation.

A big challenge in this stage is the ability to take such var-
ied input and transform it appropriately to consistently repre-
sent parts of the model in a common 3D space. The side view
sketch in Figure 8, for example, needs to be scaled to be con-
sistent in space with top and front view sketches. Early de-
sign sketches and sculpts may also have inconsistent or miss-
ing information in parts of the design that are resolved with
model refinement. Determination of the intended fidelity of
different parts of the models in the different pieces of input
is thus a non-trivial problem. Precise engineering criteria are
left out of the initial design input to leave the designer un-
encumbered creatively, but they are part of the input to the
technique that constructs the rough model from the design
input. As an example, while a designers sketch may only ad-
here roughly to engine block dimensions, the rough model
created should make precise allowances for the engineering
constraints. The rough model should also have the ability to
determine a set of surface-features on the model that can be
edited at this stage to make larger stylistic changes to the
model.

Physical 3D prototypes can be scanned [Cur] and the data
structured using reverse engineering techniques [VK96].
Creating 3D models from 2D sketches is far a trickier
problem [EHBE97],[Low91] but sketches do tend to have
surface-features and character lines explicitly depicted. In
the final analysis there is likely to be an element of user in-
teraction in the creation of a rough digital model from the
given design input [TBSR04]. The success of a technique is
likely to be in its judicious use of user input to help resolve
ambiguities in the given input.

Figure 8: Aligning orthographic sketches into a common 3D
space

4.2. Model Refinement

Once a rough digital model that has been structured and
parameterized with respect to various surface-features and
character lines, it is refined and embellished using tools that
capture the design desirables of Section 2 and Section 3. A
good suite of tools is one that would provide good coverage
over the following functionality (see Figure 7):

• Constraint preserving global deformations [LKG∗03].
• Cut and paste [BMBZ02].
• Surface-Feature based editing [SCOL∗04].
• Local deformation and sculpting of object detail

[MTH94].

4.3. Model Presentation

Design reviews on automobiles typically take place on life-
sized displays or physical models built to scale with realistic
materials and lighting. Indeed many designers conceptualize
models based on the interplay between shape, shadows and
highlights [PPF98]. The importance of this observation is
twofold. First, digital modeling techniques should incorpo-
rate surface evaluation tools like curvature comb plots (see
Figure 9), reflection and zebra maps, and high quality ren-
dering early in the modeling process. Second, techniques
that create lighting or edit shape based on the direct ma-
nipulation of shadows and highlights [PP97] are worthwhile
additions to an automotive designers toolbox.

Once a version of a digital model is approved it is typi-
cally used to generate a physical prototype and is also sub-
jected to a number of design and engineering fidelity checks
that may result in further iterations of the design cycle.

c© The Eurographics Association 2005.
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Engineering criteria

Sketches

Rough digital model 

from parametric shapes, digitized 

clay, feature lines or sketches. 

Character lines can be edited for 

stylistic change.

Refined digital model using a palette of refinement tools 

(examples shown). Iterations converge to final design.

Model Presentation with

photorealism using interactive 

large- scale display devices. 

Small clay model (1/24- 1/8)
Parameterized shapes

digital sculpting tools

analytic features on  model
cut and paste 

NC Milling

Evaluation tools 

check design fidelity 

Figure 7: Proposed Automotive Design Workflow
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Figure 9: Curvature comb plot showing curvature disconti-
nuities

5. Current modeling trends

It is clear that conceptual design in the future will require the
co-existence of both physical and digital representations of
objects. Physical models are converted to digital models us-
ing scanning devices [Cur] and other data acquisition tech-
nology. Manufacturing processes such as milling, injection
molding and rapid prototyping machines give physical form
to digital models, in materials as varied as metal, synthetic
foam and clay. The data acquisition technology and model-
ing paradigms used, the manufacturing techniques employed
and last but not least the industrial application, all critically
affect the choice of geometric representation.

5.1. Geometric surface representations

There are a number of ways of representing the surface of
an object that are in active use in computer graphics to-
day. The important ones are: Point clouds, Polygon meshes,
Parametric curve and surface patches, Subdivision surfaces,
Analytic shape primitives (cubes, spheres, cylinders for ex-
ample) with CSG operations and Implicit surfaces (see Fig-
ure 10).

Figure 10: Various geometric representations used in auto-
motive design

Historically, continuous parametric curve and surface
patches constructed from piecewise polynomial splines,
have been used to represent industrial design objects [Far01].
There were many reasons for this. Cubic and higher order

polynomials allow surfaces to be controlled with C2 con-
tinuity. The curves and surfaces have an inherent paramet-
ric structure and the control point data structure with patch
topology is fairly compact. As a result, Non-Uniform Ratio-
nal B-Splines (NURBS) are an industrial standard today.

A point-cloud [SR00], in contrast is a dense point sam-
pling of a surface without any explicit surface elements.
A point-cloud where the points are connected by polygon
elements to form a surface manifold is called a polygon
mesh. Polygon meshes provide a faceted linear approxima-
tion to continuous object surfaces. Properties such as surface
continuity and a structured parameterization are not inher-
ent but can be imposed externally if the mesh resolution is
high enough. The lack of computing power to handle high-
resolution polygon meshes made them unsuitable for indus-
trial design applications in the past. Subdivision curves and
surfaces have existed since the early 70s [Cha] but have only
recently drawn great interest in the computer graphics com-
munity as a way of bridging the complementary properties
of parametric surfaces and polygon meshes. Subdivision sur-
faces have C2 discontinuities at extraordinary vertices (ver-
tices with a valence other than 4), making them far more
popular in film and gaming applications than as a frame-
work to represent surfaces for industrial design. While ana-
lytic shapes like spheres and cylinders are commonly found
in various industrial objects, they are too restrictive by them-
selves as a general framework to represent complex shapes
accurately.

Finally, implicit surface is a term that encompasses all ob-
jects that are represented mathematically as the solution to
an implicit equation of points in a Cartesian space [Blo97].
Implicit surfaces are often built as an algebraic combination
of analytic primitives. Implicit surfaces are a very compact,
continuous representation and are a popular choice for inter-
active shape sculpting techniques since they deal automati-
cally with changes in genus and topology of objects. Implicit
functions such as radial basis functions (RBF), have also
been successful in approximating and fitting a continuous
surface model to sparse or irregularly sampled data [JC01].
The problem with implicit surfaces historically has been the
sampling search required to render the surface represented
by the implicit function. This lack of an explicit parameter-
ization also makes local morphological operations hard to
define computationally. It should be evident from this last
paragraph, that no one existing surface representation tech-
nique can be considered to be a comprehensive superset of
the others in terms of desirable properties for the design of
objects.

Recent advances in graphics hardware and computing
power have made it possible to render millions of points and
triangles in real-time [SR00]. As mentioned earlier, many in-
dustrial designers prefer to build physical prototypes in a real
workshop to quickly resolve shape and form in 3D. These
prototypes are transformed to digital models by 3D shape

c© The Eurographics Association 2005.
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acquisition technology, typically as point clouds of widely
varying sampling patterns and densities. These are usually
converted into dense polygon meshes [Cur]. Most continu-
ous surface representations, parametric or implicit are also
tessellated to a polygon mesh prior to rendering. Meshes,
however, are often unstructured and irregularly sampled and
display artifacts such as degenerate, flipped or sliver faces,
undesirable holes and widely varying polygon sizes. Further,
mesh models often need to be parameterized, segmented and
built in parts as an assembly of complex shapes. The chief
reason for this is that point clouds and polygon meshes do
not directly incorporate the notion of surface-features.

In summary, there is a current trend towards preserving
hybrid or multiple representations of shape so as to benefit
from the complementary properties of different geometric
representation schemes.

5.2. Devices for display and interaction

It is evident that the standard keyboard and mouse metaphor
falls short in the design domain. Automotive design is a
prime example, where design prototypes are close to the ac-
tual size of an automobile. Large format displays enable a
designer to create, manipulate, and view the design of an au-
tomobile at full size. They are currently in active use in auto-
motive design centers, strictly as an interface for design pre-
sentation but show promise for collaboration and real-time
editing of the design by a team, during design reviews.

For novel displays to be used successfully in the design
domain they must work well with input technology that con-
veys human design intent. Haptic input technology, such as
the Phantom (Sensable Tech Inc.) allows us to investigate
more effective digital sculpting systems [MTH94]. Conse-
quently, our surface representations need to be able to eas-
ily handle rapid changes in curvature and even genus of the
sculpted object, as well as represent the internal volume of
the object. High degree of freedom input devices such as
ShapeTape [GBS03] and a motion capture system [She04]
can be used to instrument the types of curve and surface
physical tools that designers use in the traditional design in-
dustry (like the steels car designers use to shape clay) (see
Figure 11). Motion-capture and 3D scanning systems can
also be used to interactively create and animate digital mod-
els of physical objects [Liu03].

In general trends in conceptual shape modeling are mov-
ing in the positive direction of decoupling the interaction
techniques from the underlying surface representation. Re-
search on surface representation similarly is working to-
wards structures which have the topological flexibility of un-
structured data but also capture high level shape concepts of
character lines and other surface features.

Figure 11: Curve modeling with sweeps [Sin99]

6. Conclusion

In this chapter we have presented industrial motivation for
digital conceptual modeling tools. We have illustrated vari-
ous desirable properties of a conceptual modeller within the
automotive design space. We have defined a framework to
structure the generally practiced automotive design work-
flow and touched upon current modeling representations and
interfaces within this context. Various chapters in this tuto-
rial further address these issues and propose detailed solu-
tions to the questions raised in this chapter.
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Modeling with Multiresolution Subdivision Surfaces
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Abstract

Subdivision surfaces and their multiresolution extensions are a powerful representation for surface modeling
and design. In this chapter we survey a variety of subdivision-based modeling methods including multiresolution
deformations, boolean operations, cut-and-paste editing of surfaces, defining free-form sharp features and adding
topologically complex detail. These notes are based on the articles “A Survey of Subdivision-Based Tools for
Surface Modeling” by I. Boier-Martin, D. Zorin and F. Bernardini, and “Interactive modeling of topologically
complex geometric detail” by J. Peng, D. Kristjansson and D. Zorin.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling Geometric algorithms Keywords: interactive modeling, subdivision surfaces, multiresolution
surfaces, volume textures

1. Introduction

Subdivision surfaces and their multiresolution extensions of-
fer several advantages over both irregular meshes and spline
patches, two of the most commonly used surface represen-
tations today. Subdivision offers a compact way to represent
geometry with minimal connectivity information. It gener-
alizes the classical spline patch approach to arbitrary topol-
ogy, it naturally accommodates multiple levels of detail, and
produces meshes with well-shaped elements arranged in al-
most regular structures, suitable for digital processing. When
combined with multiresolution analysis, subdivision offers a
powerful modeling tool, allowing for complex editing oper-
ations to be applied efficiently at different resolutions.

In recent years, the set of tools available for manip-
ulating subdivision surfaces has been growing steadily.
Algorithms for direct evaluation [Sta98, ZK02], edit-
ing [BKZ01, BMBZ02, BMZB02, BLZ00], textur-
ing [PB00], and conversion to other popular represen-
tations [Pet00] have been devised and hardware support
for rendering of subdivision surfaces has been pro-
posed [BAD∗01, BKS00, PS96].

We focus on the use of subdivision-based representations
for styling and conceptual design. We explore various meth-
ods for manipulating subdivision surfaces and, whenever

possible, we illustrate the evolution of such methods from re-
lated representations. We pay particular attention to interac-
tive tools which are suitable for design as they allow the de-
signer to instantaneously evaluate results. While we are try-
ing to provide an overview of the area and include the most
relevant methods, we realize that the volume of published
work goes well beyond that covered in these notes which is
by no means exhaustive (see also [DL02, Sab02] for addi-
tional surveys). Many of the topics presented relate to issues
we have addressed in our own work which we hope will pro-
vide some insights to those pursueing similar interests. We
do not attempt to compare these techniques to tools based
entirely on irregular meshes or point-based techniques: each
approach has a set of advantages and disadvantages and is
preferable for a particular set of problems. Any comparison
of stand-alone tools may be misleading as modeling tools
usually exist in the context of a larger CAD or computer
animation system, and integration with other available tools
may be of primary importance when a surface representation
is chosen.

2. Background

The basic idea of using subdivision to produce smooth
curves and later, smooth surfaces, has been around for many
years (see [ZSD∗00] for a brief incursion into the history
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of subdivision). However, it is only recently that power-
ful design tools based on this representation have emerged.
This is partly due to the recent advent of multiresolution
techniques that facilitate capturing of non-trivial shapes and
partly due to even more recent advances in subdivision the-
ory and methods for direct and efficient evaluation of sub-
division surfaces. For the purpose of this survey, we pro-
vide a brief review of the basic concepts pertaining to sub-
division surfaces. For additional details we refer the reader
to [ZSD∗00, WW01].

Subdivision defines a smooth surface recursively as
the limit of a sequence of meshes (see Figure 1). Each
finer mesh is obtained from a coarse mesh by using
a set of refinement rules which define a subdivision
scheme. Many schemes have been proposed in the lit-
erature. Examples include Doo-Sabin [DS78], Catmull-
Clark [CC78], Loop [Loo87], Butterfly [DLG90, ZSS96],
Kobbelt [Kob96a], Midedge [PR97]. Different schemes
lead to limit surfaces with different smoothness charac-
teristics. For design purposes, the Catmull-Clark [CC78],
Loop [Loo87] schemes are most often employed as they are
closely related to splines (a de-facto standard in modeling
today) and generate C2-continuous surfaces over arbitrary
meshes.

Figure 1: Subdivision defines a smooth surface recursively
as the limit of a sequence of meshes.

Multiresolution subdivision extends the concept of sub-
division by allowing detail vectors to be introduced at each
level. Hence, a finer mesh is computed by adding detail off-
sets to the subdivided coarse mesh. Given a semi-regular
mesh, i.e., a mesh with subdivision connectivity, it can be
easily converted to a multiresolution surface by defining a
smoothing operation to compute a coarse level from a finer
level. The details are then computed as differences between
levels. This representation was introduced by several au-
thors in different forms [LDW97, PL97, ZSS97]. Figure 2
illustrates the power of multiresolution in capturing complex
shapes.

A close connection exists between multiresolutin subdi-
vision and wavelets [SDS96]. In particular, two operations
known as Synthesis and Analysis can be defined to propa-
gate data from coarse to fine and in reverse throughout the
subdivision hierarchy, similar to wavelet transforms. Anal-
ysis computes positions of control points on a coarse level
i−1 by applying a smoothing filter to points on level i. Mul-
tiresolution details on level i are computed as differences be-
tween the two levels. Conversely, Synthesis reconstructs the

Figure 2: Top: multiresolution subdivision extends the con-
cept of subdivision by introducing detail vectors at each
level. Bottom: surfaces obtained by subdivision of the same
coarse mesh look very different depending on the amount
of detail introduced and the level at which it is introduced.
From left to right: no details to progressively more details
added on finer levels.

Figure 3: Natural parameterization of a subdivision surface.
Each time we apply the subdivision rules to compute the finer
control mesh we also apply midpoint subdivision to a copy
of the initial control mesh. A mapping from a denser and
denser subset of the control polyhedron (left) to the control
points of a finer and finer control mesh (right) is obtained
through repeated subdivision. In the limit, a map from the
control polyhedron to the surface is obtained.

data on level i by subdividing the control mesh of level i−1
and adding the details [ZSS97].

An important property of subdivision surfaces is that they
can be naturally interpreted as functions on the domain de-
fined by the base mesh (see Figure 3). This parametric inter-
pretation is useful in many circumstances related to design,
from derivation of differential quantities to dealing with con-
straints along arbitrary curves. Figure 3 illustrates this natu-
ral parameterization.
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3. Free-Form Editing

Free-form manipulation of 3D models is a popular method
for modifying existing shapes which attempts to mimic to a
certain extent the process of modeling or sculpting a physi-
cal object by hand. The applications are numerous, from ani-
mated character creation, to virtual restorations, to industrial
design.

The sculpting metaphor for geometric modeling has its
roots in the parametric surface works of Sabin [Sab71]
and Bezier [Béz74] which contain early mentions of
surface deformations. Subsequent work has spanned more
than three decades and continues to be investigated in
the context of modern systems and surface representa-
tions (e.g., [Bar84, SP86, Coq90, HKD93, CR94, MJ96]
[SF98, Kob96b, ZSS97, PL97, QMV98, Tak98, WW98]
[MQ00, TO02, GS01, BMRB04]).

The basic idea of free-form modeling is to introduce a
degree of transparency between the designer and the math-
ematical model of the surface being shaped. Instead of
controlling the shape through a set of non-intuitive sur-
face parameters, free-form deformations allow the shape
to be controlled through intuitive manipulation of the sur-
face itself or the space surrounding it. The main chal-
lenge is to perform the manipulation through a limited
set of controls and to define natural deformations of the
surface away from the control positions. Different varia-
tions of this paradigm have been developed, including ax-
ial deformations [Bar84, CST94, LCJ94] which alter the
axis of a shape to induce its deformation, lattice defor-
mations [SP86, Coq90, MJ96] which operate on the cells
of a space lattice to deform the volume inside the lat-
tice, manipulations on scalar field embeddings [HQ03], con-
trol mesh editing methods which shape parameterically-
defined surfaces by imposing constraints on their control
meshes [ZSS97], and variational methods which operate by
optimizing an energy functional over the surface under con-
straints [Tak98, BMRB04].

We focus our attention on methods that take advantage of
subdivision representations and among these, we emphasize
those that support interactive multiscale modeling. Subdivi-
sion representations are particularly suitable for free-form
editing due to their hierarchical nature which easily accom-
modates multiscale edits, as well as their efficiency in terms
of storage and access. For a survey of deformable models
based on other representations see [GM97].

3.1. Control mesh manipulations

Manipulating control meshes offers a straightforward inter-
face which supports interactive shape deformations. This ap-
proach has been extensively employed in spline-based mod-
eling [CRE01] and can be naturally extended to subdivi-
sion surfaces. Collections of control mesh vertices, edges,
and faces are re-positioned so as to induce modifications of

the resulting limit surface. In addition, control points can be
added and edges and faces can be split to increase the com-
plexity of the shape as editing progresses. This type of ma-
nipulation is very common and can be found at the basis
of commercial modeling packages with support for subdi-
vision surfaces. It is routinely used for animated character
design (e.g., in Discreet’s 3D Studio Max [dsm], in Alias’
Maya [may]) and is becoming increasingly popular for in-
dustrial modeling (e.g., in Dassault Systèmes’ Catia [cat]).
Figure 4 illustrates examples of shape modeling through
control point manipulation.

Figure 4: Shape modeling through control point manipula-
tion: Loop subdivision surface (top), Catmull-Clark subdivi-
sion surface (bottom).

Single resolution control mesh manipulations offer only
limited flexibility in designing shapes: only coarse shape
deformations can be accommodated. Multiresolution sub-
division surfaces are a much more powerful representation
which lends itself very naturally to multiscale editing. De-
pending on the level at which the editing occurs, either
a global deformation (coarse level) or a local deformation
(fine level) is induced. This idea was exploited, for instance,
in [ZSS97, PL97] for interactive multiresolution editing of
Loop surfaces and in [DKT98] for Catmull-Clark ones. Us-
ing a combination of subdivision (i.e., transforming a coarse
mesh into a finer one) and smoothing (i.e., transforming a
fine mesh into a coarser one), edits performed at different
levels of subdivision can be propagated through the hierar-
chy while keeping the magnitude of multiresolution details
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under control. Figure 5 illustrates edits at various scales per-
formed on the Armadillo model.

Figure 5: Multiresolution editing according to [ZSS97]: left
– input model; right – editing result. Note the large-scale
edit of the belly and the fine-scale edit around the chin.

Variations of this approach include modeling with dis-
placed subdivision surfaces [LMH00] and subdivision sur-
face fitting [STKK99, LLS01a, MZ00]. The displaced rep-
resentation can be viewed as a restricted form of multireso-
lution subdivision consisting of a control mesh and a single
level of scalar details. A domain surface is generated from
the control mesh using Loop subdivision [Loo87]. A dis-
placement map computed from the scalar displacement is
then applied over the domain to generate the final surface.
The displacements can be edited to create fine-level features
on the surface, while control mesh edits lead to global shape
alterations. In surface fitting a surface is deformed to con-
form to the shape of another given data set (e.g., points,
curves, another surface). This approach is somewhat differ-
ent than those discussed so far in that it is less suitable for
interactive manipulation. Typically some optimization of the
surface being fitted is performed in order to determine opti-
mal control point positions which lead to a best fit between
the surface and the target. The accuracy of the fit is con-
trolled through a threshold parameter that bounds the error
between the target and the fitted surface.

3.2. Variational design

Variational surface design operates on the principle of
modifying a shape so that its fairness is optimized. Sur-
face fairness is typically measured in terms of its energy
and the idea is to find a minimum-energy state which, in
turn, corresponds to the fairest possible shape. In Com-
puter Graphics, energy-minimizing surfaces became popu-
lar in the context of simulating physical properties of mate-
rials [Bar84, TF88, WW92]. Celniker and Gossard [CG99]
and later Welch and Witkin [WW92] pointed out the rela-
tionship between fair surface design and energy minimiza-
tion.

Most commonly, fairness is expressed as an integral of a
physical parameter associated with a real object bearing the
shape of the surface [Hal96]. A widely used measure of fair-
ness is the combination of stretching and bending energies:

Energy(S) = α
Z

||I||2dS+β
Z

||II||2dS (1)

where I and II denote the first and second fundamental
forms of the surface and || · || is a suitably chosen matrix
norm [TPBF87].

For practical purposes, discretized linear forms of equa-
tion (1) using parametric derivatives are typically employed:
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where Ω denotes the parametric domain of the surface S.
Most variational approaches take advantage of these expres-
sions, although alternative approaches have been proposed
(e.g., [CSA∗02]). The main differences are in the types of
parameterizations used to derive the differential quantities.
For example, Greiner [Gre94] and later Kobbelt [Kob96a]
suggested a discrete exponential map for local parameteri-
zations (see Figure 6) such that each vertex P0 has coordi-
nates (0,0) and its 1-ring neighbors Pi ∈ R(P0) are assigned
coordinates:
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In the context of subdivision surfaces, Halstead et
al. [HKD93] were among the first to describe a method
for interpolating a given shape with a Catmull-Clark sur-
face while minimizing surface fairness. Given the lack of
a "natural" parameterization near extraordinary points, they
re-formulated the stretch and thin-plate energy definitions in
terms of the control meshes at different subdivision levels
(rather than the limit surface). In their method subdivision
is used to isolate extraordinary vertices and bi-cubic spline
evaluation is used to evaluate the fairness norm away from
such vertices.
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Figure 6: Local quadratic interpolant used to approximate
first and second order derivatives [BMRB04].

Kobbelt [Kob96b] introduced the concept of variational
subdivision to create interpolatory subdivision rules that
place newly inserted vertices so as to minimize a global
energy functional. Using a similar idea, Weimer and War-
ren [WW98] propose two schemes for variational subdivi-
sion of thin-plate splines. One scheme provides an exact so-
lution to the variational problem, but the subdivision matrix
has to be recomputed at every subdivision level. The other
scheme is only approximate, but has the advantage that rules
can be precomputed. Both schemes are restricted to recti-
linear grids. Another method which connects subdivision
with fairing and cascading multigrid methods was proposed
in [DMR02]. The basic idea in this case is to interpret the
evolution of the surface under curvature motion as a filtering
proces.

Later on, Friedel et al. [FMS03] proposed using the char-
acteristic map parametrization to construct first order data-
dependent energies. This leads to a nonlinear minimization
problem which is solved by re-writing the surface energy as
a linear combination of precomputed stiffness matrices.

Constraints play an important role in variational design
methods. In their absence, the optimization problem has a
trivial solution, which usually leads to the collapse of the sur-
face to a single point (an exception is the method of Boier-
Martin et al. [BMRB04] in which the trivial solution cor-
responds to the input surface). We distinguish between two
classes of constraints [WW92]:

• Finite-dimensional: involve point and normal constraints
at discrete locations on the surface. These are the most
commonly used. Point constraints are used to enforce
spatial interpolation conditions. For subdivision surfaces
such constraints typically correspond to control points and
are easy to implement by solving linear systems. Normal
constraints are used to enforce surface normals at certain
points on a surface. Different approaches can be used to
constrain normals: expressing the fact that two tangent
vectors must be perpendicular to the prescribed normal,
enforcing the positions of the vertices of a given face so
that the face normal coincides with the prescribed one, or

constraining tangent vectors rather than normals (the last
two tend to over-constrain the problem).

• Transfinite: involve one or two-dimensional surface en-
tities such as embedded curves and patches. Curve con-
straints are among the most common in this category.
Enforcing such constraints involves solving an integral
over the entity. For example, to constrain a surface curve
C(t) = S(u(t),v(t)) along a given space curve C0(t), the
following must be satisfied:

Z
(C−C0)

2 = 0 (6)

Such constraints are usually discretized and enforced ei-
ther by using a least-squares approach [WW92] or by
reparameterizing the surface to align control points or
edges with constraints [BMRB04] (see also Algorithm 1
in section 4). An alternative approach is to evaluate the
curves and to incorporate the result of the evaluation into
the subdivision rules to produce a limit surface that inter-
polates the curves. This is the object of combined subdivi-
sion schemes [Lev99] (see also [Nas00, NA02, SWZ04]).

Figure 7 illustrates the result of modeling with various
types of constraints.

Another important consideration in dealing with con-
straints is the region of influence of a constraint. It is defined
as the portion of the surface affected by the constraint. The
region of influence can be explicitly enforced [Kob00] by
letting the designer encircle an area on the surface. This gen-
erates boundary constraints between the surface inside the
area of influence and the rest of the surface. Alternatively, in
the case of hierarchical representations such as subdivision
hierarchies, the region of influence can be controlled indi-
rectly through the levels at which constraints are defined.
For example, Takahashi et al. [Tak98] impose constraints at
various scales using a wavelet framework. Constraints are
being propagated from finer to coarser scales, however, the
region of influence of each constraint is not controlled in any
way. In [BMRB04] the influence of a constraint is explicitly
enforced by the coarse level at which the constraint is prop-
agated. Thus, more global or local edits can be performed
depending on the level to which the constraint is restricted: a
coarser level will induce a more global deformation, whereas
a finer level will produce a more local edit (see Figure 8).

A related issue is that of detail preservation. When a
global shape change occurs, it is often expected that the high
frequency details are preserved over the modified surface.
The face of Venus in Figure 9 is represented as a multireso-
lution subdivision surface in which non-trivial detail vectors
capture the organic shape of the model. If a shape deforma-
tion is performed by pulling on a single point at the tip of
the nose, a naive energy optimization approach leads to a
fair shape that satisfies the constraints, but all the details of
the face are lost (note that boundary constraints must also be
imposed in this case to avoid the collapse of the surface to a
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(a) (b)

(c) (d)

Figure 7: Constraint types: (a)-(b) point and discretized curve constraints; (c)-(d) normal constraints.

single point). One solution is to separate the high-frequency
information before optimization and to "re-apply" it to the
new shape [Kob00]. This introduces an overhead related to
saving and restoring surface details. To avoid this overhead,
Boier-Martin et al. [BMRB04] propose to define a vector
field of deformations over the surface and to optimize the en-
ergy of this vector field rather than the energy of the surface
itself. Initially all deformation vectors are null. When an edit
occurs, the corresponding deformation vector (i.e., at the tip
of the nose) becomes non-null. The optimization procedure
tries to smooth the deformation field under the constraints
defined by the non-null vectors. Since the deformations are
defined with respect to the detailed shape, the details are pre-
served during deformation. Note that, in this case, boundary
constraints are not necessary as the rest shape in the absence
of constraints is the input shape.

An added advantage of subdivision hierarchies is that
they facilitate the use of multigrid methods [Bri87] to solve
the constrained minimization problem. In the presence of
many constraints, however, even multigrid solvers may be
too slow to yield results at interactive rates. A possible solu-
tion [BMRB04] is to aim for an approximate solution during
interaction and a more accurate (non-interactive) result after
the interaction has stopped. Figure 10 illustrates the differ-
ences between a Catmull-Clark approximation obtained at
interactive rates and a more accurate multigrid minimization.

For completeness, we mention the fact that the evolu-
tion of energy over time has also been considered to derive
dynamic surface models [TQ94, QT96]. Dynamic models

Figure 8: Region of influence of a multiresolution con-
straint: left – input model; middle – constraint is propagated
to the coarsest subdivision level, inducing a global deforma-
tion of the head by pulling a single point on the nose; right
– constraint is propagated only two levels coarser inducing
a more localized edit.

based on subdivision surfaces have been proposed by Qin
et al. [QMV98]. Such models are typically too complex to
support interactive design operations.

Topology modifications. The free-form modeling meth-
ods discussed so far operate by deforming the input sur-
face without changing its topology. Some applications, how-
ever, may require topological modifications, such as creating
handles and tunnels. An interactive sculpting environment
which supports this type of edits was proposed in [GOP99].
The Localized hierarchy Surface Splines allow adding han-
dles and punching holes, while maintaining C1 continuity
across the surface which is represented explicitly in piece-
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Figure 9: Energy optimization with constraints: left – in-
put multiresolution subdivision surface with details; middle
– optimization without detail preservation; right – optimiza-
tion with detail preservation.

Figure 10: Computing a solution to the energy minimization
problem with different accuracies: left - input model; mid-
dle - Catmull-Clark solution obtained interactively; right -
multigrid solution.

wise polynomial or spline form. The main idea behind lo-
calized hierarchies is to allow local edits on locally refined
mesh fragments based solely on coarser level data. Direct
manipulation is performed by interacting directly with the
surface rather than with control mesh. The types of opera-
tions supported include fillets, blends, semi-sharp features,
extrusions, holes, and bridges.

Using meshes as an underlying representation, Guskov et
al. [GKSS02] propose a user-driven procedure for inducing
topological modifications in a semi-regular setting. The so-
called hybrid meshes are multiresolution surface represen-
tations which enhance subdivision-based refinement opera-
tions with irregular operations that support changes in topol-
ogy and approximate detailed features at multiple scales.
In [GKSS02], hybrid meshes are defined as quadrilateral
meshes on which regular 1−4 face splits are combined with
irregular operations through which groups of quads are re-
moved and/or replaced.

4. Boolean Operations

Boolean operations provide a straightforward approach to
creating complex models from simpler ones using intuitive
combinations. Addition, subtraction, and intersection can be
packaged into editing tools for modeling solids bounded by
subdivision surfaces.

4.1. Mesh-Based Approximations

Traditionally, Boolean operations on boundary representa-
tions (B-reps) of solids have required intersecting paramet-
ric surfaces, removing the unwanted parts, and building new
surfaces from the remaining ones. This approach presents a
number of challenges, as intersections are difficult to per-
form for high-order B-reps and often lead to increasingly
complex intersection curves. Exact matching of surfaces
bordering such curves is also problematic, as it is not easy
to ensure that curves in different parametric domains coin-
cide in 3D. Consequently, subsequent editing of the resulting
models may lead to unwanted artifacts in the surface (e.g.,
cracks) which require special handling.

A substantially simpler approach, proposed by Lin-
sen [Lin00] is to use the control meshes corresponding to
the parametric parts being combined, rather than the sur-
faces themselves. This implies that the intersections between
solids are only approximately computed. At the same time,
the problem of intersecting arbitrary surfaces translates into
the much simpler one of intersecting arbitrary meshes. The
meshes are first triangulated to avoid difficulties posed by
handling of non-planar faces. Two approaches to building
a combined control mesh are discussed: clipping triangles
along the intersection boundaries and connecting intersec-
tion points and removing faces along the intersection curves
and remeshing the resulting gaps. The latter has the advan-
tage that it produces a more visually pleasing result. The
main drawbacks in both approaches lie in the inefficiency of
computing triangle-mesh intersections and robustness issues
associated with such computations as well as gap filling for
arbitrary gap topologies (see also [LFKN03] for variations
on the topic of computing intersection curves for subdivi-
sion surfaces).

Using a similar control-mesh based approach, Biermann
et al. [BKZ01] propose an approximate scheme for com-
puting Boolean operations which deals with several impor-
tant issues: matching the topology and the geometry of the
intersection curve, fitting the resulting surface to the orig-
inal data, and accurately capturing and representing sharp
features in the result. The method uses piecewise-smooth
multiresolution Loop [Loo87] subdivision surfaces to rep-
resent surfaces being combined. The algorithm assumes that
each part being used in a Boolean operation is bounded by a
closed orientable surface. It follows several steps:

1. Compute intersection curves.
2. Build resulting control mesh and compute an initial pa-

rameterization of the resulting surface over this mesh.
3. Optimize the parameterization from the previous step.
4. Use multiresolution fitting to approximate the input data

as closely as possible.

For the first step, the authors improve on both the effi-
ciency and the robustness of the naive mesh-mesh intersec-
tion approach by using bounding box hierarchies to accel-
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erate computations and a perturbation scheme [Sei98] to in-
crease robustness.

After determining the topology of the intersection, control
meshes are merged with special consideration for several is-
sues: preserving the topology of the cut, inserting a minimal
number of new vertices, and keeping their valence small.
The input control meshes are cut along intersection curves
and a new control mesh is combined from the remaining
pieces. The cutting process takes advantage of the natural
parameterization of subdivision surfaces over their control
meshes (see section 2) to approximate the intersection curve
by alternating so-called Snapping and Refinement steps:

Algorithm 1 (snapping and refinement):

Given a domain mesh M and an intersection curve c(t) in M
Repeat

For each vertex v of a triangle intersected by c do
1. Find α ∈ c closest to v
2. Snap v to α if possible

Adaptively refine parameterization
until (curve adequately approximated)

Snapping is performed between points of the curve and
parametric mesh vertices, if they are sufficiently close.
While optional, this step considerably reduces the complex-
ity of the resulting domain (fewer faces). The role of the
refinement is to increase the accuracy with which intersec-
tion curves are approximated. It is typically performed by
midpoint subdivision of triangles which are intersected by
curves multiple times or which fully contain curves. Fig-
ure 11 illustrates this process. The output of this step con-
sists of piecewise linear approximations of the intersection
curves, either along input edges or along newly introduced
edges obtained by splitting triangles.

After cutting, the portions of the control meshes not re-
quired in the Boolean operation are removed and the meshes
are joined along their boundaries. This is also done in two
steps: vertices along one boundary are paired to correspond-
ing vertices along the other boundary. When correspon-
dences do not exist, triangles along the boundary are refined
so as to introduce new vertices. Paired vertices close to one-
another are merged together. During merging, intersection
curves are also tagged with sharp feature tags (see also sec-
tion 5).

By construction, the resulting merged control mesh con-
stitutes a parameterization domain with the property that ev-
ery one of its vertices belongs to one of the original domains.
However, the initial parameterizations of the parts of the in-
put models corresponding to the Boolean operation may not
be optimally parameterized over the new domain. An opti-
mization procedure is used to reduce the distortion of the
resulting surface over the new domain.

The last step of this method computes optimal positions

of control points given the previously computed parameteri-
zation. The merged control mesh is subdivided a number of
times and the resulting mesh is fitted to the original data in
least-squares sense. Results of Boolean operations obtained
with this method are shown in Figure 12.

4.2. Surface Cut-and-Paste

Surface pasting can be viewed as an instance of a Boolean
operation. The basic paradigm implies creating new models
by combining pieces of existing models. In its most basic
form, a cut-and-paste operation involves selecting and trans-
ferring a feature of interest from a source surface to a target
surface. There are several fundamental steps involved such
an operation:

1. Feature selection
2. Separation of surfaces into base and detail parts
3. Transferring the feature onto the target surface

The idea of pasting surfaces was first introduced in the
context of hierarchical splines [BBF94, CMB97]. In this
case a tensor-product B-spline surface is designated as the
feature to be attached to another surface. Steps (1), (2) are
assumed to have been performed in a pre-processing stage
and (3) is achieved by representing tensor-product B-splines
as Greville displacement B-splines [BBF94] and applying
a mapping that takes into account the topology of the tar-
get surface and the Greville displacement representation of
the feature [BBF94]. The main restriction is that there are
no smoothness guarantees at the boundary between the fea-
ture and the target surface (not even C0 continuity). One
solution is to refine the feature surface so that its bound-
ary better approximates the target. However, this amounts to
introducing unnecessary control points over the entire fea-
ture (rather than only along boundaries), making subsequent
processing of the feature very inefficient. An alternative so-
lution was proposed by [CM00] and makes use of quasi-
interpolation [dF73] to improve the result of pasting. In this
case, interior feature control points are pasted using Gre-
ville displacements, while boundary points are pasted us-
ing quasi-interpolation. This leads to a composite surface
which still exhibits discontinuities along the pasting bound-
ary, however, less severe than in the original approach. In
addition to the lack of continuity, the types of features that
can be pasted are also limited by the underlying surface rep-
resentation. Performance is also an issue due to expensive
evaluations. An interactive spline-based interface was devel-
oped in [Ma00]. Due to performance limitations, the feature
is not positioned directly onto the target surface, but rather is
floating in its vicinity and the user is presented with a rough
outline of the contour of the feature on the target. Once a
position is decided upon, the actual pasting occurs.

Biermann et al. [BMBZ02] describe a more general pro-
cedure for cutting and pasting portions of existing surfaces
using an intuitive approach, similar to those commonly used
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Figure 11: Refinement and snapping: two steps of refinement are shown on the left. The image of the curve in parameter space
and vertex snapping are shown on the right (see [BKZ01]).

Figure 12: Boolean operations on multireolution subdivision surfaces [BKZ01].

for 2D image cut-and-paste. The user initiates a cutting oper-
ation by selecting a feature of interest on an existing surface
(termed the source surface (see Figure 13 (a)). She also spec-
ifies a position on a target surface where the source feature
is to be pasted (see Figure 13 (b)). The actual pasting is per-
formed in a sequence of steps (Figures 13(c)-(g)) which take
advantage of the underlying semi-regular representation to
achieve interactive rates. A discussion of the main steps fol-
lows.

Feature selection is performed interactively by the user
who selects a region of interest on the source surface. A free-
form closed space curve is used to outline the selection. The
portion of the surface inside the curve constitutes the fea-
ture(s) of interest. The curve can have an arbitrary shape and
does not have to be aligned with underlying mesh edges. The
portion of the surface inside the curve must have disk topol-
ogy, but it does not have to be a height field (see Figure 14).

Base / detail separation must be performed on both
the source and target surfaces to define what constitutes
feature detail as opposed to the larger-scale surface shape
that should be ignored. Since this is largely dependent on
the semantics of the operation, it is best left to the user.
In [BMBZ02], the authors propose a continuum of base sur-
face choices controlled by a flatness parameter. The base sur-
faces are obtained by smoothing the original surface to var-
ious degrees or by simple energy minimization within the
feature boundary. Figure 15 illustrates the different effects

Figure 14: Pasting and interactively placing a complex fea-
ture: a digitized model of a clay ear constitutes the feature
to be pasted onto the mannequin head. The ear can be inter-
actively scaled, rotated, and translated on the surface of the
head.

obtained using different base surfaces for the source and tar-
get models.

Feature transfer is a complex process as it generally in-
volves finding a mapping between two arbitrary surfaces.
The solution proposed in [BMBZ02] is to build the map-

c© The Eurographics Association 2005.

19



D. Zorin / Modeling with Multiresolution Subdivision Surfaces

(a) (b) (c)

(d) (e) (f)

Figure 13: Feature-based design of an ornate vase: (a) input (source) surfaces; (b) target surface; (c) result after multiple
pasting operations; Steps of a cut-and-paste sequence according to [BMBZ02] shown for the bottle pattern: (d) source feature
selection; (e) finding a target region around a user-selected position on the target surface; (f) parameterization of source (left)
and target (right) regions onto a common plane (shown displaced for illustration).

ping as a composition of maps to an auxiliary plane. The
advantage of this approach is that it no longer requires pa-
rameterizing an arbitrary (source) surface onto another arbi-
trary (target) surface. Instead, flattening methods which have
been much more extensively researched [SdS01, DMA02]
are needed. For the source surface the flattening is relatively
easy to perform as the feature is already selected and homeo-
morphic to a disk. For the target surface the problem is more
complicated as the surface can have any shape and can be
quite large. In order to avoid flattening the entire target sur-
face, the authors propose a method for approximating the
portion of the target surface that is actually involved in past-
ing. As the user specifies a target location where the feature
is to be pasted, the goal is to find a region that resembles the
source feature in shape and size. To identify such a region, a
generalized radial parameterization of the feature boundary
is used [BMBZ02] (see also Figure 16). Once such a region
is found, the transfer of the source feature onto the target
model is done by aligning the planar parameterizations of the
source and target regions followed by resampling the source
feature onto the target connectivity.

The pasting method of Biermann et al. [BMBZ02] pro-
vides a robust and efficient pipeline for interactive surface

Figure 16: Finding a target region through radial parame-
terization of the feature outline.

pasting. Its main constraints are related to self-intersections
that may appear when features are pasted onto highly curved

c© The Eurographics Association 2005.

20



D. Zorin / Modeling with Multiresolution Subdivision Surfaces

Figure 15: The effects of changing the base surface on the result of pasting: (top) digitized bottle detail appears on the vase
differently, depending on the choice of base surface; (bottom) the butterfly feature is pasted on a rock model with and without
preservation of target detail.

surfaces and to topological constraints on the features that
can be pasted (i.e., only features with disk topology are han-
dled). The former can be solved using a hierarchical past-
ing approach, in which the feature to be pasted is decom-
posed into frequency bands and the pasting is performed pro-
gressively, by pasting low-frequency details first, and high-
frequency ones on top. The latter problem is more complex
and requires more careful handling. A possible solution, al-
beit outside the subdivision framework, has been recently
proposed in [FMMY03]. In this case, a volumetric approach
is used to parameterize the feature and B-spline fitting is
used to separate base from details. The advantage lies in
the generality of features that are handled, including higher
genus ones and the ability to paste them on highly curved ar-
eas. The main drawbacks are related to B-spline fitting and
the need to introduce a large number of points in order to
obtain a good fit. The result is not a seamless representation,
but rather a composite one consisting of the original and the
pasted part. In addition, the feature cannot be interactively
dragged on the target surface.

4.3. Surface Trimming

Trimming, i.e., cutting holes in the surface of an object along
specified curves, can also be considered as an instance of a
Boolean operation. Since this type of operation requires spe-
cial subdivision rules along the trim boundary, we classify it
as a special case of a non-smooth feature and we discuss it
in section 5.

5. Non-Smooth Features

Subdivision surfaces can be naturally used to model smooth
surfaces of arbitrary topological type. Many real objects,
however, exhibit non-smooth features, such as sharp edges
and boundaries, corners, and darts. While multiresolution
detail vectors may be used to approximate sharp features
(see Figure 17), a different setting is required to represent
such features exactly. It entails altering the subdivision rules
to produce limit surfaces that are only piecewise smooth,
i.e., consist of smooth patches joined together along possibly
sharp boundaries. To represent piecewise smooth surfaces,
control mesh edges and vertices are typically tagged for spe-
cial handling (see Figure 18). Special subdivision rules are
employed in the vicinity of tagged mesh elements so as to
avoid smoothing them. An edge can be tagged as a crease
edge and vertices incident to crease edges may be tagged as
one of the following (see Figure 18):

• crease vertex: exactly two crease edges join smoothly at
this vertex

• corner vertex: two or more crease edges join non-
smoothly at this vertex

• dart vertex: exactly one crease edge is adjacent to this ver-
tex

Early mention of special rules for surfaces with
boundaries appeared in the work of Doo [Doo78] and
Nasri [Nas91], however accompanied only by partial anal-
yses of the resulting surfaces. The first rules leading to prov-
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smooth sharp

Figure 17: Multiresolution details are required to approx-
imate sharp features using smooth surface representations
(left three images). A piecewise smooth surface representa-
tion (right) allows sharp features to be modeled with detail
vectors.

ably C1-continuous surfaces were defined in [HDD∗94] as
a generalization of the Loop subdivision rules [Loo87]. The
analysis of the resulting surfaces can be found in [Sch96]. As
pointed out in [BLZ00], the rules introduced in [HDD∗94]
have two main drawbacks: they are not suitable for model-
ing concave corners and the shape of the generated surface
boundaries depends on the number of interior control points
adjacent to each boundary point. The latter leads to unde-
sirable gaps between surfaces joined along such a boundary.
Both problems were handled by Biermann et al. [BLZ00]
for the Loop [Loo87] and Catmull-Clark [CC78] subdivision
schemes.

Figure 18: Mesh tags corresponding to (from left to right):
crease, dart, and corner sharp features.

Modifications are sometimes applied to subdivision
rules to achieve different effects. For example, deRose et
al. [DKT98] propose an edge sharpness parameter s to vary
sharpness along an edge and to allow for different degrees of
sharpness. The parameter is used to blend between the po-
sitions psmooth of a control point obtained with the smooth
subdivision rules and a point psharp obtained with sharp sub-
division rules:

pnew = (1− s)psmooth + spsharp, s ∈ [0,1]

Biermann et al. [BLZ00] propose a flatness parameter f
and a normal modification. The flatness parameter control
the speed at which control points in a neighborhood con-
verge to the tangent plane. The subdivision rules are modi-
fied to blend between control point positions obtained with-
out flatness modification and points in the tangent plane (p
denotes the vector of control points in the neighborhood of

a point,a0,a1,a2 are the limit position and tangents at that
point, and xi denote the right eigenvectors of the subdivision
matrix):

pnew = (1− f )p+ f (a0x0 +a1x1 +a2x2), f ∈ [0,1]

The normal modification is somewhat similar, in that it in-
terpolates between the control point position obtained with-
out the modification and positions in a prescribed tangent
plane (a normal n is prescribed through a pair of tangent vec-
tors computed as a′i = (ain)n):

pnew = p+ t((a′1 −a1)x1 +(a′2 −a2)x2), t ∈ [0,1]

Examples of sharp features modeled as proposed by Bier-
mann et al. [BLZ00] are illustrated in Figure 19. A software
library for piecewise smooth subdivision based on these
rules is freely available from [BZ99].

A generalization of the subdivision concept that ac-
commodates sharp features was developed by Sederberg
et al. [SZSS98]. By drawing an analogy between re-
cursive subdivision schemes and knot insertion for B-
splines, the authors propose non-uniform versions of the
Doo-Sabin [Doo78] and Catmull-Clark [CC78] subdivision
schemes (under the general denomination of non-uniform
recursive subdivision surfaces or NURSS). Each edge in a
non-uniform Catmull-Clark control mesh (each control point
in a Doo-Sabin mesh) is assigned a knot spacing. When all
knot spacings are equal, the standard schemes are obtained.
Two types of subdivision rules have to be considered for
NURSS: the usual refinement scheme for the geometric po-
sitions of control points and an additional refinement scheme
for knot spacings. Sharp features can be generated by setting
certain knot spacings to zero.

The methods described so far require sharp features to be
aligned with control mesh edges. Moreover, they provide
little control over the profile of the resulting features. To
address these limitations, Khodakovsky et al. [KS99] pro-
pose a curve-based feature editing approach. Feature curves
are defined directly on the model surface through user in-
teraction and can follow arbitrary paths, unconstrained by
the connectivity of the underlying mesh. Features are ob-
tained by perturbing the surface in the vicinity of feature
curves. The curves can exist on multiple levels of a subdi-
vision hierarchy. At each level, perturbations are computed
with respect to local frames, so any coarse level modifica-
tions of the surface are carried through to finer levels. Sev-
eral parameters are used to control the profile of a feature.
In particular, sharp features can be obtained by specifying
different normal directions for the profile on either side of
the curve. This method brings forth a number of significant
contributions with respect to previous approaches: it takes
advantage of the multiresolution setting to define features
through detail vectors at different levels, it does not impose
any restrictions on the location of the feature curves on the
surface or on their topology (curves can intersect or self in-
tersect), and varying profiles allow both smooth and sharp
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features to be represented. The main drawback is that it does
not preserve the input representation: after editing, the result
is no longer a pure multiresolution subdivision surface, but
rather a combined representation, consisting of a surface and
a curve. This means that other subdivision-based tools that
require as input a pure multireolution representation cannot
be directly applied to the result of an editing operation per-
formed with this method.

Figure 19: Sharp features generated with the rules proposed
in [BLZ00]. From left to right: concave corner, convex cor-
ner, and smooth crease.

This problem is solved in [BMZB02] which uses the repa-
rameterization idea described in section 4.1 to align the pa-
rameterization of the surface with the feature curves. Sub-
sequently, sharp subdivision rules can be used along such
curves. Figure 20 illustrates this process. An arbitrary fea-
ture curve is first projected onto the control mesh at some
subdivision level (typically a coarse level which is subse-
quently refined). A piecewise linear approximation of the
curve image in the parametric domain is computed by al-
ternating Snapping and Refinement steps similar to those of
Algorithm 1. The Snapping step moves mesh vertices onto
the curve if they are sufficiently close, while the Refinement
step subdivides the parameterization linearly. If c : [0,1]→X
denotes the image of a feature curve in the parameter domain
X of the goal is to reparameterize the domain X such that c
passes through the vertices of X . This reduces to finding a
one-to-one mapping Π : X → X which maps vertices of X
to curve points: Π(vi) = c(ti), for some vertices {v0,v1, . . .}
and curve parameters {t0, t1, . . .}. After a finite number of
iterations of snapping and refinement, the resulting curve
[v0,v1, . . . ] is guaranteed to have the same topology as c and
to follow along mesh edges (and / or diagonals in the case of
the Catmull-Clark scheme). After reparameterization, the in-
put surface is resampled according to the new parameteriza-
tion. Intuitively, this moves the control mesh on the surface
and places mesh vertices on the feature curve. Subsequently,
the actual feature can be created by tagging the appropriate
mesh edges and applying sharp subdivision rules.

In the case of Catmull-Clark meshes, there is an additional
complication: the feature curve may pass through mesh diag-
onals after reparameterization (see Figure 21) and the stan-
dard crease rules do not support this situation. Biermann et
al. [BMZB02] introduce new subdivision rules to deal with
creases along quad diagonals. Sample results obtained with
this method are shown in Figures 22. Note that the output

Figure 20: Reparameterization for approximating a feature
curve: quads in parameter domain are recursively split and
vertices are snapped to the curve. After several subdivision
steps the curve is approximated by a sequence of vertices
and follows along quad edges or diagonals.

surface is a multiresolution subdivision surface which can
be manipulated with other tools designed to operate on such
a representation. In addition, the framework is suitable not
only for creating interior sharp features with various profiles
(e.g., engravings, embossings), but also to create boundaries,
i.e., to trim the input surface along the feature curves. An ex-
ample of a trimmed surface is shown in Figure 22.

Figure 21: Standard sharp rules do not cover cases when
the sharp edge (thick line) passes through a quad diagonal.
New rules are necessary for such cases. Dotted lines and
circles indicate vertices obtained by reflection used to define
subdivision rules for such cases (see [BMZB02] for details).

For completeness, we also mention the trimming method
proposed by Litke et al. [LLS01b] which is complementary
to that of Biermann et al. [BMZB02]. In this case quasi-
interpolation is used to approximate a trimmed surface with
a combined subdivision surface [Lev99].

6. Adding topologically complex detail

6.1. Overview

Common surface representations, subdivision-based repre-
sentations in particular, work well for objects of relatively
simple topology and continuous geometric structure. How-
ever, for many types of objects, the local geometry can be

c© The Eurographics Association 2005.

23



D. Zorin / Modeling with Multiresolution Subdivision Surfaces

Figure 22: Surfaces obtained after trimming and em-
bossing with sharp features using the method described
in [BMZB02]. Top: input curves are shown on the sur-
face (left) and projected into parameter space (middle). The
surface obtained is shown on the right. Bottom: a self-
intersecting feature.

highly complex. Examples include fur, bark, cracked sur-
faces, grilles, peeling paint, chain-link fences and others. In
these cases, using meshes or patches to represent small-scale
geometry is often prohibitively expensive. But if we ignore
the small-scale structure, a complex surface often has a sim-
ple overall shape, well represented by a mesh or a smooth
surface.

In this section we describe a combined volume-surface
representation for handling geometry of this type, extending
the idea of volume textures. Volume textures aligned with
the surface make it possible to represent geometrically and
topologically complex details in implicit form, encoding the
surface as an isosurface in a layer. This idea was explored by
a number of researchers in the past as discussed below.

This representation has important advantages:

• It uses simple and efficient data structures (textures) to
represent highly irregular geometry.

• Small features of high topological complexity can be eas-
ily introduced and modified.

• Image processing techniques can be used to modify small-
scale geometry without topological constraints.

• Hierarchical representations can be naturally constructed
using filtering on volumetric textures.

• One can easily use procedural modeling and simulation to
produce complex effects near the surface.

Two algorithms central to the goal of using this approach
in modeling applications. In addition to surface parametriza-
tion required by 2D texturing, volume textures require pa-

Figure 23: A surface with fine-scale detail added as volume
texture.

rameterizing a region of space near a surface. Most of the
previous work on volume textures used techniques such as
normal displacement, which results in self-intersections near
concave features. We describe an algorithm for computing
volume layer parametrizations with a number of desirable
properties, which can be used to update the parametrization
interactively; this is the central geometric algorithm of this
representation.

While isosurfaces are convenient for many types of oper-
ations, they are much more difficult to render than conven-
tional meshes. We describe algorithms for volume texture
rendering that enable interactive manipulation of volume-
textured objects. Our algorithm for rendering volume-
textured surfaces extends the approach of direct slice-based
isosurface rendering for volumes. We take advantage of the
programmable graphics hardware to reduce the geometry re-
quirements of the slice-based methods, which is crucial for
interactive rendering of volume textures. The description of
this rendering algorithm can be found in [PKZ04].

6.2. Related work

Our work builds on research in several areas.

Volume textures. The idea of volume textures goes back
to the work by Kajiya and Kay [KK89]. Our work was
motivated by the work of F. Neyret and co-workers (e.g.
[Ney95, Ney98, MN98]) as well as recent work on fur ren-
dering [Len00, LPFH01].

Our geometry is to some extent similar to the slab rep-
resentation used for modeling weathered stone ([DEL∗99])
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and for volume sculpting in [Aga99]. ([DEL∗99]) uses
the fast marching method (e.g. [Set99]) to construct lay-
ers around a surface. Envelope construction [CVM∗96] pro-
vides another alternative. Our method is compared with both
in Section 6.4.

Stable medial axes. Our construction is closely related
to the work in vision and medical imaging on us-
ing various types of medial axis approximations to an-
alyze shape and extract surfaces from volume data (e.g.
[PBC∗94, EGM∗94]). In these papers a form of the me-
dial axis of an object implicitly defined by a density func-
tion is first constructed without recovering the boundary of
the object. Our generalized distance function (Section 6.4)
is similar to some of the medialness functions used to con-
struct stable medial axes. Our work is closest to [SBTZ99]
which solves the Hamilton-Jacobi equations for the medial-
ness function on a regular grid to recover a skeleton. [YP02]
uses a Laplacian equation solved on a regular grid to com-
pute correspondences between nested surfaces. Our gener-
alized distance function has the property of pruning away
insignificant medial axis branches close to the surface (see
Section 6.4). R-functions have been used to achieve similar
effects ([Ric73, Roc87, PASS95]), but with more complex
computation based on a CSG representation of the surface.

Implicit surfaces and volume modeling. There is an ex-
tensive body of literature related to volume-based rep-
resentations (see [Blo97] for a list of references); some
recent important work includes [FPRJ00, CBC∗01]. In-
teractive and procedural volume sculpting techniques
[WK95, Aga99, CDM∗02] can be applied to our surface rep-
resentation. Most work on volume modeling focuses on vol-
ume data in pure form, i.e. objects are represented as level
sets of a function defined by volume samples. We concen-
trate on an approach which blends parametric and surface
representations.

Structured mesh generation. Constructing a collection of
layers aligned with a surface is a common problem in struc-
tured mesh generation. Mesh generation is a large and com-
plex field aiming to build meshes suitable for a variety of
numerical algorithms for solving PDEs (see, e.g. surveys
[Hen96, BP00] and the book [SK93]). Such meshes often
have to satisfy stringent requirements for the algorithms to
achieve optimal or nearly-optimal convergence rates, espe-
cially for CFD problems, for which object-aligned grids are
particularly important [Hen96].

Our goal is more modest: we aim to construct a shell
aligned with the surface efficiently, maintaining nondegen-
eracy without explicitly minimizing a distortion measure. At
the same time, the criteria used to formulate the PDEs in hy-
perbolic mesh generation methods (volume preservation and
orthogonality), are not necessarily the best for our applica-
tions.

Figure 24: Surface with a volume layer attached.

6.3. Representation

We refer to the initial surface for which we construct a shell
as the base surface. We consider shells which are obtained
by displacing points of the base surface along line segments
defined at vertices, which we call directors. At each vertex
of the surface, we store shell thickness, the number of shell
layers stored and texture coordinates. The shell consists of
slabs corresponding to the faces of the mesh or individual
patches. Each slab is a deformation of a prism.

Shells can be exterior (e.g. for fur modeling), interior (e.g.
for cracks) and envelope with layers located on both sides of
the surface. Our technique works for all shell types.

The main additional storage is the 3D textures associated
with the surface. The number of layers in the shell corre-
sponds to the number of pixels in the texture in the direction
perpendicular to the surface. The alpha channel of the tex-
ture defines the effective surface implicitly as the isosurface
corresponding to a fixed alpha value. The remaining texture
channels are used to store the gradient of α. The number
of layers can vary across the surface. In an extreme case, as
shown in Figure 24 the number of layers can go down to one.
If there are no features on a portion of the surface we do not
need textures for that region.

In our implementation we use multiresolution surfaces
with subdivision connectivity, which make it easy to
parametrize slices of 3D textures and construct consistent
hierarchies for surface and implicit volumentric geometry.
However, the basic techniques that we have developed can
be applied to arbitrary meshes with 2D texture coordinates.

6.4. Constructing shells

In this section we describe our basic algorithm for construct-
ing shells around surfaces. Intuitively, one can think about
this process as growing thick skin on the surface; shells con-
structed by our method behave more or less like elastic com-
pressible skin, which was our goal.

To make a shell useful for volumetric texturing, a number
of properties are desirable:

• The layers should not intersect. This requirement is moti-
vated by the "skin" metaphor which we believe to be natu-
ral for manipulating this type of surface representation in
many cases.
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• The layers should have the same connectivity. This is cru-
cial for defining a vertex’s volumetric texture coordinates
(s, t,r). They can be obtained as follows in this case: (s, t)
are given by the base surface parametrization which is as-
sumed to be known, and r is incremented proportionally
along the displacement director from the base surface.

• The shell should maintain prescribed thickness whenever
possible. However, if thickness cannot be maintained due
to geometric obstacles, a valid shell with locally decreased
thickness should be produced. This corresponds to the in-
tuitive idea of elastic “sponge-like” skin; note that volume
preservation is somewhat undesirable as it is likely to re-
sult in fold formation.

• The shell should be close to the one obtained by normal
displacement whenever possible.

• The shell at a point should depend only on the parts of the
surface close to that point. This property is important for
modeling applications and for efficient implementation.

Next, we describe our shell construction algorithm moti-
vated by these requirements.

6.5. The basic algorithm

To describe our algorithm in detail, we need some formal no-
tation. We assume that our base surface is a mesh or a higher
order surface associated with a mesh (subdivision surface,
spline surface etc.) without self-intersections. Formally, our
goal of constructing a shell around the surface can be de-
scribed as follows: given a surface M in R3, construct a one-
to-one map f (x, t) from the direct product M × [0,1] into
R3. We focus on shells for which f (x, t) is linear, i.e. at each
point, f (x, ·) is entirely defined by the direction of displace-
ment and shell thickness.

Main ideas. Our algorithm is based on a simple idea: to
construct a shell, we always need to move away from the
surface. In the places where this is impossible (the simplest
example is the center of a sphere) the shell cannot be ex-
tended further.

To understand how this idea can be made more formal,
we consider the example shown in Figure 25 in more detail.
Suppose we are building an interior shell, offsetting a sur-
face M (in this case, a box) in the direction opposite to the
outside normal. If the gradient of the point-to-surface dis-
tance function d(x,M) is defined, “moving away” from the
surface more formally can be characterized as moving along
the gradient of the distance function. This gradient points ex-
actly along a normal direction to the surface whenever it is
defined. In such cases we can propagate the shell away from
the surface simply moving along the normal. However, the
distance function is singular at some points of space which
are called (medial axis points). Unfortunately the medial axis
comes close to the surface at concavities and extends all the
way to the object at sharp features, as shown in Figure 25.
However, even on the medial axis it is often possible to move

ba

Figure 25: a. Medial axis of a box. b. The shell with tar-
get thickness exceeding one half of the box size constructed
using the gradient along the medial axis. The shell director
lines are shown.

away from the surface. E.g., if we start from the corner of the
box, we just move along the branch of the medial axis. While
the complete gradient of the distance function is not defined,
it is defined along the medial axis, i.e. the derivatives can be
computed for any direction tangent to the medial axis. De-
fine the extended distance function gradient by setting the
value of the gradient at the medial axis to the gradient along
the medial axis, whenever it is defined. The magnitude of
this gradient is not necessarily one: the sharper the angle of
the concavity, the smaller it is. For the horizontal part of the
medial axis of the box, it is identically zero. We note that
these are exactly the points where no further motion is pos-
sible, because shell parts extended from two sides of the box
run into each other. This shows that the magnitude of the
gradient of the distance function along the medial axis can
be used as a measure of how easy it is to move a particle
located at that point of space away from the surface.

These observations suggest the following simple abstract
algorithm for constructing the director of a shell: to obtain
the director of a shell of thickness h at point x, first follow
the extended gradient field g(x) =∇xd(x,M) of the distance
function, solving the ODE

∂F(x, t)
∂t

= hg(x) (7)

where h is the desired thickness, and F(x, t) is position along
the integral line of the gradient field passing through x. Then
define f (x, t) by linear interpolation between x and F(x,1).
Note that as long as the integral curve F(x, t) does not reach
the medial axis, it remains a straight line with unit speed
parametrization, as ‖g(x)‖ = 1. For our box example and
sufficiently large h this yields a shell completely filling the
box (Figure 25b). Unfortunately, it is difficult to solve Equa-
tion 7, as the field is discontinuous, and we would have to
compute the medial axis and the gradient along it. To make
the algorithm practical, we replace the distance function with
a function we call Lp-averaged distance function.

Averaged distance functions. The basis of our definition
is the following simple observation. We can rewrite the dis-
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Figure 26: The red plot shows the standard distance func-
tion from a point on the line to the set of two points {−1,1}.
Other lines show the averaged distance functions for differ-
ent values of p.

tance function from a point x to a surface M as

d(x,M) = inf
y∈M

|x−y| =
(

sup
y∈M

|x−y|−1

)−1

=
(
‖|x−y|−1‖L∞(M)

)−1

(8)

This definition lends itself to a natural generalization:

dp(x,M) =
(
‖A−1|x−y|−1‖Lp(M)

)−1

= A1/p
(Z

M
|x−y|−pdy

)−1/p (9)

where A is the area of the surface M. This normalization by
the area is introduced to ensure that the gradient of this dis-
tance function is nondimensional and close to magnitude 1
at infinity, which mimicks the properties of the gradient of
the euclidean distance. Intuitively, one can expect the gradi-
ent direction field of this function to have similar properties
to the gradient field of the euclidean distance function as p
approaches ∞. Another intuitive interpretation of this dis-
tance function is as a potential field generated by charges
on the surface raised to the power −1/p. In practice, we
have observed that even for small values of p, the fields are
quite similar. This is illustrated in Figure 26 and 27. The
one-dimensional averaged distance functions are compared
to the standard distance function in Figure 26, and fields of
several values of p in a two-dimensional box are shown in
Figure 27. However, unlike the case of the euclidean dis-
tance function, the gradient of this function is well defined
away from the surface, as the integration and differentiation
can be exchanged. Using the averaged dp(x,M) yields the
analog of Eq. 7 in which the gradient has an explicit ex-
pression and the medial axis does not have to be computed
explicitly.

It can be proved that for p > 1 in 3D (and p > 0 in 2D),
the direction of the gradient gp, at points on a smooth sur-
face, coincides with the normal†. Furthermore, in all our ex-

† An interesting observation that p = 1 in 3D corresponds to the the

p=1 p=10

p=5 p=20

Figure 27: Field lines of the gradient field of the distance
function for several values of p.

Figure 28: The four diagrams on the left show self-adjusting
shell behavior of an exterior shell in the concave region.
With an angle of up to 90 degrees, no compression in shell
thickness is observed, but at greater angles the shell starts to
compress. The three diagrams in the right column illustrate
an interior shell. The first image shows the interior shell for
which a prescribed thickness is achieved. As the object is
deformed, the shell compresses to avoid folds (prescribed
thickness remains the same).

periments we have observed that the magnitude of the gra-
dient remains close to one near the surface, and decays in
the area close to the conventional medial axis. So our func-
tion defines a fuzzy medial axis, pruning away insignificant
branches corresponding to concavities, and with the gradi-
ent field close to zero only in areas where the shell genuinely
cannot be expanded (see Figure 28 for the results of our two-
dimensional experiments on deforming curves).

electric field potential which makes it clear that this value cannot be
used: e.g. the potential is constant inside a hollow uniformly charged
sphere.
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Localization. The function is supported over the whole sur-
face. However, it does not make sense to take into account
portions of the surface which are much further away than
double the target shell thickness; thus, we integrate only over
the parts of the surface which fit inside a sphere of radius 2h,
making our calculation local. The extra distance beyond h is
neccessary to ensure stability.

Boundaries. So far we have assumed that M does not have
a boundary. Near the boundary, the averaged distance func-
tion is likely to yield shells with considerable distortion due
to the fact that the distance field has to make a 180-degree
turn. The standard distance function handles this case well,
but the averaged function gradient field turns in the outward
direction. This problem is solved by adding artificial faces
at the boundary. A single additional vertex is added for each
boundary vertex. The direction to the new vertex is obtained
by using a tangent direction across the boundary, and the dis-
tance is taken to be equal to the shell thickness. It should be
noted that such an extension is satisfactory if there are no
other parts of the surface near the boundary. Otherwise, the
extension can overlap a different surface part.

6.6. Numerical and performance considerations

There are two main difficulties in using the averaged dis-
tance function to construct shells: we need to solve the ODE,
which is stiff if the trajectory approaches the medial axis,
and we need to compute the field gradient efficiently. While
the ODE in most cases is well-behaved, it is stiff near the
medial axis. The gradient, which is an integral over the sur-
face, is also expensive to evaluate. We have evaluated sev-
eral solution techniques (variants of explicit and implicit Eu-
ler and Runge-Kutta methods) and obtained the best perfor-
mance and stability using an adaptive explicit Euler method.
This algorithm is given below in somewhat simplified form,
where Δ is the variable step size, x0 is the starting point on
the surface, x is the current position along the trajectory, g is
the gradient of the averaged distance function at the point, h
is the prescribed thickness, and ε is the adaptivity threshold
for the change in the direction.

x = x0; t = 0;
g = Field(x0);
while t < h

Δ = 2Δ0;
do

Δ = Δ/2;
xnew = x+Δ∗g;
gnew = Field(xnew);

while the angle between g and gnew is above ε;
x = xnew; t + = Δ;
g = gnew;

end while

Computing integrals per face. The simplest method for
calculating the integrals is to do pointwise summation over

Figure 29: Left: cross-section of the shell for a shape
with sharp corners; Right: same object with volume texture
added.

the surface. However, this approach does not work well in
the case where the sampling is fixed and the surface has
very sharp angles. This is easy to understand if the sample
points are thought of as charges, considering the field as a
surface charge density field. The approximate gradient field
may “escape” between points when a surface region with
high curvature is not sampled densely enough for numerical
methods; this results in shell inversion. This “escape” prob-
lem can be avoided by integrating analytically over triangles
of the surface mesh (quads can be split into triangles for this
purpose). Fortunately, it is possible to integrate 1/r3 over a
wedge, and a triangle can be represented as a complement of
three wedges in a plane, obtained by extending each triangle
side in one direction. For a single wedge, the integral can be
computed explicitly. Without losing generality, we can as-
sume that the non-negative x axis is the starting edge of the
wedge, then the integral when p = 3 is

Z
� |x−y|−3dy =

2
w

arctan

(
w

(|x|−u)cot β
2 − v

)
(10)

where (u,v,w) is the coordinates of the point x, and β is
the counter-clockwise angle of the wedge � . This formula
is then differentiated on u, v, and w for the calculation of
gradient. Using these formulas, the integral over the mesh
can be evaluated precisely if desired. While computing the
gradient in this way is more expensive, this eliminates the
need for refinement, and in fact using a coarser resolution
version of the mesh yields good results.

Accelerating integral computation. The expense of com-
puting the gradient can be considerable for an interactive ap-
plication since it involves a surface integral.

Although we only integrate over a small part of the sur-
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Figure 30: Cross-sections of interior and exterior shells of
the bunny.

target  thickness

Figure 31: Folding for extreme shell thickness (prescribed
thickness equal to the objects bounding box size, only 70%
of the shell shown to show the fold clearly.)

Figure 32: Comparison of the results of normal displace-
ment method (upper right) and our method (lower right) for
a saddle.

face, inside a ball near a given point, further acceleration
helps. We use the Barnes and Hut algorithm [BH86] to com-
pute the integral hierarchically. Although the calculation is
already constant time, this algorithm is easy to implement,
and provides a substantial speedup.

Examples. Several examples of external and internal shells
and textures are shown in Figures 29,30 and 33-37. The tim-
ings for simpler objects were fractions of a second. For the
bunny mesh in Figure 30, the external shell was generated
in 1.8 sec on a 1GHz Pentium III, and the internal shell in 8
sec. The longer time for the internal mesh is due to refine-
ment necessary to compute a valid shell inside the ears. The
target thickness for the exterior shell was set at 10% of the
bounding box size, and at 5% for the interior shell.

Limitations of the approach. The resulting shell is not
guaranteed to be one-to-one; this is essentially inevitable,
as we require directors to be straight. However, as shown
in Figure 31, a rather large shell thickness needs to be pre-
scribed with a special type of geometry for the failure to oc-
cur; for this figure, the requested shell thickness was close to
the size of the bounding box of the whole object.

Comparison with alternatives. Shells created with normal
displacement and with our method are compared in Fig-
ure 32. For a saddle as shown in the picture, the normal
displacement method inevitably generates a self intersecting
shell. It does not matter on which side of mesh the shell is
expanded.

Level set methods, the fast marching method in particu-
lar, present the main alternative to our approach. However,
the level set methods do not solve the problem of shell con-
struction directly. The methods do not readily provide any
mapping from the original surface to the advancing front,
and the topology of the front may change. In fact this is an
advantage for many applications but makes shell construc-
tion difficult. An additional step is required to establish the
correspondence, as described in [Set94]. Another alternative
is the envelope construction [CVM∗96] which preserves the
topology of the original surface. We have explored this ap-
proach and found that the thickness of such envelopes is very
low in the regions of concavities, and the shape of the surface
of the envelope tends to be undesirable in such areas.

Finally we note that [YP02] uses a conceptually simi-
lar (although numerically quite different) approach for con-
structing correspondences between surfaces, if we note that
computing our integrals over the whole surface for p = 1
corresponds to solving the Laplace equation using Poisson
formula. As we have pointed out, the value p = 1 does not
work for constructing shells.
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6.7. Results

In this section we describe a variety of operations that we
have implemented in our modeling system using algorithms
described in the previous sections.

6.7.0.1. Deformations. When the base surface is de-
formed, the shell needs to be recomputed. We take advan-
tage of the locality of the field defining the shell, and recom-
pute only the part which is within the field influence distance
from the modified surface part. This can be done at interac-
tive rates (Figure 33). We note that if a volume deformer is
used to modify the surface, the same volume deformation
can be applied to the shell and no interactive recomputation
is necessary; however, for significant deformations it is still
better to recompute the shell.

6.7.0.2. Moving geometry along the surface. Image edit-
ing operations can be relatively easily applied to volumetric
textures, which results in changes in the implicitly defined
geometry (Figure 34). However, when these operations are
implemented, geometric distortion of the 2D texture map-
ping should be taken into account. This problem is identical
to the one addressed in [BMBZ02]. The target area, to which
the texture is moved, and the source area are reparameterized
on a common planar domain with a distortion-minimizing
parametrization. The common parameterization is used to
resample the source texture over the target geometry. The
same approach can be used for volume textures.

6.7.0.3. Boolean operations and carving. One of the ad-
vantages of volume geometry representations is that boolean
operations become relatively simple (Figure 33). In the case
of volume textures, the situation is complicated by the fact
that the transformation from world coordinates to texture co-
ordinates is nonlinear. However, it is still relatively straight-
forward to compute a boolean operation between a regular
nondistorted volume object and the volume-textured surface:
this requires resampling the volume object over the shell
grid, which is straightforward.

Applying a boolean operation to two volume-textured sur-
faces is much more difficult.

6.7.0.4. Animated Textures. Removing details from the
underlying geometric representation and placing them into
3D textures makes some animations much easier to execute.
One example of this is the boiling man (Figure 35). The
texture is procedurally animated to show the bubbles. Bub-
bles can easily appear, separate from the surface and burst,
as they are represented implicitly. Another example of tex-
ture animation is growing trees on the surface. The speed of
our shell generation algorithm also enables us to animate the
base mesh and the texture at the same time (Figure 35,36).

6.7.0.5. Rendering Performance. The performance of the
rendering algorithm is quite good, especially for large tex-
tures. The turbine blade shown in the video uses 128 slices

through a 512x512x512 texture (compressed to 134 MB)
and exhibits real-time performance. With 512 slices shown
near the end of the clip, the quality is slightly greater, and
the rendering time is still acceptable for interactive tasks.

On the other hand, when we try to stress geometric com-
plexity, we run into performance limitations. For example,
with the shirt shown in the video, we are limited to about 16
slices while still obtaining close to real-time performance
(17fps with either normal or texture coordinate interpola-
tion). The video was created using a Quadro 3000 card
clocked at the standard 400/850 Mhz (core/memory).
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Abstract
Surface editing operations commonly require geometric details of the surface to be preserved as much as possible.
We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best
performed by operating over an intrinsic surface representation. This intrinsic representation could be derived
from differential properties of the mesh, i.e. its Laplacian. The modeling process poses nonzero boundary con-
straints so that this idea results in a Poisson model. Different ways of representing the intrinsic geometry and the
boundary constraints result in alternatives for the properties of the modeling system. In particular, the Laplacian is
not invariant to scaling and rotations. Either the intrinsic representation is enhanced to be invariant to (linearized)
transformations, or scaling and rotation are computed in a preprocess and are modeled as boundary constraints.
Based on this representation, useful editing operations can be developed: Interactive free-form deformation in a
region of interest based on the transformation of a handle, transfer and mixing of geometric detail between two
surfaces, and transplanting of a partial surface mesh into another surface. The main computation involved in all
operations is the solution of a sparse linear system, which can be done at interactive rates. We demonstrate the
effectiveness of this approach in several examples, showing that the editing operations change the shape while
respecting the structural geometric detail.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modelingcurve, surface, solid and object representations

1. Introduction

Surfaces in computer graphics are mostly represented in
global coordinate systems: explicit representations are based
on points, vertices, or nodes that are typically described us-
ing absolute Euclidean coordinates. Implicit representations
describe the shape as the level set of a function defined in
Euclidean space. A global coordinate system is the natu-
ral choice for all operations involving other objects such as
rendering, intersection testing and computation, transforma-
tions, or CSG modeling. On the other hand, for local sur-
face modeling, it would be desirable that the representation
captures the local shape (i.e. the intrinsic geometry of the
surface) rather than the absolute position or orientation in
Euclidean space.

Manipulating and modifying a surface while preserv-
ing the geometric details is important for various sur-
face editing operations, including free-form deforma-
tions [SP86, Coq90], cut and paste [RIKM93, BMBZ02],
fusion [KSMK99], morphing [Ale03a], and others. Note that

the absolute position of the vertices in a mesh is not impor-
tant for these operations, which calls for an intrinsic surface
representation.

A partially intrinsic surface mesh rep-
resentation are multi-resolution decomposi-
tions [FB88, ZSS97, KCVS98, KVS99, GSS99]. In a
multi-resolution mesh, the geometry is encoded as a base
mesh and several levels of refinement. The refinement is
typically described locally, so that geometric details are
mostly captured in a discrete set of intrinsic coordinates. Us-
ing this representation, several modeling operations can be
performed on an appropriate user-specified level-of-detail.
Note, however, that the locality of multi-resolution repre-
sentations is potentially limited: The support (or extent) of
the representation of a single vertex increases from fine to
coarse levels of the hierarchy. Thus, modeling operations are
restricted to a discrete set of regions and levels-of-detail. For
example, when cutting out a partial mesh for transplanting
operations, the original multi-resolution representation is in-
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validated because parts of the base domain and (potentially)
other levels of the hierarchy are missing.

This approach to encode geometric details is
to use differentials as coordinates for the vertices
[Ale03b, BK04, SLCO∗04, YZX∗04]. This provides a
fully intrinsic representation of the surface mesh, where the
reconstruction of global coordinates from the intrinsic repre-
sentation always preserves the intrinsic geometry as much as
possible given the modeling constraints. Using a differential
representation for editing operations has been shown to
be quite effective in image domain [FLW02, PGB03]. The
image domain has a natural regular parameterization and
resulting inherent definition of a gradient, which allows
modeling many editing tasks as a discrete Poisson equation.
However, this approach cannot be directly applied or
adapted to discrete (as well as continuous) surfaces.

2. The Laplacian representation

Let the mesh M be described by a pair (K,V ), where K is a
simplicial complex representing the connectivity of vertices,
edges, and faces, and V = {v1, . . . ,vn} describes the geo-
metric positions of the vertices in R

3. We use the following
terminology: the neighborhood ring of a vertex i is the set
of adjacent vertices Ni = { j|(i, j) ∈ K} and the degree di of
this vertex is the number adjacent edges (or vertices), i.e. the
number of elements in Ni. We assume that di > 0, i.e. that
the mesh is connected.

Instead of using absolute coordinates V , we would like
to describe the mesh geometry using a set of differentials
Δ = {δi}. Specifically, coordinate i will be represented by
its Laplace vector. There are different ways to define a dis-
cretized version of the Laplace operator for meshes, and each
of them has certain advantages. Most of them are based on
the one-ring of a vertex

δi = vi − ci j ∑
j∈Ni

v j, ∑
j

ci j = 1, (1)

and differ in the definition of the coefficients ci j. The topo-
logical Laplacian ([Tau95]) simply uses the similar weights
for all neighboring vertices, i.e. ci j = 1/di. In our and oth-
ers’ experience the the cotangent weights (e.g. [?]) perform
best in most applications.

The transformation between V and Δ can be described in
matrix algebra. Let C = {ci j}, then

Δ = (I−C)V. (2)

The Laplacian L = I −C is invariant under translation,
however, sensitive to linear transformations. Thus, L is ex-
pected to have rank n− 1, which means V can be recovered
from Δ by fixing one vertex and solving a linear system of
equations.

3. Mesh modeling framework

The basic idea of the modeling framework is to satisfy linear
modeling constraints (exactly, or in the least squares sense),
while preserving differential properties of the original geom-
etry in the least squares sense [Ale03b, LSCOL04]. With-
out additional linear constraints the deformed geometry V ′
is then defined by

min
V ′

n

∑
i=1

∥∥∥∥∥δi −
(

v′i − 1
di

∑
j∈Ni

v′j

)∥∥∥∥∥
2

. (3)

If the original surface was a membrane, the necessary con-
straints for the minimizer lead to L2V = 0, which has been
advocated by Botsch and Kobbelt [BK04] in the context of
modeling smooth surfaces. If, in contrast, the original sur-
face contained some detail, the right-hand side is non-zero
and we arrive at a variant of the discrete Poisson modeling
approach of Yu et al. [YZX∗04].

The basic type of linear modeling constraints is to pre-
scribe the absolute position of some vertices, i.e. v′i = v̂i.
These constraints are best incorporated by also satisfying
them in the least squares sense, possibly weighted to trade-
off between modeling constraints and the reproduction of
original surface geometry.

We found that the easiest way of implementing the ap-
proach is to write the conditions to be satisfied in the least
squares sense as a large rectangular system AV′ = b and then
solve AT AV′ = AT b. Prescribing positions for some vertices
then simply yields additional rows of the form

wi‖v′i = v̂i. (4)

Note that in fact these are three rows for each constraint, as
v are column vectors with three elements.

This framework can be extended towards constraints on
arbitrary points on the mesh. Note that each point on the
surface is the linear combination of two or three vertices. A
point on an edge between vertices i and j is defined by one
parameter as (1−λ)vi +λv j, 0 ≤ λ ≤ 1. Similarly, a point
on a triangle is defined by two parameters. We can put posi-
tional constraints v̂i j on such a point by adding rows of the
form

(1−λ)v′i +λv′j = v̂i j (5)

to the system matrix A.

Furthermore, also differentials could be prescribed. Note
that δi points roughly in normal direction at vertex i and that
its length is proportional to the mean curvature. This allows
us to prescribe a certain normal direction and/or curvature
for a vertex, simply by adding a row of the form

v′i − ∑
j∈Ni

ci jv
′
j = δ̂i. (6)

The modeling operation is typically localized on a part of
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(a) (b) (c) (d)

Figure 1: Advanced mesh editing operations using Laplacian coordinates: free-form deformations (a-b), detail transfer (c) and
mesh transplanting (d). Representing the geometry using the Laplacian coordinates enables preservation of detail.

the mesh. This part of the mesh is selected by the user as
the region of interest (ROI) during the interactive modeling
session. The operations are restricted to this ROI, padded by
several layers of anchor vertices. The anchor vertices yield
positional constraints v′i = v̂i in the system matrix A, which
ensure a gentle transition between the altered ROI and the
fixed part of the mesh.

Based on the constraints formulated so far, local surface
detail is preserved if parts of the surface are translated, but
changes with rotations and scales. There are several ways of
dealing with linear transformations:

• They could be defined and prescribed based on the mod-
eling operation [YZX∗04].

• They could be deduced from the membrane solution (i.e.
LV ′ = 0) [LSCOL04].

• They could be implicitly defined by the solution, if the
rotational part is linearized [SLCO∗04].

In any case, we first need to extend the definition of the lo-
cal intrinsic representation to incorporate linear transforma-
tions.

4. Incorporating linear transformations

The main idea to account for local linear transformations is
to assign each vertex i an individual transformation Ti. These
transformation are then applied to the original geometry by a
transforming each local Laplacian δi with Ti. This results in a
slightly modified functional defining the resulting geometry
V ′:

min
V ′

n

∑
i=1

∥∥∥∥∥Tiδi −
(

v′i − 1
di

∑
j∈Ni

v′j

)∥∥∥∥∥
2

(7)

Note that in the formulation of this minimization as solving
a system AV ′ = b the part Tiδi is contained in the right-hand
side column vector b. This is important because it implies the
system A can be solved independent of the transformations

Ti to be applied to vertex i, allowing the Ti to be changed
during interactive modeling.

The following approaches vary in how the local transfor-
mations Ti are computed.

4.1. Prescribing the transformations

Yu et al. [YZX∗04] let the user specify a few constraint
transformations and then interpolate them over the surface.
In particular, the rotational and scaling parts are treated in-
dependently, i.e. the transformation is factored as Ti = RiSi,
where Ri is the local rotation and Si is a symmetric matrix
containing scale and shear. Initially all vertices are assumed
to be not rotated, scaled or sheared. Modeling operations
might induce local linear transformations.

One could view this (slightly more general as in
[YZX∗04]) as a scattered data interpolation problem: In few
vertices a (non-zero) rotation or non-unity scale are given.
All vertices should then be assigned a scale and rotation so
that the given constraints are satisfied and the field of ro-
tations and scales is smooth. In order to apply well-known
techniques only a distance measure for the vertices is nec-
essary. Yu et al. [YZX∗04] use the topological distance of
vertices in the mesh.

Then, each local rotation and scale are a distance-
weighted average of given transformations. The easiest way
to derive the distance weights would be Shephard’s ap-
proach. This defines Ti for each vertex and, thus, V ′. Note
that transformations can be changed interactively.

4.2. Transformations from the membrane solution

Lipman et al. [LSCOL04] compute the rotations from the
membrane solution. They first solve ΔV ′ = 0 and then com-
pute each transformation Ti based on comparing the one-
rings in V and V′ of vertex i.
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(a) (b) (c)

Figure 2: Deformations of a model (a) with detail that cannot be expressed by height field. The deformation changes the global
shape while respecting the structural detail as much as possible.

The basic idea for a definition of Ti is to derive it from the
transformation of vi and its neighbors to v′i and its neighbors:

min
Ti

(
‖Tivi −v′i‖2 + ∑

j∈Ni

‖Tiv j −v′j‖2

)
. (8)

This is a quadratic expression, so the minimizer is a linear
function of V ′.

Note that this is not significantly slower than computing
the solution for the initial local identity transformations: The
system matrix A has to be factored once, from the first solu-
tion all Ti are computed, b is modified accordingly, and the
final positions V ′ are computed using back-substitution.

4.3. Linearized implicit transformations

The main idea of [SLCO∗04] is to compute an appropriate
transformation Ti for each vertex i based on the eventual new
configuration of vertices V ′. Thus, Ti(V ′) is a function of V ′.

Note that in Eq. 7 both the Ti and the V ′ are unknown.
However, if the coefficients of Ti are a linear function in V ′,
then solving for V ′ implies finding Ti (though not explicitly)
since Eq. 7 is still a quadratic function in V ′. If we define Ti
as in Eq. 8, it is a linear function in V ′, as required.

However, if Ti is unconstrained, the natural minimizer is a
membrane solution, and all geometric detail is lost. Thus, Ti
needs to be constrained in a reasonable way. We have found
that Ti should include rotations, isotropic scales, and trans-
lations. In particular, we want to disallow anisotropic scales
(or shears), as they would allow removing the normal com-
ponent from Laplacian representation.

The transformation should be a linear function in the tar-
get configuration but constrained to isotropic scales and ro-
tations. The class of matrices representing isotropic scales
and rotation can be written as T = s exp(H), where H is
a skew-symmetric matrix. In 3D, skew symmetric matrices
emulate a cross product with a vector, i.e. Hx = h×x. Draw-
ing upon several other properties of 3×3 skew matrices (see
Appendix A), one can derive the following representation of

Figure 3: Editing 2D meshes using Laplacian-coordinates
fitting. The red dots denote fixed anchor points and the yel-
low are the pulled handle vertices. The original meshes are
colored blue.

the exponential above:

s expH = s(αI +βH + γhT h) (9)

Inspecting the terms we find that only s, I, and H are lin-
ear in the unknowns s and h, while hT h is quadratic†. As a
linear approximation of the class of constrained transforma-

† Figure 3 illustrates editing of a 2D mesh. Note that in 2D the
matrices of class s exp(H) can be completely characterized with the
linear expression

Ti =

⎛
⎝ a w tx
−w a ty
0 0 1

⎞
⎠ .
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(a) (b) (c)

Figure 4: The editing process. (a) The user selects the region of interest – the upper lip of the dragon, bounded by the belt of
stationary anchors (in red). (b) The chosen handle (enclosed by the yellow sphere) is manipulated by the user: translated and
rotated. (c) The editing result.

(a) (b) (c) (d)

Figure 5: Different handle manipulations. (a) The region of interest (arm), bounded by the belt of stationary anchors, and the
handle. (b) Translation of the handle. (c), (d) Rotation of the handle. Note that the detail is preserved in all the manipulations.

tions we, therefore, use

Ti =

⎛
⎜⎜⎝

s h1 −h2 tx
−h1 s h3 ty
h2 −h3 s ty
0 0 0 1

⎞
⎟⎟⎠ (10)

This matrix is a good linear approximation for rotations with
small angles.

Given the matrix Ti as in Eq. 10, we can write down
the linear dependency (cf. Eq. 8) of Ti on V ′ explicitly. Let
(si,hi, ti)T be the vector of the unknowns in Ti, then we wish
to minimize

‖Ai(si,hi, ti)
T −bi‖2, (11)

where Ai contains the positions of vi and its neighbors and
bi contains the position of v′i and its neighbors. The structure
of (si,hi, ti)T yields

Ai =

⎛
⎜⎜⎜⎝

vkx vky −vkz 0 1 0 0
vky −vkx 0 vkz 0 1 0
vkz 0 vkx −vky 0 0 1
...

⎞
⎟⎟⎟⎠ ,k∈{i}∪Ni,

(12)

and

bi =

⎛
⎜⎜⎜⎝

v′kx

v′ky

v′kz

...

⎞
⎟⎟⎟⎠ ,k ∈ {i}∪Ni. (13)

The linear least squares problem above is solved by

(si,hi, ti)
T =

(
AT

i Ai

)−1
AT

i bi, (14)

which shows that the coefficients of Ti are linear functions
of bi, since Ai is known from the initial mesh V . The entries
of bi are simply entries of V ′ so that (si,hi, ti) and, thus, Ti
is a linear function in V ′, as required.

4.4. Adjusting Ti

In many modeling situations solving for absolute coordi-
nates in the way explained above is sufficient. However,
there are exceptions that might require adjusting the trans-
formations.

A good way of updating transformations for all three men-
tioned approaches is this: The current set of transformations
{Ti} is computed from V and V ′. Then each Ti is inspected,
the corresponding Laplacian coordinate δi is updated appro-

c© The Eurographics Association 2005.

41



Marc Alexa / Laplacian Surface Editing

(a) (b) (c)

Figure 6: Detail transfer; The details of the Bunny (a) are
transferred onto the mammal’s leg (b) to yield (c).

priately depending on the effect to be achieved, and the sys-
tem is solved again. For example, if anisotropic scaling has
been suppressed but is wanted, the {δi} are scaled by the
inverse of the anisotropic scale implied by the constraints.

5. Mesh Editing

There are many different tools to manipulate an existing
mesh. Perhaps the simplest form consists of manipulating
a handle, which is a set of vertices that can be moved, ro-
tated and scaled by the user. The manipulation of the handle
is propagated to the shape such that the modification is in-
tuitive and resembles the outcome of manipulating an object
made of some physical soft material. This can be generalized
to a free-form deformation tool which transforms a small set
of control points defining a complex of possibly weighted
handles, enabling mimicking other modeling metaphors (see
e.g., [BK03] and the references therein).

The editing interaction is comprised of the following
stages: First, the user defines the region of interest (ROI)
for editing. Next, the handle is defined. In addition, the user
can optionally define the amount of “padding” of the ROI by
stationary anchors. These stationary anchors form a belt that
supports the transition between the ROI and the untouched
part of the mesh. Then, the user manipulates the handle, and
the surface is reconstructed with respect to the relocation of
the handle and displayed.

The submesh of the ROI is the only part considered during
the editing process. The positions of the handle vertices and
the stationary anchors constrain the reconstruction and hence
the shape of the resulting surface. The handle is the means of
user control, therefore its constraints are constantly updated.
The unconstrained vertices of the submesh are repeatedly
reconstructed to follow the user interaction. The stationary
anchors are responsible for the transition from the ROI to
the fixed untouched part of the mesh, resulting in a soft tran-
sition between the submesh and stationary part of the mesh.
Selecting the amount of these padding anchor vertices de-

(a) (b) (c) (d)

Figure 7: The details of the Max Planck are transferred onto
the Mannequin. Different levels of smoothing were applied to
the Max Planck model to peel the details, yielding the results
in (c) and (d).

pends on the user’s requirements, as mentioned above. We
have observed in all our experiments that setting the radius
of the “padding ring” to be up to 10% of the ROI radius gives
satisfying results.

The reconstruction of the submesh requires solving linear
least-squares system as described in Section 2. The method
of building the system matrix (Eq. 14), including the com-
putation of a sparse factorization, is relatively slow, but con-
structed only once when the ROI is selected. The user in-
teraction with the handle requires solely updating the posi-
tions of the handle vertices in the right-hand-side vector, and
solve.

Figures 4 and 5 illustrate the editing process. Note that the
details on the surface are preserved, as one would intuitively
expect. Figure 2 demonstrates deformation of a model with
large extruding features which cannot be represented by a
height field.

6. Detail Transfer

Detail transfer is the process of peeling the coating of a
source surface and transferring it onto a target surface. See
Figure 6 for an example of such operation.

Let S be the source surface from which we would like
to extract the details, and let S̃ be a smooth version of S.
The surface S̃ is a low-frequency surface associated with S,
which can be generated by filtering [DMSB99, FDCO03].
The amount of smoothing is a user-defined parameter, and it
depends on the range of detail that the user wishes to trans-
fer.

We encode the details of a surface based on the Laplacian
representation. Let δi and δ̃i be the Laplacian coordinates of
the vertex i in S and S̃, respectively. We define ξi to be the
encoding of the detail at vertex i defined by

ξi = δi − δ̃i . (15)

The values of ξ j encode the details of S, since given the
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(a) (b) (c) (d)

Figure 8: Detail transfer. The orientation of details (a) are defined by the normal at the corresponding vertex in the low
frequency surface in (b). The transferred detail vector needs to be rotated to match the orientation of the corresponding point
in (c) to reconstruct (d).

bare surface S̃ we can recover the original details simply by
adding ξ j to δ̃i and reconstructing S with the inverse Lapla-
cian transform L−1. That is,

S = L−1(δ̃+ξ) . (16)

In this case of a detail transfer of S onto itself, S is faith-
fully reconstructed. However, in general, instead of coating
S̃ with ξ, we would like to add the details ξ onto an arbi-
trary surface U . If the target surface U is not smooth, it can
be smoothed first, and then the detail transfer is applied. In
the following we assume that the target surface U is smooth.
Before we move on, we should note that the detail trans-
fer from S onto S̃ is simple, since the neighborhoods of the
corresponding vertices i have the same orientation. We de-
fine the orientation of a vertex i in a surface S by the normal
direction of i over S̃. Loosely speaking, the orientation of
a point reflects the general orientation of its neighborhood,
without respecting the high-frequencies of the surface.

When applying a detail transfer between two surfaces, the
detail ξ should be first aligned, or rotated with respect to
the target. This compensates for the different local surface
orientations of corresponding points in the source and target
surfaces.

The following is an important property of the Laplacian
coordinates:

R ·L−1(δ j) = L−1(R ·δ j) , (17)

where L−1 is the transformation from Laplacian coordinates
to absolute coordinates, and R a global rotation applied to
the entire mesh. The mapping between corresponding points
in S and U defines different local orientations across the sur-
faces. Thus, our key idea is to use the above property of the
Laplacian coordinates locally, assuming that locally the ro-
tations are similar.

Assume that the source surface S and the target surface
U share the same connectivity, but different geometry, and

that the correspondence between their vertices is given. In
the following we generalize this to arbitrary surfaces.

The local rotation Ri at each vertex i in S and U is taken
to be the local rotation between their corresponding orien-
tations. Let ns and nu be the normals associated with the
orientations of i in S and U , respectively. We define the rota-
tion operator Ri by setting the axis of rotation as ns ×nu and
requiring nu = Ri(ns). Denote the rotated detail encoding of
vertex i by ξ′i = Ri(ξi). Having all the Ri associated with the
ξi, the detail transfer from S onto U is expressed as follows:

U ′ = L−1(Δ+ξ′) (18)

where Δ denotes the Laplacian coordinates of the vertices of
U . Now the new surface U ′ has the details of U .

(a) (b) (c)

Figure 9: Transferring the details of the Mannequin onto the
face of the Bunny. (a) The source surface S. It is significantly
smoothed to peel the details. (b) The smoothed surface S̃. (c)
The result of detail transfer onto the Bunny.

6.1. Mapping and Resampling

So far we assumed that the source and target meshes (S and
U) share the same connectivity, and hence the correspon-
dence is readily given. However, detail transfer between ar-
bitrary surfaces is more involved. To sample the Laplacian
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(a) (b) (c)

Figure 10: Mixing details using Laplacian coordinates. The Laplacian coordinates of surfaces in (a) and (b) are linearly
blended in the middle to yield the shape in (c).

(a) (b)

Figure 11: Transplanting of Armadillo’s details onto the
Bunny back with a soft transition (a) and a sharp transition
(b) between the two types of details. The size of the transition
area in which the Laplacians are blended is large in (a) and
small in (b).

coordinates, we need to define a mapping between the two
surfaces.

This mapping is established by parameterizing the meshes
over a common domain. Both patches are assumed to be
homeomorphic to a disk, so we may chose either the unit
circle or the unit square as common domain. We apply the
mean-value coordinates parameterization [Flo03], as it effi-
ciently produces a quasi-conformal mapping, which is guar-
anteed to be valid for convex domains. We fix the boundary
conditions for the parameterization such that a correspon-
dence between the source and target surfaces is achieved, i.e.
we identify corresponding boundary vertices and fix them at
the same domain points. In practice, this is a single vertex in
S and in U that constrains rotation for the unit circle domain,
or four boundary vertices for the unit square domain.

Some applications require a more careful correspondence
than what can be achieved from choosing boundary condi-
tions. For example, the mapping between two faces (see Fig-
ure 7) should link relevant details like facial features such as
the brow wrinkles of the Max Planck. In this case the user
provides a few additional (inner) point-to-point constraints
which define a warp of the mean-value parameterization. In

our implementation we use a radial basis function elastic
warp, but any reasonable warping function can do.

In general, a vertex i ∈ U is mapped to some arbitrary
point inside a triangle τ ∈ S. We experimented with several
methods for sampling the Laplacian for a vertex. The best
results are obtained by first mapping the 1-ring of i onto S us-
ing the parameterization, and then computing the Laplacian
from this mapped 1-ring. Note that this approach assumes
a locally similar distortion in the mapping. This is usually
the case for the detail transfer; we used the 1-ring sampling
in all the respective examples. We obtain similar results by
linear interpolation of the three Laplacian coordinates sam-
pled at the vertices of the triangle τ. While this approach
leads to some more “blurring” compared to the first one, it
is even simpler and does not suffer from extremely different
parametric distortion. In addition, no special treatment is re-
quired at the boundary of the domain in case the patch was
initially cut to be homeomorphic to a disk.

After the mapping between U and S has been established
and the Laplacians have been sampled, the detail transfer
proceeds as explained before. Note that now the correspond-
ing ξi is the difference between the sampled Laplacian coor-
dinates in S and S̃. See the examples in Figures 6, 7 and 9.

6.2. Mixing Details

Given two meshes with the same connectivity and different
details, the above transfer mechanism can be applied on a
third target mesh from the two sources. Figure 10 illustrates
the effect of blending the details. This example emphasizes
the mixing of details, as the details of the two source meshes
differ in the smoothness, form and orientation. Note that the
details are gradually mixed and the global shape of the tar-
get mesh is deformed respectively. By adding anchor points
over the target, its shape can be further deformed. Figure 11
shows the application of this mechanism to transplant Ar-
madillo’s details onto the Bunny’s back with a soft transi-
tion. In the next section we further discuss this transplanting
operation.

7. Transplanting surface patches

In the previous sections we showed how the Laplacian coor-
dinates allow to transfer the details of surface onto another
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(a) (b) (c) (d)

Figure 12: Transplanting of Feline’s wings onto the Bunny. (a) After cutting the parts and fixing the desired pose, the zipping
(in green) defines the target connectivity D. The transitional region D′ is marked red. Additional cut in D′ (in yellow) enables
mapping onto a square. (b) D′ is sampled over the respective regions U ′ ⊂U◦ (U◦ is the cut part of the Bunny’s back) and S′
(the bottom of the wing). The texture with uv-isolines visualizes the mapping over the unit square. The cut (in yellow) aligns the
two maps. (c) The result of reconstruction. The ROI is padded by a belt of anchors (in red). Note the change of the zipping seam
triangles (green) and the details within the transition region. (d) The flying Bunny (see also Figure 1(d)).

and how to gradually mix details of two surfaces. These
techniques are refined to allow a seamless transplanting of
one shape onto another. The transplanting operation consists
of two apparently independent classes of operations: topo-
logical and geometrical. The topological operation creates
one consistent triangulation from the connectivities of the
two submeshes. The geometrical operation creates a grad-
ual change of the geometrical structure of one shape into the
other. The latter operation is based on the Laplacian coordi-
nates and the reconstruction mechanism.

Let S denote the mesh that is transplanted onto a surface
U . See Figure 12, where the right wing (S) of the Feline is
transplanted onto the Bunny (U). The transplanting requires
the user to first register the two parts in world coordinates.
This defines the desired location and orientation of the trans-
planted shape, as well as its scale.

The user selects a region U◦ ⊂ U onto which S will be
transplanted. In the rest of the process we only work with
U◦ and do not alter the rest of U . U◦ is cut such that the
remaining boundary is homeomorphic to the boundary of
S. We simply project the boundary of S onto U◦. The two
boundary loops are zipped, thus creating the connectivity of
the resulting mesh D (Figure 12(a)).

The remaining transplanting algorithm is similar to detail
transfer and mixing. The user specifies a region of interest
on D, vertices outside the ROI remain fixed.

Next, the respective transitional regions S′ ⊂ S and U ′ ⊂
U◦ are selected starting from the cut boundaries on S and U◦.
Since S′ ⊂ D, this implicitly defines the transitional region
D′ ⊂ D along with a trivial mapping between vertices of S′
and D′.

For sampling, we require an additional correspondence

between S′ and U ′, hence we parameterize both meshes over
the unit square. The user guides this construction by cutting
S′ and U ′ such that both meshes are homeomorphic to a disk.
The cuts enable the mapping to the common domain, and in
addition they serve as intuitive means to align the mappings
such that there is a correspondence between the patches. In
our experiments no further warping was necessary to im-
prove the correspondence (cf. Section 6.1).

Once the transitional regions and the mappings are de-
fined, the transplanting procedure is ready to sample the
Laplacian coordinates of S′ and U ′ over D′. The correspond-
ing Laplacian coordinates are linearly blended with weights
defined by their relative position in the unit square parame-
ter domain. More precisely, if v ∈ [0,1] defines the coordi-
nate along the “height” axis (the blue and red lines in Fig-
ure 12(b), then the weights are v and (1− v), respectively.
Since the length distortion of the maps may significantly
differ, we linearly interpolate the Laplacian coordinates for
sampling (cf. Section 6.1). The remainder of the ROI is sam-
pled over D, and the reconstruction respects the belt of an-
chors which is placed to pad the boundaries of the ROI. Fig-
ures 12(c),(d) show the result.

8. Implementation details

All the techniques presented in this paper are implemented
and tested on a Pentium 4 2.0 GHz computer. The main
computational core of the surface reconstruction algorithm
is solving a sparse linear least-squares problem. We use a
direct solver which first computes a sparse triangular factor-
ization of the normal equations and then finds the minimizer
by back-substitution. As mentioned in Section 5, construct-
ing the matrix of the least-squares system and factorizing
it takes the bulk of the computation time. This might seem
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as a heavy operation for such an application as interactive
mesh editing; however, it is done only once per ROI selec-
tion. The solve by back-substitution is quite fast and enables
to reconstruct the surface interactively, following the user’s
manipulations of the handle. It should be noted that the sys-
tem is comprised only of the vertices that fall into the ROI;
thus the complexity is not directly dependent on the size of
the entire mesh, but rather on the size of the ROI. We exper-
imented with various ROIs of sizes in the order of tens of
thousands of vertices. The “intermediate preprocess” times
observed were a few seconds, while the actual editing pro-
cess runs at interactive framerates. Some short editing ses-
sions are demonstrated in the accompanying video.

9. Conclusions

Intrinsic geometry representation for meshes fosters several
local surface editing operations. Geometry is essentially en-
coded using differential properties of the surface, so that the
local shape (or, surface detail) is preserved as much as pos-
sible given the constraints posed by the user. We show how
to use this representation for interactive free-form deforma-
tions, detail transfer or mixing, and transplanting partial sur-
face meshes.

It is interesting to compare the Laplacian-based approach
to multi-resolution approaches: Because each vertex is rep-
resented individually as a Laplacian coordinate, the user can
freely choose the editing region and model arbitrary bound-
ary constraints, however, computing absolute coordinates re-
quires the solution of a linear system. On the other hand, the
non-local bases in multi-resolution representations limit the
choice of the editing region and boundary constraints, but
absolute coordinates are computed much simpler and faster
by summing displacements through the hierarchy. Addition-
ally, we would like to mention that we have found the Lapla-
cian approach to be easier to implement and less brittle in
practice.

In general, modeling geometry should be coupled to mod-
eling other surface properties, such as textures. The machin-
ery of discrete Poisson equations has already shown to be
effective for image editing, so that editing textured surface
should probably be performed on a combined differential ge-
ometry/texture representation.
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Appendix A: Exponential of a 3×3 skew symmetric
matrix

Let h ∈ R
3 be a vector and H ∈ R

3×3 be a skew symmet-
ric matrix so that Hx = h×x,∀x ∈ R

3. We are interested in
expressing the exponential of H in terms of the coefficients
of H, i.e. the elements of h. The matrix exponential is com-
puted using the series expansion

expH = I +
1
1!

H +
1
2!

H2 +
1
3!

H3 + . . .

The powers of skew symmetric matrices in three dimensions
have particularly simple forms. For the square we find

H2 =

⎛
⎝−h2

2 −h2
3 h1h2 h1h3

h1h2 −h2
1 −h2

3 h2h3

h1h3 h2h3 −h2
1 −h2

2

⎞
⎠= hhT −hT h I

and using this expression (together with the simple fact that
H h = 0) it follows by induction that

H2n = (−hT h)n−1hhT +(−hT h)n I

and

H2n−1 = (−hT h)n−1H

for n ∈ N. Thus, all powers of H can be expressed as linear
combinations of I, H, and hhT , and, therefore,

expH = αI +βH + γhhT

for appropriate factors α,β,γ.

Appendix B: Implementation Details

For ease of re-implementation, we explicitly give the rows
of the basic system matrix A. The main complication results
from the rotations, which are linearized and computed from
the displacements of one-rings.

We focus on one vertex v0 = (v0x ,v0y ,v0z) and its Lapla-
cian δ0 = (δ0x ,δ0y ,δ0z), yielding three rows in the sys-
tem matrix. The transformation T adjusting δ0 minimizes
the squared distances between corresponding vertices V =
(v1,v2, . . .) in the one-ring of v:

T =

⎛
⎝ s −h3 h2

h3 s −h1
−h2 h1 s

⎞
⎠ (19)

The coefficients are linear expression in the displaced coor-
dinates V′ (see [SLCO∗04] for details on how to derive the
coefficients)

s = ∑
i

six v
′
ix + siy v

′
iy + siz v

′
iz

= sxv′x + syv
′
y + szv

′
z,

(20)

where the abbreviations v′{x,y,z} are the rows of V′. Similar
computations lead to the linear expressions for h1,h2,h3 and
coefficient vectors h.

Now we can plug these expressions into the matrix T and
multiply with δ0 to find

Tδ0 =

⎛
⎝ ∑k∈{x,y,z}

(
δ0x sk −δ0y h3k +δ0z h2k )v

′
k

)
∑k∈{x,y,z}

(
δ0x h3k +δ0y sk −δ0z h1k )v

′
k

)
∑k∈{x,y,z}

(−δ0x h2k +δ0y h1k +δ0z sk)v
′
k

)
⎞
⎠ (21)

The constraint Tδ0 = δ′0 = v′0 −∑i wiv
′
i results in three rows
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of the system AV = b of the form

∑
k∈{x,y,z}

(
δ0x sk −δ0y h3k +δ0z h2k )v

′
k
)−v′0x

(1,w1,w2, . . .) = 0

∑
k∈{x,y,z}

(
δ0x sk −δ0y h3k +δ0z h2k )v

′
k
)−v′0y

(1,w1,w2, . . .) = 0

∑
k∈{x,y,z}

(
δ0x sk −δ0y h3k +δ0z h2k )v

′
k
)−v′0z

(1,w1,w2, . . .) = 0

(22)

or explicitly for, e.g., x:

v′x
(
(1,w1,w2, . . .)−δ0x sx −δ0y h3x +δ0z h2x

)
+

v′y
(
δ0x sy −δ0y h3y +δ0z h2y

)
+

v′z
(
δ0x sz −δ0y h3z +δ0z h2z

)
= 0.

(23)

We see that the basic system matrix essentially contains
three block copies of the Laplace matrix on the main diago-
nal, one for each coordinate direction. The additional coef-
ficients in the off-diagonal blocks link the coordinate direc-
tions to accommodate rotations.
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Abstract

Making virtual modeling as easy and intuitive as real-clay manipulation is still an unsolved problem.
Many artists still consider clay modeling as a simpler, more intuitive way to design complex shapes than
numerical shape modeling. Providing a virtual clay metaphor would however facilitate shape design: it
would enable copy/paste and undo operations, avoid unwanted drying of the clay and enable edition at
any scale. Implicit surfaces, which provide a smooth volumetric representation and a straightforward
modeling of topological changes are one of the most attractive solutions towards this goal.
This chapter reviews some of the recent advances on interactive sculpting with implicit surfaces. Our
3D sculpturing metaphor represents the sculpted shape as the iso-surface of a scalar field sampled in a
grid. The user can deposit some material in space and iteratively refines it using tools to add or remove
material, paint or smooth it. A mechanism for allowing local shape deformation, such as printing the
shape of a tool is provided, as well as a simple solution to offer haptic feedback while editing the shape.
The extension to multi-resolution sculpting, allowing interactive shape design with no restriction in
the scale of geometric details is then presented. Lastly, we describe a real-time virtual clay model
that mimics real clay by combining the previous shape representation with a layered physically-based
model, enabling both local and global deformations. Although not claiming physical accuracy, this model
exhibits several important features of clay, namely plasticity, mass conservation and surface tension.
Edition through direct manipulation using video tracking of the user’s hands is finally discussed.

1. Introduction

Compared with standard tools for numerical shape
modeling, real clay remains a very simple and intuitive
way to create complex shapes: even children use clay
at school. Many artists prefer expressing themselves
with real materials instead of using a computer. In
many modeling systems, the user cannot focus his at-
tention on the shape being modeled but has to under-
stand its mathematical, internal representation and
perform indirect editing, e.g. by interacting with a
control mesh instead of directly pushing or pulling the
surface. In addition, making holes or connecting sep-
arated parts is not always possible.

If one could get the benefits of real clay in a
computer-based modeling system, one could have the
best of both worlds: virtual clay would neither dry nor
crack; it could be mutated from softer to dryer states

as needed; the artist could pause at any time and re-
turn to work without worrying about material changes
in the interim. Furthermore, gravity would no longer
be a problem, so shapes than cannot be made eas-
ily with real material would become possible. Finally,
the advantages of any computer-based modeling tool
would apply: the artist would be able to work at any
scale and use any size of tool, simplifying the pro-
duction of fine details as well as global features, and
virtual modeling would allow copy/paste, undo, etc.,
as well as more clay-specific ideas such as temporarily
removing a part of the model to ease the editing of
hard-to-reach areas.

This chapter explores volumetric approaches aimed
at making virtual modeling as easy and intuitive as
real-clay manipulation. In this context, shape repre-
sentation using implicit surfaces is very well suited.
Handling topological changes is not the only advan-
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tage of these surfaces: they also ensure a correct defi-
nition of a closed surface which always possesses a well
defined interior and exterior.

Standard modeling with implicit surfaces is per-
formed using control primitives called skeletons that
generate a scalar field from which an iso-surface is ex-
tracted. These scalar fields can then be combined in
various ways, the most basic one being summation.
A drawback of this constructive approach is that the
cost of field evaluation grows with the number of prim-
itives. If used in a sculpting system in which each user
action results in the creation of a new primitive, the
field evaluation would quickly become prohibitive and
forbid interactivity. Most previous work on interactive
volumetric sculpting with implicit surfaces thus take a
different approach: the field function is directly stored
in the form of discrete values sampled on a 3D grid.
Skeleton-based primitives can still be used for repre-
senting the user-controlled tools that modify this field.

After a quick review of related work, this chap-
ter details a full solution for enabling quick shape
prototyping with no limitation in space or scale
of the modeled shape. We also cover the genera-
tion of haptic feedback. We finally describe an hy-
brid model that combined the previous represen-
tation with a layered physically-based model for
capturing local and global deformations of real
clay. More details on these models can be found
in [FCG00, FCG02, BFCG04, DC04a, DC04b].

2. Related work

A full review of modeling techniques using implicit
surfaces is beyond the scope of this tutorial. The in-
terested reader will find a good overview in [BBB∗97].

2.1. Volumetric sculpting

Interactive modeling based on discrete scalar field rep-
resentation was first introduced in 1991 by T. Galyean
and J. Hughes [GH91]. The field was stored on a
regular 3d grid (voxmap). The tool used to edit the
field was also discretized and particular attention was
paid to prevent aliasing when the discrete tool was
re-sampled into the field grid. Available tool actions
included adding or removing material, and smoothing
the surface through a convolution applied to the 3D
field.

In 1995, S. Wang and A. Kaufman [WK95] extended
the interaction to carving using tools deduced from a
pre-generated 203 volume raster or sawing (extruding)
via curves drawn onto the screen.

The following year, R. Avila and L. Sobierajski

[AS96a] used a force feedback articulated arm to com-
mand the tool in a similar context. The very rapid
update rate required limited the tool size to 3-5 vox-
els.

2.2. Multi-resolution editing

In 1998, J. Bærentzen [Bær98] proposed an octree-
based volume sculpting system. Used to accelerate ray-
casting rendering, the octree was unfortunately static:
the subdivision was limited to, and always reached a
fixed leaf level, yielding a regular sampling solution
very close to the grid used in [GH91]. Dynamic leaf-
node management to preserve memory in regions of
low details or to increase resolution in highly detailed
regions was left as a future work.

A. Raviv and G. Elber [RE00] proposed a different
hierarchical approach based on scalar tensor product
of uniform trivariate B-Spline function. A collection of
B-Spline patches with arbitrary position, orientation
and size was used to represent the scalar field. The
user could create patches and select an active patch
to edit it with a tool modifying its scalar coefficients.
An additional octree structure was used to sample the
collection of patches and conduct a Marching Cubes
to extract the iso-surface. The octree resolution was
guided by the underlying patches size.

S. Frisken [FPRJ00, PF01] presented a resolution
adaptive volumetric approach, named ADF which
stands for Adaptively Sampled Distance Field. The
basic idea was to use the euclidean distance to a
given surface and adaptively sample it into a discrete
scalar field. Field recomputations due to surface edit-
ing were either performed by starting at the bottom of
the hierarchy and then performing iterative simplifica-
tions (bottom-up strategy) or by refining the discrete
field where necessary (top-down strategy). In order to
maintain interactivity, the update was performed in
priority at the neighborhood of the surface. Then dis-
tance modifications propagated during idle moments.

2.3. Towards virtual clay

The volumetric models we just reviewed were re-
stricted to simple operations such as adding material
or carving it, but contrary to real clay, didi not allow
local and global, volume preserving deformations. Cel-
lular automata were used to mimic the deformations
of clay [ATTY99, DAB03]. These models allow free-
form modeling with volume conservation and topolog-
ical changes. However, the user can’t perform large-
scale deformations such as bending the limbs of a clay
model.

Physically-based simulation is another option to
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model clay, viewed as a material that lies between plas-
tic solids and viscous fluids. However, plastic-solids re-
quire the addition of specific mechanisms for handling
topological changes [MQW01]. Non-realtime, particle-
based models were used to represent viscous mate-
rial [Ton91] somewhat similar to clay. Realtime per-
formances were achieved using Eulerian fluid simula-
tions [Sta99], but this approach requires the fluid to
occupy the entire space and thus fails to describe clay,
which is bounded by a time-varying surface.

3. Sculpting with implicit surfaces

This section describes the implementation of a mono-
resolution sculpting system based on the simple idea
of a discrete field function stored in a 3D grid. The
sculpted object is an iso-surface of this field. We first
discuss different kinds of tools and actions and then
detail the data structures enabling efficient field stor-
age with no limitation of the shape extend in space. A
snapshot of the resulting sculpting system, first pre-
sented in [FCG00], is depicted in Figure 1.

Figure 1: Sample snapshot of our sculpting applica-
tion. The object being modeled is environment mapped
so that the user can better appreciate its shape. The
sculpting tool is displayed in wireframe. The yellow
spheres represent the lights that the user can move
around while sculpting.

In the remainder of this chapter, we take the con-
vention that the field value corresponds to the density
of virtual clay: the value is zero where there is no ma-
terial and increases to a given maximal value inside
the sculpted object. The surface of the latter is de-
fined as an iso-surface of the field function. The user
edits it, e.g. uses tools to add, remove or move mate-
rial, by locally modifying the field function (stored as
mentioned earlier, as a set of discrete values sampled
in space).

3.1. Sculpting tools

The easiest way to set up tools for editing a scalar field
is to define them as primitives generating scalar fields
as well. A tool will act by adding or removing its field
contribution to the discrete field function that defines
the sculpted object. More precisely a tool is defined
by:

• a contribution, i.e. a field function with local sup-
port, attached to the tool’s local frame. The tool’s
bounding box bounds the region in space where
the tool’s contribution is non-zero. The tool’s shape
used for display is an iso-surface of the contribution.

• an action, that defines the way the tool’s field is to
be combined with the object’s field (which may be
zero or not in the region where the tool is applied).

Tool’s contribution

We use two kinds of tools: analytical implicit primi-
tives and discrete tools defined through sculpting us-
ing our application. In both cases, the tool’s contribu-
tion is usually positive inside the tool and smoothly
decreases to vanish at the border of a limited region
of influence. This enables local control of the sculpted
shape and save computational time.

The analytical primitives we have implemented are
spheres or ellipsoids. We use Wyvill’s field func-
tion [WMW86] to generate an isotropic (spherical)
field around the tool center. We obtain general ellip-
soids by scaling the tool along its three axes.

We also propose freeform tool shapes that are gener-
ated within our application. The shape displayed cor-
responds to the iso-surface, which is the same as the
one visualized during its design process. The tool can
also be scaled along the three axes of its local frame co-
ordinate. Since applying such a discrete tool requires
the evaluation of its field between its samples’ location
(see below), we define a continuous field for the tool
using tri-linear interpolation.

Standard tool actions

The tool’s actions listed below are similar to those
presented in [GH91, AS96a]:

• deposit material, i.e. add the tool’s contribution to
the (possibly) existing field values that define the
sculpted object.

• carve material, either smoothly by subtracting the
tool’s contribution to the object’s field or un-
smoothly by setting all field values under the tool’s
region of influence to zero.

• paint material by changing the color attributes
stored together with the object’s field value. Again,
this can be done either smoothly or not, depending
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on the way the tool’s contribution is taken into ac-
count to modify or remove the previously existing
color values.

• smooth the shape being modeled by applying a low-
pass filtering of the the object’s field function over
the tool’s region of influence.

Local deformation tool

Our aim here is to produce an intuitive local defor-
mation, similar to the one a rigid tool would cause
when interacting with clay, while avoiding the com-
putational cost and stability problems of a physical
simulation of the material displacements. Our method
is inspired from an approach developed for standard
skeleton-based implicit surfaces, which consists in ap-
plying a negative field to compress the object in the
area where another object penetrates it, while creating
a bulge by adding a positive field to imitate material
displacement around the contact region [CD97].

We set the tool contribution to negative values in-
side the tool’s iso-surface, in order to erase the ma-
terial inside the tool; then the contribution becomes
positive immediately outside the tool, where some ma-
terial is to be added in order to compensate the loss
of volume (combining these two actions imitates mate-
rial displacement that occurs when a real tool collides
with a block of clay). Finally the contribution vanishes
to zero as we reach the border of the tools region of
influence. In practice, the contribution is defined by
combining a standard tools contribution (decreasing
with the distance to the tools surface) with an analyt-
ical, smooth deformation function (refer to [FCG00]
for details). Local deformation tools and the defor-
mations they produced are depicted in Figures 2 and
Figures 4.

Figure 2: (left) Local deformation tool (right) Imprint
made by shifting an ellipsoidal tool onto an object.

3.2. Representation of the discrete scalar field

Let us now discuss the data structures needed for ef-
ficiently representing the spatial samples of the field

that defines the sculpted object. A straightforward so-
lution consists in using a predefined, regular 3D grid.
This is however very limitative: the grid then encloses
the model, limiting its extension in space; moreover,
it wastes memory by storing irrelevant sample points
where no field is defined. We rather use dynamic data
structures that only store the relevant voxels (intu-
itively, those where a field value is defined) of a virtual,
infinite grid.

We call the regularly spaced points that sample the
field Vertices. Each of them stores a field value be-
tween an arbitrary minVal and maxVal (arbitrarily set
to 0 and 3 in our implementation, the iso-value at
which the surface is defined being 1.5), a color and
some cached data, such as the field gradient and the
point location (this avoids its recomputation from the
virtual grid indices). Each Vertex with a field value
higher than minVal is stored in the VertexTree. Oth-
ers are removed from the structure and deleted. Values
above maxVal are clamped to maxVal. When request-
ing the value of a Vertex not defined, the returned
value is minVal.

The regular space sampling we use divides space in
cubical elements we call Cells. Each Cell having at
least one Vertex defined is stored in a CellsTree. A
Cell is made up of:

• eight pointers to its Vertices, one of which at least
being non-null.

• an index deduced from the value of its eight
Vertices relative to the iso-value, which encodes
the Cell/iso-surface intersection configuration. This
is a classical decomposition step from the Marching-
Cells algorithm (see [Blo87, LC87, Blo88]).

• twelve pointers to edges.

The Cells that intersect the iso-surface (depending
on their index value) are also inserted into another
structure which we call crossList. To optimize sur-
face display, Edge structures are created to compute
and store an intersection of a Cells edge with the iso-
surface. Edges are stored in an EdgeTree.

We tried two different implementations for the
above dynamic data-structures (the VertexTree, the
CellsTree, the crossList and the EdgeTree): balanced
binary search trees and hash-tables. Our tests were in
favor of the hash-tables implementation (see details
in [FCG00]).

3.3. Applying a tool: data structures update

When a tool is applied, we have to flush its modifica-
tion in the VertexTree. To this end, we first compute
the axis-aligned bounding box surrounding the local
tool bounding box. Then, we walk through this box
by:
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Figure 3: Data structures for the field representation.
Left: The Cell-Tree. Middle: the cross-list. Right: the
sculpted surface

1. transforming from world to local (tool) coordinate
only the two extremal points of the box (Pmin and
Pmax) and the three displacement vectors (that
move from one Vertex to the next in each axis di-
rection).

2. starting from the Pmin point, we reach the next
point simply by adding its displacement vector to
its current location, and similarly adding its coun-
terpart displacement vector to its counterpart lo-
cation in local (tool) frame coordinate.

Note that any scaling can be applied to the tool by
applying the inverse scaling to the local location we
just obtained.

For each Vertex examined during this walkthrough,
we distinguish three cases:

1. the Vertex is in the world bounding box, but out-
side of the local bounding box. It can be very
quickly rejected, since the bounding box contain-
ment is a very rapid test in the local frame coordi-
nate. We call these Vertices the visited Vertices.

2. the Vertex is inside the local bounding box, but
outside the tool’s influence (i.e. the tool’s field has
a null contribution at this point). To identify this
case, we must compute the tool’s field value for
that point; we call them the computed Vertices

(meaning that we computed the tool’s field, but
finally the Vertex wasn’t modified).

3. the last category concerns the Vertices whose val-
ues were effectively modified. We call them the
dirtied Vertices because they have to be updated
(cleaned).

All the dirtied Vertices are inserted into a tempo-
rary tree called modified.

Each time a redisplay is needed, we successively
extract (pop) every Vertex from the modified tree.
For each Vertex, we then update the eight Cells that
share it. We use a timestamp-mechanism to avoid mul-
tiple Cell examinations. Examining a Cell consists
in computing its index, i.e. a bitmask deduced from
its Vertices values relative to iso. If the Cell doesn’t

cross the iso-surface, we’re finished with it. If it crosses
the iso-surface, its index corresponds to a given sur-
face crossing configuration stored in a pre-computed
table (this is a standard step of the Marching Cubes
process). This configuration tells us which Edges of
the Cell are intersected. The corresponding Edges are
then updated.

Creating or updating an Edge consists in (re-
)computing the field gradients of its two Vertices (us-
ing for instance a central difference scheme). Then, the
intersection point is obtained by linearly interpolating
the Vertex attributes (such as the location, gradient
and color) weighted by the corresponding potential
field value stored. The interpolated gradient serves as
surface normal.

3.4. Handling undo and redo

One key feature to encourage creative explorations is
to allow multiple successive tries: the user can exper-
iment whatever he desires without any consequence
because he can always return to an earlier configura-
tion.

We achieve the undo/redo process via temporary
undo-files: each time a tool is applied, we dump all
the modified Vertices into a new undo-file. In our
implementation, dumping a Vertex corresponds to:

1. writing its indices in the virtual grid (i.e. the triplet
(i, j, k) relative to its current origin and step size.

2. writing its previous value and attributes (color only
in our case, the other attributes such as the loca-
tion and gradient are simply caches, and can be
computed).

3. writing its new value and color after modification.

3.5. Results

Figure 4 shows an inprint inside a sculpted surface
made by a local deformation tool sculpted within our
application.

An example of complex object created with our
sculpting system is depicted in Figure 5. Creating this
shape required a number of trials and errors. It took
three hours before the user was satisfied with the re-
sult. The main practical difficulty for the user was de-
ciding, using a simple 2D display on a screen, whether
the active tool was located in front of the sculpted sur-
face or if it was intersecting it (which was desired for
locally inflating or carving the surface). Several times
during the edition, some material was added above the
sculpture by mistake, so the undo mechanism proved
very useful. The haptic feedback discussed next brings
an effective solution to this positionning problem.
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Figure 4: Local deformation tool created by a tool
sculpted using our system.

Figure 5: This sculpture was created using our volu-
metric sculpting system in about three hours, using a
mere 2D mouse and 2D display on a screen.

4. Force feedback

Like every artistic process, virtual sculpture requires
a strong interaction between the artist and his art-
work. Feeling the material being modeled enforces the
metaphor of sculpting and the immersion of the user,
making the creative activity easier. The need for hap-
tic feedback is even stronger when the user visualizes
his 3D sculpture on a standard screen: without force
feedback, correctly positioning an editing tool with
respect to the sculpture is difficult, since it may re-
quire changing the viewpoint several times to check
the tool’s position.

Fortunately, the incorporation of force feedback in
a virtual sculpture system does not need to follow the
strict constraints of physical accuracy. Indeed, there is
no strong need for tactile realism in virtual sculpture,
since the only aim is to increase the artist’s ability
to be creative. This freedom allows the use of expres-
sive haptic rendering, enhancing certain aspects of the
models being displayed.

This section proposes an effective solution to the

incorporation of expressive haptic feedback in the vol-
umetric sculpting system we just described, together
with a simple solution for reducing the instability
problems during the interaction. As our results show,
our new haptic rendering improves interactivity and
immersion, thus making the sculpting system far eas-
ier to use. This work was first described in [BFCG04]

4.1. Computing haptic forces

The haptic rendering was done with a Phantom desk-
top device, which is a 6DOF articulated arm able to
render 3D force feedback [MS94]. Figure 3 shows the
use of the Phantom desktop to model a character.

Figure 6: A user modeling a character with the virtual
sculpture sofware using 3D glasses a Phantom desktop
device.

The advantage of having a volumetric representa-
tion for defining the surface and its gradient is that
interesting local information is available to compute
force feedback. As Avila [AS96b, Avi98] showed, there
is no need to make complex computations to calculate
plausible forces. Our forces express in a simple way
pseudo-physical properties: volumetric viscosity and
surface contact.

Viscosity

Equation (1) shows how a friction force can be com-
puted. This force tends to resist the movement pro-
portionally to the material density and to the speed
of the motion.

�fv = −αfv0

V

V
0

�̇p (1)

The parameters in equation (1) are: α, a positive
constant dimensionally equivalent to the inverse of a
speed; fv0

, the friction intensity on the surface; V
0
,

the value of the potential defining the isosurface. �̇p is
the speed at the point �p. V is the value of the scalar
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field function at the same point and �fv is the resulting
volumetric viscosity force for this point and speed.

This force grows with the density of matter and the
speed of the tool and is directed in the opposite direc-
tion of the movement. This reaction makes the user
feel the volumetric property of his artwork by the re-
sistance it opposes to the movement but it doesn’t give
any clue about the surface.

Contact

Equation 2 shows how the surface can be expressed
in term of force feedback. This force is normal to the
surface and grows rapidly when the tool enters the
isosurface. The intensity of the force is clamped to
ensure the safety of the simulation.

�fc = −fc0

�grad(V )

‖ �grad(V )‖

(
V

V
0

)e

(2)

This force is locally equivalent to a spring model
with stiffness e if we consider the field function V as a
distance to the isosurface. This haptic feedback gives
the user the ability to touch his artwork by feeling
contact with the isosurface.

4.2. Expressive haptic rendering

With those two forces expressing volumetric and sur-
facic properties of the sculpture, it’s possible to give
the user a good feeling of his work [HQK98]. We ex-
tend this technique by using different combinations of
the forces according to the user’s intentions.

Changing the haptic representation of the object be-
ing manipulated according to user actions provides an
expressive force feedback. This rendering adapts the
simulation of the reality to the action of the artist,
providing different feedback for the same object. This
variability makes it non-realistic but enhances the in-
teractive experience.

We achieve the goal of reinforcing the impact and
the usability of the simulation by making it less re-
alistic, in the same way non-photorealistic picture
does for visual rendering. This is our notion of “non-
tactorealistic” or “expressive” haptic rendering.

Forces combination

We found that the surfacic force is very useful when
positioning the tool on the sculpture but can be dis-
turbing when the user edits his work. If the tool can’t
enter inside the sculpture, carving an existing model
is difficult. By attenuating the surfacic force when the

user modifies his sculpture and enforcing the volumet-
ric rendering, we reinforce the feeling of manipulating
matter, not only a surface.

Thus, two combinations of the forces are used de-
pending on the interaction mode of the user. Equation
(3) is used when the user is passive and equation (4)
when he’s applying a tool. When the user is passive,
the surfacic force dominates and when he’s active, the
volumetric force takes over, which can be expressed by:
αp > βp and αa < βa. The variation of each relative
contribution is expressed by: αp > αa and βp < βa.

�f = αp
�fc + βp

�fv (3)

or αa
�fc + βa

�fv (4)

The transition between the parameters is done
smoothly to avoid discontinuities in the resulting force
by using the equation (5) where p varies continuously
from 0 when the user is passive, to 1 after he has
started to apply the tool, and from 1 to 0 for the op-
posite transition.

�f = (αp + p(αa − αp))�fc + (βp + p(βa − βp)) �fv (5)

4.3. Stabilization of the haptic feedback

If the update of the force at 1kHz rate is not reached,
there is a potential source of vibration in the system.
This requirement is not an issue with our system be-
cause of the simplicity of the forces. However, a haptic
simulation can’t be stable in every condition because
of the user being involved in the loop [GC96].

The original solution presented here is a particular
case of virtual coupling introduced in [CSB95] without
using complex linear circuit theory as in [AH99].

Origin of the vibrations

By its definition resulting of a gradient, the surfacic
force tends to repulse the tool in an area where the
magnitude of the force is smaller. The lag introduced
by the user in its reaction makes him resist to a strong
force when the tool is already outside the active area.
Then, he doesn’t meet a resistance and reenters the
repulsing area. The repetition of this sequence causes
the unexpected vibrations.

Filtering the force to make it vary smoothly is not
a good solution because it doesn’t guarantee that the
position, resulting of the concomitant action of the
user and the haptic feedback, will never jerk. Our so-
lution is to filter the position coming from the device
and to use this filtered position that can’t vibrate, to
compute the force feedback. As a side effect, this force
is naturally smooth.
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Filtered position

To avoid vibration, a damped position is computed
using a low-pass filter that cuts the high spatial fre-
quencies of the real position of the device. This filter
is just an exponential damping having a time constant
adapted to the vibration we want to cut. Equation (6)
gives the definition of the damped position �pd in func-
tion of the real one �pr, τ being the time constant of
the filter.

�δp = �pr − �pd(t − 1) (6)

�pd(t) ← �pd(t − 1) + τ �δp

Using this damped position eliminates the vibra-
tions well. However, cutting the high frequencies of
the movement introduce a lag that is noticeable in
high amplitude movements. We can then use the fact
that those movements, even at high speed, are not vi-
bration but express the user’s intention to really move
to another area. The vibrations are then characterized
by high frequencies and low amplitude.

So we compute (see equation (7)) a confidence γ
varying between 0 and 1 in the damped position de-
pending on the distance between the real position and
the damped one. If the two positions are close, mean-
ing there is a potential vibration of low amplitude
or that the tool doesn’t move, the confidence in the
damped position is 1; if the position is far away, the
confidence tends to 0. The distant constant λ charac-
terizes the amplitude of movement we want to cut.

γ =
1

‖ �δp‖/λ + 1
(7)

A filtered position resulting from a combination of
the real and damped one is then computed using this
confidence. Equation (8) shows this filtered position
�pf as a linear combination of �pr and �pd.

�pf = γ �pd + (1 − γ) �pr (8)

The continuous variation between the real and
damped position makes it unnoticeable to the user and
the surfacic force resulting can’t be discontinuous.

Spatial coherence

An interesting property of the filtered position can be
deduced from the precedent relations. Equation (8)
directly implies equation (9); from (6) we can deduce
(10) and then (11) can be deduced from (7).

Finally, we can deduce that the distance between

the filtered position and the real one ‖ �pf − �pr‖ is al-
ways smaller than λ, the distance characterizing the
confidence factor (equation (12)).

‖ �pf − �pr‖ = γ ‖ �pd − �pr‖ (9)

= γ ‖ �δp‖ (10)

=
‖ �δp‖

‖ �δp‖/λ + 1
(11)

≤ λ (12)

This property ensures a spatial coherence between
the real position and the filtered one used to display
the tool and to compute the forces by guaranteeing
they will never be distant from more than λ. This
distance being of the same order than the magnitude
of the vibrations, it’s rather small and the user can’t
even notice the offset between the two. The guarantee
expressed above ensures a good immersion of the user
needed to make possible artistic work.

Figure 7: This sculpture was achieved with haptic
feedback within less than 1 hour, to compare to the
bust in Figure 5 which took three hours to be created.

5. Multi-resolution sculpting

This section presents an extension of the previous
3D sculpture system that enables interaction with a
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sculpted object at any modeling scale, without hav-
ing to be concerned with the underlying mathemati-
cal representations. It allows the user to model both
fine and coarse features while maintaining interactive
updates and display rates.

The modeled surface is still an iso-surface of a
scalar-field. The new idea is to store the field in a
hierarchical grid that dynamically subdivides or un-
divides itself according to the size of the tool being
used. The extent of the structure, in terms of space
and resolution, is fully dynamic; it is driven by the
actions of the user and has no size limitation of maxi-
mum depth. This system allows for precise, interactive
direct modeling through the addition and removal of
material. As the underlying scalar field representation
is completely hidden from the user, the use of the sys-
tem is intuitive and gives the feeling of direct inter-
action with the sculpted surface. This work was first
presented in [FCG02]

5.1. Hierarchical scalar field

Figure 8: Subdivision principle. Several choices are
possible such as replacing the left Cell by the subdivided
Cells on the right or referencing the subdivided Cells as
children of the left Cell (i.e. enriching the left Cell),
duplicating or not the Vertex elements that have the
same position, . . .

We extend the idea of dynamic structures to store
the field function dscribed in section 3.2 by providing
a mechanism for locally refining the sampling rate.
There are several ways to do so, as illustrated in Fig-
ure 8. In order to allow a multiresolution representa-
tion, the left cell isn’t replaced by the sub-cells set, but
is rather enriched with it: the sub-cells are its succes-
sors or children. As we do not want to restrict the user
to any resolution limit (as well as we don’t restrict the
extent of the model in space), we allow the dynamic
creation and deletion of successors sets. This precludes
the use of classical octree storage optimizations. We
rather reduce the structure overcost by allowing a di-
rect jump to much finer resolutions. In practice, we
recursively subdivide space by a constant factor n in

each dimension (n = 3 in Figure 8), leading to an ntree
structure.

The next point to discuss is whether to:
(1) express the samples at a finer level, k + 1 as a
delta contribution over the average or median value
that would be stored at the coarser level k;
(2) store directly the field value in each sample, thus
using simple subsampling for coarser levels.

Solution 1 appears more elegant, as it looks like a
wavelet decomposition of the 3D scalar field. However,
it yields the extra cost of maintaining the hierarchy
coherency. Coarser levels would need to be updated
when detailed modifications are conducted on smaller
levels, in order to recompute the average or median
field’s values.

Solution 1 also suggests that large changes on the
low-resolution levels could effortlessly be reflected on
the higher ones: storing some min-max information
along the hierarchy would allow rapid pruning of the
volume parts that become completely outside or inside
of the modeled shape. However, the hierarchy explo-
ration from the root node to the leaves (which is also
requested in solution 2) cannot be avoided, since the
surface representation has to be updated.

With the subsampling approach of solution 2, there
is no need to compute the interpolated values from
the coarser levels: the field value at a vertex is directly
given. Moreover it allows no duplication of the Ver-
tex nodes between resolutions. In contrast, solution
1 would force the eight Vertices of the Cell at the
left of Figure 8 to be distinct from their counterparts
in the sub-cells on the right because the sub-cell val-
ues define a delta contribution over them. Lastly, so-
lution 2 offers a kind of vertical independence over the
hierarchy: each level is completely independent from
its ancestors, and can thus be updated independently.
Therefore, we have adopted solution 2.

When subdividing the grid (i.e. during Cell cre-
ation), we pay special care to share the Vertex nodes
among common faces or edges between the adjacent
Cells of the same level. Once these shared structures
are wired, their forthcoming updates won’t cost more
than a time-stamp comparison to prevent useless com-
putations.

5.2. Tool Guided Adaptive Subdivision

Applying a tool

The refinement of the hierarchical structure we just
defined is tailored by the resolution of the tools the
user applies during editing. Applying a small tool or
a tool with sharp features will result in a local refine-
ment of the structure. Since the user can then switch
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to a coarser tool, special attention has to be paid to
the efficiency of updates. In order to give an interactive
feedback whatever the tool’s size, tools are applied in
an adaptive way, the grid being always updated from
coarse to fine levels. This maintains interactive rates
even for large tool-sizes. A dynamic Level-Of-Detail
(LOD) mechanism ensures that the surface of the ob-
ject is also displayed at interactive rates regardless
of the zoom value: surface elements, generated and
stored at each level of resolution, are displayed de-
pending on their size on the screen. The system may
switch to a coarser surface display during user actions,
thus always insuring interactive visual feedback.

More precisely, applying the tool involves two im-
portant steps:
(1). we must ensure that the tool is correctly sampled,
i.e. the cell resolution of the field representation must
be small enough to capture the tool’s features.
(2). for each covered vertex, we have to combine its
current field value with the tool’s contribution at that
point, depending on the predefined tools action:

ALGORITHM: Applying a Tool to a Cell

Cell::apply(Tool t, Action a) {
foreach Vertex v do { a.update(t,v); }
if (I have no children) { checkSubdivide(t); }
if (I have children) {

foreach Cell child do { child.apply(t,a); }
}

}

Now, how do we know if we need to subdivide
a given cell (checkSubdivide test in the algorithm
above)? Let’s suppose that the tool has an ellipsoidal
shape. We would like to obtain something like Figure
9, where the sampling rate increases (i.e. the cell size
decreases) in regions where the tool has sharp features.

Figure 9: Sampling an ellipsoidal tool. (a). Only 2
consecutive levels. (b). All the levels hierarchically cre-
ated.

First, we query the tool attributes for requirements
on a minimal security cell-size to reach, in order not

to miss any of its features. This information may be
constant over the tools influence region, or locally
computed. For example, if the tool field is stored as
a hierarchy of cells, we use the size of the leaf cell as
the minimal size to reach.

Once we have reached this minimal size, the field
could still be ill-sampled. For example, if we use a
eraser action, we might create field discontinuities,
even with spherical tools. Our choice here is to try
to estimate the discrepancy of the field. If the cell’s
discrepancy is higher than a given tolerance, we go
on subdividing. Pragmatically, we use this strategy
only on cells that are crossing the surface, as this is
our region of interest. Moreover, using this strategy
in regions where no surface exists could disturb the
surface when it reaches these regions; as the details
existing only in the field (and consequently hidden
from the user) would suddenly become visible on the
surface being created.

Figure 10: Sampling an ellipsoidal tool: the large el-
lipsoid is the tool, and the small one inside it is the
surface created. The figure shows the maximum reso-
lution reached in highly curved areas.

As stated above, using a subtractive tool can cause
discontinuities in the scalar field so the subdivision
process might never end. Here again we rely on the
tool to query a maximum depth to reach. In fact,
this is formulated as a smallest cell size not to over-
pass, which we call the maximum resolution. It could,
exactly as the minimum resolution above, be locally
adapted inside the tool’s region of influence. At the
moment, our ellipsoidal tools only expresses it as a
constant factor, depending on the tool’s scale used.
This yields:

ALGORITHM : Testing a cell for subdivision

Cell::checkSubdivide(Tool t) {
if (size > t.getMinResolution() ) {

subdivide();
} else {
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if (size < t.getMaxResolution() ) {
if (estimateDiscrepancy() > accept-

ableDispcrepancy) {
subdivide();

}
}

}
}

We do not have a priori knowledge of the field’s pro-
file before we reach the bottom level of subdivision.
Thus we cannot stop the subdivision to conduct any
simplification (“undivide” of Figure 8) at any partic-
ular level, as we cannot guarantee that the finer level
will not add surface details. As a result, we conduct
a separate simplification pass over the whole sampled
field at idle moments of the interaction. The simplifi-
cation strategy we are currently using is rather dras-
tic, as it destroys every Cell that does not (and whose
children do not) cross the surface.

Updating the coarser levels first, as depicted in the
apply algorithm, is crucial to provide an interactive
visual feedback. This means careful initialization of
the newly created Vertex set. The creation of the new
vertices for the sub-cells requires interpolation of the
field value prior to the current tool application, so
that the tool’s modifications can properly be added.

5.3. Priority Queue Based Field Update

The recursive approach for performing field updates,
described in Section 5.2, isn’t suitable for an inter-
active update. Actually, it walks along the hierar-
chy depth first, thus missing the requirement to com-
pletely update coarser levels before considering finer
ones. Next, we explain how to get this feature, which
is essential for achieving interacive display.

From coarser to finer levels

We use a priority queue sorted on the level addressed
and on the tool/action concerned to ensure an update
from coarser to finer levels. The tools/actions must be
sequentially applied, but we should update the coarser
levels first. Thus we perform a straightforward priority
evaluation based on these two criteria.

The Apply procedure outlined in 5.2 is not altered
much. It still updates its internal vertices and sub-
divides if needed. Then, instead of recursively calling
apply on the existing children, it simply inserts a new
element made up of the same ToolCopy and the next
level.

Emptying the queue

To empty the priority queue we need to find all the
cells of a given size (or level) that are intersected by
the ToolCopy (which is much like an image of the Tool
at the moment its application was posted). Without
any additional structure, this would mean recursively
walking through the cells hierarchy from the root-cell
until we reach the cells having the desired size. To
the cost of walking from the root-cell we must add
the extra-cost of the intersection test with the tool for
each cells of the intermediate levels.

To avoid these useless computations, we use a simple
cell-queue with basic constant-time operations (push-
back and popfront) to temporarily store the cells in-
tersected by the tool from one level to the next.
Cell-queues are indexed by a ToolCopy and the size
of the cells it contains. They can be directly in-
serted/handled inside the manager priority queue,
whose elements are then the cell-queues.
The Apply procedure of 5.2 is again slightly modified:
it receives a cell-queue as an extra parameter. Chil-
dren cells that intersect the tool are appended to this
queue.

Another benefit of these cell-queues is that they al-
low interruption of the processing of a given level
if any coarser level is inserted inside the manager.
The interrupted cell-queue is simply re-inserted in the
manager priority queue, and is properly handled from
where it was suspended when the working task returns
to it.

5.4. Surface creation and display

The surface of the sculpted object is still generated us-
ing a Marching Cubes algorithm. If a given cell, at any
resolution, crosses the iso-value, we associate a Sur-
face Element to it. This structure stores the Marching
Cubes configuration index (an integer) and at most
twelve pointers to some Surface Points, i.e. intersec-
tions of the iso-surface with the current Cell’s edges.
As a result, we obtain many approximations (Level
Of Detail) of the iso-surface at each level of the cells
hierarchy.

Additionally, the Surface Element is used to es-
timate the surface discrepancy introduced in Sec-
tion 5.2. We need a quantity that indicates the flatness
of the extracted surface. We decide to exploit the nor-
mals extracted at the surface points. If the normals
are all pointing in a similar direction, the surface will
be well represented by our linear approximation. On
the contrary, if they have very different directions, our
linear approximation is poor and the sampling rate
should be increased to better match the underlying
iso-surface. We use a straightforward estimator that
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computes a kind of standard deviation of the surface
normals.

The refinement process guided by the discrepancy
estimator enables correct sampling of the field. How-
ever, at the leaf level of the hierarchy we obtain far
too many triangles for any current graphic hardware
to display interactively.

To address this problem, we compute for each cell an
estimated projected size on the screen. It is estimated
from the cell’s size and the distance of the cell’s center
to the screen projection plane. Using this projected
size, we can stop the hierarchy exploration when the
projection of the current cell becomes too small. For
example, if the projected size of a cell is smaller than
a pixel, the triangles contained inside its children will
be smaller, so we avoid visiting them and rather draw
the surface element of the current cell.

This mechanism gives control over the number of
displayed cells at each frame and dynamically selects
a LOD dependent on the distance to the projection
plane. We automatically adjust the minimum pro-
jected size from frame to frame to maintain a given
framerate during user interaction. At the end of each
frame, we measure the time spent from the previous
frame end and we use the difference with the desired
display time to weight the growing factor of the mini-
mum projected size. Pragmatically, we used the third
power of this difference to minimize its influence when
the display time is near its goal, and emphasize it when
it’s far from it, keeping its sign. When the user is idle,
the limit projected size is progressively reduced close
to zero. So the fully detailed geometry can be rendered
if the user waits sufficiently long; which will allow a
non-interactive but accurate display during the ses-
sion.

Contrary to other multiresolution iso-surface con-
structions, we pay no attention to the cracks that ap-
pear between adjacent cells of different sizes. A first
reason for this choice is that the surface is always
changing during the sculpting process. Another rea-
son comes from the fact that we dynamically select,
at each frame, where to stop in the cells hierarchy dis-
play. Reconnecting surface elements would force us to
always track the neighboring cells. This would largely
slow down the display rate, which is especially true in
our unconstrained hierarchy (adjacent cells could be
distant from more than one level of resolution). More-
over, as long as a sufficiently large number of polygons
is displayed, the cracks can remain hardly visible (see
Figure 11), it is thus a posteriori not worth the effort.
An offline global polygonization is computed when the
sculpted object needs to be exported.

Figure 11: Three steps of a character’s modelling
through the editing of an imported polygonal mesh.
This example illustrate multi-resolution sculpting,
since large tools were used for creating a smooth body
for the character while very small ones were needed to
create the wings of the helmet and the chain.

6. Towards virtual clay

Although the previously described sculpting systems
offer real-time interaction and a number of interesting
features, the user action is mostly restricted to carv-
ing and adding material, since only a very restrictive
kind of local deformation was defined. This fails to
fully provide the intuitive interface for modeling we
are looking for, since several some of the essential fea-
tures of real clay — its ability to be globally bent or
twisted, its constant volume during global and local
deformations, its surface tension — are not simulated.

This section presents a volumetric, real-time virtual
clay model which can be both sculpted by adding and
removing material and deformed through the interac-
tion with rigid tools. Either global or local, the de-
formations mimic the effects of the tools on real clay,
due to plasticity, mass conservation, and surface ten-
sion. Our method enables the user to specify the local
properties of the clay such as color and fluidity and
allows the simultaneous use of an arbitrary number
of tools. These contributions make this virtual clay
model ready for direct hand manipulation, as be dis-
cussed in conclusion. This work was first presented
in [DC04a, DC04b]

In this section, the clay surface is defined as the iso-
surface at 0.5 of a scalar field modeling the clay den-
sity. Field values are stored in a 3D grid and clamped
between 0 (an empty cell) and 1 (a cell full of clay).

6.1. A layered model for virtual clay

We are seeking for a model that, in addition to classi-
cal carving or addition of material, is able to capture
local and global deformations expressed through clay
displacement from a grid cell to another.

Rather than trying to be physically accurate, we
use a layered physically-based model to simulate the
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desired features of clay in real-time. The layers we use
are:

1. Large scale deformations: This fist layer allows
the user to bend or twists parts of the sculpted
model using several rigid tools. The deformations
are plastic: the clay will not come back to its initial
state after the deformation is applied.

2. Volume conservation: The second layer prevents
volume variation by iteratively poring clay in ex-
cess (i.e. clay in cells which density value exceeds
1 or which are occupied by a tool) into neighbour-
ing cells. This results into intuitive folds and local
bulges when the user deforms of presses the clay.

3. Surface tension: The third layer mimics surface
tension by moving clay in cells where the den-
sity value is below 0.5 towards the surface of the
sculpted model. As a result, clay does not spread
into non-visible low-density regions, and the object
remains compact anytime.

During simulation, the three layers are emulated in
turn, over the same virtual clay representation (the
3D grid storing the density field). This yields a real-
time model that exhibits the desired properties and is
thus intuitive to use, as our results show. Figure 12
gives a schematic representation of the three layers.

Figure 12: A layered model for virtual clay. (a) large-
scale deformations modeling plasticity. (b) local defor-
mations insuring constant volume. (c) Surface tension
avoiding the spreading of clay over space.

6.2. Large scale deformation layer

We are seeking for the large scale, plastic deformation
produced by the action of user-controled tools. Con-
trary to most physically-based models used in Com-
puter animation, there is no need to use a dynamic

model here: getting a static “equilibrium shape” after
each user’s action is sufficient.

This layer computes the displacement δ to apply
to clay material lying in a given grid cell as a linear
combination of the displacements dictated by the user-
controled tools.

Combining the actions of multiple tools

Being able to interact by simultaneously using an ar-
bitrary number of tools is an essential feature of our
model: since we are trying to create a material close
to real clay, sculpting with several tools, one of which
may freeze a region of the clay to keep it still will be
much more effective that using a single tool. It will
even be mandatory to globally bend or twist the clay,
operations we perform using our ten fingers in the real
world.

Since the clay is a viscous fluid, the displacement of
a user-controlled tool basically moves the clay around
it the same way. The difficulty is to model the relative
influence of the different tools on parts of the clay
located in between.

The idea is to define regions of influence for each
tool tool, in the spirit of voronoi regions but with a
smooth transition between them. To achieve this, we
compute as follows weight coefficients ki for each tool,
that are used to compute the displacement δ of the
clay in a cell as:

ki =
1 −

di−minj (dj)

minj (dij)

2
and δ =

∑
i
kiδi∑
i
ki

(13)

where j refers to all the other involved tools, d1 is the
pseudo-distance from the current cell t a given tool,
and dij is the pseudo-distance between two tools. We
use a pseudo-distance instead of the Euclidian distance
since the clay can be folded, so parts that are close in
the 3D space can be far away inside the material.

More precisely, the pseudo-distance models the
propagation of the quantity of movement inside a
semi-fluid material. It can be seen as the length of
the path, inside the object, along which the motion
is transmitted. The longer this path is or the smaller
the clay density is along it, the smaller the generated
motion is. The pseudo-distance is computed through a
propagation scheme that starts from a tool and prop-
agates in the clay until it reaches its border or cells
covered by other tools. For each non-empty cell ci:

di = minneighbours(dj) +
1

ρi

(14)

where ρi is the density of clay in ci. This results into
Voronoi-like regions of influence, with a continuously
varying effect of a tool’s motion between them.
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Rotating tools

Up to this point, we only considered that tools mo-
tion would be translations when they are in contact
with the clay. However, the user may also rotate tools,
expecting to produce rotations or twists in the clay.

The motion of a solid rotating object cannot be de-
scribed by a simple displacement vector. Instead, a
point A rigidly linked to the tool moves according to
displacement field:

δA = δO + OA × ω (15)

where δO is the translation of point O (the center of
the tool) and ω, the screw of the tool. To take into
account the rotation of the tool, we simply replace
the previous δi in equation (13) by the δA for cell i in
equation (15). This way, more general deformations
can be generated. For instance, a bar of clay can be
twisted by simply turning a tool at one end of the bar.

6.3. Mass-conservation layer

6.3.1. Principles

The mass-conservation layer of the simulation aims
at enforcing volume conservation. It also models local
matter displacements near the surface of the object
due to the tool’s action. It will result in prints when
the user pushes the tool on the object, in folds, etc. Of
course, none of these effects can be produced by the
previous layer. Indeed, the clay needs to locally move
laterally and then even in the opposite direction from
the tool to create bumps and folds around it.

The idea behind this layer is quite simple: if, in a
cell, the density is greater than the maximum allowed
value, 1, the excess is distributed into the six closest
cells. When those cells are not full, the process ter-
minates. If they have an excess of matter, they will
distribute it among their own closest cells, and so on.
Matter will move from cells to cells and finally reach
the object’s border, where it will find some room to
remain. We will see that the object inflates in those
areas.

We found the ideas behind this layer in fluid me-
chanics. When the medium sees locally an excess of
pressure (i.e. an excess of matter), we get motions of
the fluid from the areas with high pressures to areas
with lower ones, until a uniform pressure is obtained.
The main difference is that we only consider excess
with regard to the maximum density and do not com-
pare it to the surrounding values. This way, our clay
remains solid, and doesn’t tend to occupy the whole
space.

6.3.2. Interaction with tools

Now we need to see how tools can interact with our
mass-conservation layer. We want the tool to push the
clay in front of it when the user presses the tool against
the object. The interaction is quite straightforward:
where we have a tool, there’s no more room for mat-
ter. The cells covered by the tool cannot contain clay
anymore, so all the clay in those cells is in excess. We
use the process we just described for moving this mat-
ter.

Rather than using purely rigid tools, we limit alias-
ing artifacts by defining them using a density function.
The tool’s density decreases near its edges. When the
tool occupies eighty percent of a cell (i.e. its density
value in the cell is 0.8), there is room for twenty per-
cent of clay. Thus the carved object will have the same
roughness as the tool. It is possible, too, to use a pre-
viously sculpted piece of clay as a tool. We thus let
the user design his own complex tools, for example to
be able to make prints or bas reliefs.

A small problem remains. If we simply move mat-
ter inside the tool to all close cells, some clay can go
through the whole tool and exit on the other side. We
thus add one more rule for interacting with tools: clay
inside tools can only move outwards. For each cell oc-
cupied by the tool, we define allowed and forbidden
directions among the six possible directions to neary
cells. This way, tools really push matter in front of
them, and no clay goes through the center of the tool.

For efficiency reasons, we precompute those allowed
directions when we design a tool. This is done by look-
ing for the closest direction to the surface of the tool.
We could simply use the (discrete) gradient of the
tool’s field function. But this will not work for tools
sculpted within our system, since we clamped the field
value to 1 inside the tool. We need a second field func-
tion, with no clamping value this time, so that the
gradient can be meaningfully computed anywhere. If
we have only a field function already clamped to 1 to
describe the tool, we have to build this second field
function.

This can be done by using a propagation scheme
starting from the edges of the tool, and going inside.
We use the same algorithm we described in the large-
scale displacement algorithm to compute the influence
of the tools, except we got rid of the 1/density term.
This way, we have everywhere an estimation of the
distance to the surface of the tool, and the gradient
points towards the outer part of the tool. This com-
putation is performed each time we convert a piece of
clay into a new tool.

Moving clay in one direction is allowed if this direc-
tion makes an angle with the direction of the gradient
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under a given threshold. We choose to use a 60 de-
gree angle. We normalize gradient, and we compare
its components to 0.5 and -0.5 to decide whether mo-
tion along the x−, y−, and z-axes should be allowed.

6.4. Surface tension

After several deformations using the two layers above,
the matter tends to become less and less compact.
Clay pushed by the tools can indeed be dispersed
around the object, and the transition from inside (den-
sity equal to 1) to outside (void cells) gets slower and
slower. One of the problems with cells with low den-
sities is that the user does not see them, so strange
effects can arise if a tool pushes these small quanti-
ties of clay in front of it: clay popping from nowhere
when density, due to action of the tool, rises to the
threshold; innacurate changes of the surface location,
etc. Moreover, since matter in cells of low density is
no longer visible, the object’s volume will seem to de-
crease, even if matter does not really disappear.

The surface-tension layer tries to resolve and avoid
these problems. It keeps the gradient of density near
the surface of the clay to an acceptable value. Mat-
ter in cells with very low densities is moved to nearby
cells with higher densities. We look for every cell with
a value below a threshold. At each such cell, we com-
pute the gradient of the field function by using finite
differences with nearby cells. If the length of the gra-
dient is below another threshold (which correspond
to the gradient we would like to have near the sur-
face of the object), we move clay from the cell with a
low density to closest cells with higher ones. This way,
the object remains compact. The layer can be seen as
adding a surface tension effect for a fluid.

While the previous layer prevents contraction of our
clay, this layer tries to avoid expansion. This will sep-
arate the object in two different compact parts when
the user tries to stretch it too far. Indeed, if you try to
cut an object in two, the area between the two pieces
will have a decrease of density. When the middle area
density falls below our threshold, the matter is divided
between the two parts, and the object is eventually cut
in half.

Even with surface tension, some very small pieces of
matter may separate from the main block of clay, like
crumbs from a piece of toast; these are sets of a few
neighboring cells with above-threshold densities. This
is still physically correct, and the user should not be
surprised, since these crumbs are visible. But because
they can be distracting for the user, we get rid of them
as soon as possible by removing them from the working
space. If we want to preserve the volume of the object,
we can put the matter removed this way back in the

closest cell with high density, as if the crumb had been
eaten up by the clay.

6.5. Local properties of clay

Adding local properties for clay, such as color or a
locally varying fluidity parameter is made straight-
forwards by our volumetric representation: we just
store the extra parameter values in each non-empty
grid cell.. The main concern is how to adequately at-
tach the local properties to the clay when it moves
and deforms.

Updating local properties

A local property should be linked to the clay material
in a cell rather than to its specific position in space.
We thus have to update cell parameter values each
time some clay moves due to the action of one of the
layers. Although clay motion is modeled by increasing
the density value in a destination cell while decreasing
it in a source cell, the values of local properties only
have to be updated in the destination cell, since the
material’s nature in the source cell remains the same.

Let ρi represent the amount of clay being trans-
ported to the destination cell and νi be the vector
of associated local properties. Let ρj and νj respec-
tively be the quantity of clay and its parameters al-
ready stored in the destination cell. Then the natural
choice for computing the new values of local proper-
ties associated to the quantity of clay ρi + ρj in the
destination cell is the weighted average:

νdestination =
ρjνj + ρiνi

ρj + ρi

(16)

For instance, in the case of fluidity, ν represents the
proportion of water in the clay. The new proportion is
indeed the weighted average of the previous values.

Deforming non-homogeneous clay

Clay with locally varying fluidity is modelled by set-
ting an extra parameter in each cell in order to store
the proportion of water contained. In areas where the
density of clay is low or where fluidity is high, the
movement should propagate less from a cell to an-
other. To achieve this, we still compute the pseudo-
distance from a tool using the previous scheme, but
we replace equation 14 by:

di = minneighbours(dj) +
1

(1 − fi)ρi

(17)

so that the ”distance” increases more quickly where
density ρi is low and fluidity f is high.
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Figure 13: Snapshops of the virtual clay sculpting
system.

6.6. Results

Figure 13 shows some snapshots or our virtual clay
sculpting system. It shows that the model exhibits
both global and local deformations and demonstrates
its ability to convey topological changes (with the tool
used to make a hole) while preserving a constant vol-
ume for the clay. For this first examples, only two tools
were used, one of which keeping the whole or a part
of the clay frozen to a fixed position.

Figure 14: Globally bending and twisting a piece of
clay.

Figure 14 shows the ability of the model to take into

acound both translations and rotational motion of the
tools in contact with the clay.

Figure 15 illustrates the fact that the clay model can
be deformed by the combined motion of an arbitrary
number of user-controlled tools, in the manner of the
user’s fingers of both hands used to deform real clay.

Figure 15: Deforming a piece of virtual clay through
the simultaneous action of four tools.

7. Discussion and conclusion

We have presented volumetric sculpture systems that
provides direct interaction with the model – an iso-
surface of a scalar field, making the internal represen-
tation of the sculpted surface totally transparent to
the user, These systems allow shape editing at inter-
active rates.

One should however note that the closer we get to-
wards a virtual clay model, the more attention we have
to pay to user interaction: while the first sculpting
systems which only allowed adding and removing ma-
terial, was well suited to sculpting with a single tool
(controled for instance via a 3D mouse or an haptic
device), sculpting a complex shape with the last model
we presented, much closer to real clay, cannot easily
be done without defining an appropriate interface: in
the real world, the user needs both hands to bend,
twist or locally deform a piece of clay.

This last model is thus only a first step towards a
very challenging long-term goal: enabling an artist to
use his hands for modeling virtual clay, as he would
do with a real material. Of course, an appropriate in-
terface is needed to capture hands and fingers motion.
The most obvious solution would be to use a glove,
possibly with an exoskeleton for force feedback. We’re
currently studying a less invasive approach, using a
vision-based interface. The motion of the user’s hands,
filmed by a few video cameras, will be used as an in-
put to control virtual hands serving as multiple tools.
However we have to come out with a real-time solution
to hand tracking, wich is still an opened problem.

Haptic interaction proved to be a great aid in a
sculpting process, since the user can “feel” the model.
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Figure 16: Our concept for direct hand manipulation
for virtul clay.

In the first system we presented, it helped the user
decide more easily if he was adding material onto or
in front of the surface. However, haptic interaction
through a force feedback device is still very far from
the sense of touch a designer feels when he sculpts
with real clay.

A long term goal would be to incorporate haptic
feedback in the direct-hand manipulation interface we
are seeking for the last model. Since we consider the
use of haptic gloves as intrusive, we are thinking about
rather using a “real-object interface”: The user would
manipulate a real deformable object (e.g. a ball full of
sand), serving as an avatar for all or for a part of the
sculpture (see Figure 16). His hand gestures would be
captured by cameras and the reconstructed gestures
be used to deform the virtual sculpture. We believe
that such a interface providing a real sense of touch,
even not exactly correlated with the display, would be
a good advance towards making virtual sculpture as
intuitive as the manipulation of real clay.

Acknowledgments

Many thanks to Eric Ferley, Jean-Dominique Gascuel,
Renaud Blanch and Guillaume Dewaele for their work
on the volumetric sculpting systems presented in this
chapter.

References

[AH99] Adams R. J., Hannaford B.: Stable haptic
interaction with virtual environments. IEEE
Transactions on Robotics and Automation 15,
3 (1999), 465–474.

[AS96a] Avila R., Sobierajski L.: A haptic interac-
tion method for volume visualization. Com-
puter Graphics (Oct. 1996), 197–204. Proceed-
ings of Visualization’96.

[AS96b] Avila R. S., Sobierajski L. M.: A haptic in-
teraction method for volume visualization. In
IEEE Visualization ’96 (1996), IEEE, pp. 197–
204.

[ATTY99] Arata H., Takai Y., Takai N. K., Yamamoto

T.: Free-form shape modeling by 3d cellular au-
tomata. In International Conference on Shape
Modeling and Applications (1999), pp. 242–
247.

[Avi98] Avila R. S.: Volume haptics. Computer
Graphics (1998), 103–123. SIGGRAPH’98
Course Notes #01.

[Bær98] Bærentzen A.: Octree-based
volume sculpting. Presented at
IEEE Visualization ‘98 (1998).
www.gk.dtu.dk/Andreas/publications.html.

[BBB∗97] Bloomenthal J., Bajaj C., Blinn J., Cani

M.-P., Rockwood A., Wyvill B., Wyvill

G.: Introduction to Implicit Surfaces. Morgan
Kaufman, 1997.

[BFCG04] Blanch R., Ferley E., Cani M.-P., Gascuel

J.-D.: Non-Realistic Haptic Feedback for Vir-
tual Sculpture. Tech. Rep. RR-5090, INRIA,
U.R. Rhone-Alpes, january 2004. Projet EVA-
SION, theme 3.

[Blo87] Bloomenthal J.: Polygonization of implicit
surfaces. Xerox Technical Report CSL-87-2
(May 1987), 1–19.

[Blo88] Bloomenthal J.: Polygonization of implicit
surfaces. Computer Aided Geometric Design 5
(1988), 341–355.

[CD97] Cani M.-P., Desbrun M.: Animation of de-
formable models using implicit surfaces. IEEE
Transactions on Visualization and Computer
Graphics 3, 1 (Mar. 1997), 39–50. Published
under the name Marie-Paule Cani-Gascuel.

[CSB95] Colgate J. E., Stanley M. C., Brown J. M.:
Issues in the haptic display of tool use, 1995.
IROS’95.

[DAB03] Druon S., A.Crosnier, Brigandat L.: Effi-
cient cellular automata for 2d / 3d free-form
modeling. WSCG 11 (Feb. 2003).

[DC04a] Dewaele G., Cani M.-P.: Interactive global
and local deformations for virtual clay. Graph-
ical Models 66 (sep 2004), 352–369. A pre-
liminary version of this paper appeared in the
proceedings of Pacifics Graphics’2003.

[DC04b] Dewaele G., Cani M.-P.: Virtual clay for di-
rect hand manipulation. In Eurographics ’04
(short papers) (2004).

c© The Eurographics Association 2005.

65



Marie-Paule Cani / Volumetric Sculpting

[FCG00] Ferley E., Cani M.-P., Gascuel J.-D.: Prac-
tical volumetric sculpting. the Visual Com-
puter 16, 8 (dec 2000), 469–480. A preliminary
version of this paper appeared in Implicit Sur-
faces’99, Bordeaux, France, sept 1999.

[FCG02] Ferley E., Cani M.-P., Gascuel J.-D.: Res-
olution adaptive volume sculpting. Graphical
Models (GMOD) 63 (march 2002), 459–478.
Special Issue on Volume Modelling.

[FPRJ00] Frisken S. F., Perry R. N., Rockwood

A. P., Jones T. R.: Adaptively sampled dis-
tance fields: A general representation of shape
for computer graphics. Proceedings of SIG-
GRAPH 2000 (July 2000), 249–254. ISBN 1-
58113-208-5.

[GC96] Gillespie R. B., Cutkosky M. R.: Stable
user-specific haptic rendering of the virtual
wall, 1996. Proceedings of the 1996 ASME
International Mechanical Engineering Congress
and Exhibition, DSC-Vol. 58.

[GH91] Galyean T., Hughes J.: Sculpting: An inter-
active volumetric modeling technique. Com-
puter Graphics 25, 4 (July 1991), 267–274.
Proceedings of SIGGRAPH’91 (Las Vegas,
Nevada, July 1991).

[HQK98] Huang C., Qu H., Kaufman A.: Volume ren-
dering with haptic interaction. In Proceedings
of the Third PHANTOM Users Group Work-
shop (1998), vol. 3, pp. 14–18.

[LC87] Lorensen W., Cline H.: Marching cubes: a
high resolution 3d surface construction algo-
rithm. Computer Graphics (July 1987), 163–
169. Proceedings of SIGGRAPH’87 (Ana-
heim).

[MQW01] McDonnell K. T., Qin H., Wlodarczyk

R. A.: Virtual clay: A real-time sculpting sys-
tem with haptic toolkits. 2001 ACM Sym-
posium on Interactive 3D Graphics (March
2001), 179–190. ISBN 1-58113-292-1.

[MS94] Massie T. H., Salisbury J. K.: The phantom
haptic interface : A device for probing virtual
objects, 1994. Proceedings of ASME’94.

[PF01] Perry R. N., Frisken S. F.: Kizamu: A sys-
tem for sculpting digital characters. Proceed-
ings of SIGGRAPH 2001 (2001), 47–56.

[RE00] Raviv A., Elber G.: Three-dimensional
freeform sculpting via zero sets of scalar trivari-
ate functions. Computer-Aided Design 32, 8-9
(August 2000), 513–526. ISSN 0010-4485.

[Sta99] Stam J.: Stable fluids. In Proceedings of SIG-
GRAPH 99 (Aug. 1999), Computer Graph-
ics Proceedings, Annual Conference Series,
pp. 121–128.

[Ton91] Tonnesen D.: Modeling liquids and solids us-
ing thermal particles. In Graphics Interface’91
(Calgary, AL, June 1991), pp. 255–262.

[WK95] Wang S. W., Kaufman A. E.: Volume sculpt-
ing. 1995 Symposium on Interactive 3D Graph-
ics (April 1995), 151–156. ISBN 0-89791-736-7.

[WMW86] Wyvill B., McPheeters C., Wyvill G.:
Data structure for soft objects. Visual Com-

puter 4, 2 (Aug. 1986), 227–234.

c© The Eurographics Association 2005.

66



EUROGRAPHICS 2005 Tutorial

Sweepers & Swirling-Sweepers

Alexis Angelidis

University of Otago, New Zealand

Abstract
Sweepers and swirling-sweepers are operations for modeling by space deformation. The artist describes a defor-
mation as paths through which tools are moved. The movement of a tool causes a deformation of the working
shape along the path of the tool. This is in accordance with a clay modeling metaphor, easy to understand and
predict. It is desirable that deformations for modeling are ‘foldover-free’, that is parts of deformed space can-
not overlap so that the deformations are reversible. Both sweepers and swirling-sweepers satisfy this criteria. In
addition, swirling-sweepers preserve the shape’s volume.

1. Introduction

In Computer Graphics, in the context of interactive shape
modeling, a common characteristic of popular techniques is
the possibility for the artist to operate on a shape by modify-
ing directly the shape’s mathematical description. But with
the constant increase of computing power, it is realistic and
more effective to insert some interface between the artist and
the mathematics describing a shape.

Space deformation is a family of techniques that permits
describing operations on a shape independently from that
shape’s description. With this separation, new shape descrip-
tions can easily benefit from existing space deformation, and
further development can be carried in parallel. While space
deformation has been used for solving a wide range of prob-
lems in Computer Graphics, they are missing a framework
specific to interactive shape modeling. Sweepers is a frame-
work for defining shape operations, in which the basis of
operations is simply gesture.

Shapes produced with sweepers are coherent because
sweepers are foldover-free: there is no ambiguity as to which
points of space belong to the shape. A non foldover-free de-
formation would produce a self intersection of the shape,
which cannot be cured with any space deformation. Sweep-
ers were introduced in [AWC04], and are presented in Sec-
tion 4.

In addition to gesture as the basis of creation and shape
coherency, another concept familiar to most users is the
preservation of material. A shape modeling technique that
preserves volume would take even more advantage of user

a priori knowledge of shapes. Swirling-sweepers is a tech-
nique that preserves a shape’s volume independently from
its description. In conjunction with any other sweeper
operation, the volume of a shape can be increased, de-
creased or preserved. Swirling-sweepers were introduced in
[ACWK04] and are presented in Section 5.

Sweeper and swirling-sweeper operations are indepen-
dent from any shape description, since they are deformation
of space. In order to visualize their effect on a shape, we
propose in Section 6 a shape description which is suitable
for the task of interactive shape modeling, and animation to
some extent [AW04].

2. Modeling with deformation

A shape is the result of repeated deformation of the space
in which the initial shape is embedded. A convenient for-
malism can be used for specifying any modeling operation
by deformation: the modeling equation gives the final shape
S(tn) as a function the initial shape S(t0):

S(tn) = {
n−1
Ω
i=0
fti �→ti+1(p)|p ∈ S(t0)} (1)

where
n−1
Ω
i=0
fki �→ki+1(p) = fkn−1 �→kn ◦ · · · ◦ fk0 �→k1(p)

The operator Ω expresses the finite repeated composition of
functions. Each function fti �→ti+1 :R3 �→ R

3 is a deformation
that transforms every point p of space at time ti into a point of
space at time ti+1. Sections 3, 4 and 5 will focus on defining
functions fti �→ti+1 .
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Normal Deformation: Computing accurate normals to the
surface is very important, since the normals’ level of qual-
ity will dramatically affect the visual quality of the shape.
Let us recall that in order to compute the new normals,
the previous normals are multiplied by the co-matrix† of
the Jacobian [Bar84]. The Jacobian of f at p is the matrix
J( f ,p) = ( ∂ f

∂x (p),
∂ f
∂y (p),

∂ f
∂z (p)). Let us also recall that the

following expression is a convenient way to compute the co-
matrix of J = (�jx,�jy,�jz), where the vectors�jx,�jy and�jz are
column vectors:

JC =
(
�jy×�jz,�jz×�jx,�jx×�jy

)
(2)

3. Related work

This section overviews several existing space deformation
techniques, organized in three groups: axial deformations,
lattice-based deformations and tool-based deformations. For
the sake of clarity, we present existing space deformations
aligned with the axes�ex,�ey and�ez and within the unit cube
[0,1]3, whenever possible. But a mere change of coordi-
nates enables the artist to place the deformation anywhere
in space. Note that affine transformations are the simplest
case of space deformations.

3.1. Axial space deformations

Axial space deformations are a subset of space deformations
whose control-points are geometrically connected along a
curve. The curve may be initially straight or bent. To com-
pare existing deformation techniques from the same point of
view, we use�ez as the common axis of deformation, which
leads to slight reformulation in a few cases.

3.1.1. Global and local deformations of solid primitives

A. Barr defines space tapering, twisting and bending via ma-
trices whose components are functions of one space coordi-
nate [Bar84]. We denote (x,y,z)� the coordinates of a point.
We show in Figures 1, 2, and 3 the effects of these opera-
tions, and we give their formula in the form of 4× 4 homo-
geneous matrices to be applied to the coordinates of every
point in space to be deformed.

3.1.1.1. Tapering operation: The function r is monotonic
in an interval, and is constant outside that interval.

⎛
⎜⎜⎝
r(z) 0 0 0
0 r(z) 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

Figure 1: Taper deformation of a super-ellipsoid shape. A descrip-
tion of the shape can be found in [Gla89].

† Matrix of the co-factors

3.1.1.2. Twisting operation: The function θ is monotonic
in an interval, and is constant outside that interval.

⎛
⎜⎜⎝
cos(θ(z)) −sin(θ(z)) 0 0
sin(θ(z)) cos(θ(z)) 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

Figure 2: Twist deformation of a super-ellipsoid.

3.1.1.3. Bending operation: This operation bends space
along the axis y, in the 0 < z half-space. The desired radius
of curvature is specified with ρ. The angle corresponding to
ρ is θ = ẑ/ρ. The value of ẑ is the value of z, clamped in the
interval [0,zmax].

⎛
⎜⎜⎝
cosθ 0 sinθ ρ−ρcosθ− ẑsinθ
0 1 0 0

−sinθ 0 cosθ ρsinθ− ẑcosθ
0 0 0 1

⎞
⎟⎟⎠

Figure 3: Bend deformation of a super-ellipsoid.

A. Barr observes that rendering the deformed shape with
rays of light is equivalent to rendering the undeformed shape
with curves of light. The curves of light are obtained by ap-
plying the inverse of the deformation to the rays. Because
the deformation he proposes are not local, the portions of
the rays to deform can be quite large.

3.1.2. A generic implementation of axial procedural
deformation techniques

C. Blanc extends A. Barr’s work to mold, shear and pinch
deformations [Bla94]. Her transformations use a function of
one or two components. She calls this function the shape
function. Examples are shown in Figures 4, 5, and 6.

⎛
⎜⎜⎝
r(z) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

Figure 4: Pinch deformation of a super-ellipsoid.
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⎜⎜⎝
r(tan−1(x,y)) 0 0 0

0 r(tan−1(x,y)) 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

Figure 5: Mold deformation of a super-ellipsoid.

⎛
⎜⎜⎝
1 0 0 s(z)
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

Figure 6: Shear deformation of a super-ellipsoid.

3.1.3. A generalized de Casteljau approach to 3d
free-form deformation

Y.K. Chang and A.P. Rockwood propose a polynomial de-
formation that efficiently achieves “Barr”-like deformations
and more [CR94], using a Bézier curve with coordinate sets
defined along�ez at the curve’s control knots (z0,z1 . . . ,zn) ∈
[0,1]n+1. A reference straight segment, z ∈ [0,1], is de-
formed by specification of coordinate sets (ci,�ui,�vi,�wi)
along that segment. The shape follows the deformation of
the segment, as shown in Figure 7.

x
y

z

x
y

z

c

c
c

c

0

1

2

3

x
y

z

x
y

z

straight initial control points deformed
axis shape and handles shape

Figure 7: Example of the deformation of Y.K. Chang and
A.P.Rockwood applied to a super-ellipsoid. There is no need to de-
fine a pair of handles for the end control point.

To compute the image q of a point p of the original shape,
the matrix transforming a point to a local coordinate set is
needed:

Mi =

⎛
⎜⎜⎝
ui,x vi,x wi,x ci,x
ui,y vi,y wi,y ci,y
ui,z vi,z wi,z ci,z
0 0 0 1

⎞
⎟⎟⎠ (3)

where �wi = ci+1− ci , and�ui,�vi are the handles.

Using this matrix, the deformation of a point is obtained re-
cursively with the de Casteljau algorithm for evaluating a
Bézier curve:

f ji (p) = (1−pz) f
j−1
i (p)+pz f

j−1
i+1 (p) (4)

where f 0i (p) =Mi ·p

The original generalized de Casteljau algorithm presented
by Y.K. Chang and A.P. Rockwood is a recursion on affine
transformations rather than on points. They remark that their
recursion simplifies to the classic de Casteljau algorithm
when the affine transformations are degenerate, and use the
degenerate case in all their examples. As we show in Fig-
ure 8, this method is capable of performing “Barr”-like de-
formations and more.

initial stretch taper

swell twist bend

Figure 8: Deformation of a super-ellipsoid.

3.1.4. Axial deformation

The limitation of the methods presented so far is the ini-
tial rectilinear axis. If the shape is initially excessively bent,
the manipulation of an initially straight control axis will not
induce a predictable behavior of the shape. F. Lazarus et
al. develop an extension of axial-based deformations using
an initially curved axis [LCJ94]. Let us define a parametric
curve c(u). A point p in space is attached to local coordinates
along the curve. The origin of this local coordinate system is
c(up), the closest point to p on the curve, and the axes are
those of an extended Frenet frame that discards vanishing
points [Blo90]. To find the closest point to p on curves, B.
Crespin proposes an efficient algorithm based on subdivi-
sion [Cre99]. The axes are computed by propagating along
the curve a frame defined at one extremity of the curve. The
axes consist of three vectors: a tangent�t(u), a normal �n(u)
and a binormal�b(u). The propagated frame is computed as
follows:

• the unit tangent at the origin is given by the equation of
the curve:
�t(0) = dc(0)

du /‖
dc(0)
du ‖.

• the normal and binormal are given by the Frenet frame, or
can be any pair of unit vectors such that the initial frame
is orthonormal.

To compute the next frame, a rotation matrix is needed. The
purpose of this matrix is to minimize torsion along the curve.
Numerous constructions of the rotation matrix require a sim-
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ple formula:

R=

⎛
⎝ axx+θ axy+bz azx−by
axy−bz ayy+θ ayz+bx
azx+by ayz−bx azz+θ

⎞
⎠ (5)

where
(ax,ay,az)� =

�t(ui)×�t(ui+1)
‖�t(ui)×�t(ui+1)‖ α = 1−θ

θ =�t(ui) ·�t(ui+1) β =
√
1−θ2

(6)

axx = αa2x axy = αaxay bx = βax
ayy = αa2y ayz = αayaz by = βay
azz = αa2z azx = αazax bz = βaz

(7)

Given a frame at parameter ui, the next axes of a frame at
ui+1 are computed as follows:

• the tangent is defined by the equation of the curve:
�t(ui+1) = dc(ui+1)

du /‖
dc(ui+1)
du ‖.

• the normal is given by the rotation of the previous normal:
�n(ui+1) = R ·�t(ui).

• the binormal is given by a cross product:�b(ui+1) =�t(ui)×
�n(ui).

The choice of the size of the step, ui+1−ui, depends on the
trade-off between accuracy and speed. B. Crespin extends
the axial deformation to surface deformation [Cre99].

3.1.5. Wires: a geometric deformation technique

K. Singh and E. Fiume introduce wires, a technique which
can easily achieve a very rich set of deformations with curves
as control features [SF98]. Their technique is inspired by
armatures used by sculptors.

A wire is defined by a quadruple (R,W,s,r): the reference
curve R, the wire curve W, a scaling factor s that controls
bulging around the curve, and a radius of influence r. The
set of reference curves describes the armature embedded in
the initial shape, while the set of wire curves defines the new
pose of the armature.

On a curve C, let pC denote the parameter value for which
C(pC) is the closest point to p. Let us also denote C′(pC) the
tangent vector at that parameter value.

The reference curve, R, generates a scalar field F : R3 �→
[0,1]. The function F which decreases with the distance to
R, is equal to 1 along the curve and equals 0 outside a neigh-
borhood of radius r. The algorithm to compute the image q
of a point p influenced by a single deformation consists of
three steps, illustrated in Figure 9:

• Scaling step. The scaling factor is modulated with F. The
image of a point p after scaling is: ps = R(pR) + (p−
R(pR))(1+ sF(p)), where pR denotes the parameter value
for which R(pR) is the closest to p.

• Rotation step. Let θ be the angle between the tangents
R′(pR) and W′(pR). The point ps is rotated around axis
R′(pR)×W′(pR) about center R(pR) by the modulated
angle θ F(p). This results in point pr

• Translation step. Finally, a translation is modulated to pro-
duce the image
pde f = pr+(W(pR)−R(pR)).

R’(p  )R

W’(p  )R RW(p  )

p
sp

r

R(p  )

p

R

3.translate

R
q

1.scaling

2.rotation

W

F>0F=0

Figure 9: Top: deformation of a point by a single wire. Bottom:
deformation of a shape with multiple wires (courtesy of [SF98]).

They propose different blending methods in the case when
a point is subject to multiple wires. These methods work by
taking weighted combinations of the individually deformed
point. Let us denote pi the deformation of p by wire i. Let
Δpi = pi−p. The simplest deformation is:

pde f = p+ ∑ni=1 Δpi‖Δpi‖m
∑ni=1 ‖Δpi‖m

Reference curves Wire curves
Figure 10: Blending weights based on summed displacement mag-
nitudes. This blending is not free from artifacts: notice the creases
around the intersection in the upper-right figure.

The scalar m is defined by the artist. This expression is
not defined when m is negative and ‖Δpi‖ is zero. To fix
this, they suggest to omit the wires for which this is the case.
Their second solution is to use another blending defined for
both positive and negative values of m:
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pde f = p+ ∑ni=1 Δpi∏ j �=i ‖Δp j‖|m|

∑ni=1∏ j �=i ‖Δp j‖|m|

Reference curves Wire curves
Figure 11: Blending weights based on multiplied displacement
magnitudes. The deformation is defined at the intersection of the
reference curves.

In order to use unmoved wires as anchors that hold the
surface, they use Fi(p) instead of Δpi as a measure of prox-
imity:

pde f = p+ ∑ni=1 ΔpiFi(p)m

∑ni=1 Fi(p)m

Reference curves Wire curves
Figure 12: Blending weights based on influence function. The un-
moved wire holds space still. This blending is not free from artifacts:
notice the creases around the intersection in the upper-right figure.

Other capabilities of wires can be found in the original
paper [SF98]. Note that the expensive part of the algorithm
is computing the distance from each curve to each deformed
surface point.

3.1.6. Blendeforming: ray traceable localized
foldover-free space deformation

As explained in the introduction, there are practical rea-
sons for which a space deformation should be foldover-free.
D. Mason and G. Wyvill introduce blendeforming [MW01].
A deformation is specified by moving a point or the con-
trol points of a curve along a constrained direction. Space
follows the deformation of these control features in a pre-
dictable manner.

They define the blendeforming deformation as a bundle
of non-intersecting streamlines. The streamlines are par-
allel, and described by a pair of functions: bx,y : R

2 �→
[−dmax,dmax] and bz : [0,1] �→ [0,1]. Function bx,y controls
the amount of deformation for each individual z-streamlines,
and the choice of function bz affects the maximum com-
pression of space along the streamlines. The deformation of
point p= (x,y,z)� is

pde f = (x,y,zde f )
� (8)

where zde f = z+bx,y(x,y) bz(z)

It is the definition of bz together with a corresponding thresh-
old dmax that prevents foldovers, as shown in Figure 13. The
following function is a possible choice for bz(z), used in the
example:

bz(z) =
{
16z2(1− z)2 if z ∈ [0,1]
0 otherwise

(9)

with dmax =
3
√
3
16


 0.324

Functions permitting larger values for dmax can be found in
the original paper. Since bx,y is independent of z, any func-
tion with values in [−dmax,dmax] can be used for it, regard-
less of the slope. Because the amplitude of the effect of a
blendeforming function is bounded by the dmax threshold,
it is obvious that modeling an entire shape uniquely with
blendeforming functions can be rather tedious. In the orig-
inal paper, the authors also propose bending blendeforming
functions, defined in cylindrical coordinates.

x

y

z

x

y

z

x

y

z

(a) (b) (c)
Figure 13: (a) Initial scene: two parallel planes. (b) Blende-
forming, with bx,y(x,y) = (x2 − x+ y2 − y− 1/2)2. The value of
dmax guarantees that the two planes will never intersect. (c) With
dmax < d, foldover occurs: the lower plane intersects the higher
plane.

3.2. Lattice-based space deformations

The limitation of axial-based or surface-based space defor-
mation is the arrangement of the controls along a curve or on
a surface. Note that this statement is untrue only for wires,
which permits the blending of the controls [SF98]. Lattice-
based space deformations are techniques that allow control
points to be connected along the three dimensions of space.
There are two ways of understanding lattice-based deforma-
tion, related to the manner in which the artist expresses the
deformation. Let us denote the space deformation function
by f .

In the first interpretation of lattice-based deformations, the
artist provides pairs of points: a source point and a desti-
nation point, (pi,qi). The deformation f will interpolate or
approximate the pairs in this way f (pi) = fp(pi) ≈ qi. The
function fp is a position field. A position field does not have
any physical equivalent to which the artist or scientist can
relate, and requires a certain amount of imagination to be
visualized.

In the second interpretation of lattice-based deformations,
the artist provides a source point and a displacement of that
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point, (pi,�vi). The deformation f will interpolate or approx-
imate the pairs in this way f (pi) = pi+ f�v(pi)≈ pi+�vi. The
function f�v is a vector field. There is a convenient physical
analogy to a vector field. Vector fields are used in fluid me-
chanics to describe the motion of fluids or to describe fields
in electromagnetics [Rut90, Gri]. This analogy is of great
help for explaining and creating new space deformations.

While the effect of using either a position field or a vector
field is equivalent, the vector field also gives more insight
in the process of deforming space: in lattice-based space de-
formations, the path that brings the source point onto the
desired target point is a straight translation using a vector.
In this section on lattice-based space deformation, we will
therefore consider the construction of a vector field rather
than a position field whenever possible.

3.2.1. Free-form deformation of solid geometric models

The effect of Free-Form Deformation (FFD) on a shape is
to embed this shape in a piece of flexible plastic. The shape
deforms along with the plastic that surrounds it [SP86].

The idea behind FFD is to interpolate or approximate vec-
tors defined in a 3d regular lattice. The vectors are then used
to translate space. In their original paper, T. Sederberg and
S. Parry propose to use the trivariate Bernstein polynomial
as a smoothing filter. Let us denote by �vi jk the (l + 1)×
(m+ 1)× (n+ 1) control vectors defined by the artist. The
smoothed vector field is a mapping p ∈ [0,1]3 �→ R

3.

�v(p) =

∑li=0

(
i
l

)
(1− x)l−ixi

(
∑mj=0

(
j
m

)
(1− y)m− jy j(

∑nk=0

(
k
n

)
(1− z)n−kzk

))
�vi jk

(10)

Then the deformation of a point is a translation of that point

pde f = p+�v(p) (11)

In order for the deformation to be continuous across the faces
of the FFD cube, the boundary vectors should be set to zero.
A drawback of using the Bernstein polynomial is that a con-
trol vector �vi jk has a non-local effect on the deformation.
Hence updating the modification of a control vector requires
updating the entire portions of shape within the lattice. For
this reason, J. Griessmair and W. Purgathofer propose to use
B-Splines [GP89].

In commercial software, the popular way to let the artist
specify the control vectors is to let him move the control
points of the lattice, as shown in Figure 14(c). A drawback
often cited about this interface is the visual self occlusion
of the control points. This problem increases with the in-
crease in resolution of the lattice. Another drawback is the
manipulation of control points, which requires high skills in
spacial apprehension from the artist. Clearly, practical FFD
manipulation through control-points can only be done with
reasonably small lattices.

(a) (b) (c) (d)
Figure 14: FFD. (a) Lattice of size 33. (b) Initial shape. (c) The
popular interaction with an FFD lattice consists of displacing the
control points. (d) The discrete vectors.

3.2.2. Extended free-form deformation (EFFD)

Due to the practical limit of the size of the FFD-lattice, the
major restriction of an FFD is strongly related to the ar-
rangement of control-points in parallelepipeds. The paral-
lelepipeds are also called cells. To provide the artist with
more control, S. Coquillart proposes a technique with non-
parallelepipedic and arbitrarily connected cells. The tech-
nique is called Extended Free-Form Deformation (EFFD)
[Coq90].

To model with EFFD, the artist first builds a lattice by
placing the extended cells anywhere in space, and then ma-
nipulates the cells to deform the shape. An extended cell is
a small FFD of size 44. The transformation from the cell’s
local coordinates s= (u,v,w)� to world coordinates is:

p(s) =

∑3i=0

(
i
3

)
(1−u)3−iui

(
∑3j=0

(
j
3

)
(1− v)3− jv j(

∑3k=0

(
k
3

)
(1−w)3−kwk

))
pi jk

(12)

The eight corners pi jk∈{0,3}3 of a cell are freely defined by
the artist. The position of the remaining 44 − 8 are con-
strained by the connection between cells, so that continuity
is maintained across boundaries. This is done when the artist
connects the cells. Because the lattice is initially deformed,
finding a point’s coordinates s in a cell is not straightforward.
The local coordinates of a point p in a cell are found by solv-
ing Equation (12) in s using a numerical iteration. This can
be unstable in some cases, although the authors report they
did not encounter such cases in practice. Once s is found,
the translation to apply to p is found by substituting in Equa-
tion (12) the control points pi jk with the control vectors�vi jk.
Note that specifying the control points, the cells and the con-
trol vectors is rather tedious, and results shown in the paper
consist essentially of imprints.

3.2.3. Free-form deformations with lattices of arbitrary
topology (SFFD)

R.A. MacCracken and K.I. Joy have established a method
that allows the user to define lattices of arbitrary shape and
topology [MJ96]. The method is more stable than EFFD
since it does not rely on a numerical iteration technique.

Their method is based on subdivision lattices. We will re-
fer to it as SFFD, for subdivision FFD. The user defines a
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control lattice, L: a set of vertices, edges, faces and cells. A
set of refinement rules are repeatedly applied to L, creating
a sequence of increasingly finer lattices {L1,L2, . . .Ll}. The
union of cells define the deformable space. After the first
subdivision, all cells can be classified into cells of different
type: type-n cells, n≥ 3. See [MJ96] for the rules.

Although there is no available trivariate parameterization
of the subdivision lattice, the correspondence between world
coordinates and lattice coordinates is possible thanks to the
subdivision procedure. The location of a vertex embedded
in the deformable space is found by identifying which cell
contains it. Then, for a type-3 cell, trilinear parameterization
is used. For a type-n cell, the cell is partitioned in 4n tetra-
hedra, in which the vertex takes a trilinear parameterization.
Each point is tagged with its position in its cell.

Once a point’s location is found in the lattice, finding the
point’s new location is straightforward. When the artist dis-
places the control points, the point’s new coordinates are
traced through the subdivision of the deformed lattice.

3.2.4. Direct manipulation of free-form deformations
(DMFFD)

The manipulation of individual control points makes FFD
and EFFD tedious methods to use. Two groups of re-
searchers, P. Borrel and D. Bechmann, and W.M. Hsu et
al. propose a similar way of doing direct manipulation of
FFD control points (DMFFD) [BB91, HHK92]. The artist
specifies translations�vi at points pi in the form (pi,�vi). The
DMFFD algorithm finds control vectors that satisfy, if pos-
sible, the artist’s desire. Let us define a single input vector�v
at point p. The FFD Equation (10) must satisfy

�v= B(p)(�vi jk) (13)

Let ν = (3(l+1)(m+1)(n+1)). The matrix B is the 3×ν
matrix of the Bernstein coefficients, which are functions of
point p. Note that their method is independent of the cho-
sen filter: instead of the Bernstein polynomials, W.M. Hsu
et al. use B-Splines and remark that Bernstein polynomials
can be used. P. Borrel and D. Bechmann on the other hand
found that using simple polynomials works just as well as
B-Splines. The size of the vector of control vectors (�vi jk)
is 3(l+ 1)(m+ 1)(n+ 1). When the artist specifies μ pairs
(pi,�vi), the FFD Equation (10) must satisfy a larger set of
equations:⎛

⎜⎝
�v1
...

�vμ

⎞
⎟⎠= B ·

⎛
⎜⎝

�vi jk
...

�vi jk

⎞
⎟⎠ where B=

⎛
⎜⎝
B(p1)
...

B(pμ)

⎞
⎟⎠ (14)

This set of equations can either be overdetermined or under
determined. In either case, the matrix B cannot be inverted
in order to find the�vi jk. The authors use the Moore-Penrose
pseudo-inverse, B+. If the inverse of B� ·B exists, then

B+ = (B� ·B)−1 ·B� (15)

It is however preferable to compute the Moore-Penrose
pseudo-inverse using singular value decomposition (SVD).
The μ×ν matrix B can be written

B=U ·D ·V� (16)

where U is an μ× μ orthogonal matrix, V is an ν × ν or-
thogonal matrix and D is an μ×ν diagonal matrix with real,
non-negative elements in descending order.

B+ =V ·D−1 ·U� (17)

Here, the diagonal terms of D−1 are simply the inverse of
the diagonal terms of D.

The size of the basis, or, equivalently the number of con-
trol points, has a direct effect on the locality of the deforma-
tion around the selected point. In their approach, P. Borrel
and D. Bechmann pursue the reasoning even further, and de-
fine a technique suitable for n-dimensional objects [BB91].
In the context of shape animation, i.e. in R

4 with time as the
fourth dimension, the Bernstein, B-Splines or simple poly-
nomials are inappropriate. They propose to use a basis that
does not change the initial time, t0, and final time, t f , of an
object:

Bt(p, t) =(
(t− t0)(t− t f ) , (t− t0)(t− t f )t , (t− t0)(t− t f )t2 , ...

)�

3.2.5. Simple constrained deformations for geometric
modeling and interactive design (scodef)

In simple constrained deformations (scodef), P. Borrel and
A. Rappoport propose to use DMFFD with radial basis func-
tions (RBF) [BR94]. The artist defines constraint triplets
(pi,�vi,ri): a point, a vector that defines the desired image
of the point, and a radius of influence. Let φi(p) denote the
scalar function φ( ‖p−pi‖ri ) for short. The motivation of us-
ing RBF is to keep the deformation local, in the union of
spheres of radius ri around the points pi. A naive vector field
would be:

�v(p) =
n

∑
i=1

�viφi(p) (18)

Unless the points pi are far apart enough, Equation (18) will
not necessarily satisfy the artist’s input�v(pi) =�vi if the func-
tions φi overlap. However, this can be made possible by sub-
stituting the vectors�vi with suitable vectors �wi.

�v(p) =
n

∑
i=1

�wiφi(p) (19)

These vectors �wi can be found by solving a set of 3n equa-
tions:

�vi = (�w1 . . .�wn) ·

⎛
⎜⎝

φ1(pi)
...

φn(pi)

⎞
⎟⎠ where i ∈ [1,n] (20)
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Let us take the transpose, and arrange the n equations in
rows. The following equation is the equivalent of Equa-
tion (14), but with radial basis functions:

⎛
⎜⎜⎝

�v�1
...

�v�n

⎞
⎟⎟⎠=

⎛
⎜⎝

φ1(p1) . . . φn(p1)
...

φ1(pn) . . . φn(pn)

⎞
⎟⎠ ·

⎛
⎜⎜⎝

�w�1
...

�w�n

⎞
⎟⎟⎠(21)

where i ∈ [1,n]

LetΦ be the n×n square matrix of Equation (21). This ma-
trix takes the role of B in Equation (14). Since Φ can be
singular, the authors also use its pseudo-inverse Φ+ to find
the vectors �wi.

3.2.6. Dirichlet free-form deformation (DFFD)

With DFFD, L. Moccozet and N. Magnenat-Thalmann pro-
pose a technique that builds the cells of a lattice automati-
cally [MMT97], relieving the artist from a tedious task. The
lattice cells are the cells of a Voronoï diagram of the control
points, shown in Figure 15. The location of a point within a
cell is neatly captured by the Sibson coordinates. The naive
deformation of a point p is given by interpolating vectors
defined at the control points with the Sibson coordinate.

p +=
n

∑
i=1

ai
a
�vi (22)

Where ai is the volume of cell i stolen by p, and a is the vol-
ume of the cell of p. This interpolation is only C0. They use
a method developed by G. Farin [Far90] to define a contin-
uous parameterization on top of the Sibson coordinates. The
interpolation is made of four steps:

• build the local control net
• build Bézier abscissa
• define Bézier ordinates such that the interpolant isC1

• evaluate the multivariate Bernstein polynomial using Sib-
son coordinates.

p3

p4
p2

p1
p5

a

p3

p1

p2

p5

p4
p

(a) (b)

a

a

a
a

a5

4

3
2

1

p3
p2

p1
p5

p4

(c) (d)
Figure 15: 2D illustration of the Sibson coordinates (a) Voronoï
cells of the control points. (b) Voronoï diagram is updated after the
insertion of point p. (c) The areas stolen by the point p from its nat-
ural neighbors give the Sibson coordinates ai/a. (d) Local control
net, with Bézier abscissa.

3.2.7. Preventing self-intersection under free-form
deformation

In FFD, EFFD and DMFFD, if the magnitude of a control-
vector is too high, the deformation may produce a self-
intersection of the shape’s surface (see a self-intersection in
Figure 13). Once the shape’s surface self-intersects, there is
no space deformation that can remove the self-intersection.
The appearance of this surface incoherency is the result of
a space foldover: the deformation function is a surjection of
R
3 onto R

3, not a bijection. J. Gain and N. Dodgson present
foldover detection tests for DMFFD deformations that are
based on uniform B-Splines [GD01]. They argue that a nec-
essary and sufficient test is too time consuming, and present
an alternative sufficient test. Let us define qi jk, the deformed
control points of the lattice. If the determinants of all the fol-
lowing 3×3 matrices are all positive, there is no foldover.

φi jk = s det
(
qi±1 jk−qi jk,qi j±1k−qi jk,qi jk±1−qi jk

)
where the sign s is 1 if (i±1, j±1,k±1) are
clockwise, else −1.

(23)

The idea underlying the test is that the determinant of three
column vectors is the volume of the parallelepiped defined
by these vectors. A negative volume detects a possible singu-
larity in the deformation. A technique for efficiently testing
several determinants at once can be found in the original pa-
per.

This test can then be used to repair the DMFFD. Let us
define (pi,�vi), the pairs of points and vectors defining the
DMFFD. If a foldover is detected, the DMFFD is recursively
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split into two parts: (pi,�vi/2) and (pi+�vi/2,�vi/2). The pro-
cedure eventually converges, and the series of DMFFDs ob-
tained are foldover-free and can be applied safely to the
shape.

3.3. Tool-based space deformations

Lattice-based techniques are capable of building a wide
range of vector fields. But when dealing with a problem in
animation, modeling or visualization, a technique tailored
for that specific problem will be more suitable. This sec-
tion is about techniques that focus on a particular unre-
solved problem of space deformation, and solve it in an orig-
inal way.

3.3.1. Interactive space deformation with hardware
assisted rendering

Y. Kurzion and R. Yagel present ray deflectors [KY97]. The
authors are interested in rendering the shape by deforming
the rays, as opposed to directly deforming the shape. To de-
form the rays, one needs the inverse of the deformation that
the artist intends to apply to the shape. Rather than defining
a deformation and then trying to find its inverse, the authors
directly define deformations by their inverse. Their tool can
translate, rotate and scale space contained in a sphere, lo-
cally and smoothly. Moreover they define a discontinuous
deformation that allows the artist to cut space, and change a
shape’s topology. A tool is defined within a ball of radius r
around a center c. Let ρ be the distance from the center of
the deflector c and a point p.

ρ = ‖p− c‖ (24)

3.3.1.1. Translate deflector: To define a translate deflec-
tor, the artist has to provide a translation vector,�t. The effect
of the translate deflector will be to transform the center point,
c, into c+�t.

fT(p) =

{
p−�t(1− ρ2

r2 )
2 if ρ < r

p otherwise
(25)

where θ ∈ R

3.3.1.2. Rotate deflector: To define a rotate deflector, the
artist has to provide an angle of rotation, θ, and a vector,�n,
about which the rotation will be done. The reader can find
the expression of a rotation matrix, Rθ′,�n,c, in Appendix ??.
Let us call θ′ an angle of rotation that varies in space:

θ′ = −θ(1−
ρ2

r2
)4

fR(p) =
{
Rθ′,�n,c ·p if ρ < r
p otherwise

(26)

where ‖�t‖ ∈ [0,
3
√
3r
8

]

3.3.1.3. Scale deflector: To define a scale deflector, the
artist has to provide a scale factor s. The scale deflector acts
like a magnifying glass.

fS(p) =

{
p− (p− c)(1− ρ2

r2 )
4s if ρ < r

p otherwise
(27)

where s ∈ [−1,1]

3.3.1.4. Discontinuous deflector: To define a discontinu-
ous deflector, the artist has to provide a translation vector,�t.
The deflector is split into two halves, on each side of a plane
going through c and perpendicular to�t. In the half pointed at
by�t, the discontinuous deflector will transform c, into c+�t,
while in the other half, the discontinuous deflector will trans-
form c, into c−�t. The effect will be to cut space. The defor-
mation applied to the rays is:

fD(p) =

⎧⎪⎨
⎪⎩
p−�t(1− ρ2

r2 )
2 if ρ < r and 0< (p− c) ·�t

p+�t(1− ρ2
r2 )
2 if ρ < r and (p− c) ·�t< 0

p otherwise

(28)

where θ ∈ R

Since this deformation is discontinuous on the disk separat-
ing the two halves of the deformation, a ray crossing that
disk will be cut in two, as we show in Figure 16(c). Thus
a shape intersection algorithm will have to march along the
ray from the two sides of the ray, until each curve crosses the
separating disk. This deformation assumes that the shape’s
representation has an inside and outside test. Note that other
authors have extended FFD for dealing with discontinu-
ities [SE04].

(a) (b) (c)
Figure 16: (a) Discontinuous deflector as observed by the artist.
Two arbitrary rays are shown. (b) Simple case, where the ray of
light crosses only one hemisphere. (c) When the ray of light changes
hemisphere, the curve of light is subject to a discontinuity.

3.3.2. Geometric deformation by merging a 3D object
with a simple shape

P. Decaudin proposes a technique that allows the artist to
model a shape by iteratively adding the volume of simple
3D shapes [Dec96]. His method is a metaphor of clay
sculpture by addition of lumps of definite size and shape.
His deformation function is a closed-form, as opposed
to a numerical method that would explicitly control the
volume [HML99].
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Figure 17: Steps of the modeling of a cat (courtesy of [Dec96]).

Loosely speaking, this technique inflates space by blowing
up a tool in space through a hole. This will compress space
around the point in a way that preserves the outside volume.
Hence if the tool is inserted inside the shape, the tool’s vol-
ume will be added to the shape’s volume. On the other hand,
if the tool is inserted outside the shape, the shape will be
deformed but its volume will remain constant. This is illus-
trated for the 2D case in Figure 19. A restriction on the tool
is to be star-convex with respect to its center c . The defor-
mation function is‡ (see Figure 18):

f3D(p) = c+ 3
√

ρ(p)3+ r(p)3�n (29)

• ρ(p) is the magnitude of the vector�u= p− c.
• r(p) is the distance between c and the intersection of the
tool with the half-line (c,�u).

• �n=�u/‖�u‖ is the unit vector pointing from c to p.

If the tool was not a star-convex in c, then r(p) would
be ambiguous. The deformation is foldover-free. It is con-
tinuous everywhere except at the center c. The effect of the
deformation converges quickly to the identity with the in-
creasing distance from c. The deformation can be considered
local, and is smooth everywhere except at c. An example in
3D is shown in Figure 17. A feature of this space deforma-
tion which is rare, is that it has an exact yet simple inverse
in the space outside the tool:

f−13D (p) = c+ 3
√

ρ(p)3− r(p)3�n (30)

‡ The 2D case is obtained by replacing 3 with 2.

c

r
ρ

T

p
f(p)

Figure 18: The insertion of a tool at center c affects the position
of point p. See the deformation in Equations (29).

(a)

(b)

Figure 19: (a) Deformation of a shape (green) by blowing up a
tool (yellow) outside the shape. The shape’s area is preserved. (b)
Deformation of a shape by blowing up a tool inside the shape. The
shape’s area is increased by that of the tool.

3.3.3. Implicit free-form deformations (IFFD)

B. Crespin introduces Implicit Free-Form Deformations
(IFFD) [Cre99]. Note that though it is called implicit, the
deformation is explicit. IFFD is rather a technique inspired
by implicit surfaces, a vast branch of computer graphics
whose presentation is beyond the scope of this manuscript
[BBB∗97]. The field φ ∈ [0,1] generated by a skeleton mod-
ulates a transformation, M, of points. The deformation of
point p with a single function is:

f (p) = p+φ(p)(M ·p−p) (31)

He proposes two ways to combine many deformations si-
multaneously. Let use denote pi the transformation of p with
deformation fi. The first blending is shown in Figure 20. For
M, we have used a translation matrix.
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pde f = p+ ∑ni=1(pi−p)φi(p)
∑ni=1 φi(p)

Reference segments Translated segments
Figure 20: Blending weights based on summed displacement mag-
nitudes. The deformation is only defined where the amounts φ are
not zero, and is discontinuous at the interface ∑i φi = 0. This blend-
ing is useful when the deformed shape is entirely contained within
the field.

The second blending attempts to solve the continuity is-
sue, but requires the definition of supplementary profile
functions, γi. The purpose of the index i is to assign indi-
vidual profiles to skeletons.

pde f = p+ ∑ni=1(pi−p)φi(p)γi(p)
∑ni=1 φi(p)

Reference segments Translated segments
Figure 21: Blending weights based on displacement magnitudes
and profile functions. For control points, the technique works well.
For segments, there is a discontinuity near their intersection.

In order to produce Figure 21, the following γi function
was used:

γi(p) =

⎧⎨
⎩
1− (1−σ2)2 if σ ∈ [0,1],

where σ = ∑ni=1 φi(p)
1 otherwise

(32)

3.3.4. Twister

I. Llamas et al propose a method called twister in which
a twist transformation of points is weighted with a scalar
function [LKG∗03], i.e. in a similar way to IFFD but with
a transformation restrained to a twist. With this restriction,
they propose to weight single twists along the trajectory of
transformation rather than weighting the displacement. They
define a twist by transforming an orthonormal coordinate
system (o,�u,�v,�w) into (o′,�u′,�v′,�w′). The axis of the twist
is defined by a direction �d and point a on the axis, while
the angle of rotation around the axis is α and the translation

factor along the axis is d:

�d = �g
‖�g‖

where �g = (�u′−�u)×(�v′−�v)+
(�v′−�v)×(�w′−�w)+
(�w′−�w)×(�u′−�u)

α = 2arcsin( ‖�u′−�u‖
2‖�d×�u‖ )

d = �d · (o′−o)
a = o+o′−d�d

2 +
�d×(o−o′)
2 tan(α/2)

(33)

Their procedure for deforming a point p with a twist param-
eterized in t is:

1. Bring p into local coordinates: translate by −�a and then
rotate by a rotation that maps�d onto�z.

2. Apply the twist in local coordinates: translate by t d
along�z and rotate by t α around�z

3. Finally bring p back into world coordinates: rotate by a
rotation that maps�z onto�d and translate by�a

To weight the twist, they propose to use a piecewise scalar
function:

t(p) = cos2(π‖p−o‖/2r) (34)

For operations that require simultaneous twists, they propose
simply to add the displacement of the weighted twist. Details
for defining a two-point constraint can be found in the paper.

3.3.5. Scalar-field guided adaptive shape deformation
and animation (SFD)

J. Hua and H. Qin create a technique called SFD [HQ04].
They define a deformation by attaching space to the level-
sets of an animated scalar field. The artist is offered three
different techniques for animating a scalar field. Since there
are many ways of attaching a point to a level-set of a scalar
field, the authors choose the way that keeps the shape as rigid
as possible.

They define φ(t,p(t)), the scalar field which is animated
in time, t. Since a moving point, p(t), is attached to a level-
set of the scalar field, the value of φ at p is constant in time:

dφ
dt

= 0 (35)

The square of Equation (35) gives a constraint:

(
dφ
dt

)2 = 0 (36)

There are several ways of attaching a point to a level set
while the scalar field is moving. The simplest way would
be to make a point follow the shortest path, found when the
magnitude of the point’s speed, ‖�v(t)‖, is minimized. An-
other possibility, chosen by the authors, is to minimize the
variation of velocity, so that the deformation is as rigid as
possible. Instead of using the divergence of the speed to mea-
sure rigidity, they use an estimate by averaging the variation
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of speed between that point’s speed, �v, and its neighbors’
speed,�vk:

(∇·�v)2 ≈
1
k∑
k

(�v−�vk)
2 (37)

Since this is a constrained optimization problem [Wei04],
there exists a Lagrange multiplier λ such that:

d
d�v

(
d
dt

φ(t,p(t)))2+λ d
d�v

(∇·�v)2 =�0 (38)

According to the authors, λ is an experimental constant, used
to balance the flow constraint and speed variation constraint.
Its value ranges between 0.05 and 0.25. We rearrange this
equation and expand the derivative of φ with the chain rule:

d
d�v

(
(∇φ ·�v+ ∂φ

∂t
)2+λ(∇·�v)2

)
=�0 (39)

Let us define�̂v, the average of the velocity of all the adjacent
neighbors connected with edges to point p. If we substitute
(∇·�v)2 for its approximate given by Equation (37), and then
apply the derivative with respect to�v, we obtain:

(∇φ ·�v+ ∂φ
∂t

)∇φ+λ(�v−�̂v) =�0 (40)

By solving the system of Equation (40), the updated position
is:

�v=�̂v−
�̂v ·∇φ+ ∂φ

∂t
λ+(∇φ)2

∇φ (41)

The algorithm deforms a set of vertices in n sub-steps. If n is
set to one, the deformation takes one step:
for i = 1 to n do
for all pk in the list of vertices to update do
Update the scalar field φ(t+Δt,pk).
Deduce ∂φ

∂t = φ(t+Δt,pk)−φ(t,pk)
Δt

Calculate∇φ, possibly with finite differences.
Compute �̂v according to neighbors’ velocities.
Deduce�v according to Equation (41).
Update vertex positions with pk(t+Δt) = pk(t)+�vΔt

n
Improve surface representation using a mesh refine-
ment and simplification strategy.
if φ(t+Δt,pk(t+Δt)) ≈ φ(t,pk(t)) then
remove pk from the list of vertices to update.
end if
end for

end for

In the first step, since all the speeds are zero, we suggest that
they could be initialized with:

�v= −

∂φ
∂t

λ+(∇φ)2
∇φ (42)

Firstly, this technique is not a very versatile space defor-
mation technique since it requires an explicit surface in order
to compute the divergence of the speed. Secondly, the advan-
tage of a large set of possible SFD shape operations (as large

as the set of possible animated scalar fields) is at the cost
of making the artist’s task rather tedious: specifying the ani-
mated field does not permit quick and repeated operations on
the shape. Also, results show the editing of imported shapes
rather than shapes entirely modeled from scratch.

3.4. Limitations

The large number of space deformation techniques can lead
quickly to the naive conclusion that in any shape model-
ing by deformation scenario, the limitation of a technique
may be simply circumvented by using another technique.
This reasoning presents several flaws. Firstly, from the point
of view of a programmer, the amount of effort required to
implement a space deformation Swiss-army knife for shape
modeling would be considerable. Secondly, from the point
of view of an artist, choosing quickly the most appropriate
space deformation would require a vast amount of knowl-
edge of the underlying mathematics of many techniques,
which is a skill that should not be required. Thirdly, from a
researcher’s point of view, all space deformation techniques
are not necessarily designed for the specific purpose of shape
modeling, and there are surely efficient ways of dealing with
specific problems. We will discuss this last point in the re-
mainder of this section, i.e. we will overview the suitability
of individual space deformation techniques for the purpose
of interactive shape modeling.

Firstly, the subset of space deformations, whose effect on
a shape is not local, makes these techniques unsuitable for
the task of modeling shapes, since an artist’s operation on a
visible portion of the shape will have effects on portions that
are further away [Bar84, Bla94, CR94, LCJ94].

Secondly, a large number of space defor-
mation techniques requires the artist to spec-
ify a rather large number of control parameters
[SP86, Coq90, MJ96, MMT97, HML99, HQ04]. We
believe that increasing the number of parameters does
not increase the amount of control by an artist, but rather
it makes the task longer and more tedious. Many tech-
niques illustrate their capabilities on imported models,
that were either digitized or pre-modeled with con-
ventional modeling techniques with a few exceptions
[Dec96, HHK92, LKG∗03]. We believe that the absence
of a model entirely developed in one piece with a single
technique is some evidence that the technique is tedious to
use for the dedicated purpose of modeling shapes.

Finally, many space deformation techniques do not pre-
vent a surface from self-intersecting after deformation, aside
from a few exceptions [Dec96, MW01, GD01]. A self-
intersecting surface is a rather annoying situation in model-
ing with deformation, since it is impossible for a space defor-
mation to remove a previously introduced self-intersection.
Thus we believe that space deformation operations for shape
modeling should satisfy all the following criteria:
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• Its effective span should be controllable.
• Its input parameters should be reduced to their strict min-
imum: a gesture.

• It should be predictable, in accordance with a metaphor.
• It should be foldover-free, and even revertible.
• It should be sufficiently fast for existing computing de-
vices.

To our knowledge, the literature does not contain techniques
satisfying all the above criteria. Rather than defining a set of
unrelated techniques, we will specify a framework in which
we will define deformation operations that satisfy the above.
We will illustrate the modeling capabilities of our framework
with techniques and examples.

4. Modeling with gesture

In the following, the input that defines transformations is
a gesture, obtained with a mouse or hand tracking device.
For the sake of simplicity, we will denote by f the function
fti �→ti+1 .

4.1. Naive deformation

A simple space deformation can be defined with a transfor-
mation (translation, rotation, scale, etc.) whose effect is spa-
tially weighted. Thus two entities suffice:

• a transformation: 4× 4 matrix M, defined by a gesture
(mouse move, tracked hand)

• the amount of transformation at p ∈ R
3: scalar field

ϕ(p) ∈ [0,1], defined for instance using the distance to
a shape. We call tool the field.

The most straightforward way of weighting M with ϕ is to
weight the displacement induced by M at p:

ḟ (p) = p+ϕ(p) (M ·p−p) (43)

This weighting of M produces however poor results in sev-
eral cases, including when M is a rotation matrix. To com-
pute fractions of a transformation, we rather use the for-
malism of M. Alexa [Ale02], i.e. the multiplication opera-
tor � which behaves essentially like · for scalars (see Ap-
pendix A). Note that although we use Alexa’s operator, we
do not necessarily evaluate it numerically as proposed in his
paper, since some cases reduce to more efficient and elegant
closed-form formulas, as we will show. Thus the transforma-
tionM can be weighted with ϕ as follows:

f̈ (p) = (ϕ(p)�M) ·p (44)

The deformation f̈ is however naive, since it can create a
foldover. For example, if M is a translation of large magni-
tude, it can map points within the support of ϕ onto points
outside from the support of ϕ, thus folding space onto itself
as shown in Figure 22(left).

Foldover Foldover−free

τ 0

...

t i+1

t i

τ

τ

τ

τ 1

2

3

s

Figure 22: 2D illustration of our solution to foldovers. Left: the
deformation maps space onto itself. Right: the deformation is de-
composed into small foldover-free steps.

4.2. Defining simple tools

To define a tool, a smooth function μ can be composed to
the distance to a shape. We chose to use the following C2

piecewise polynomial, in which λ controls the size of the
influence of the tool:

μλ(d) =
{

0 if λ ≤ d
1+( dλ )3( dλ (15−6 dλ )−10) if d < λ (45)

Ball tool: The distance to a ball has a simple expression in
local coordinates:

dsphere(p)=

{
0 if ‖M−1

ti ·p‖2≤1

det(M
1
3
ti )(‖M

−1
ti ·p‖−1) otherwise

(46)

If the artist wishes to apply a non-uniform scale to the
sphere, it would turn into an ellipsoid, and Equation (46)
would not be usable.

Filled ellipsoid tool: The ellipsoid is defined in local coor-
dinates as a unit sphere, whose position in world coordinates
is encoded in a possibly non-uniform matrix Mti . To com-
pute the distance to a filled ellipsoid, we use the numerical
method described in [Ebe01].

dellipsoid(p) =

⎧⎪⎪⎨
⎪⎪⎩
0 if ‖M−1

ti ·p‖2 ≤ 1

min
q∈S

‖p−Mti ·q‖ otherwise,

where S is the unit sphere at the origin

(47)
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Mesh tool: It is convenient for an artist to choose or manu-
facture his own tools. For this purpose, we propose the pos-
sibility of baking pieces of clay in order to use them as tools.
By baking, we mean precomputing a data structure such that
the distance field can be computed efficiently. We propose
one way in [Ang05] (see Figure 23). More information on
distance computation can be found in [Gué01].

Figure 23: Example of customized tools deforming a sphere.

4.3. Single sweeper

As shown in Figure 22(right), if we decompose the trans-
formation into a series of s small enough transformations,
and apply each of them to the result of the previous one,
foldovers are avoided. The decomposition in s steps for a
general transformation is expressed as follows:

f (p) =
s−1
Ω
k=0
fk(p)

where fk(p) = ( ϕk(p)
s �M) ·p

and ϕk(p) = ϕ(( ks �M
−1) ·p)

(48)

The value returned by ϕk is that of the scalar field ϕ trans-
formed by ks �M, a fraction ofM. It can be shown that there
exists a finite number of steps such that the deformation is
foldover-free (see [Ang05]). We propose the following as a
lower bound to the required number of steps s:

max
p

‖∇ϕ(p)‖ max
l∈[1,8]

‖log(M) ·pl‖ < s (49)

where pl∈[1,8] are the corners of a box oustide which the
function ϕ equals zero.

4.4. Simultaneous sweepers

Applying more than one operation at the same time and the
same place has applications in modeling: for instance for
modeling a symmetric object, or to define a tool composed
of several tools. The simultaneous manipulation of tools also
allows the artist to pinch a shape. Let us consider n opera-
tions, defined with Mi∈[1,n] and ϕi∈[1,n]. The following is a
naive way to achieve simultaneous deformations, using the
formalism of M. Alexa (see Appendix A):

f (p) = (
n⊕

i=1
ϕi(p)�Mi) ·p (50)

This function is naive because it adds the effect of each op-
eration. The following expression provides a normalized and

smooth§ combination of all the transformations at any point
p in space¶:{
p if ∑k ϕk = 0
⊕n
i=1

((
1−∏k(1−ϕk)

∑k ϕk ϕi
)
�Mi

)
·p otherwise

(51)

where:

• 1
∑k ϕk is required to produce a normalized combination of
the transformations. This prevents for instance two trans-
lations of vector �d producing translations of vector 2�d ,
which would send some points far away from the tools.
This unwanted behaviour was also identified by K. Singh
and E. Fiume [SF98].

• 1−∏nk=1(1−ϕk(p)) smooths the deformation in the en-
tire space. Smoothness would be lost between the regions
where ∑k ϕk = 0 and ∑k ϕk �= 0 if we only used the nor-
malization above.

Figure 25 shows a comparison between additive blending
of Equation (50) and the correct one of Equation (51). In
Figure 24, we show our blending in a scenarion similar to
existing blending methods, presented in Section 3.

Reference segments Translated segments
Figure 24: Blending with sweepers. The surface appears nice and
smooth, as opposed to surfaces in Figures 10,11,12, 25,21 and 20.

Equation (51) however may produces foldovers for simi-
lar reasons to the case of a single tool, with Equation (44). If
we decompose it into small steps, foldovers can be avoided:

f (p) =
s−1
Ω
k=0
fk(p)

where fk(p) =

⎧⎪⎪⎨
⎪⎪⎩
p if ∑ j ϕ

k
j= 0

otherwise
⊕n
i=1

((
1−∏ j(1−ϕkj)

∑ j ϕkj
ϕki

)
�Mi

)
·p

and ϕkj(p) = ϕ j(( ks �M
−1
j ) ·p)

(52)
Note that the value returned by ϕkj is that of the scalar field
ϕ j transformed by ks �M j, a fraction of M j. The follow-
ing expression is a lower bound to the required number of
steps, generalizing the single tool condition (see justification
in [Ang05]):

∑
j
max
p

(‖∇ϕ j(p)‖) max
l∈[1,8]

∣∣∣∣∣∣logM j ·pl j ∣∣∣∣∣∣< s (53)

§ as smooth as the ϕi.
¶ The operator

⊕
expresses a repetive sum:

⊕n
i=1Mi = M1 ⊕

M2⊕·· ·⊕Mn.
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Figure 25: Blending of three scalar fields. To illustrate the be-
haviour of our blending in this figure, we directly combine the
scalar fields instead of using them to modulate a transformation.
(a) Adding the scalar fields. (b) By multiplying each field with
(1−∏(1−ϕk))/∑ϕk, the sum of the fields is normalized.

where pl j∈[1,8] are the corners of a bounding box oustide
which the function ϕ j equals zero.

Figure 26: Simultaneous sweepers

4.5. Fast single sweeper

In a single tool scenario, some transformations are conve-
nient to input by the artist: translations, non-uniform and
uniform scaling and rotations. With these simple transforma-
tions, the deformations of a point is much simpler to com-
pute, as there is a closed-form to the logarithm of simple
matrices. In this section, in addition to efficient expressions
for computing the number of required steps, we provide fast
deformation functions for a vertex and its normal. For de-
forming the normal, computing the Jacobian’s co-matrix is
not always required: JC ·�n leads to much simpler expres-
sions. Note that the normal’s deformations do not preserve
the normal’s length. It is therefore necessary to divide the
normal by its magnitude. We denote �γk = (γx,γy,γz)� the
gradient of ϕk at p and�γ the gradient of ϕ at p

IfM is a translation: The use of� simplififies, using trans-

lation vector�d. The minimum number of steps is:

max
p

‖�γ(p)‖ ‖�d‖ < s (54)

The s vertex deformations are:

fk(p) = p+
ϕk(p)
s

�d (55)

The s normal deformations are:

gk(�n) =�n+
1
s
(�γk×�n)×�d (56)

Figure 27: Translation

If M is a uniform scaling operation: Let us define the cen-
ter of the scale c, and the scaling factor σ. The minimum
number of steps is:

max
p

‖�γ(p)‖ σ log(σ)dmax < s (57)

where dmax is the largest distance between a point in the de-
formed area and the center c, approximated using a bounding
box. The s vertex deformations are:

fk(p) = p+(σ
ϕk(p)
s −1)(p− c) (58)

Let�χ = log(σ)
s (p− c). The s normal deformations are:

gk(�n) =�n+(�γk×�n)×�χ (59)

Figure 28: Scale

If M is a non-uniform scaling operation: Let us define the
center of the scale c , its direction of scale, unit vector�n, and
its scaling factor, σ. The minimum number of steps is:

max
p

‖�γ(p)‖ σ log(σ)dmax < s (60)

where dmax is the largest distance between a point in the de-
formed area and the plane of normal �n passing through c.
The s vertex deformations are:

fk(p) = p+(σ
ϕk(p)
s −1)((p− c) ·�n)�n (61)

Let�χ = log(σ)
s (p− c). The s normal deformations are:

gk(�n) =�n+σ
ϕk(p)
s ((�v+(�v ·�χ)�γk)×�n)×�v (62)

It is appropriate to remark here that the tool is also subject to
the scale, and that the influence function ϕt must be defined
in an appropriate way, as described in Section ??.

IfM is a rotation: Let us define a rotation angle θ, center of
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rotation r and vector of rotation�v = (vx,vy,vz)�. The mini-
mum number of steps is:

max
p

‖�γ(p)‖ θrmax < s (63)

where rmax is the distance between the axis of rotation and
the farthest point from it, approximated using a bounding
box. The s vertex deformations are:

fk(p) = p+(cos
ϕkθ
s

−1)�ξ×�n+ sin
ϕkθ
s

�ξ (64)

where�ξ =�v× (p− r)

The s normal deformations are:

gk(�n) = (�n ·�v)�v+�v× (cos(h)�n×�v− sin(h)�n)
+ θ�γ× (�n×�ξ

+((cos(h)−1)(�n×�ξ) ·�v
+ sin(h)�n ·�ξ)�v)

where h = ϕkθ
s

(65)

Figure 29: Rotation

4.6. Fast symmetric sweepers

For an operation symmetric about a plane, the transforma-
tion matrices are of the same type, thus blending them leads
to simple expressions. Let us consider two tools ϕ0 and ϕ1.
If the influence of both tools is zero at p, that is if ϕ0(p) = 0
and ϕ1(p) = 0, then the deformation is the identity. If the
influence of one tool is zero at p, that is if ϕ0(p) = 0 or
ϕ1(p) = 0, then the deformation equation is that of a sin-
gle tool. When both influences are not zero at p, that is if
ϕ0(p) �= 0 and ϕ1(p) �= 0, then the deformation induced at p
by the tools’ motion must be computed using Equation (51).
In the rest of this section, we have simplified the blending
equation for simple symmetric transformations of the same
type.

Translation: The number of steps is:

max
p

‖�γ(p)‖ (‖�d0‖+‖�d1‖) < s (66)

The deformation of a point is:

fk(p) = p+
1
s
(1−

ϕ0+ϕ1
ϕ0ϕ1

)(ϕ0�d0+ϕ1�d1) (67)

Rotation, scale and non-uniform scale: The deformation
of a point is:

fk(p) = exp(
1
s
(1−

ϕ0+ϕ1
ϕ0ϕ1

)(ϕ0 logM0+ϕ1 logM1))(68)

4.7. Results

Although a few simple transformations were combined
(translation, uniform scale and rotation), the set of possible
deformations is very high because of the arbitrary shape of
the tools, and also because many tools’ deformations can be
blended. The shapes shown in Figure 30 were modeled in
real-time in one hour at most, and were all made starting
with a sphere.

Figures 30(a) and 30(b) show the use of the multi-tool to
achieve smooth and symmetric objects. Figure 30(d) shows
that sharp features can be easily modeled. Figures 30(c)
and 30(i) show the advantage of foldover-free deformations,
as the artist did not have to concentrate on avoiding self-
intersections: our deformations do not change the topology
of space and thus preserve the topology of the initial object.

5. Modeling with constant volume

In a non-virtual modeling context, one of the most important
factors which affects the artist’s technique is the amount of
available material. This aspect was ignored in the previous
sections. The notion of an amount of material is not only fa-
miliar to professional artists, but also to children, who may
experience it with Play-Doh R©at kindergarten, and to adults
through everyday life experience. A shape modeling tech-
nique that preserves volume will take advantage of this, and
will hopefully be genuinely intuitive to use.

5.1. Swirl

We define a particular case of sweeper, a swirl, by using a
point tool c, together with a rotation of angle θ around an
axis�v (see Figure 31). A scalar function, ϕ, and a deforma-
tion are defined as before. Informally, a swirl twists space
locally around axis �v without compression or dilation (see
proof in [ACWK04]): it preserves volume.

5.2. Ring of swirls

Many deformations of the above kind can be naively com-
bined to create a more complex deformation:

f (p) =

(
n−1⊕

i=0
(ϕi(p)�Mi)

)
·p (69)

It is important here to remark that the above blending is not
the blending formula of simultaneous tools defined in Equa-
tion (51), and only uses simple weights. The reason for us-
ing the above simple blending equation as opposed to Equa-
tion (51) is that the latter modulates the amount of individual
transformations locally, and attempting to control the vol-
ume with it would be inappropriate. We provide a conve-
nient way for the artist to input n rotations, by specification
of a single translation�t. Let us consider n points, ci, on the
circle of center h, and radius r lying in a plane perpendic-
ular to�t. To these points correspond n consistently-oriented
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 30: All these shapes were modeled starting with a sphere,
in at most one hour. In (c), the first modeling step was to squash the
sphere into a very thin disk. In (g), eyeballs were added.

unit tangent vectors�vi (see Figure 32). Each pair, (ci,�vi), to-
gether with an angle, θi, define a rotation. Along with radii
of influence λi = 2r, we can define n swirls. The radius of
the circle r, is left to the user to choose. The following value
for θi will transform h exactly into h+�t (see justification in

[ACWK04]):

θi =
2‖�t‖
nr

(70)

With this information, the deformation of Equation (69) is
now a tool capable of transforming a point into a desired tar-
get. We show in Figure 32 the effect of the tool for different
values of n; in practice, we use 8 swirls.

5.2.0.1. Preserving coherency and volume If the mag-
nitude of the input vector �t is too large, the deformation
of Equation (69) will produce a self-intersecting surface,
and will not preserve volume accurately. The reason for
self-intersection is explained in Section 4.1. The volume
is not accurately preserved because the blending operator,
⊕, blends the transformation matrices, and not the defor-
mations. To correct this, it is necessary to subdivide�t into
smaller vectors. Thus foldovers and volume preservation are
healed with the same strategy. The number of steps must be
proportional to the speed and inversely proportional to the
size of the tool. We use:

s=max(1,�4‖�t‖/r�) (71)

As the circle sweeps space, it defines a cylinder. Thus the
swirling-sweeper is made of ns basic deformations. Fig-
ure 33 illustrates this decomposition applied to a shape.

5.3. Swirling-Sweepers

We summarize here the swirling-sweepers algorithm:
Input point h, translation�t, and radius r
Compute the number of required steps s
Compute the angle of each step, θi =

2‖�t‖
nrs

for each step k from 0 to s−1 do
for each point p in the tool’s bounding box do
M = 0
for each swirl i from 0 to n−1 do
M += ϕik(p) logMi,k
end for
p= (expM) ·p
end for

end for

The point cik denotes the center of the i
th swirl of the kth ring

of swirls. For efficiency, a table of the basic-swirl centers,
cik, and a table of the rotation matrices, logMi,k, are pre-
computed. We have a closed-form for the logarithm of the
involved matrix, given in Equations (72) and (73), saving an
otherwise expensive numerical approximation:

�n = θi�vi
�m = ci,k×�n (72)

logMi,k =

⎛
⎜⎜⎝

0 −nz ny mx
nz 0 −nx my
−ny nx 0 mz
0 0 0 0

⎞
⎟⎟⎠ (73)
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Note that for the sake of efficiency, we handle these matrices
as mere pairs of vectors, (�n,�m). OnceM is computed, we use
a closed-form for computing expM. Since the matrix M is a
weighted sum of matrices logMi,k, the matrix M is of the
form of Equation (73), and can be represented with a pair
(�nM ,�mM). If �nM = 0, then expM is a translation of vector
�mM . Else, if the dot product �mM ·�nM = 0, then expM is a
rotation of center c, angle θ axis�v, as given by Equation (74):

c = �ω×�m
‖�ω‖2

θ = ‖�nM‖
�v = �nM/θ

(74)

Finally, in the remaining cases, we denote l = ‖�nM‖, and we
use Equation (75) (see Appendix B for efficiency):

expM = I+M+ 1−cos l
l2 M2+ l−sin ll3 M

3 (75)

Symmetrical objects can be easily modeled by introducing
a plane of symmetry about which the tool is reflected (see
Figure 35).

5.4. Results

In Figure 35, we compare the shapes’ volume with unit
spheres on the right. The shapes volumes are respectively
101.422%, 99.993%, 101.158% and 103.633% of the initial
sphere. This error is the result of accumulating smaller errors
from each deformation. For instance 80 swirling-sweepers
have been used to model the alien. The small errors are due
to the finite number of steps, and to our choice of shape rep-
resentation. The shapes shown in Figure 35 were modeled in
real-time in half an hour at most, and were all made starting
with a sphere.

θ

c c
v v

λ

Figure 31: The effect on a sphere of a swirl centered at c, with a
rotation angle θ around�v. The two shapes have the same volume.

6. A shape description

With sweepers and swirling-sweepers, shape modeling oper-
ations based on gesture can be conveniently described, while
coherency and volume of the shape are maintained. By us-
ing both operation types, the artist can increased, decreased
or preserved the volume of a shape (see Figure 36). Because
these operation types are indepent from the shape descrip-
tion, several choices are available: mesh, particles, discrete
grid of deformed raytracing (see [Ang05]). In the context of

hh

4 swirls 8 swirls2 swirls

h

t t t

Figure 32: By arranging n basic swirls in a circle, a more complex
deformation is achieved. In the rightmost image: with 8 swirls, there
are no visible artifacts due to the discrete number of swirls.

t t s/

t s/

t s/

h

h + t

input step ... step sstep 1

Figure 33: A volume preserving deformation is obtained by de-
composing a translation into circles of swirls. 3 steps have been
used for this illustration. As the artist pulls the surface, the shape
gets thinner. The selected point’s transformation is precisely con-
trolled.

shape modeling, the number of deformations is possibly ex-
cessively large, and issues related to such excess have to be
taken into consideration when defining a shape description.
We provide in this section a shape description for interac-
tive modeling which supports high deformation and does not
break when highly stretched.

A simple way of representing a deformable shape is to
place a set of samples on the surface of the shape: this makes
the task of deforming the shape as straightforward as de-
forming the points on its surface. Points are discrete surface
samples, and need to be somehow connected using splatting,
interpolation or approximation scheme in order to display a
continuous surface.

Our method uses an updated mesh, i.e. vertices con-
nected with triangles. Connectivity provides convenient 2D-
boundary information for rendering the surface as well as
surface neighborhood information, which enables the artist
to define very thin membranes without having them van-
ish, as shown in Figure 30(c). The use of triangular “C0

patches” circumvents issues related to non-regular vertices
and smoothness maintenance across the boundaries that join
patches. Also, current hardware handles polygons very effi-
ciently, which is relevant to us since interactivity is among
our objectives. The reader however should be aware that
point-sampled geometry has recently ignited a lot of inter-
est from researchers [PKKG03].
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Figure 34: When pushed or pulled, a sphere will inflate or deflate
elsewhere.

The possibly large number of deformations applied by
an artist requires some minimum surface sampling density.
Thus, the scene is initialized with a polygonal model, e.g. a
sphere with a homogeneous density of nearly equilateral tri-
angles‖. In order to quickly fetch the vertices to be deformed
and the edges that require splitting or collapsing, these are
inserted into a 3D grid. Note that this spatial limitation is
not too restrictive for the artist, as our deformations allow us
to translate the entire model rigidly and scale it uniformly.

To fetch the vertices that are deformed, a query is done
with the tool’s bounding box. Conveniently, this bounding
box is also used in Eq. (49). Since the principle of our swept
deformations is to subdivide the input gesture into a series
of smaller ones, all the transformations applied to the ver-
tices are bounded. To take advantage of this decomposition
in steps, we apply a modified version of a more generic
algorithm [GD99]. Our method requires keeping two ver-
tices and two normals per vertex, corresponding to the pre-
vious and following state of some small step operation fk.
Loosely speaking, our surface-updating algorithm assumes
that smooth curves run on the surface, and that the available
information, namely vertices and normals, should be able to
represent them. If this is not the case after deformation, then
it means the surface is under-sampled. On the other hand, if
an edge is well enough represented by a single sample, then
it is collapsed.

Let us consider an edge e defined by two vertices (v0,v1)
with normals (�n0,�n1), and the deformed edge e′ defined by
vertices (v′0,v

′
1) with normals (�n′0,�n

′
1). In addition to the

conditions in [GD99] based on edge length and angle be-
tween normals, we also base the choice of splitting edge e′
on the error between the edge and a fictitious vertex, which
belongs to a smooth curve on the surface. The fictitious ver-

‖ A simple way to obtain an homogeneous sphere polygonization
consists of starting with an icosahedron, putting all its edges longer
than h in a queue, splitting them and putting the pieces longer than
h back in the queue. Each time a split is performed, the new edges
are flipped to maximize the smallest angle.

Figure 35: Examples of models “sculpted” with swirling-
sweepers. The mouse, the goblin, the alien and the tree have re-
spectively 27607, 25509, 40495 and 38420 vertices. These objects
were modeled in less than 30 min by one of the authors. Eyeballs
have been added.

Figure 36: Shape modeled with sweepers and swirling-sweepers.

tex is used only for measuring the error, and is not a means
of interpolating the vertices. If the error between the ficti-
tious vertex and the edge is too large, the edge e is split, and
the new vertex and normal are deformed. On the other hand
if the fictitious vertex represents the edge e′ well enough,
then edge e is collapsed, and the new vertex is deformed. We
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define the fictitious vertex as the mid-vertex of a C1 curve,
since vertices and normals only provide first order informa-
tion about the surface. The following cubic polynomial curve
interpolates the vertices v′0 and v

′
1 with corresponding shape

tangents�t0 and�t1, defined below:

c(u) = (v′0(1+2u)+�t0u)(1−u)2+
(v′1(1+2(1−u))−�t1(1−u))u2

(76)

The only constraint on tangent�ti is to be perpendicular to
the corresponding normal �ni. The following choice defines
tangents of magnitude proportional to the distance between
the vertices:

�t0 = �g−�g ·�n′1
�t1 = �g−�g ·�n′0

where �g = v′1−v
′
0

(77)

With the above tangents, the expression of the middle vertex
simplifies:

c(0.5) = ( v′0+v
′
1+(�g ·�n′0−�g ·�n′1)/4 ) / 2 (78)

With the fictitious vertex c(0.5), the tests to decide whether
an edge should be split or collapsed can now be defined:

Too-long edge: An edge e′ is too long if at least one of the
following conditions is met:

• The edge is longer than Lmax, the size of a grid-cell. This
condition keeps a minimum surface density, so that the
deformation can be caught by the net of vertices if the
coating thickness λ j is greater than Lmax.

• The distance between the fictitious vertex and the mid-
vertex of e′ is too large (we used Lmax/20). This condition
prevents the sampling from folding on itself, which would
produce multiple sampling layers of the same surface.

• The angle between the normals�n′0 and�n
′
1 is larger than a

constant θmax. This condition keeps a minimum curvature
sampling.

Too-short edge: An edge e′ is too short if all of the following
conditions are met:

• The edge’s length is shorter than Lmin (we used Lmax/2).
• The angle between the normals�n′0 and�n

′
1 is smaller than

a constant θmin.
• The distance between the fictitious vertex and the mid-
vertex of e′ is too small (we used Lmin/20).

Also, to avoid excessively small edges, an edge is merged
regardless of previous conditions if it is too small (we used
Lmin/20).

We stress that the procedure for updating the mesh
is applied at each small step, rather than after the user’s
deformation function has been applied. Because vertex
displacements are bounded by the foldover-free conditions,
the update of our shape description does not suffer from
problems related to updating a greatly distorted triangula-
tion. Figure 37 shows a twist on a simple U-shape. Figure 38

shows the algorithm preserving a fine triangulation only
where required. Figure 39 shows the algorithm at work in a
more practical situation. The procedure outline is:

Compute the number of steps required, s.
for each step k do
Deform the points, and hold their previous values
for each too-long edge do
split the edge and deform the new point.
end for
for each too-short edge do
collapse the edge and deform the new point.
end for

end for

Figure 37: Example of our mesh-updating algorithm on a highly
twisted U-shape. The close-up shows a sharp feature, with finer
elongated triangles.

Figure 38: Behaviour of our mesh-updating algorithm on an al-
ready punched sphere. The decimation acompanying the second
punch simplifies the small triangle of the first punch. The tool has
been removed for better visualization.

Figure 39: Close-up of the goat. Notice the large triangles on the
cheek and the fine ones on the ear. The initial shape is a sphere.

Limitation: With the updated mesh method, we choose
to ignore the history of functions applied to the shape by
the artist. Thus we “collapse” the history by freezing it in
the current shape. To explain the major consequence of this,
let us suppose the scene at a time tk, such that the shape
S(tk) is shown to the user. The next deformation produced
by the artist with the mouse is function ftk �→tk+1 , and all the
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mesh refinements and simplifications are performed in S(tk).
This is however an approximation: ideally the last operation
should be concatenated to the history of deformations, and
the whole series should be applied to the initial shape S(t0),

i.e.
n
Ω
i=0
fti �→ti+1 should be applied to each new vertex. This

would however become more and more time consuming as
the sequence of deformations gets longer (n gets larger), and
the modeling software would eventually become unusable.

7. Conclusion

Sweepers, is a framework for defining swept deformation
operation for shape modeling. It permits the description of
a family of shape operations based on gesture between the
artist and the mathematics describing the shape, and enables
an artist to handle shapes in a more efficient way than mod-
ifying directly a shape’s mathematical description. Because
sweepers are foldover-free, they maintain easily a shape co-
herency. Swirling-sweepers is a type of swept-deformation
for describing shape modeling operations that preserve im-
plicitly the shape’s volume. Subjectively, swirling-sweepers
is the most effective modeling technique defined in the
sweepers framework. Further work on volume-preservation
outlines that there is in fact a link between swirling-sweepers
and fluid mechanics [AN]. The separation of the shape’s op-
erations and the shape’s description leads to the exploration
of alternative ways to describe a shape’s surface or volume
for rendering. While our proposed method is sufficient in a
wide range of situations, more research should be done in
this area.
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Appendix A: Linear Combination of Transformations

The multiplication operator � and addition operator ⊕,
which behave essentially like · and + for scalars. The oper-
ator � is defined as α�M = exp(α logM) and the operator
⊕ is defined as M⊕N = exp(logM+ logN). The following
series defines the exponential of a matrix:

expM = I+M+
1
2
M2+

1
6
M3 · · · =

∞
∑
k=0

Mk

k!
(79)

The logarithm of a matrix is defined as an inverse of the
exponential, as follows:

log(I−M) = −M−
1
2
M2−

1
3
M3 · · · = −

∞
∑
k=1

Mk

k
(80)

In a similar that repeting + can be expressed with ∑, the
repetition of ⊕ can be expressed as follows:

n⊕

i=1
Mi =M1⊕M2⊕·· ·⊕Mn (81)

Appendix B: Exponential

Applying the exponential of the matrix to a point does not
require to compute the exponential of the matrix explicitly.
Let us define the matrixM with a pair of vectors, (�n,�m).

exp(M) ·p = p+(�m+�n×p)b+(�n×�m
l2 −p)a

+�n((�n ·p)a+(�n ·�m)(1−b)) 1l2
where l = ‖�n‖

a = 1− cos(l)
b = sin(l)

l

(82)
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Abstract

This chapter shows that sketching in 2D and annotating 3D models can be very effective tools for
designing free-form shapes. Easier to use than 3D sculpting systems for arbitrary users, sketching
systems take advantage of the natural expressiveness of drawings and of the rapidity with which they
convey the idea of a shape. Indeed, an interesting problem is the way 3D information is inferred by 2D
drawings. We show that, according to the application, different good solutions can be set up for this
problem. We detail three specific examples: a sketching and annotation system that uses 2D sketches
to generate 3D drawings that can be viewed from any direction and enable to quickly exchange ideas
at the early stage of design; A quick prototyping system for 3D shapes that allows the user to model
arbitrary shapes by successively drawing parts of them under different viewing angles, an implicit
representation being used for easily combining the different parts; a sketching system dedicated to a
specific application: the design of virtual garments. Here, a priori knowledge specific to the application
is used to infer the missing 3D information.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling Geometric algorithms; I.3.6 [Computer Graphics]: Methodology
and Techniques Interaction Techniques J.5 [Computer Applications]: Arts and Humanities Fine arts

Keywords: drawing, sketching, annotation, modeling, interfaces, implicit representations, clothing
design

1. Introduction

Standard modeling systems rely heavily on 3D widget-
based interfaces to ease the user task of specifying
3D actions using 2D input devices. The user visual-
izes the task by looking at the 3D scene from several
viewpoints, such as the traditional blueprint projec-
tion planes. The underlying rationale is that a 3D task
is better performed using 3D tools [CSH∗92]. This is
true; however, these tools are generally controlled us-
ing 2D input devices, and this results in sophisticated
systems with a somewhat non-intuitive interface.

Other solutions are based on user-interaction in 3D,
using specific devices such as a 3D mouse, a 3D glove,
or a phantom desktop. Some of these systems were
presented in the chapter Volumetric sculpting of this
tutorial. They rely on the ability of the user to sculpt
a shape directly in 3D. However, few people sculpt in
real life. Even though most of us used to play with

modeling clay such as Play-Doh at an early age, shap-
ing objects in 3D generally requires specialized skills.
Using computers does not make the process much sim-
pler.

In contrast, most people draw. We sketch, doodle,
and scribble to keep track of our thoughts or com-
municate ideas to others. We consider drawing as an
alternative to writing, because it is often faster and
more concise to describe three-dimensional shapes and
spatial relationships with two-dimensional lines than
with words. Drawing tools are simple and their dex-
terous use constitutes a wealth of common knowledge
most people have acquired since kindergarten. How-
ever, this know-how is seldom used in computer graph-
ics for anything but two-dimensional vector or pixel-
based drawing applications.

This chapter studies the use of sketching as an in-
terface for 3D modeling. Depending on the applica-
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tion, different solutions for inferring a 3D shape from
a sketch can be though off. After a quick review of
prior work in section 2, we cover this diversity by de-
tailing three specific examples:

• Section 3 presents a sketching and annotation sys-
tem that generates 3D illustrations to be used for
exchanging ideas on 3D shapes at the early stage of
design. Although no standard 3D shape reconstruc-
tion is performed, the third dimension is inferred
so that the drawn object can be visualized under
different viewing angles, as if a non-photorealistic
rendering was computed from its surface.

• Section 4 describes a quick prototyping system that
outputs 3D meshes from sketches. This system al-
lows the user to model arbitrary shapes or any
topology by iteratively sketching new parts of the
current object under different viewing angles. The
solution is based on the blending of convolution sur-
faces inferred from each sketch. This system is well
adapted to the quick design of smooth, volumetric
objects such as cartoon characters.

• Section 6 covers a specific application of sketching:
the design of virtual clothes from their contour lines
drawn over a front view of a character. Here, a priori
knowledge specific to the application is used to in-
fer the missing 3D information from a single sketch.
The system outputs the surface of the virtual gar-
ments in the form of open 3D meshes, already ade-
quately positioned over the characters model.

2. Related Work

Since the invention of Sketchpad by Ivan Sutherland
in 1963 [Sut63], many computer graphics systems have
used drawing metaphors for 3D shape modeling, most
often requiring the user to draw polyhedral surfaces
in wireframe [LS96, SC04].

Eggli et al. alleviate the unintuitive input by using
simple drawing techniques that have an unambiguous
interpretation in three dimensions [EBE95].

Departing from these approaches, SKETCH and
Teddy demonstrate that gesture-based interfaces are
powerful and intuitive tools for 3D model de-
sign [ZHH96, IMT99]. More recent work uses either
variational implicit surfaces [KHR02] or a volumetric
representation [ONNI03] for generating the surface.

In the systems we just mentioned, drawing is used
for describing boundaries and shape features using
strokes, but not as a way of modeling the relief of
surfaces. Williams proposes to create a height field by
directly painting the luminance value corresponding
to a given elevation [Wil90]. Bourguignon [BCCD04]
presents a modeling system which takes advantage of
both 2D shape boundary and texture to generate a

displacement map. The latter is either used to create
new surface patches or to push or pull the vertices of
an existing surfaces on which the drawing was done.

Three interesting solutions to the modeling by draw-
ing problem are found in commercial systems. Artisan
is a Maya software toolset with a common painting
metaphor [Ali04], inspired from interactive texturing
interfaces [HH90]. The Sculpt Polygons Tool pushes,
pulls, or smoothes the surface when the user paints it
with the corresponding brush. ZBrush greatly expands
the mesh editing operations of Maya’s Artisan [Pix04].
The user first sculpts a rough shape envelope using
ZSpheres, and then refines it thanks to its subdivision
surface multiresolution capabilities. Finally, SketchUp
is a thorough architecture design system, inspired by
SKETCH [@La04].

Sketches are not only used to create 3D geometry,
but also for positioning objects with respect to each
other. Igarashi [IH02] describes a sketch-based method
for positioning garment patterns over a 3D body. The
user cannot, however, directly sketch the desired gar-
ment, a problem which is tackled by one of the systems
presented in this chapter.

3. Sketching at an early stage of design

This section presents an interactive sketching system,
first introduced in [BCD01], that infers 3D drawings
that are similar to an expressive rendering of a 3D
object from 2D sketches. The central idea is that re-
constructing a surface is not necessary at the early
stage of design: the user is rather attempting to visu-
alize and communicate the ideas he has in mind. He
may also like to use sketching to suggest modifications
on an existing 3D shape, by annotating a 3D model.

Even in 3D, we think that strokes are an excellent
way to indicate the presence of a surface silhouette:
several neighbouring strokes reinforce the presence of a
surface in the viewer’s mind, while attenuated strokes
may indicate imprecise contours or even hidden parts.

To enable the user to view stroke-based sketches
from multiple viewpoints, we interpret 2D silhouette
strokes as curves, and use a curvature estimation
scheme to infer a local surface around the original
stroke. This mechanism permits efficient stroke-based
rendering of the silhouette from multiple viewpoints.
In addition to stroke deformations, this includes varia-
tion of intensity according to the viewing angle, since
the precision of the inferred local surface decreases
when we move away from the initial viewpoint. It also
includes relative stroke occlusion, and additive blend-
ing of neighbouring strokes in the image.

Apart from silhouette strokes, our system also pro-
vides line strokes that represent 1D elements. These
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have the ability to remain at a fixed position in 3D
while still being occluded by surfaces inferred using
silhouette strokes. They can be used to add 1D de-
tail to the sketches, such as the arrow symbols in the
example of annotation.

Because strokes have to be positioned in space, we
present an interface for 3D stroke input. The user al-
ways draws on a 2D plane which is embedded in space.
This plane is most often the screen plane, selected by
changing the viewpoint. The depth location of this
plane can be controlled either explicitly via the user
interface or implicitly by drawing onto an existing ob-
ject. The user may also draw strokes that are not in
the screen plane, but that join two separate objects.

3.1. Drawing and rendering 3D strokes

Two kinds of strokes are used in our system: line
strokes that represent 1D details, and silhouette
strokes that represent the contour of a surface.

For line strokes, we use a Bzier space curve for com-
pact representation. These strokes are rendered using
GL line primitives and behave consistently with re-
spect to occlusion.

Silhouette strokes in 3D are more involved: a silhou-
ette smoothly deforms when the view-point changes.
Contrary to line strokes, a silhouette stroke is not lo-
cated at a fixed space position. It may rather be seen
as a 3D curve that “slides” across the surface that
generates it. Our system infers the simplest surface,
i.e. the same local curvature in 3D as that observed
in 2D. For this we rely on the differential geometry
properties of the user-drawn stroke, generating a local
surface around it. But the degree of validity of this sur-
face decreases when the camera moves. Therefore, we
decrease the intensity of the silhouette as the point
of view gets farther from the initial viewpoint. This
allows the user to either correct or reinforce the at-
tenuated stroke by drawing the silhouette again from
the current viewpoint.

Local surface estimation from 2D input

Since the inferred local surface will be based on the
initial stroke curvature, the first step of our method is
to compute the variations of this curvature along each
2D silhouette stroke drawn by the user.

Each 2D silhouette stroke segment is first fit to a
piecewise cubic Bzier curve, each control point being
associated with a given value of the parameter u along
the curve. For each parameter value u associated with
a control point V (x(u), y(u)), we find the center of
curvature C(ξ(u), η(u)) using:

ξ = x −
ẏ(ẋ2 + ẏ2)

ẋÿ − ẏẍ
η = y +

ẋ(ẋ2 + ẏ2)

ẋÿ − ẏẍ
,

Figure 1: Processing vectors of curvature. Curvature
vectors are clamped using bounding boxes and their
orientation is switched when necessary.

where ẋ and ẍ are first and second derivatives of x in
u. Therefore, we obtain a curvature vector between a
point on curve at parameter u and its associated cen-
ter of curvature C (see Figure 1). We will be using
these curvature vectors to reconstruct local 3D sur-
face properties. However, if the stroke is completely
flat, the norm of the curvature vector (i.e. the radius
of curvature) goes to infinity; the method we present
next solves this problem.

In order to infer a plausible surface in all cases, we
use a heuristic based on the curve’s length to limit
the radius of curvature. One way of looking at this
process is that we are attempting to fit circles along
the stroke curve. Thus, if we encounter many inflec-
tion points, the circles fitted should be smaller, and
the local surface should be narrower; in contrast, if
the curve has few inflection points, the local surface
generated should be broader.

To achieve this, we construct axis-aligned bound-
ing boxes of the control polygon of the curve between
each pair of inflection points (see Figure 1). Inflection
points can be found easily since we are dealing with
a well-defined piecewise cubic Bzier curve. We discard
bounding boxes which are either too small or too close
to the curve extremities. If the norm of the curvature
vector is larger than a certain fraction of the largest
dimension of the bounding box computed previously

it is clamped to this value. We use a fraction value
at most equal to 1

2
, which gives a length equal to the

radius of a perfect circle stroke.

We also impose a consistent in/out orientation of
the curve based on the orientation of the curvature
vectors in the first bounding box computed, thus im-
plicitly considering initial user input as giving correct
orientation. This intuitive choice corresponds to the
intent of the user most of the time. If not, a button in
the UI can be used to invert all the curvature vectors
along the stroke.
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Figure 2: Left: Infering a local surface from a 2D
stroke. Right: Rendering a slice of this model to create
a new silhouette from another viewpoint.

From these 2D strokes we infer local surface prop-
erties, which are then used to create a 3D stroke rep-
resentation. Each center of curvature embedded in the
drawing plane is considered as the center of a circle in
a plane perpendicular to the drawing plane and pass-
ing by the corresponding control point (see Figure 2,
left). We consider an arc of 2π

3
radians for each circle,

thus defining a piecewise Bzier surface by moving each
control point on its circle arc. This piecewise tensor
product surface is quadratic in one dimension, corre-
sponding to a good approximation to circle arcs, and
cubic in the other, which corresponds to the stroke
curve.

In practice, the inferred surface will only be used
for generating a probable silhouette when the viewing
angle changes slightly. If more information is needed
about the 3D surface geometry, the contour will have
to be redrawn by the user at another viewpoint.

Rendering in 3D

Given a local surface estimation, our goal is to dis-
play the initial stroke from a new viewpoint. When
the viewpoint changes, we expect the stroke to change
its shape, as a true silhouette curve would do. We also
expect its color to change, blending progressively into
the background color to indicate the degree of con-
fidence we have in this silhouette estimation. Recall
that we want our system to be interactive, which im-
poses an additional computational constraint. In what
follows, the term “local surface” corresponds to the
polygonal approximation of the local surface estima-
tion of the stroke.

The solution we adopt is to generate a fast but ap-
proximate silhouette based on the local surface gener-
ated as described above. We simply render a “slice” of
the local surface that lies between two additional clip-
ping planes, parallel to the camera plane and located
in front of and behind the barycenter of the centers of

curvature (see Figure 2, right). The distance between
clipping planes depends on the stroke width value we
have chosen. This ensures silhouette-like shape modi-
fication, with minimal computational overhead.

Initially, we render all geometry other than the sil-
houette strokes (for example the house in Figure 3).
Therefore, the depth and color buffers are correctly
filled with respect to this geometry. In the next step,
we use different elements to display the silhouette
strokes and to perform stroke occlusion. This was im-
plemented using a multipass algorithm.

Figure 3: A single landscaping sketch, which can also
be seen as an annotation of an existing 3D model; the
two different views are automatically generated by our
system.

To represent the confidence in the surface around
the initial stroke we apply a “stroke texture” as an
alpha texture to the local surface. This confidence
is maximum at the initial stroke position and mini-
mum at left and right extremities of local surface. We
use a Gaussian distribution that progressively blends
the stroke color into the background color for mod-
eling this confidence function. As a result, the stroke
becomes less intense as we move away from the ini-
tial viewpoint. This blending also allows two different
strokes to reinforce each other by superposition, which
corresponds to the behavior of traditional ink brush
drawings.

In addition to occlusion by other geometry, we also
need to handle occlusion by strokes. This required a
slightly more sophisticated process, since we do not
want local surfaces to produce hard occlusion (such as
that created by a depth buffer) but rather to softly
occlude using the background color.

Details on the multipass algorithm and on the dif-
ferent drawing styles can be found in [BCD01].
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3.2. Interface for Drawing: Stroke Positioning

A drawing session using our system is in many ways
similar to 2D drawing. A designer either starts with
an empty space, or, in the case of annotation with a
pre-existing 3D model.

For strokes drawn in empty space, we project onto a
reference plane, parallel to camera plane and contain-
ing the world origin (it is possible to choose a fixed
offset relative to this position).

Once such parts of the drawing have been created,
we can use the existing entities to position the curves
in space. More precisely, if at the beginning or at the
end of a 2D stroke the pointer is on an existing ob-
ject, we use this object to determine a new projection
plane. We obtain the depth of the point selected by a
simple picking. The picked object can correspond to a
geometric object or to (the local surface of) a stroke.
There are three possibilities:

• If only the beginning of the stroke is on an object,
we project the stroke on a plane parallel to camera
plane, which contains the selected point.

• If the beginning and the end of the stroke are on an
object, we interpolate depth values found at the two
extremities by using the parameter u of the piece-
wise cubic Bzier curve. Each control point is pro-
jected on a plane parallel to the camera plane and
located at the corresponding depth.

• If it happens that the stroke extremities are in
empty space, it is projected on the same plane as
the previous stroke, except if the trackball has been
moved. In this case, the reference plane is used.

3.3. Results

Illustration in 3D

Figure 4: Example of artistic illustration. Three views
of the same sketch area are shown.

Figure 4 shows a 3D illustration designed with our
system. Most strokes are silhouette strokes. They have
been rendered on a textured background so that the
local surface occluder appears as a “fill” effect. Each
illustration is shown from several different points of
view, showing the effects of occlusion, varying stroke
lightness, and silhouettes deformations.

Annotation of a 3D scene

Another application of 3D drawing is to use our sys-
tem for annotating an existing 3D model. Figure 3
shows how the 3D model of a house is annotated to
give an idea of a landscape around it. Interactive an-
notation (which can include using 1D strokes to draw
symbols such as arrows) can also be used for educa-
tional purposes, or in brainstorming sessions of collab-
orative design.

“Guided design”

Figure 5: Using a 3D model as a guide can be useful
in fashion applications.

The idea of this third application is to load a 3D
model and use it as a guide. When the drawing is
completed, the model is removed. A good example of
this kind of application is drawing clothes for fashion.
A 3D model is used to obtain the body proportions
(see Figure 5).

4. Sketching for the quick prototyping of 3D

shapes

The purpose of the system presented in this section
(see also [ABCG05]) is to allow a very quick proto-
typing of 3D volumetric objects of any geometry and
topology genius, while offering an interface as simple
as pencil and paper. The modeling process iterates the
following steps until modeling is complete:

1. The user changes the viewpoint and draws one or
several strokes

2. The strokes are interpreted to reconstruct a 3D ob-
ject part

3. This part is added to the current object (or sub-
tracted if the current mode is carving).

4.1. Overview of the users input

The user draws a contour on the graphic tablet using
the digital pen. As the user draws a stroke, its thick-
ness and colour intensity vary proportionally with the
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pressure on the digital pen, as to imitate the irregular
density and thickness of the strokes produced by a real
pen. Several strokes accumulated in the same pixel re-
sult in a darker colour for that pixel. The other end of
the pen is used as an eraser. As long as the stroke has
not been reconstructed, the user is free to erase and
modify it. This way the user’s input is allowed to be
noisy and irregular, as it is naturally on paper. The
Undo command is also available.

Once the contour has been completed the user
presses the digital pen against the tablet. This pro-
duces the 3D reconstruction of an object part (see
Figure 6). The shape is reconstructed in such a man-
ner that the projection of the shape on the screen fits
the contour that has been drawn by the user.

Figure 6: (a), (b) Creating a part. (c),(d),(e). Adding
a part to an object. (f ),(g),(h) Carving. (i),(j),(k)
Thickness control (side view).

The interface is the same for extending or carving a
shape as for creation. The first surface point hit by the
user, which must be a point on the object, gives the
depth of the shape to be constructed. When the stroke
is complete, the user presses the stylus if he wishes to
add the shape to the existing object, or the eraser (at
the opposite pen’s end) of he wishes to carve it into
the object. See Figure 6 (c),(d),(e) and (f),(g),(h).

The user controls the thickness of the shape as fol-
lows: if the pen is held orthogonal to the tablet while
pressing to reconstruct, the shape is a flat one (see
Figure 6 (k)), otherwise it is a thick one (see Figure 6
(i)), the thickness being dictated by the pen’s bend.

The user can model smaller details by zooming to
get closer to the object. The large object parts will
smoothly blend with each other, while the small de-
tails (e.g. eyes, nose of a character) will have a sharper
blending.

5. Generation of a 3D shape

5.1. Basic ideas

A skeleton, in the form of a graph of branching poly-
lines and polygons, is first extracted from the user’s
sketch. The 3D shape is then defined as a convolution
surface generated by this skeleton. Our formulation
has the advantage of requiring no optimisation step for
fitting the 3D shape to the 2D contours. This yields
interactive performances and avoids any non-desired
oscillation of the reconstructed surface.

The subsequent 2D strokes are used to infer new
object parts, which are combined with the existing
shape using CSG operators, thus representing the final
shape as a hierarchy of blended implicit primitives.

5.2. Skeleton from 2D contour

An overview of our algorithm is given in Figure 7.

When the stylus pressure indicates that the draw-
ing is finished, the strokes image is recovered as a 2D
bitmap. The image is then compressed and reduced
in size using a pixel averaging technique, in order to
smooth the input. This also reduces the amount of
computation for the skeleton.

In order to perform the skeleton extraction we itera-
tively construct a connected pixels skeleton, invariant
to object geometric transformations and allowing the
inverse transform. The pixel skeleton is then sampled
and the polygons are triangulated in order to obtain
a graph of interconnected segments and triangles.

More precisely, we proceed as follows:

1. The object is separated from the background (see
Figure 7 (b)).

2. The Weighted Distance Transform (WDT) is com-
puted (Figure 7 (c)). The result is shown in Fig-
ure 7(c). We then detect the set of Centres of Max-
imal Discs (CMDs) which will be used in skeleton
extraction.

3. The object is thinned iteratively keeping all the
CMD’s. This produces a connected pixel graph
(Figure 7 (d)), which is pruned to eliminate the
insignicant branches. This graph will provide the
skeleton segments.

4. The second pass is performed on the initial WDT
image and thins the object without preserving the
CMD, the result being an eroded shape of the ob-
ject (Figure 7 (e)). This image will be used to com-
pute the skeleton’s polygons.

5. The image from Figure 7 (e) is subtracted from (d)
and the result is a collection of free-form lines of
one pixel width. Each line is re-sampled to reduce
the number of segments (Figure 7 (f)).
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Figure 7: Algorithm overview : (a) User strokes. (b)
Identification of the object boundaries. (c) WDT trans-
form. (d) Iteratively thinning with preservation of the
CMDs. (e) Iteratively thinning without preservation
of the CMDs. (f ) Sampling the segments. (g) Sam-
pling and triangulating the polygons. (h) Final skele-
ton graph. (i) Final convolution surface.

6. To compute polygons, the object contour is recov-
ered from the eroded image (Figure 7 (e)) and sam-
pled (Figure 7 (g)). If the image has several dis-
connected object parts, then each part produces a
polygon. The polygons are split into triangles using
constrained Delaunay triangulation (Figure 7 (g)).

7. The graph connections are be computed from the
two images in Figure 7 (f) and (g). This produces
the final skeleton graph (Figure 7(h)).

5.3. Creating a 3D shape

The graph previously obtained is used to generate a
convolution surface with a varying radius [AC02]. We

control it by setting weights at every skeleton vertex.
The weights are assigned according to the distance
from the vertex to the contour, which can be directly
read using the WDT image.

An exact fit of the user drawn contour would require
an optimisation step, which might cause the surface to
oscillate. We prefer to obtain an approximate fit and
a smooth non-oscillating surface. For this purpose, we
have set the weights manually for a large number of
cases, considering the fact that they vary with the dis-
tance to the contour, but also with the distance from
the user’s point of view. We then computed a poly-
nomial function which best interpolated all the found
values and use it to automatically assign weights with-
out any adjustment afterwards. This technique yields
very satisfying results in practice.

The implicit shape that reconstructs a part of the
object is obtained by the convolution of the skeleton
graph with a convolution kernel. A shape’s capacity
of blending with the previously existing shapes is de-
scribed by its blending function. We use the functions
defined by Barthe [BGC98]. We set the blending pa-
rameter according to the level of detail. Small details
produce sharper blending. The unblended surface is
then polygonized and displayed. The blending hierar-
chy is automatically updated.

The control of the objects thickness orthogonal to
the view direction is achieved by providing every im-
plicit shape with a scaling factor. The function is com-
posed with a scale in the depth direction. The scaling
factor to be assigned to the current drawn shape, is
computed from the sum of the two angles formed by
the pen with X and Y tablet axes. The angle is mea-
sured when the pen been pressed to indicate recon-
struction.

Some steps of the modeling of a cartoon character
are depicted on Figure 8.

5.4. Adaptive modeling and rendering

The level of detail of the skeleton remains constant in
the image space, so it increases with respect to the
3D shape when the user zooms in. The level of de-
tail determines the blending parameters, the skeleton
weights and the size of the polygonization cell for the
shape to be reconstructed. The polygonization of the
current object part is computed and displayed imme-
diately, while a process in the background computes
the final surface polygonization, taking the blending
between surface components into account. Meanwhile
the user continues his modeling task. If the polygo-
nization is available, the final mesh is displayed, re-
placing the two meshes of the disconnected compo-
nents. If the object has been updated, the polygoniz-
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Figure 8: Modeling a cartoon character with our sys-
tem.

ing process is notified and it restarts the computation.
This allows maintaining interactive rates and a quick
application response during the modeling process so
that the user feels free to pursue his modeling activ-
ity.

5.5. Results and conclusions

As our results in Figure 9 show, our system allows non-
expert users to generate a wide variety of free form
shapes with an easy to use sketch-based interface.

Each objects was entirely modeled within our sys-
tem in less than 5mn each. Only three strokes was nec-
essary to create each one of the birds, with symmetry
enabled for the wings and legs. The small details of the
objects are well preserved due to our adaptive blend-
ing functions. For example, the sun’s eyes and mouth
are small details compared to the face but they are well
preserved by the blending. The shape may have an ar-
bitrary topological genius (ex. chairs, teapot) and can
be carved (teapot, mugs). The applications of our sys-
tem can be fun and education, but also story boarding
for films making (ex. cartoons, as in Figure 9), where
the scenario writer is not necessarily a 3D designer.

Figure 9: Objects modeled with our system. The user
took 2 to 5 minutes for modeling each object and used
3 to 9 strokes, each of them modeling a different object
part.

6. A sketching system for garment design

Dressing virtual characters is usually a very tedious
process, since it involves defining and positioning 2D
cloth patterns, stitching them and tuning physically-
based parameters and running a simulation to get the
rest shapes of the garments. Although sketching is a
usual tool for fashion designers and gives very quickly
an idea of the 3D garment one is thinking of, it was
not exploited, up to know, for digital cloth design.

This section presents a method, first introduced
in [TCH04], for reconstructing the 3D geometry of a
virtual garment from a 2D sketch. As in the guided
design example of section 3.3 the user sketches the
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Figure 10: (left) The user has drawn a few lines to
indicate the shape of the skirt; the corner-detector has
detects a breakpoint that the user does not want. The
user will make a deletion gesture (a curve in the shape
of an α enclosing the mistaken point) to delete it.
(right) Here is the surface inferred by the system after
the user asks for a reconstruction.

garment directly on the 3D virtual actor body model.
The method presented in here outputs a full 3D geom-
etry for the garment. The resulting system can thus be
used to model and position virtual clothes to be used
in character animation. This system shows an exam-
ple where a priori knowledge specific to an application
is used to infer 3D geometry. This allows to create a
3D garment from a single 2D sketch.

6.1. Sketch-based interface

Typical user interaction

To give a sense of the system’s performance, we de-
scribe a typical interaction, in which a user sketches
a skirt on a female model. The user first (see fig-
ure 10(a)) draws a line across the waist, indicating
the top of the skirt, and then a line down the side, in-
dicating the silhouette of the skirt, then a line across
the bottom in a vee-shape indicating that he wants
the front of the skirt to dip down, and finally the last
side. A simple corner-detection process is applied to
break the sketch into parts; one extra corner is de-
tected by accident (at the bottom of the vee) and the
user can delete it with a deletion gesture. He could
also add new breakpoints as well, but none are nec-
essary. Breakpoints play an important role in the 3D
positioning process, since they determine the global
3D position of the cloth with respect to the body. The
way they are used is detailed in Section 6.3. The two
lines on the sides are classified as silhouettes (lines that
do not cros the body), and the others are classified as
border lines (lines that do cross the body), as shown
in the figure.

Now the user asks to see the garment inferred by the
system; a surface matching the drawn constraints, but
adapted to the shape of the underlying form (look near
the waistine, for instance) appears (see figure 10(b)).

Gestural interface components

The user’s marks are interpreted as gestures, with the
default being the construction of silhouette and bor-

(a)

(b)

(c)

(d)

(e)

(f)

Figure 11: The gestures in the interface; the model
is drawn in thick lines, prior strokes as medium lines
with dots at breakpoints, and new strokes with thin
lines; the arrowhead on the new-stroke lines is not
actually drawn by the user, but merely indicates the
direction in which the stroke is drawn. (a) adding a
segment; (b) deleting a segment (stroke must intersect
the segment at least five times); (c) deleting several
segments (the stroke must intersect more than one seg-
ment, and intersect segments at least five times. If the
stroke intersects segments from two different chains,
both chains are deleted entirely.); (d) clearing all seg-
ments (the stroke must intersect some segment and in-
tersect itself at least 40 times) (e) adding a breakpoint
(f) deleting a breakpoint (the stroke must intersect the
segments on either side of the breakpoint, and intersect
itself once).

der line segments. Other gestures add breakpoints for
the classification process, delete breakpoints, delete a
segment or an entire chain of segments, and clear all
segments, as shown schematically in figure 11. (Our
gestures are similar to those of Tsang et al. [TBSR04]).

6.2. Interpreting sketches of garments: basic

ideas

For the sake of explaining the process, we’ll assume
that the character is aligned with the xy-plane, viewed
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along the z direction. The user draws the contours of
the 2D projection of the garment in the (x, y) plane
over the rendered character model. From these, we
need to infer the z-information at every point of the
contour and the interior of the garment.

Clearly this problem is under-constrained; fortu-
nately, by considering the special nature of clothing,
we can generate a plausible guess of the user’s inten-
tions. In particular, silhouettes of clothing not only
indicate points where the tangent plane to the cloth
contain the view direction; they usually occur as the
clothing passes around the body, so we can estimate
the z-depth of a silhouette edge as being the z-depth of
the nearest point on the body (or, for a body placed
fairly symmetrically about the xy-plane, simply use
z = 0 as a quicker estimate). Moreover, the distance
from a silhouette to the body helps us to infer the
distance elsewhere, since a cloth which tightly fits the
body in the (x, y) plane will also tend to fit it in the z
direction, while a loose cloth will tend to float every-
where.

Overview of the algorithm

Our algorithm, whose different steps will be detailed
in the following sections, develops as follows:

1. Process the 2D sketch of the garment:

• Find high-curvature points (breakpoints) that
split the contours into segments;

• Let user add and/or delete breakpoints.
• Classify segments of curve between breakpoints

into border lines (which cross the character’s
body) or silhouette lines.

2. Infer the 3D position of contour lines:

• For each breakpoint that does not lie over body,
find distance to body, d, and set the point’s
depth, z, to the depth of the closest point on
the body.

• For each silhouette curve segment, interpolate z
linearly over the interior of the segment, and use
interpolated z-values to compute d-values (dis-
tance to the body in the 3D space) over the in-
terior of the segment.

• For each border line, interpolate d over interior
linearly to establish a desired distance to the
model for each point on the line;

3. Generate the interior shape of the garment:

• Create a mesh consisting of points within the
2D simple closed curve that the user has drawn,
sampled on a rectangular grid in the (x, y) plane.

• Extend the values of d, which are known on the
boundary of this grid, over the interior.

• for each interior grid point (x, y), trace from the
viewpoint to determine the first value of z for
which the distance from (x, y, z) to the body is
the associated value of d.

• Adjust this tentative assignment of z values to
take into account the surface tension of the gar-
ment between two limbs of the character.

• Tesselate the grid with triangle, clipped to the
boundary curves, and render the triangles.

Pre-computing a distance field

To accelerate steps 2 and 3 of the algorithm above, a
distance field to the character’s model is pre-computed
when the model is loaded: for each point of a 3D grid
around the model, we determine and store the distance
to the nearest point of the model.

The distance field will be used each time we need
to find the z coordinate to assign to a point p(x0, y0)
so that is lies at a given distance from the model.
This can easily be done by stepping along the ray
R(z) = (x0, y0, z) and stopping when the adequate
distance value is reached (we interpolate tri-linearly
to estimate distances for non-grid points). When this
computation is performed during a sweeping proce-
dure, the stepping starts at the z value found at the
previous pixel, which ensures the spatial coherence of
the result. Else, the process starts near the view-point,
since the part of the garment we are reconstructing is
laying between the viewpoint and the character model.

The quality of the results depends directly on the
resolution of the 3D grid storing the distance field, as
does computation time. The size of the 3D grid is user-
configurable, but we have generally used a 32×32×32
grid.

6.3. Processing of contour lines

2D processing

First, one must classify the parts of the user’s sketch.
As the user sketches, a new line that starts or ends
near (within a few pixels of) an endpoint of an already-
sketched line is assumed to connect to it. When the
sketch is complete (i.e., forms a simple closed curve in
the plane), we classify the parts:

• First the sketched lines are broken into segments
by detecting points of high (2D) curvature (break-
points) (this is actually done on-the-fly, as the user
draws the strokes).

• Each segment is classified as a silhouette or border
line: border lines are ones whose projection meets
the projection of the body in the xy-plane, silhou-
ettes are the others. The mask of the bodys projec-
tion is pre-computed and stored in a buffer well call
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the body mask, in order to make this classification
efficient.

• The resulting segmentation is visible to the user,
who may choose, if necessary, to add or delete break-
points indicating segment boundaries, after which
segments are re-classified.

Distance and z-value at breakpoints

Breakpoints that are located over the body model
(which is tested using the body mask) are used to
indicate regions of the cloth that fit very tightly to
the body. They are thus assigned a zero distance to
the model, and their z value is set to the bodys z at
this specific (x, y) location.

To assign a distance value d to a breakpoint that
does not lie over the body, we step along the ray from
the eye in the direction of the breakpoint’s projec-
tion into the xy-plane, checking distance values in the
distance field data structure as we go, and find the z-
value at which this distance is minimized. We assign
to the breakpoint the discovered z and d values, thus
positioning the breakpoint in 3D.

Line positioning in 3D

Our aim is to use the 3D position of the breakpoints we
just computed to roughly position the garment in 3D,
while the garments shape will mostly be inferred from
distances to the body along the sketch silhouettes.

To position silhouette lines in 3D, we interpolate z
linearly along the edge between the two breakpoints
that form the extremities of the silhouette. We then
set the d-values for interior points of the silhouette
from those stored in the pre-computed distance field.

Having established the values of z and d along sil-
houette edges, we need to extend this assignment to
the border lines. We do this in the simplest possible
way: we assign d linearly along each border line. Thus,
for example, in the skirt shown above, the d-values at
the two ends of the waistline are both small, so the
d-value for the entire waistline will be small, while the
d-values for the ends of the hemline are quite large, so
the values along the remainder of the hemline will be
large too.

6.4. 3D Reconstruction of the garment’s

surface

Using distance to guess surface position

As for the contour lines, the interpolation of distances
to the body will be our main clue for inferring the
3D position of the interior of the garment. The first
process thus consists into propagating distance values
inside the garment. This is done in the following way:

The 2D closed contour lines of the garment are used
to generate a (x, y) buffer (sized to the bounding box
of the sketch) in which each pixel is assigned one of
the values ‘in’, ‘out’ or ‘border’, according to its posi-
tion with respect to the contour. The distance values
already computed along the silhouette and border

lines are assigned to the border pixels. The distances
for the ‘in’ pixels are initialized to the mean value of
distances along the contour.

Then, distance information is propagated inside the
buffer by applying several iterations of a standard
smoothing filter, which successively recomputes each
value as an evenly weighted sum (with coefficients
summing to 1) of its current value and those of its
“in” or “boundary” orthogonal or diagonal neighbors.
The iterations stop when the maximum difference be-
tween values obtained after two successive iterations
is under a threshold, or if a maximum number of steps
has been reached.

A mesh, where each node corresponds to the centre
of a pixel, is associated to the ‘in’ region of the grid,
and tessellated into triangles. This mesh is extended to
the ‘border’ pixels, with the difference that the (x, y)
position of the nodes are then moved form the centre
of the pixel to the closest point from the centre of the
contour line. The resulting mesh thus closely fits the
sketched contours in the (x, y) plane.

We then sweep in the 2D grid for computing z values
at mesh nodes: the z value is computed by stepping
along a ray in the z direction, starting at the z value we
already assigned for a neighbouring point, and taking
the z that corresponds to the desired distance value,
as stored in the pre-computed distance field.

Mimicking the cloth’s tension

The previous computation gives a first guess of the
garment’s 3D position, but still results in artefacts in
regions located between two limbs of the character:
due to surface tension, a cloth should not tightly fit
the limbs in the in-between region (as in figure 12,
top), but rather smoothly interpolate the limb’s larges
z value, due to its surface tension.

To achieve this, we first erode the 2D body mask
of a proportion that increase with the underlying d
value (see figure 12, bottom). We then use a series of
Bezier curves in horizontal planes to interpolate the
z values for the pixels in-between. We chose horizon-
tal gaps because of the structure of the human body:
for an upright human (or most other mammals), gaps
between portions of the body are more likely to be
bounded by body on the left and right than to be
bounded above and below.

To maintain the smoothness of the garment surface
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Figure 12: Top: The use of distance to the body
for inferring 3D position: (left) buffer storing prop-
agated distance information; (right) the resulting gar-
ment surface. Note the undesired concavity between the
character’s legs. Bottom: An improved garment gener-
ated after mimicking the cloths tension.

near the re-computed region, distances values are ex-
tracted from the new z values and the distance field.
Some distance propagation iterations are performed
again in 2D, before re-computing the z values every-
where as was done previously.

We finally add a smoothing step on the z value in
order to get a smoother shape for the parts of the cloth
that float far from the characters model. This is done
computing a smoothed version of the z-buffer from the
application of a standard smoothing filter, and then by
taking a weighed mean, at each pixel, of the old and
smoothed z-values, the coefficients depending on the
distance to the model at this pixel.

Finally, the triangles of the standard diagonally-
subdivided mesh are used as the basis for the mesh
that we render.

6.5. Results and future work

The examples presented in figure 13 were drawn in
no more than 10 minute each. They include simple
clothes such as skirts, trousers and shirts, but also
less standard ones such as

In these examples, only the front part of a garment
was reconstructed. To infer the shape of a full garment,
we could use symmetry constraints around each limb
to infer silhouettes for the invisible parts, and ask the
user to sketch the border lines for the back view, for
instance.

We’d also like to allow the user to draw folds, and
take them into account when reconstructing the 3D

Figure 13: Some 3D virtual garments generated from
a single 2D sketch.

geometry, so that even for a closely-fitting garment,
there can be extra material, as in a pleated skirt.

7. Conclusion

This chapter has demonstrated that sketching can be
a rich, intuitive, and very efficient way to create 3D
shapes. The different usages of sketching go from the
early stages of design, where it easily conveys impre-
cise ideas, to the generation of a surface ready to use
for animation, as in the clothing design example. The
methods for inferring 3D from sketches and for repre-
senting the created shape were very different for the
three applications we covered. Many other good so-
lutions, some of which dedicated to a very specific
application were already proposed (we did not cover
architectural design, which is a good example of such
application domain). Others are still to be invented,
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so we hope that this presentation will generate new
work in the area.
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