EUROGRAPHICS 2012/ A. Fusiello, M. Wimmer

Poster

Efficient Point Based Global Illumination on GPU

Beibei Wang and Zhen Xu and Yanning Xu and Xiangxu Meng

Shandong University, China

Abstract

Point based rendering can simulate global illumination phenomenon fast and is widely used in movie production.
This paper proposes a point based color bleeding algorithm based on GPU efficiently. In our algorithm, we reorder
the shading points according to the similarity of them to use the coherency of the GPU memory. Then, we propose
a novel idea named chunking to accelerate the point cloud traversal process by using the constant memory of

GPU.

1. Introduction

In this paper, we propose an efficient PBGI method based on
GPU. We reorder the shading points before computing the
indirect illumination (IDI). The shading points with similar
distance and similar normal have a high possibility to tra-
verse the point cloud kd-tree with the same path. So we can
arrange these shading points in the same block when doing
GPU computing. Another contribution of this paper is that
we propose a novel idea named chunking to further improve
the speed of kd-tree traversal by using the constant memory
efficiently.

2. Related work

Point-based global illumination method was proposed by
Christensen in [Chr08]. The method uses a point cloud to
represent the direct illumination (DI), and then the point
cloud is used to compute the IDI. Kontkanen [KTO11] pro-
posed a coherent out-of-core point-based global illumina-
tion method. It extends the standard PBGI by using an out-
of-core octree constructing and traversing method between
the main memory and disk. It also uses a chunk strategy to
increase access coherency and decrease 1/0. Ritschel uses
a novel technique for scalable and parallel final gathering
on GPU [REG*09]. This method does not consider using
the GPU resources efficiently. Maletz and Wang proposed
an importance-driven method for GPU-based final gathering
in [MW11]. Similar to [Chr08], it uses a point cloud to rep-
resent direct illumination, and then projects and splats the
points to the microbuffers of shading points based on the
importance of each point. This method is implemented on
GPU, and is proved to be efficiency. But it has the same
problem as [REG*09].

(© The Eurographics Association 2012.

DOI: 10.2312/conf/[EG2012/posters/017-018

3. Algorithms

Figure 1 shows the main building blocks of our algorithm.
And in this paper, we focus on the shaded part.

3.1. Shading Points Reordering

When computing the IDI of shading points, we traverse the
point cloud kd-tree, and there is a traversing path for each
shading point. And the criterion whether the children of the
current node should be traversed is determined by compar-
ing a solid angle and the preset max solid angle. And the
definition of the solid angle is listed in (1).

s=A/d*)

where A is computed by evaluating the spherical harmonic
function representation for cluster area and represents the
distance between shading points and kd-tree node. The
spherical harmonics coefficients for the projected area of
each surfel is computed using (2) [Chr08].

2n T
/ Ai(d*n;)Ym(0,0)sin0d0dd 2)
0=0J6=0

where 0,0 are spherical coordinates, d = (sin 8 cos¢ ,sin®
sinf,cos0), and Y;m represents a spherical harmonic basis
function.

From (1) and (2), we can find that the path with which
the shading points traverse the kd-tree is determined by their
position and normal.

So we can conclude the shading points with similar posi-
tion and similar normal have the high possibility to have the
same traversal path.

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/posters/017-018

18 Beibei Wang & Zhen Xu & Yanning Xu & Xiangxu Meng / Efficient Point Based Global Illumination on GPU

Figure 1: The pipeline of our algorithm. The shaded box
shows the contribution of our paper. The SP represents shad-
ing points; PC represents point cloud.

So instead of arranging the shading points to the GPU
threads arbitrarily, we reorder the shading points according
to the position and the normal information, and arrange the
similar shading points to the same warp. And the similarity
of two points (py,ny) and (p2,ny) is defined in (3).
w2

S = * — - s
w1 *|p1 p2|+n1*n2+K

3

Where wj,wy represent weight of position and normal,
and represents a constant offset of normal.

We implement reordering by organizing the shading
points into a kd-tree. And the overhead caused by reorder-
ing is proved to be little.

3.2. Point Cloud Chunking

The speed to access constant memory is much faster than to
access global memory in GPU. But the size of the former
one is much smaller. It ’s not possible to store the whole
point cloud kd-tree in the constant memory, so we propose
an idea to divide the point cloud kd-tree into chunks, and
each chunk can be fit into the constant memory. The process
to do this division is called chunking. In our implementation,
a chunk may contain 128 nodes.

At first, the nodes in the same chunk should be stored in
coherency global memory. Then we can transfer the chunk
data between the global memory and constant memory di-
rectly. Chunking is illustrated in Figure 2.

When doing IDI computing, the point cloud kd-tree is tra-
versed from top down. And the chunks are transferred to the
constant memory one by one. When traversing in a chunk,
if the node in the chunk is active that means the node is
far enough, and then the node can be projected to the cur-
rent shading point ’s hemicube, or its children is pushed into
traversing stack. If the current node is not in the memory,
then it is not processed until the related chunk is transferred
in. After all the chunks are processed, all the shading points
finish traversing the whole tree.

3.3. Results and Discussion

We have implemented our method on GPU. All the re-
sults are computed on 2.00GHz Intel Xeon CPU RAM 16G,

@@é?@@cbéz@

Figure 2: Desk results: Left: the original nodes’ index in
the array; Right: the nodes’ index in the array after chunk-
ing. The part in a shaded box is called a chunk, and it has a
sequency index in the array.

NVIDIA Quadro FX 4800 with 24 multiprocessors and 192
CUDA cores. The GPU part is in on top of OpenCL. The
desk examples are 400400 resolutions; the super sampling
value is set as 4 x4; the shading rate value is set as 20.The re-
ordering method improves the speed about 16.6%. The bed-
room example is 800 x 600 resolutions. The super sampling
value is set as 2x2. The reordering process improves the
speed about 14%. The data is described in Figure 3.

4. Conclusion and Future work

We have proposed an efficient PBGI based on GPU. The
shading points are reordered to further improve the effi-
ciency. We also propose a new idea to use the constant mem-
ory in GPU by chunking the point cloud. The chunking part
to use constant memory is under implementation.

Time (s)
300
250
200
150
100

50

0

Desk Bedroom
Il GPU without Reordering Bl GPU with Reordering

Figure 3: Bedroom and Desk examples: time cost by re-
ordering; time cost by IDI computing without reodering and
with reodering

References

[Chr08] CHRISTENSEN P2008. Point-Based Approximate
Color Bleeding. Pixar Technical Memo.

[KTO11] KONTKANEN J., TABELLINE E., OVERBECK
R.Overbeck. 2011.Coherent Out-of-Core Point-Based Global I1-
lumination, Eurographics Symposium on Rendering 2011. 30,4
(2011).

[MW11] MALETZ D.WANG R.2011.Importance Point Projec-
tion for GPU-based Final Gathering, Eurographics Symposium
on Rendering 2011. 30, 4 (2011).

[REG*09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEI-
DEL H.-P, KAUTZ J., DACHSBACHER C. 2009. Micro-
rendering for scalable, parallel final gathering. ACM Trans.
Graph. 28, 5 (2009), 1-8. 1,2, 8,9

(© The Eurographics Association 2012.

