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Kurzfassung

In dieser Arbeit präsentieren wir eine verallgemeinerte Methode zur proze-
duralen Erzeugung und Manipulation von Meshes, die im wesentlichen auf
zwei verschiedenen Mechanismen beruht: generalized subdivision meshes und
rule-based mesh growing.

Herkömmliche Subdivision-Algorithmen beruhen darauf, dass eine genau
definierte, spezifische Subdivision-Vorschrift in wiederholter Folge auf ein
Mesh angewendet wird um so eine Reihe von immer weiter verfeinerten
Meshes zu generieren. Die Vorschrift ist dabei so gewählt, dass die Ecken und
Kanten des Basis-Meshs geglättet werden und die Reihe zu einer Grenzfläche
konvergiert welche festgelegten Stetigkeitsansprüchen genügt. Im Gegen-
satz dazu erlaubt ein verallgemeinerter Ansatz die Anwendung verschiedener
Vorschriften bei jedem Subdivision-Schritt. Konvergenz wird im wesentlichen
dadurch erreicht, dass die absolute Größe der durchgeführten geometrischen
Veränderungen von Schritt zu Schritt geringer wird. Bei genauerer Betra-
chtung stellt man jedoch fest, dass es in vielen Fällen von Vorteil wäre die
stärkere Ausdruckskraft von Subdivision-Vorschriften ohne die oben genan-
nte Einschränkung zu nutzen. Wir schlagen deshalb vor, die Erzeugung eines
Submeshs M (n+1) aus einem spezifischen Mesh M (n) in zwei eigenständige
Operationen zu zerlegen. Die erste Operation, genannt mesh refinement,
bezeichnet dabei die Verfeinerung des Meshs durch das Einfügen neuer Eck-
punkte und die Festlegung der dadurch neu entstehenden Nachbarschafts-
beziehungen zwischen Eckpunkten, Kanten und Flächen, ohne dabei jedoch
bereits die konkreten Positionen der Eckpunkte festzulegen. Erst die zweite
Operation, genannt vertex placement, berechnet konkrete Positionen für die
Eckpunkte. Um dem Anwender eine größtmögliche Flexibilität bei der Spez-
ifikation von Subdivision Surfaces zu bieten, schaffen wir die Möglichkeit
verschiedene refinement und vertex placement Operatoren in sogenannten
mesh operator sequences, das sind beliebige Sequenzen von Operatoren, zu
kombinieren, und diese dann auf konkrete Meshes anzuwenden.

Rule-based mesh growing ist eine Erweiterung von parametrisierten Lin-
denmayer Systemen (pL-Systemen), die jedoch nicht auf der Basis einzelner
Symbole, sondern auf der Basis von Symbolen die in einer Nachbarschafts-
beziehung stehen, operieren. Einzelne Symbole repräsentieren dabei Flächen
eines Meshs. Dieser Mechanismus erlaubt es, in kontrollierter Art und
Weise, komplexe Details in Meshes einzufügen und zwar genau dort wo
dies gewünscht wird. Um die Systematik von pL-Systemen auch im Kon-
text eines Mesh-basierten Rendering-Systems nutzen zu können, führen wir
mesh-based pL-systems (Mesh-basierte pL-Systeme) ein. Hierbei wird jedes
parametrisierte Symbol (linke Seite einer Ersetzungsregel) mit einer oder



mehreren Flächen in einem oder mehreren Meshes in Beziehung gesetzt
beziehungsweise verknüpft. Die rechte Seite einer Ersetzungsregel ist nun
nicht mehr eine lineare Sequenz von Symbolen, sondern ein Mesh dessen
Flächen wiederum Symbole zugeordnet sind. Die Topologie eines Objekts,
welches mit Hilfe eines solchen Mesh-basierten pL-Systems erzeugt wird, ist
automatisch durch die Nachbarschaftsbeziehungen des Meshs festgelegt, und
es ist deshalb nicht mehr, so wie dies bei herkömmlichen pL-Systemen der
Fall ist, nötig, spezielle Gruppierungssymbole zu verwenden.

Werden beide Mechanismen kombiniert, so erhält man ein Werkzeug
mit dem man eine große Anzahl von komplexen Formen und Objek-
ten modellieren kann und mit dessen Hilfe diese auch äußerst kompakt
repräsentiert werden können. Wir zeigen dies anhand einer Integration
der beschriebenen Mechanismen in ein bestehendes Rendering-System. Die
Mesh-basierten pL-Systeme werden dabei mit Hilfe von directed cyclic graphs
(gerichteten zyklischen Graphen) abgebildet, welche die oben genannte kom-
pakte Repräsentation der Modelle ermöglichen und durch den, von Fraktalen
und L-Systemen her bekannten, Effekt der database amplification in der Lage
sind aus einer solch kompakten Datenbasis komplexe Strukturen zu erzeu-
gen. Auf der Basis dieser Implementierung der grundlegenden Konzepte un-
seres Ansatzes erstellen wir schliesslich einen Prototypen eines interaktiven
Pflanzeneditors mit der Möglichkeit diverse Parameter semiautomatisch aus
Photographien von Pflanzen zu extrahieren um so auch die praktische An-
wendbarkeit unseres Ansatzes zu demonstrieren.



Abstract

As a general approach to procedural mesh definition we propose two mech-
anisms for mesh modification: generalized subdivision meshes and rule-based
mesh growing.

In standard subdivision, a specific subdivision rule is applied to a mesh
to get a succession of meshes converging to a limit surface. A generalized
approach allows different subdivision rules at each level of the subdivision
process. By limiting the variations introduced at each level, convergence
can be ensured; however in a number of cases it may be of advantage to
exploit the expressivity of different subdivision steps at each level, without
imposing any limits. We propose to split the process of generating a submesh
M (n+1) from a specific mesh M (n) into two distinct operations. The first
operation, which we call mesh refinement, is the logical introduction of all
the new vertices in the submesh. This operation yields all the connectivity
information for the vertices of the submesh without specifiying the positions
of these newly introduced vertices. The second operation, which we call
vertex placement, is the calculation of the actual vertex positions. In order
to obtain maximum flexibility in generating subdivision surfaces, we make
it possible for the user to independently specify both of these operations, by
offering a number of refinement and vertex placement operators, which may
be arbitrarely combined in user-specified mesh operator sequences, which in
turn are applied to particular meshes.

Rule-based mesh growing is an extension of parametric Lindenmayer sys-
tems (pL-systems) to not only work on symbols, but connected symbols,
representing faces in a mesh. This mechanism allows the controlled intro-
duction of more complex geometry in places where it is needed to model fine
detail. In order to use pL-systems in the context of a mesh-based modeling
system, we introduce mesh-based pL-systems, by associating each parame-
terized symbol of the system with one or more faces in one or more meshes.
Thus the right-hand side of each production rule is not a linear sequence of
symbols, but a template mesh with each face again representing a symbol.
Thereby the topological structure of an object generated with such a mesh-
based pL-system is automatically encoded in the connectivity information
of the mesh, and we do not need to introduce grouping symbols in order to
encode the hierarchical structure, like it is necessary in standard pL-systems.

Using both these mechanisms in combination, a great variety of complex
objects can be easily modeled and compactly represented. We demonstrate
this by including the proposed framework in a general-purpose rendering
system. Directed cyclic graphs are used to represent mesh-based pL-systems,
and from this compact representation complex geometry is generated due



to the effect of database amplification, known from fractals and L-systems.
Finally, this implementation of the main concepts of our approach is used as
a basis for an interactive plant editor, and an appositional user interface for
semi-automatic parameter extraction from photographs of plants, in order to
demonstrate the applicability of our approach to real-world applications.
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Chapter 1

Introduction

Many of the most beautiful shapes are created by nature. From microscopic
pollen to giant Redwood trees, one of the secrets of beauty is complexity. In
most naturally grown shapes, complexity is an integral part on every scale.
This is still unmatched in state-of-the-art computer graphics. Imagine a tree,
exposed to storms, draught and other natural disasters over the course of
centuries. In state-of-the-art computer graphics, a model of such a tree would
of course exhibit a reasonable appearance on a large scale, but as soon as one
would start zooming in, complexity would start to vanish. First, one would
recognize that the bark is in fact made up of high resolution texture maps and
bump maps which look fine from a distance, but are perfectly flat and smooth
otherwise. On a second look, one would recognize the absence of myriads of
cracks and knots, and branching structures would probably exhibit sharp
edges and unnatural transitions. Altogether, computer generated natural
shapes still look too perfect and sterile.

But what is really the difference between a state-of-the-art computer gen-
erated tree and a real tree? Real trees grow according to rules which are
encoded in their genes. The well-known concept of L-systems is used to sim-
ulate and model exactly this type of processes. But this is not enough. No
two trees or plants look exactly the same. Even if two identical seeds of the
same species are planted next to the other, the resulting shapes would differ,
because it is still a long way from the genotype, which is encoded in the
genes, to a distinct phenotype, which is the physical appearance of a distinct
individual. Each individual plant has to obey the laws of nature and its de-
velopment is influenced by a score of environmental parameters, like gravity,
incident direction of light, amount of water, moisture, distribution of nutri-
ments in the soil and many more. The plants appearance and development
is influenced by these constraints on every scale. A score of other incidents,
like natural desasters, storms, heavy snowfall, or ice, may damage or break

1
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Figure 1.1: A mighty tree (left), which has been spared from natural desaster, could
develop a rich and impressive appearance. Another, less fortunate, individual (right)
suffered from severe injuries inflicted by storm and/or heavy snowfall and ice, and consists
primarely of traumatic reiterations. Nevertheless, it offers another kind of fascinating
visual appearance.

stems, branches, twigs, or ruin everything from individual plants to whole
populations. Animals, from insects to deer, plagues, chemical reactions, and
of course human interference, whether it is direct, like when pruning trees
in a garden, or indirect like disturbing the balance in an ecosystem - every
single incident will leave a mark on the appearance of an individual plant.

1.1 Motivation

As stated above, the main problem of creating realistic and detailed natural
shapes is the lack of geometric detail in state-of-the-art applications. Either
the overall shape is modeled in sufficient detail, but small scale details are
neglected at all or approximated by texture maps or bump maps, or small
scale detail is modeled on relatively simple global shapes. The first applies to
L-system-based modeling applications, while the latter applies to procedural
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Figure 1.2: Even relatively simple plants like cacti and succulents create amazingly rich
shapes. Intensely colored, orange flowers (left) are produced in abundance from the lower
stem of a rebutia pygmaea [Hew97]. Haworthia coarctata v. adelaidensis (right) is one of
the few species in its genus to form such striking clumps of tough, leafy columns. Normally
dark green, it turns a rich purple-red in full sun [Hew97].

modeling techniques. While both tools can represent very complex geometry
in a very compact way, the same holds not true (in general) for the combi-
nation of both techniques. Certainly, it is not impossible to combine both
strategies to create realistic and detailed shapes as can be seen especially in
computer generated imagery and special effects for a number of high-budget
film productions (Final Fantasy [Tri01], Shrek [Dre01], Toy Story 2 [Pix00],
to name just a few) but this is associated with an immense modeling effort
and even with dozens of specialist designers at hand, most effort is “wasted”
for modeling leading characters. One of the main reasons for this is, that
due to the lack of a common framework, the integration of different model-
ing techniques is mostly performed by hand which in turn requires a huge
manual effort, as stated above. Of course it is not possible to solve these
problems all at once, and certainly much more research has to be performed
by the computer graphics community for many years to come.

1.2 Purpose and Outline of This Thesis

The goal of this thesis is to improve the way highly complex shapes are
modeled, by combining and advancing a number of existing techniques from
subdivision surfaces to parametric L-systems and thus to bridge the gap be-
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tween different powerful modeling techniques. The goal is a novel framework
allowing for the generation of very complex geometric shapes of arbitrary
topology. The main focus thereby lies in the generation of complex geome-
try - means of efficient rendering of such complex geometry would go beyond
the scope of this thesis and will be subject to future work. A short outlook
and basic ideas are given in Chapter 8.

Before presenting our proposed framework, we first give a detailed
overview of subdivision surfaces and L-systems as well as some chosen plant
generation models. We then introduce generalized subdivision meshes which
are capable of generating not only smooth surfaces by the application of
standard subdivision surface algorithms, but also small scale surface detail
by means of procedural modeling techniques. The essential improvement and
focal point of this thesis is rule-based mesh growing which is an extension of
L-systems to not only work on symbols, but on connected symbols, repre-
senting faces in a mesh. Finally we conclude this thesis by outlining the
application of generalized subdivision meshes and rule-based mesh growing
to a simple plant generation model, which serves as a testbed and reference
application for our proposed framework.



Chapter 2

Background and Related Work

In this chapter we will provide an overview of related work which will be used
throughout the rest of this thesis. After some basic definitions concerning
polygonal surface representations, we will provide an overview of subdivision
surfaces. Then we will describe Lindenmayer systems, and finally we will
review a selected number of plant models.

2.1 Polygonal Surface Representation

In the most general sense, a polygonal surface model is simply a set of pla-
nar polygons in the three-dimensional Euclidean space R

3. For the rest of
this thesis, we assume, that the connectivity of a model is consistent with
its geometry – if the corners of two polygons coincide in space then those
polygons share a common vertex. Further on we will neglect isolated vertices
and edges, since their only effect is to complicate the implementation; the
underlying algorithms remain the same.

Given these assumptions, we make the following definition: a polygo-
nal surface model M = (V, F ) consists of a list of vertices V and a list of
polygonal faces F . The vertex list V = (v1, v2, ..., vnv−1) is an ordered se-
quence; each vertex may be identified by a unique integer i. The face list
F = (f1, f2, ..., fnf−1n) is also ordered, assigning a unique integer number to
each face, where each face fi = (vi0 , vi1 , ..., vinvf−1

) is an ordered sequence of
vertex indices referring to the vertex list V , and enumerating the vertices of
the face in counterclockwise order.

In computer graphics polygonal surface models are mostly used to model
manifold surfaces. The intuitive concept of a manifold surface [Gar99] is that
people living on it, their perception limited to a small surrounding area, are
unable to distinguish their situation from that of people actually living on

5



CHAPTER 2. BACKGROUND AND RELATED WORK 6

a plane. More formally, a manifold is a surface, all of whose points have a
neighbourhood which is topologically equivalent to a disk. A manifold with
boundary is a surface all of whose points have a neighbourhood which is
topologically equivalent to either a disk or a half-disk.

A polygonal surface is a manifold (with boundary) if every edge has ex-
actly two incident faces (except edges on the boundary which must have
exactly one), and the neighbourhood of every vertex consists of a closed loop
of faces (or a single fan of faces on the boundary).

2.1.1 Winged-Edge Representation of
Polygonal Surfaces

The winged-edge data structure ist the most prevalent representation of
polygonal surfaces. Originally proposed in the nineteen-seventies by Baum-
gart [Bau72], [Bau75], it has stood the test of time.

Although there exist countless different implementations, the basic idea
is always the same: lists for vertices, edges, and faces are maintained, and
each vertex, edge, and face stores indices for adjacent elements which point
back into the appropriate lists. Which elements will store which indices
mostly depends on which queries a specific application needs to perform. The
more adjacency information is stored, the richer the data structure becomes.
Of course richer structures result in simpler and more performant queries,
but also in a higher memory footprint. So in praxis there always exists a
trade-off between memory requirements and simplicity of queries. A detailed
description of the winged-edge data structure used in our implementation is
given in Section 5.4.

2.1.2 Non-Polygonal Representations

Polygonal surface representations are not the only available surface represen-
tations. A number of alternatives exist [Wat93], [HB97], which all provide
certain benefits as well as drawbacks.

Implicit Surface Representations

Implicit surface representations exist for a number of primitive objects com-
monly used in rendering packages. Quadric objects like sphere, ellipsoid,
cylinder, cone, torus, paraboloid, hyperboloid are described with second-
degree equations. As an example, the representation of an ellipsoid centered
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on the origin is defined by(
x

rx

)2

+

(
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+
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= 1 (2.1)

where rx, ry, and rz denote the radii in direction of the main axes in a
Cartesian coordinate system.

A class of objects called superquadrics is a generalization of quadric ob-
jects which is formed by incorporating additional parameters into the quadric
equations to provide increased flexibility for adjusting object shapes. A gen-
eralization of Equation 2.1 could look like[(

x

rx

) 2
s2

+

(
y

ry

) 2
s2

] s2
s1

+

(
z

rz

) 2
s1

= 1 (2.2)

where s1 and s2 are two additional exponent parameters. For s1 = s2 = 1,
we have an ordinary ellipsoid.

Another class of objects can be used to represent objects whose surface
changes according to motion or proximity to other objects, e.g. molecular
structures, water droplets, or melting objects - since their shapes show a
certain degree of fluidity, they are often referred to as blobby objects.

Spline Representations

Spline representations are one of the most widely used alternatives to polyg-
onal representations. Hearn and Baker [HB97] give a detailed overview and
classification of different properties of spline representations.

Splines are mathematically described by piecewise polynomial functions
whose first and second derivatives are continuous across the various curve
sections. We will give a brief overview of spline curves (spline surfaces can be
simply described with two sets of orthogonal spline curves; the mathematical
properties stay essentially the same).

Spline curves are specified by a set of control points, which define the basic
shape of the curve. If the resulting curve passes through the control points,
it is said to be interpolating, if the curve not necessarely passes through the
control points, then it is said to be approximating.

In order to create smooth transitions between the different sections of the
curve, which are defined by piecewise cubic polynomal functions, a number
of continuity conditions can be imposed at the connection points.

Parametric continuity is achieved, if parametric derivatives of adjoining
sections are matched at their common boundary point. C0 continuity (zero-
order parametric continuity) simply means that the curves meet. C1 (first-
order parametric continuity) means that the tangent lines at the common
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boundary point are equal, and C2 (second-order parametric continuity) states
that the second-order derivatives of two curve sections are the same at their
intersection.

Another way of defining conditions for joining sections is to use geometric
continuity conditions. Here, it is only required that the parametric derivates
of two joining curves are proportional at their intersection, not necessarely
equal. G0 (zero-order geometric continuity) is the same as C0. G1 (first-
order geometric continuity) states, that the direction of the tangent vector
is the same, but not necessarely its magnitude. G2 (second-order geometric
continuity) is defined accordingly.

Spline curves with cubic basis functions offer a good compromise between
flexibility and speed of calculation. Representatives of this class of functions
are: natural cubic splines, Hermite splines, cardinal splines, and Kochanek-
Bartels splines.

Other common spline curves (and their respective surface interpretations)
are Bézier curves and surfaces, B-splines, uniform B-splines, non-uniform B-
splines, rational splines, and non-uniform rational B-splines (NURBS).

2.1.3 Multiresolution Modeling and
Levels of Detail

Conventional polygonal models consist of a fixed set of vertices and faces, and
as such have only one fixed representation. But, this single representation
may not be appropriate for each possible configuration in a scene. Take, for
example, the model of a cactus (Color Plate 7.2) which is made up of a rather
simple global shape, with thousands of small prickles, and with the camera
positioned directly in front of one single prickle, which of course is depicted
in great detail.

In such a scenario, the sheer attempt to create a single model to be used
for all instances of prickles, would be futile. A model which is detailed enough
to adequately represent the prickle in front, would result in an incredible
waste of resources for all the distant prickles, where in practice thousands
of polygons would be projected to the very same pixel in the final image.
The opposite holds true for the contrary case, where the model is designed
to meet the much weaker requirements for distant prickles.

Garland [Gar99] gives an overview of different approaches to multires-
olution representations. The simplest method for creating multiresolution
surface models is called discrete multiresolution. In this case, a set of in-
creasingly simpler models is generated, and according to parameters like the
distance from the camera to the object, the renderer selects the appropriate
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level of detail to use in rendering.
Unfortunately, this can lead to so-called popping artifacts in animations,

if in-between two frames, the renderer switches between two representations.
To avoid this, level of detail blending has been introduced, which extends the
level of detail transition over several frames.

In geomorphing, two consecutive levels of detail are smoothly interpolated.
This technique has been used for terrain-specific applications [FST92] for
some time. But imagine a terrain model, where the camera is positioned
above the surface and looks out to the horizon. In such a case no discrete
level of detail can be found which represents the terrain in an optimal way.
Either, the surface is overly detailed in the distance, or it is too crude near the
camera. What we need is an approximation which allows the level of detail
to vary continuously over the surface. These techniques are called continuous
level of detail models and are extremely useful in terrain applications [Hop98].

To end this section, we have to annotate, that our proposed generalized
subdivision meshes and rule-based mesh growing schemes are based on polyg-
onal surface representations, and are well suited for multiresolution modeling
and level of detail approaches. In the next section we will discuss the creation
of smooth surfaces by means of subdivision techniques.

2.2 Subdivision Surfaces

Subdivision surfaces have been introduced by Catmull and Clark [CC78] and
Doo and Sabin [DS78] in the late nineteen-seventies, and are used to effi-
ciently generate smooth surfaces from arbitrary initial meshes. For a long
time the theoretical foundation of the subdivision process was not as thor-
ough as for other modeling techniques such as B-splines and NURBS [PT97],
and thus it took a while for subdivision methods to become widely known
and used. Recently this has been rectified by the introduction of a method
to evaluate subdivision surfaces at any point [Sta98], a method for extending
subdivision surfaces for emulating NURBS [SZSS98], the addition of normal
control to subdivision surfaces [BLZ00], and a method to closely approxi-
mate Catmull-Clark subdivision surfaces using B-spline patches [Pet00]. A
number of other extensions to subdivision surfaces, like semi-sharp creases
[DKT98], or displaced subdivision surfaces [LMH00], have established them
as the modeling tool of choice for generating topologically complex, smooth
surfaces. In 1997, Pixar’s animated short film Geri’s Game which was mod-
eled using Catmull-Clark subdivision surfaces, even won an Academy Award
in the category Best Animated Short Film.

There exists a huge number of different subdivision schemes which, at
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first glance, may appear chaotic. However, most of the different subdivision
schemes can be easily classified by three different criteria [ZSD+99]:

• type of refinement : primal (vertex insertion) or dual (corner-cutting)

• type of mesh: triangular or quadrilateral

• type of scheme: approximating or interpolating

In a primal refinement scheme each vertex v
(m)
i in mesh m has exactly one

associated vertex point v
(m+1)
i in the submesh m+1. Dual refinement (corner

cutting) means, that the corner defined by a vertex v
(m)
i is cut away in the

next level of subdivision. Therefore no single vertex point, but a unique
face, can be associated with the vertex in the resulting submesh. This also
implies, that dual schemes can never be interpolating, but only approximating
schemes.

While subdivision surface techniques use recursive refinement to obtain
smooth surfaces, the field of procedural modeling uses various similar prin-
ciples to add detail to surfaces at different levels of resolution. One example
for such a procedural modeling strategy is the generation of fractal surfaces
by adding random variations at each level of recursive refinement [FFC82].
These surfaces have been demonstrated to be very useful for modeling natural
phenomena like terrains and other complex geometry and similar principles
are also used in generalized subdivision meshes (see Chapter 3).

In the following sections, a number of widely known and practically im-
portant subdivision schemes will be explained and classified using the three
criteria introduced above.

2.2.1 Catmull-Clark Subdivision

The Catmull-Clark subdivision scheme is an approximating, primal scheme
and can be applied to an arbitrary polyhedron called the control mesh.
The control mesh M (0) is subsequently subdivided to produce a sequence
of meshes M (1), M (2), ..., M (∞) . The averaging rules, or subdivision rules
have been chosen such, that the limit surface can be shown to be tangent
plane smooth no matter where the control vertices are placed.

In one subdivision step, each face is split into a collection of quadrilateral
subfaces. A face with n vertices is split into n subfaces. The vertices of the
submesh are computed using certain weighted averages as detailed below.
More precisely, for each vertex, edge and face of a mesh M (m), a new vertex
point v

(m+1)
j , a new edge point e

(m+1)
j , and a new face point f

(m+1)
j is created.
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Figure 2.1: Sequence of Catmull-Clark subdivision steps.

The union of all face-, edge- and vertex points forms the mesh at the next
level of subdivision.

Face points (see Figure 2.2) are placed exactly at the centroid of the

vertices of the corresponding face (where v
(m)
fi,i is the ith vertex of face fi

(face index) of subdivision level m):

f
(m+1)
fi =

1

n

n∑
i=0

v
(m)
fi,i (2.3)

Edge points (see Figure 2.2) are placed at the centroid of the edges vertices

and the two new face points of the edges neighbouring faces (where v
(m)
ei,0 and

v
(m)
ei,0 are the edges ei (edge index) end points and f

(m+1)
left and f

(m+1)
right are the

face points of the adjacent face, respectively):

e
(m+1)
ei =

v
(m)
ei,0 + v

(m)
ei,1 + f

(m+1)
left + f

(m+1)
right

4
(2.4)

For the calculation of a vertex point (see Figure 2.3) all the vertex’ neigh-
bouring vertices and the face points of all adjacent faces are used to calculate
the position of the new vertex point (where v

(m)
vi,i is the ith neighbouring ver-

tex of vertex vi (vertex index) of subdivision level m). Vertices of valence 4
are called ordinary; others are called extraordinary:

v
(m+1)
vi =

n − 2

n
v

(m)
vi +

1

n2

n∑
i=0

v
(m)
0,i +

1

n2

n∑
i=0

f
(m+1)
0,i (2.5)
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Figure 2.2: Face points (left) are placed exactly at the centroid of the vertices (v(m)
0,0 –

v
(m)
0,4 ) of the corresponding face. An edge point (right) is placed at the centroid of the end

points of the corresponding edge and the face points of the adjacent faces.

Finally, the newly created vertices are connected to form the submesh. See

Figure 2.3: A vertex point (left) is the weighted average of the corresponding vertex and
the adjacent vertex- and face points. A mesh and its corresponding submesh (right).

Figure 2.3 for the submesh topology.
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Sharp Creases

In order to make subdivision surfaces more useful, DeRose et al. [DKT98]
presented an expansion to Catmull-Clark subdivision surfaces which allows
for the modeling of fillets and blends. Real world objects are almost never
perfectly smooth nor do they have infinitely sharp creases. A corner of a
table looks sharp at a distance but is smooth if viewed from a close distance.
In order to allow for the modeling of such geometry, an edge sharpness value
s ≥ 0.0 may be assigned to each edge of the control mesh.

If an edge is tagged as sharp, then a different set of subdivision rules is
applied. Edge points are placed at the edge midpoint:

e
(m+1)
ei =

v
(m)
ei,0 + v

(m)
ei,1

2
(2.6)

Vertices having 3 or more incident sharp edges are called corners and are
placed using the corner rule:

v
(m+1)
vi = v

(m)
vi (2.7)

Vertices having less than 3 incident sharp edges are called crease vertices and
are placed using the crease vertex rule (where the sharp edges are v

(m)
vi v

(m)
j

and v
(m)
vi v

(m)
k ):

v
(m+1)
vi =

v
(m)
j + 6v

(m)
vi + v

(m)
k

8
(2.8)

If an edge has an assigned sharpness value of s, then the sharpness values for
its two corresponding subedges are set to s − 1.

If an edge has an associated sharpness value of s < 1.0, then the resulting
subvertex is calculated as a linear interpolation of the two vertices that result
from the application of both the original rules (vsmooth) and the rules for sharp
creases (vsharp).

v(m+1) = v
(m)
smooths + v

(m)
sharp(1.0 − s) (2.9)

Edges with a sharpness value of s = 0.0 are not sharp and therefore the
original, smooth Catmull-Clark subdivision rules are applied.

Exact Evaluation

One problem with subdivision surfaces in general and Catmull-Clark subdi-
vision surfaces in particular is, that an explicit subdivision process generates
such high numbers of polygons, that it is very difficult to deal with them
efficiently. However, Stam [Sta98] presents a method which allows for a di-
rect evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter
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values - without explicitely subdividing. The cost of this technique is com-
parable to the evaluation of a bi-cubic surface spline. Stam shows that the
surface can be evaluated in terms of a set of Eigenbasis functions which de-
pend only on the subdivision scheme and for which analytical expressions
can be derived. These expressions do not only work on the regular part of a
mesh but also in the neighbourhood of extraordinary vertices.

Normal control

Biermann [BLZ00] et al. introduce improved rules for Catmull-Clark and
Loop subdivision that overcome several problems with the original schemes,
namely, lack of smoothness at extraordinary boundary vertices and folds
near concave corners. In addition, it allows the generation of surfaces with
prescribed normals, both on the boundary and in the interiour. This consid-
erably improves control of the shape of the surfaces.

2.2.2 Loop Subdivision

The Loop subdivision scheme [Loo87] is an approximating, primal scheme,
and operates on triangular meshes. The refinement rules are as follows (see
Figure 2.4 for subdivision coefficients):

• For each vertex Pi a new vertex P ′
i is generated.

• For each edge ei a new vertex Ei is generated.

• For each triangular face, create four new triangular faces (see Figure
2.4).

2.2.3 Doo-Sabin Subdivision

The Doo-Sabin subdivision scheme [DS78], [Joy96] is a dual (corner cutting),
approximating scheme which works on meshes of arbitrary topology. After
the first subdivision step, all vertices have valence four, which is a character-
istic of the Doo-Sabin scheme. Subdivided faces are quadrilaterals, except
around vertices which had a valence other than four in the original mesh. In
this case the resulting face is a n-sided polygon, where n is the valence of
the original vertex. These facets continue throughout the subdivision process
and converge to extraordinary points. The subdivision scheme for meshes of
arbitrary topology is as follows:
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Figure 2.4: Loop subdivision scheme. (A) subdivision coefficients for new edge point
(B) subdivision coefficients for new vertex point (C) connectivity of sub-faces

• For each vertex Pi of each face, a new vertex P ′
i is generated as the

average of the vertex Pi, the two adjacent edge points Ei,0 and Ei,1,
and the face point F . An edge point is simply taken as the mid-point
of an edge, and a face point is taken as the center-point of the face.
See Figure 2.5 A and B.

• For each face, connect the newly generated points for each vertex of
this face. See Figure 2.5 C.

• For each vertex, connect the points that have been generated for the
faces that are adjacent to this vertex. See Figure 2.5 D.

• For each edge, connect the points that have been generated for the
faces which are adjacent to this edge. See Figure 2.5 E.

See Figure 2.5 F for the resulting subdivision mesh after one subdivision step.
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Figure 2.5: Doo-Sabin subdivision scheme. (A) calculation of a vertex point (B) vertex
points of a mesh (C) new face-faces (D) new vertex-faces (E) new edge-faces (F) subdivision
mesh after one subdivision step

2.2.4 Modified Butterfly Scheme

The Butterfly scheme is a primal, interpolating subdivision scheme, which op-
erates on triangular meshes. The original scheme [DLG90] yields C1 surfaces
in the topologically regular setting. Unfortunately it exhibits undesirable
artifacts in the case of an irregular topology.

Zorin et al. [ZSS96] derive an improved scheme, which fixes the problems
of the original approach, but retains the simplicity of the Butterfly scheme,
is interpolating, and results in smoother surfaces.

2.2.5 Kobbelt Subdivision

The Kobbelt subdivision scheme [Kob96], [Kob98] is an interpolating, primal
scheme, which works on quadrilateral meshes. Vertex points are fixed due
to the interpolatory property of the scheme. The rules for edge and face
points use simple affine combinations of vertices from the unrefined mesh
(see Figure 2.6 for details).
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Figure 2.6: Kobbelt subdivision. The refinement operator splits one quadrilateral face
into four. The new vertices can be associated with the edges and faces of the unrefined
mesh (A)(B). Subdivision masks for regular regions (edge points and face points). a =
− 1

16 , b = 9
16 , c = a2, d = ab, e = b2.

2.2.6
√

3-Subdivision
√

3-subdivision [Kob00] is a dual, approximating scheme, which works on
triangular meshes and has a number of advantages over the usual dyadic
subdivision schemes (see Figure 2.7). It performs a slower topological re-
finement than usual split operations. In each step, the number of triangles
increases by a factor of 3, and if the subdivision operator is applied twice,
it creates a uniform refinement with tri-section of every original edge. Stan-
dard dyadic split operations increase the number of triangles by a factor of
4 in each step, and two dyadic split operations would cause a quad-section
of every original edge.

The splitting operation allows for locally adaptive refinement under built-
in preservation of mesh consistency without temporary crack-fixing between
neighbouring faces from different refinement levels. The size of the surround-
ing mesh area which is affected by selective refinement is also smaller than
for the dyadic split operation.

The refinement operator works as follows: for each face, a new face vertex
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Figure 2.7: Dyadic split. Two dyadic splits will quad-section every original edge.

which is located at the face center is inserted. Next, the new face vertex is
connected to the adjacent vertices, creating three new triangles. Finally, the
original edges are flipped yielding the final result which is a 30 degree rotated
regular mesh.

2.2.7 Non-Uniform Rational Subdivision Surfaces

Sederberg et al. [SZSS98] develop rules for Doo-Sabin and Catmull-Clark
subdivision surfaces that generalize non-uniform tensor product B-spline sur-
faces to arbitrary topologies. This added flexibility allows the natural intro-
duction of features like cusps, creases, and darts, while everywhere else the
same order of continuity as in their uniform counterparts is maintained. The
subdivision scheme works as follows:

Each face is replaced with a new face point.

F1 = [(t3 + 2t4)(s2 + 2s1)P0 + (t3 + 2t4)(s2 + 2s3)P1 +

(t3 + 2t2)(s2 + 2s3)P5 + (t3 + 2t2)(s2 + 2s1)P2]

/[4(t2 + t3 + t4)(s1 + s2 + s3)]

For each edge a new edge point is created.

E1 =
t2F1 + t3F4 + (t2 + t3)M1

2(t2 + t3)
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Figure 2.8:
√

3 subdivision. (A) base mesh (B) insert a new vertex for every face (C)
connect new face points with adjacent vertices (D) flip original edges

where

M1 =
(2s1 + s2)P0 + (s2 + 2s3)P1

2(s1 + s2 + s3

Finally, each original vertex is replaced with a vertex point.

V =
P0

4
+

s3t2F1 + s2t2F2 + s2t3F3 + s3t3F4

4(s2 + t3)(t2 + t3)
+

[s3(t2 + t3)M1 + t2(s2 + s3)M2 + s2(t2 + t3)M3 + t3(s2 + s3)M4

4(s2 + s3)(t2 + t3)

2.2.8 Ray Tracing of Subdivision Surfaces

Kobbelt et al. [KDS98] present the necessary theory for the integration
of subdivision surfaces into general purpose rendering systems. The most
important functionality is the computation of surface points and normals
as well as the ray intersection test. Kobbelt et al. derive the necessary
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Figure 2.9: Non-uniform rational subdivision surfaces: face, edge and vertex points.

formulaes and present envelope meshes which have the same topology as
the control meshes but tightly circumscribe the limit surface. Ray tracing
is accomplished by recursively tracing a ray through the forest of triangles
emerging from adaptive refinement of a mesh.

2.3 L-Systems

Lindenmayer introduced a formalism for simulating the development of mul-
ticellular organsisms, subsequently named L-systems [Lin68], [LP89], [PH91],
[FPdB90]. Smith [Smi84] introduced state-of-the-art computer graphics tech-
niques to visualize the structures and processes being modeled. Smith also
attracted attention to the phenomenon of database amplification, which de-
notes the creation of complex structures from compact datasets, which is
inherent in L-systems and forms the cornerstone of L-system applications
to image synthesis. The introduction of turtle graphics interpretation of L-
systems [Pru86] and a programming language based on L-systems [PL96]
made it possible to generate even more realistic images. The recognition of
the fractal character of structures generated by L-systems [PH89], [PL96],
[HPS91], [PH94], [PH92] also creates a connection to the field of fractals.

Plants are described as a configuration of modules in space [PHHM96],
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[PHMH91], [HHMP96]. The term module denotes any discrete constructional
unit that is repeated as the plant develops. The goal of modeling at the
modular level is to describe the development of a plant as a whole, and in
particular the emergence of plant shape, as the integration of the development
of individual units.

The development at a modular level can be captured by a parallel rewrit-
ing system that replaces individual parent modules by configurations of child
modules. All modules belong to a finite alphabet of module types, thus the
behaviour of an arbitrarily large configuration of modules can be specified
using a finite set of rewriting rules or productions.

In addition, a large body of subsequent work based on the theory of L-
systems has been created. Prusinkiewicz presents a model for the animation
of plant development [PHM93] which is suitable for animating simulated
development processes in a manner similar to time-lapse photography.

Hammel et al. [HP96] creates visualizations of developmental processes by
extrusion in space-time by interpreting the entire derivation graph produced
by an L-system as opposed to the interpretation of individual words.

Power et al. [PBPS99] explore the problem of interactively manipulat-
ing plant models without sacrificing their botanical accuracy. They present
a method for interactively manipulating plant structures using a inverse-
kinematics optimization technique.

Fowler et al. [FPB92] present a method for modeling spiral phyllotaxis
based on detecting and eliminating collisions between the organs while opti-
mizing their packing.

Prusinkiewicz describes a number of selected models of morphogenesis
[Pru94], [Pru93b], [Pru93a] and other specialized applications of L-systems
[PK96].

2.3.1 Context-Free L-Systems

In context-free rewriting, a production consists of a single module called the
predecessor or the left-hand side, and a configuration of zero, one, or more
modules called the successor or the right-hand side. A production p with
the predecessor matching a given parent module is applied by deleting this
module from the string and inserting the child modules as specified by the
productions successor. A production has the form

pred : succ (2.10)

Productions are applied in parallel, with all the modules being rewritten
simultaneously in every derivation step. Although modules could also be
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rewritten sequentially, parallel rewriting is more appropriate for the modeling
of biological development, since development takes place simultaneously in
all parts of an organism. A sequence of structures obtained in consecutive
derivation steps from a predefined initial structure (the axiom) is called a
developmental sequence. It can be viewed as a discrete-time simulation of
development.

2.3.2 Indeterministic L-Systems

If more than one production fits a particular configuration of modules, than
the L-system is called indeterministic and one of the possible productions
has to be chosen randomly. Additionally, a propability can be assigned to
each production to have a certain amount of control over the selection of
productions.

2.3.3 Context-Sensitive L-Systems

Context-sensitive L-systems allow more complex productions - rules are not
only matched by comparing the predecessor but also the context in which
the predecessor appears. Productions for context-sensitive L-systems are of
the form

lc < pred > rc : succ (2.11)

where lc stands for left context and rc means right context.

2.3.4 Parametric L-Systems

Parametric L-systems are more expressive and are commonly used in real-
world applications of L-systems. They operate on parametric words, which
are strings of modules consisting of letters with associated parameters. The
letters belong to an alphabet V, and the parameters belong to the set of real
numbers R. A module with letter A ∈ V and parameters a1, a2, ..., an ∈ R is
denoted by A(a1, a2, ..., an). Every module belongs to the set M = V × R

∗,
where R

∗ is the set of all finite sequences of parameters. A production for
parametric context-sensitive L-systems has the format

lc < pred > rc : cond → succ (2.12)

where cond stands for condition, which is an arithmetic expression, and the
symbol → is used to separate the condition from the successor. A parametric
production is only matched if the condition evaluates to true. For example,
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a production with predecessor A(t), condition t > 5 and successor B(t +
1)CD(t0.5, t − 2) is written as

A(t) : t > 5 → B(t + 1)CD(t0.5, t − 2). (2.13)

2.3.5 Turtle Interpretation of L-Systems

In order to generate three-dimensional structures out of the one-dimensional
strings generated by L-systems, the one-dimensional strings are interpreted
sequentially, with reserved modules acting as commands to a LOGO-style
turtle [PLH88], [PL96]. At any time, the turtle is characterized by a position
vector and three mutually perpendicular orientation vectors indicating the
turtles heading, the up-direction, and the direction to the left. A number of
reserved modules (mentioned above) cause the turtle to rotate around one
of the vectors or to draw a straight line in the current direction. Symbols [
and ] are used to group symbols (for instance symbols representing a single
branch). If an opening bracket [ is encountered, the current state of the turtle
is pushed onto a stack, if a closing bracket ] is encountered the last state is
popped from the stack.

2.3.6 Environmentally-Sensitive L-Systems

In [PJM94] Prusinkiewicz extends L-systems in order to simulate the inter-
action between a developing plant and its environment. As an examplary
application the response of trees to extensive pruning is modeled, which
yields images similar to sculptured plants found in so-called topiary gardens.

The standard turtle interpretation of L-systems is only designed to visual-
ize models in a postprocessing step, with no effect on the L-system operation.
However, position and orientation of the turtle are of importance, when con-
sidering environmental phenomena, such as collisions with obstacles and ex-
posure to light. In order to enable the L-system to react to such phenomena,
the environmentally-sensitive extension of L-systems makes these attributes
accessible during the rewriting process through a number of additional re-
served modules. The generated string is interpreted after each derivation
step, and turtle attributes found during the interpretation are returned as
parameters to reserved query modules.

2.3.7 Open L-Systems

Open L-systems [MP96] augment the functionality of environmentally-
sensitive L-systems using a reserved symbol for bilateral communication with
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the environment. Parameters associated with the occurence of the commu-
nication symbol can be set by the environment and transferred to the plant
model, or set by the plant model and transferred to the environment. The
environment is no longer represented by a simple function, but becomes an
active process that may react to the information from the plant. Thus,
plants are modelled as open cybernetic systems, sending information to and
receiving information from the environment. By using this functionality, phe-
nomena like the development of branches limited by collisions, the colonizing
growth of plants competing for space in favorable areas, the interaction be-
tween roots competing for water in the soil, and the competition within and
between trees for access to light, can be modelled and simulated.

2.3.8 PL-CSG-Systems

Based on parametric L-Systems, Gervautz and Traxler [GT95] propose so-
called pL-CSG-Systems to build complex CSG-objects which can be rendered
very effectively, without having to create an explicit geometric representation
of the whole scene, therefore allowing scenes of arbitrary complexity. Instead
of using turtle interpretation of strings generated by parametric L-systems,
cyclic CSG graphs are constructed and used directly inside a rendering system
[GT95], [Tra97] allowing for a very compact representation of arbitrarely
complex geometry. In [TG95a], [TG95b] Traxler et al. further optimize the
rendering process by using tight bounding volumes which are constructed
from cyclic CSG-graphs and in [TG96] an approach to improve the visual
quality of fractal plants by using genetic algorithms is presented.

Figure 2.10: PL-CSG-systems where used to model and represent these scenes [Tra98].
They were rendered on a machine with 64 MB of RAM, which was not enough to keep
the entire scene in memory [Wil01].

CSG expressions can be interpreted as strings, so it is possible to derive
them from a pL-system. As pointed out in detail by Gervautz et al. [GT95],
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one has to be careful when designing a pL-system that is supposed to generate
a valid CSG object. The main problem is that the derivation sequence cannot
be stopped arbitrarily as when using a pL-system, where the turtle ignores
modules that do not belong to its command set; the result of the derivation
process has to be a set of well-formed CSG expressions.

This has two consequences: first, rules can only be applied to modules
(generating rules) and second, at least one rule which finally substitutes all
variables with a string of terminals (terminating rules) must exist for every
module.

2.4 Plant Models

Bloomenthal [Blo85] was propably one of the first who tried to not only
generate shapes which resembled the overall structure of trees, but he also
developed methods to create small-scale detail like branching structures and
bark. He connected generalized cylinders with free-form surfaces to model
natural looking branching structures and used blobby techniques to model
the tree trunk as a series of non-circular cross sections. Bump mapping is
used to create a natural looking bark-like surface.

2.4.1 Botany-Based Models

To the best of our knowledge, de Reffye et al. [dREF+88] present the only
plant model in the computer graphics literature which strictly adheres to
botanical laws when explaining plant growth and architecture. The model
integrates botanical knowledge of the architecture of trees: how they grow,
how they occupy space, where and how leaves, flowers or fruits are located,
etc. Another very important benefit one can derive from the model is the
integration of time which enables viewing the aging of a tree, which includes
the possibility of creating different images of the same tree at different ages,
and the accurate simulation of the death of leaves and branches. It is also
possible to integrate physical parameters such as wind, and the incidence of
factors such as insects attacks, use of fertilizers, plantation density and so on,
which makes it also a useful tool for agricultural or botanical applications.
De Reffye’s work is also of importance, because many notions from botany
which have not yet been widely used inside the computer graphics community
are explained in great detail.

The growth of a plant is the result of the evolution of some specific cellular
tissues (internal part of the bud), the so called meristems. A bud can, at a
given time, die (abort), and it will not produce anything any longer, or it
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can give birth to a flower, or an inflorescence (and then the bud dies) or to
an internode.

The main element of the model is the leaves’ axis (see Figure 2.11). It is
created by the bud situated at its tip, which is called the apical bud, and it is
comprised of a series of internodes. An internode is a part of a stem made of
a ligneous material at the tip of which one can find one or several leaves. In
between two internodes there is a node which bears leaves and buds. Each
node bears at least one leaf. At each leafs axil, one finds a so called axillary
bud. Axillary stems can either grow immediately (sylleptic ramification) or
with some delay (proleptic ramification).

Figure 2.11: The leaves’ axis.

Other central notions are the notion of growth unit which is a sequence
of internodes and nodes produced by the apical bud of the previous node,
and the notion of the order of an axis. An order 1 axis is the sequence of
growth units, which originally grew out of the seed of the plant. An order i
axis (for i > 1), is a sequence of growth units such that the first internode
of the sequence is born of an axillary bud on an order i − 1 axis, called the
bearing axis.

The relative positions of lateral buds of a node with respect to the lateral
buds of the previous node follow regular laws known for each variety of each
species and each order; this phenomenon is called phyllotaxy. The two most
common cases are spiraled and distic phyllotaxy (see Figure 2.12).

With respect to the ramification process, one distinguishes between conti-
nous ramification, rhythmic ramification, and diffuse ramification. All these
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Figure 2.12: Phyllotaxy: (A) spiraled, (B) distic.

kinds of ramifications are functions of the order of the axis for a given variety
and species (see Figure 2.13).

Figure 2.13: Ramification: (A) continuous, (B) rhythmic.

Now, with all these notions in mind, it is also possible to define some
notions also well known in the computer graphics community on a more
formal basis.

Monopodial trees (monopods) are ramified systems which include a unique
order 1 axis and a finite number of axes of higher order. If the orders go
up to k, the monopod is called an order k monopod. The general geometric
trend of an axis with respect to its bearing axis leads to further classification.
If the general trend is horizontal the development is called plagiotropic, if it
is vertical it is called orthotropic. There also exists a correlation to phyl-
lotaxy: orthotropy is usually associated with a spiraled phyllotaxy whereas
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plagiotropy is associated with distic phyllotropy.
Sympodial growth (dichotomous branching) occurs when the apical bud

of an order i axis dies, and some axillary buds of the previous node produce
an axis whose behaviour is of an order i instead of i + 1 axis. A similar
phenomenon can be observed after the pruning of a tree which is called trau-
matic reiteration. Old trees sometimes exhibit a behaviour called reiteration
which means, that an axillary bud produces an axis which behaves as an
order 1 axis. This behaviour could be interpreted as a “natural” occurence
of recursion.

2.4.2 Weber and Penn Model

Weber and Penn [WP95] explain a generic tree model which generates a va-
riety of natural looking trees based on a user-editable, large but yet intuitive
parameter set. A tree is therein composed of a primary, variably curved
trunk similar to a cone. A trunk structure may split multiple times along
its length creating a dichotomous branching pattern. Dichotomous branches
are called clones because they use exactly the same attributes as the original
stem. A stem structure and all its clones are considered to be on the same
level of recursion. Monopodial branches or child branches usually have dif-
ferent attributes than their parent structures and are considered to be one
level of recursion below their parents. Usually three or four levels of recur-
sion are sufficient to generate realistic and detailed trees. Different shapes
are obtained by scaling child branches according to their position along the
stem. Scaling factors are obtained by evaluating a simple 1-dimensional
shape function which can be one of: conical, spherical, hemispherical, cylin-
drical, tapered cylindrical, flame, inverse conical or tend flame. Similarly,
leaf shape is selected out of a number of predefined simple leaf shapes like:
oval, triangle, 3-lobe oak, 3-lobe maple or 5-lobe maple. In order to com-
pletely describe a tree a number of global parameters (like shape, number of
levels, base size) along with per-level-attributes (different angles, lengths and
curve-parameters) have to be defined. Resulting trees look very natural on
a large scale and due to random variations many different instances of trees
can be obtained from a single parameterization. Nevertheless, since all clones
on one level of recursion are based on the same set of attributes, all these
clones all over the tree look quite self-similar which results in a somewhat
too uniform and perfect look.
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Figure 2.14: Dichotomous structure built from clones, all clones are considered to be
on the same level of recursion (left). Monopodial structure, child branches are considered
one recursive level below their parent (right). Figures taken from [WP95].

2.4.3 XFrog

An interactive modeling method is introduced by Lintermann and Deussen
[LD96], [LD98], [LD99], [LD97]. A set of components containing geometric
and structural information are represented as icons which can be connected
to form a structure graph of the plant model. Each component has its own
parameter set which can be edited, and each component can generate its own
geometric representation. Each component completely describes a single part
(or a collection of similar parts) of a plant while the structure of the graph
defines how the components are arranged in order to form a specific plant.
Table 2.1 gives a brief overview of components:

Lintermann and Deussen’s model is quite complementary to Weber and
Penn‘s model. The latter describes trees at a very high level of abstraction
using a fixed set of parameters resembling a top-down approach. This makes
it easy to design many different kinds of trees which automatically look real
and to change their large scale appearance by manipulating a small number
of intuitive parameters. On the other hand, it is not possible to create
local variations or types of plants not hardcoded in the model. Lintermann
and Deussen’s method resembles a bottom-up approach. A plant is created
by defining all its different parts and by connecting these components to
form a graph which implicitly defines the plants global shape. This allows
for the creation of much more diversified plants since arbitrary numbers of
different components can be defined and combined – limited only by hardware
constraints and/or the designers dedication. The drawback of this approach
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Simple: produces a sim-
ple geometric object like
cube, sphere or cylinder.

Tree: multiplies compo-
nents as branches accord-
ing to given distributions
of position, scale and an-
gle.

Revo: a surface of revo-
lution

Hydra: arranges compo-
nents on a circle with
uniform angles and di-
rection perpendicular to
the direction of the par-
ent component.

Horn: a sweep compo-
nent which is used for
stems, twigs, etc.

Wreath: arranges com-
ponents similar to “Hy-
dra” but with direction
parallel to the direction
of the parent component.

Leaf: used for the con-
struction of natural
leaves.

PhiBall: arranges com-
ponents on a section of
a sphere according to the
golden section.

Table 2.1: Components of Lintermann and Deussen’s model. Figures taken from [LD96].

is that the global shape can not be controlled precisely since it is the result of
a potentially highly recursive process (the same problem as with pL-systems).
However, in practive this seems not to be a problem, since each parameter
change is immediately reflected in the plants graphical preview. So usually
the user is able to find the correct parameters for a desired effect in a short
period of time.

The modeling and rendering of natural scenes with thousands of plants
poses a number of problems (modeling of the terrain, placement of plants in
a realistic manner, reflecting the interactions of plants with each other and
with the environment). In [DHL+98] Deussen et al. develop a system built
around a pipeline of different tools which adress these tasks. The terrain is
designed using an interactive graphical editor. Plants are placed either man-
ually, by ecosystem simulation, or by a combination of both. The geometric
complexity of the scene is reduced by approximate instancing which means
that plants, groups of plants, or groups of organs are replaced by instances of
representative objects before the scene is rendered. As a result it is possible
to synthesize visually very rich scenes containing thousands of plants.

Deussen et al. also present approaches [DHR+99], [DS00] for perform-
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ing non-photorealistic rendering, for example to generate pen-and-ink-like
illustrations of plants.

2.5 Summary

In this chapter, we have discussed various techniques for surface represen-
tation – from polygonal representations to implicit surfaces, as well as mul-
tiresolution modeling and level of detail approaches. Furthermore, spline
surfaces and subdivision surfaces have been surveyed which are used to cre-
ate smooth surface representations from a set of control points, which control
the approximate shape of the resulting shape. In Chapter 3 we will build on
this knowledge to propose generalized subdivision meshes.

In addition to this, L-systems have been explained in great detail, which
can be used to simulate and create a variety of complex botanical, or other
shapes. In Chapter 4 we will introduce an extension to L-systems, which will
allow the creation of complex shapes in mesh-based rendering systems.

Finally, we have surveyed selected plant models, which will serve as a
basis for our own prototype implementation of a plant editor (see Chapter
6), which also builds on our proposed generalized subdivision meshes and
rule-based mesh growing schemes.
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Figure 2.15: Thonet Chair. An example for modeling with Catmull-Clark subdivision
surfaces. The model consists of 58496 faces; the scene description file (including comments,
material-, light- and camera definitions) has only about 15kb; modeling effort of about 2.5
hours; photorealistic rendering takes 125 seconds on an Athlon 650MHz processor; image
resolution 1200x1600 pixels.



Chapter 3

Generalized Subdivision
Meshes

3.1 Introduction

As we have seen in the previous chapter, a standard surface subdivision
process starts out with a mesh M (0) composed of vertices, edges and faces,
that is the base for a sequence of refined meshes M (0), M (1), M (2), ... which
converges to a limit surface, called the subdivision surface.

Our goal is to define a practical generalized subdivision framework in
which different subdivision schemes, as well as procedural definition of ge-
ometry, can be combined. In order to realize this framework, we propose the
following steps.

The process for generating submesh M (n+1) of a specific mesh M (n) in
the sequence can be split up into two operations [TMW01]. The first oper-
ation, which we will call mesh refinement, is the logical introduction of all
the new vertices in the submesh. This operation yields all the connectivity
information for the vertices of the submesh without specifiying the positions
of these newly introduced vertices. The second operation, which we will call
vertex placement, is the calculation of the actual vertex positions. Standard
subdivision schemes use specific rules for generating the new vertex positions,
that ensure that the limit surface of the subdivision process satisfies certain
continuity constraints, e.g. G1 or G2 continuity.

In order to break these continuity constraints at user specified locations,
different rules for vertex placement have been introduced [DKT98], that
maintain discontinuities at user specified edges. These rules fix the loca-
tion of edge vertices in place for a user-specified number of subdivision steps.
Thus this number can be viewed as a measure of edge-sharpness.

33
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From a more general viewpoint, fractal surfaces [FFC82] can be viewed
as a type of subdivision surface where the vertex placement rules at each
subdivision step have been chosen to maintain only G0 continuity.

In order to obtain maximum flexibility in generating subdivision surfaces,
we propose to separate the two operations of mesh refinement and vertex
placement, and make it possible for the user to independently specify both
of these operations.

3.1.1 Mesh Refinement

As the mesh refinement operation generates the connectivity information for
the submesh, it determines if the subdivision process generates quadrilateral
meshes, such as Catmull-Clark subdivision, or triangular meshes such as
Doo-Sabin or

√
3-Subdivision [Kob00]. In order to demonstrate the viability

of our new approach, we implemented a variety of mesh refinement schemes
(e.g. Catmull-Clark subdivision (see Figure 3.1, Loop, ...). See Section 3.4

Figure 3.1: A refinement step in the Catmull-Clark subdivision scheme.

for a more detailed description of mesh refinement operators available in our
framework.



CHAPTER 3. GENERALIZED SUBDIVISION MESHES 35

3.1.2 Vertex Placement

Standard vertex placement rules consist of taking weighted averages of the
vertex positions of mesh M (n) in order to calculate the vertex positions of
mesh M (n+1). For standard subdivision surfaces these rules have been de-
signed to smooth the cusps and edges of the input mesh M (0). Although this
is desirable in a number of situations, we want to add more flexibility in the
rules for vertex placement.

In order to introduce variations at any point in the subdivision process,
we introduce a number of geometric properties that can be used to specify a
vertex placement rule at each subdivision level. The first of these properties,
the local normal vector, is an approximation of the surface normal of mesh
M (n+1) at a given vertex. Although there are multiple methods for estimating
this local normal vector, for simplicity we use the weighted average of the
normals of all faces meeting at the vertex under consideration. The second
property is the local scale factor of the surface, a scalar indicating the average
face size at each vertex of a mesh in the sequence. Again this can be estimated
with various methods. We choose the average diagonal length of all faces
meeting at the vertex as a measure that can be easily computed. Both these
parameters are provided in order to facilitate multi-resolution specification
of displacements.

By using these two properties, it is possible to specify a vertex placement
rule by an equation similar to a procedural texturing rule. Instead of a color
at each position in space, we generate a displacement vector for each vertex
in a mesh. If these displacement vectors are chosen to be colinear with the
local normal vectors at each vertex position, the resulting vertex placement
rule can be viewed as a generalized form of displacement mapping [CT84],
[CCC87].

As an example (see Figure 3.2), if random displacements in the direction
of the local normal vector are added to the vertices of a surface, and the size
of the displacements is proportional to the local scale factor, the resulting
surface will be a fractal with the standard 1/f frequency characteristic. This
example however, uses the same rule at each level of the subdivision process.

3.1.3 Alternating Between Different
Vertex Placement Rules

By specifying different vertex placement rules at different resolution levels,
it now becomes possible to model a desired surface in a true multi-resolution
fashion. At each scale of the model different variations can be introduced in
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Figure 3.2: A few subdivision steps using a fractal displacement rule with 1/f charac-
teristic.

order to approximate the desired result. This is similar to normal meshes
[GVSS00] and displaced subdivision surfaces [LMH00], but our scheme is a
generalization as there is no limitation on the type of rules that can be used
at each level of subdivision. A drawback is, that we cannot automatically
generate the rules at each level to approximate a given shape.

The two properties of the local normal vector and local scale factor are
provided, in order to facilitate simple and easily specifyable changes. It is
also possible to add variations to the vertex placement rules without regard
to these properties. Using the fractal surface as an example again, instead
of moving the vertices in the direction of the local normal vector, all vertex
movements could be performed into the same global direction. In this way
it is possible to generate a fractal height field.

The process so far makes it possible to modify vertex positions at each
level of subdivision either in a globally chosen direction, or locally in the
direction of an estimated normal vector. Sometimes it may be necessary to
change the position of a vertex locally not only in the direction of the normal
vector, but with respect to a local coordinate frame. For this purpose, a
concept similar to frame-mapping [Kaj85] can be employed (see Figure 3.3).

This allows the modification of the vertex position at each subdivision
level, both in the direction of the local normal vector, and along the local
tangent plane.

As long as the modified subdivision rules are only used a finite number of
times, with the rest of the rules being applications of the standard smooth-
ing rules, the algorithms for evaluation of subdivision surfaces at any point
[Sta98] can still be used. An example for such a model is the chair in Color
Plate 7.1: at a certain subdivision level random vertex displacements were
added to simulate the folds in the cushion, but it is still possible to calculate
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Figure 3.3: The local coordinate frame at a vertex.

the exact limit surface, as all subsequent subdivision steps are just standard
Catmull-Clark steps.

If the introduced vertex displacements are always bounded by the local
scale factor, the resulting surface is a fractal surface which can be approxi-
mated by terminating the subdivision process after a finite number of steps
(for smooth surfaces, additional constraints have to be met [CDM91]. The
resulting error in vertex positions is on the order of the local scale factor.
In this case the resulting surface is only G0 continous, and there is no good
way of approximating the normal vector of the surface. Such surfaces are
however still valuable modeling primitives, as there are a number of natural
phenomena, e.g. terrains and wrinkled tissues, which can be approximated
by such 1/f fractal surfaces.

3.2 Mesh Representation

The foundation of our generalized mesh subdivision approach is a data struc-
ture which holds a single mesh and which also stores a number of additional
per-vertex, per-edge, and per-face data values (see Section 5.4 for implemen-
tation details). Each level of subdivision is stored independently in such a
structure and a meta data structure encloses the ordered sequence of subdi-
vision levels.

So formally, a generalized subdivision mesh G = (L, O), where L is an
ordered sequence of meshes M (0), M (1), ...,M (n) with each mesh representing
a distinct level of subdivision, and O is an ordered sequence of mesh refine-
ment and vertex placement operators ω1, ω2, ..., ωm, where the operator ωi
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defines the transition M (i−1) → M (i).
In the following we will give a detailed description of all additional data

values which can be stored per vertex, edge, and face, and which are used in
different contexts, from generalized subdivision to photorealistic rendering.

3.2.1 Vertex Coordinates

This per-vertex property is mandatory and defines a three-dimensional po-
sition for each vertex. Vertex coordinates are always defined in the local
coordinate frame of the mesh. During rendering they are transformed on-
the-fly by applying the current local to global transformation matrix which
is defined by the transformation nodes which are encountered during scene
graph traversal. The stored vertex coordinates are not changed throughout
this process - this makes it possible to use the same mesh instance in multi-
ple locations in a scene without the necessity of explicitely copying the mesh
data structure.

3.2.2 Texture Coordinates

This per-vertex property is optional and defines two-dimensional texture co-
ordinates. Texture coordinates are used for texture mapping in rendering,
but also as parameters for mesh operators (for example to parameterize a
vertex-placement expression), as well as to set up a local coordinate frame.

3.2.3 Normals

Normals are optional per-vertex properties and define the normal vector at
each vertex. The normal property is used for lighting calculations in ren-
dering to determine incident light directions which are commonly needed
for the evaluation of lighting models. If no normals are specified, they are
automatically estimated from the adjacent vertex positions. Only in very
rare circumstances (for example to achieve some special lighting effects or if
normal vectors are part of a procedurally generated mesh) this property is
defined manually.

3.2.4 Sharpness

Sharpness is an optional per-edge property and is used for subdivision op-
erators to create creases of variable sharpness. It is a floating point value
0.0 >= s, where a value of s = 0.0 stands for no sharpness at all (smooth
edge).



CHAPTER 3. GENERALIZED SUBDIVISION MESHES 39

3.2.5 Sheet Numbers

Sheet numbers are optional per-face properties and are solely used for render-
ing. By defining a sheet number for each face, multiple faces may be grouped
together by assigning identical sheet numbers. Most frequently this is used
to switch between different surface materials in rendering. As an example,
imagine a leaf with a stem modeled as a single mesh. The faces which are
part of the leaf area, could be assigned sheet number 0, and faces which are
part of the stem could be assigned sheet number 1. At rendering time a
surface map consisting of two surface materials - a texture map for the leaf
and a simple green surface material - is assigned to the mesh. As a result,
all faces which are part of sheet 0 are colored using the texture map and all
faces which are part of sheet 1 are colored using the simple green surface
material.

3.3 Mesh Properties Stored in the

Traversal Environment

In order to create complex geometry it is essential to enable replacement rules
to depend on the environment they control. This results in a feedback loop
in which replacement rules govern the creation of geometry while geometry
changes the rules it obeys to.

Each operator ω therefore has access to a traversal state which stores
a number of properties associated with the part of the mesh it is currently
applied to – typically a single vertex, or a single face. Of course not every
value is applicable to each operator. If, as an example, an operator ωx is
designed to be applied to faces, there exists no well-defined single vertex
index, but a set of indices. Nevertheless we try to assign some meaningful
value – even to ill-defined parameters – if it is possible:

As we will see in a number of mesh operator examples in the following
sections, user specified expressions may take advantage of a number of pre-
defined mesh properties which reflect the state of the current mesh at the
current vertex or face. In the following we will give a detailed description of
all available predefined mesh properties πi, that can be used for the purpose
of specifiying context-sensitive expressions. Π denotes the union of all mesh
operators πi.

All mesh properties πi are accessible through a typed variable binding
environment that provides variables of the following types: integer, floating
point, two-dimensional, and three-dimensional points and vectors. Although
typed parameters are not strictly necessary, they provide some convinience
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for implementing parameterized rules.

3.3.1 Vertex Position

One of the most important mesh properties is the vertex position πvp. It
holds the three-dimensional coordinates of the current vertex and can be
used in a number of different ways. Just to name a few, it may be used to
create pseudo-random values depending on a three-dimensional position (e.g.
Perlin noise or turbulence). Of course it may also be used in a more direct
way, by specifying a condition which directly depends on the spatial position,
e.g. to switch between different expressions depending on the position of the
vertex. This could be useful in a scenario, where e.g. a tree is modeled, and
depending on the height, different displacement functions for modeling fine
surface detail (like bark) should be used:

...

bark1 = ...;

bark2 = ...;

bark = (VERTEX_POSITION.z < 2.0) ? bark1 : bark2;

...

The vertex position is well-defined for all vertex placement mesh operators
(add normal height, add global vector, add local vector) since they all operate
on single vertices.

3.3.2 Texture Coordinates

Another very useful property are the texture coordinates πtc of the current
vertex. This property is a two-dimensional point, that can be used in sim-
ilar ways as the vertex position. One example would be to use the two-
dimensional coordinates to create ridges along a stem (see Color Plates 7.9
and 7.10 as an example for creating highly detailed surface structures by
using, among other properties, two-dimensional texture coordinates).

Of course this property is well-defined in all cases where the vertex posi-
tion is well-defined, except the case, when no texture-coordinates have been
assigned to the mesh vertices in the first place. This is possible, because tex-
ture coordinates are an optional mesh property. In such a case, the texture
coordinates property will be initialized to (0.0, 0.0).
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3.3.3 Normal Vector

The normal vector property πnv holds the local normal vector. For operators
which work on a per-face basis, we use the face normal which is well-defined
(see Figure 3.4). For vertices, we either can use the user specified normal (if
per-vertex normals have been assigned to the mesh (see Section 3.2.3)) or the
normal vector has to be approximated. For simplicity we use the weighted
average of the normals of all faces meeting at the vertex under consideration
(see Figure 3.4). Although this is an arbitrary solution, it is straightforward
to implement, fast, and works well with our application.

Figure 3.4: (left) Face normals are calculated using the cross product of two vectors in
the face plane. If the face vertices are locally numbered v0, v1, ..., vn−1 then let a = v1−v0

and b = v2 − v0 and the normal N = a × b. (right) Vertex normals are approximated by
the weighted average of the normals of all faces meeting at the vertex under consideration.
If the adjacent face normals are locally numbered n0, n1, ..., nn−1 then the vertex normal
N = 1

n

∑n−1
i=0 ni.

3.3.4 Vertex Index

The vertex index πvi is supplied for the sake of completeness and holds the
vertices internal index in the mesh data structure. This index is of course
well-defined for all operators which are evaluated on a per-vertex basis, since
every single vertex has an unique internal index. For operators which are
evaluated on a per-face basis, the index of the “first” (as stored in the mesh
data structure) vertex of the face is taken, which of course is an arbitrary
and ad-hoc solution.
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The property should not be used for standard modeling, since it depends
on too many internal interactions of data structures and algorithms, that
in a sense it is not “well-defined”. It is useful only for models which are
created with the sole intention to exhibit some properties of the underlying
internal state of the mesh data structure (that means mainly for testing or
optimization purposes, or just out of curiousity).

3.3.5 Local Scale

The local scale property πls holds a scalar indicating the average face size
at the current position. This value can be estimated with various methods.
With respect to faces, we use the average length of all vertex interconnections
in the face as an estimate for the faces diagonal length. With respect to ver-
tices we choose the average diagonal length of all faces meeting at the vertex.
This property is provided in order to facilitate multi-resolution specification
of displacements.

3.3.6 Minimum Local Scale

The minimum local scale property πmls again holds a scalar, which is indicat-
ing the minimum face size at the current position. It is estimated similarely
to the local scale property, but instead of the average length of all vertex
interconnections the minimum length is chosen for operators working on a
per-face basis, and the minimum diagonal length of all neighbouring faces is
chosen for operators working on a per-vertex basis.

3.3.7 Maximum Local Scale

The maximum local scale property πmls is calculated analogous to the mini-
mum local scale, but uses the maximum instead of the minimum values.

3.3.8 Sheet Index

The sheet index property πsi holds the sheet index (see Section 3.2.5. For
operators working on a per-face basis this is well-defined if sheet numbers
have been assigned to faces. If no sheet numbers have been assigned, which
is possible, since sheet numbers are an optional mesh property, the value is
set to 0.

For operators working on a per-vertex basis, the sheet index property is
not defined. In this case the value is arbitrarely set to the sheet number of
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the (internally) first neighbouring face (or 0 if no sheet numbers have been
assigned).

3.3.9 Face Index

The face index πfi is supplied for the sake of completeness and holds the
faces internal index in the mesh data structure. This index is of course well-
defined for all operators which are evaluated on a per-face basis, since every
single face has an unique internal index. For operators which are evaluated
on a per-vertex basis, the index of the “first” (as stored in the mesh data
structure) neighbouring face of the vertex is taken, which of course is an
arbitrary assignment.

The property should not be used for standard modeling, since it depends
on too many internal interactions of data structures and algorithms, that in
a sense it is not “well-defined”. It is useful only for models which are created
with the sole intention to exhibit some properties of the underlying internal
state of the mesh data structure.

3.4 Mesh Operators

All vertex placement methods have one thing in common – they are applied
to every single vertex of a mesh, thus in a sense to the whole mesh. As a
result we denote them mesh operators in our framework. So formally spoken,
if we have a mesh M = (V, F ), where V is an ordered sequence of vertices
v1, v2, ..., vn, and Πi is the set of mesh properties π1, π2, ..., πm applicable at
vertex vi, then a mesh operator ω is an arbitrary function, that takes a vertex
position vi and maps this given vertex position (possibly using properties
from Πi) to a new vertex position v′

i:

v′
i = µ(Πi, vi) (3.1)

In the following, a detailed description of mesh operators which are available
in our generalized framework is given.

3.4.1 Add Normal Height

The add normal height operator takes one argument which defines the magni-
tude of displacement. When the operator is applied to a mesh, the argument
function is evaluated for each vertex, yielding the distance which the specific
vertex is shifted along its local normal vector (see Figure 3.5). A simple
example:
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f = perlin_noise(VERTEX_POSITION) * LOCAL_SCALE;

op = ADD_NORMAL_HEIGHT(f);

First, a function f is defined which uses a predefined Perlin noise function
[Per85] which takes the current vertex position and returns a pseudo random
scalar value in the range [0, 1] which is subsequently scaled by the local
scale approximation. Next, an add normal height operator op which uses the
displacement function f is defined. The mesh operator op now can be used
in a mesh operator sequence (see Section 3.5). A similar operator has been
used to create the image sequence in Figure 3.2.

Figure 3.5: The add normal height operator is used to displace a vertex along its normal.
The distance is evaluated from a user-specified expression.

3.4.2 Add Global Vector

The add global vector operator also takes one argument which defines a global
displacement vector. When the operator is applied to a mesh, the argument
function is evaluated for each vertex yielding a three-dimensional vector.
This vector is used to shift the vertex in the global coordinate frame (see
Figure 3.6. A simple example:

f = Vec3D(0.0, 0.0, perlin_noise(VERTEX_POSITION) * LOCAL_SCALE);

op = ADD_GLOBAL_VECTOR(f);

First, a function f is defined which yields a three-dimensional vector whose
x and y components are constantly set to 0.0 and whose z component is
initialized to the random value which has already been used and described in
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the previous section. Next, an add global vector operator op which uses the
displacement function f is defined. The mesh operator op now can be used
in a mesh operator sequence (see Section 3.5). This sort of operator, where
each vertex is shifted in the same global direction (up in our example) could
be used to create e.g. height fields.

Figure 3.6: The add global vector operator shifts a vertex along a given vector which
is specified in the global coordinate frame. The vector is evaluated from a user specified
expression.

3.4.3 Add Local Vector

The add local vector operator is very similar to the add global vector operator.
It also takes one argument function which is evaluated at each vertex position,
and yields a three-dimensional vector. In contrast to add global vector the
displacement vector is used to shift the vertex in the local coordinate frame
(see Figure 3.7). An add local vector operator has (among others) been used
to create the detailed surface geometry of the image of a forking branch in
Color Plates 7.9 and 7.10.

3.4.4 Flat Quad Subdivision

The flat quad subdivision operator is a pure mesh refinement operator. It
splits each face into quadrilateral subfaces in a Catmull-Clark-like way (see
Figure 3.8). If the operator is applied to a mesh M (n), then all the vertex
positions of M (n) remain unchanged in M (n+1), newly created face points are
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Figure 3.7: The add local vector operator shifts a vertex along a given vector in the
vertex’ own local coordinate frame. The local coordinate frame is made up of the meshes
local u,v-coordinate system and the surface normal at the vertex.

placed at the face center, newly created edge points are placed at the edge
mid-point. The mesh is refined but the shape remains unchanged, hence the
term flat subdivision.

The flat quad subdivision operator is useful in situations where small scale
surface detail should be added to a shape, but the shapes tesselation is still
too coarse. With the flat quad subdivision operator it is possible to refine
the mesh without changing its shape.

3.4.5 Catmull-Clark Subdivision

The Catmull-Clark subdivision operator implements the standard Catmull-
Clark subdivision scheme and the special rules for generating semi-sharp
creases, proposed by deRose et al. [DKT98]. It performs mesh refinement as
well as vertex placement operations.

op = CATMULL_CLARK_SUBDIVISION();

3.4.6 Adaptive Catmull-Clark Subdivision

The adaptive Catmull-Clark subdivision operator is similar to the standard
Catmull-Clark subdivision operator but takes two additional parameters limit
size and limit curvature, which are used to adaptively subdivide faces. This
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Figure 3.8: Flat quad subdivision operator: faces are refined in a Catmull-Clark-like
fashion. Vertex points remain unchanged, face points are placed at the face center, and
edge points are placed at the edge midpoints. As a result, the mesh is refined, but the
shape remains unchanged.

means that a single face is only subdivided if its approximate diagonal length
is larger than the limit size and the approximate curvature is larger than the
given limit curvature. As a result, fewer faces are generated, since subdivision
is only performed on parts of a mesh where further subdivision improves the
visual quality of the resulting mesh.

limit_size = 0.1;

limit_curvature = 0.95;

op = ADAPTIVE_CC_SUBDIVISION(limit_size, limit_curvature);

3.4.7 Loop Subdivision

The Loop subdivision operator implements the standard Loop subdivision
scheme. It performs mesh refinement as well as vertex placement operations.

op = LOOP_SUBDIVISION();

3.5 Mesh Operator Sequences

In order to define which mesh refinement and vertex placement operators
should be applied to a mesh, and in which order, and how often, we introduce
so-called mesh operator sequences. A mesh operator sequence is simply a
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linear sequence of mesh operators (see Section 3.4) which perform distinct
mesh refinement and/or vertex placement operations.

Standard subdivision schemes like Catmull-Clark perform both mesh re-
finement and vertex placement. Alternatively, there also exist pure vertex
placement and pure mesh refinement operators. A simple example:

base_mesh = create_my_mesh();

sequence = MESH_OPERATOR_SEQUENCE(

CATMULL_CLARK, 2,

ADD_NORMAL_HEIGHT(some_expression), 1,

ADAPTIVE_CATMULL_CLARK, 1

);

result_mesh = [base_mesh apply: sequence];

In the above example, a mesh is created and stored in the variable base mesh.
Next, a mesh operator sequence is defined which states that two Catmull-
Clark subdivision steps, one add normal height step, and finally an adaptive
Catmull-Clark step (see Section 3.4.6) should be performed. In the last line
of code, the sequence is applied to the base mesh and stored in the variable
result mesh. The result mesh could now be incorporated in an arbitrary
scene.

3.6 Summary

In this chapter, we introduced a generalized framework for mesh subdivision
in which the standard application of a subdivision operator is split into two
distinct operations – mesh refinement and vertex placement – which can be
independently specified. Furthermore, we introduced a number of vertex
placement operators, like add normal height, add global vector, and add local
vector, as well as different refinement operators, e.g. for Catmull-Clark-like
refinement.

User specified vertex placement expressions can be defined using arbitrary
mathematical expressions, and in addition to this, they may take advantage
of a variety of mesh properties, which store useful information associated
with the current vertex (which is currently placed), and which are acces-
sible through a typed variable binding environment. Finally we reviewed
all predefined vertex placement and mesh refinement operators in the con-
text of individual examples to demonstrate the practical applicability of our
approach.



Chapter 4

Rule-Based Mesh Growing

Although the generalized subdivision framework, which has been introduced
in the previous chapter, is a very powerful modeling tool, the resulting meshes
will always have the same mesh-connectivity except at a small number of ex-
traordinary vertices that were already present in the original mesh. As an
example, if Catmull-Clark subdivision is used, each mesh in the subdivision
sequence will always be composed of quadrilaterals. Introducing local vari-
ations can then only be performed by locally shifting single vertices in the
subdivision mesh. Unfortunately, this can lead to arbitrarily large distortions
in the adjacent quadrilaterals.

If some vertices are shifted by large vectors (considerably longer than
the local scale factor), and all other vertices are left unchanged, the four
quadrilaterals meeting in that one vertex will be severely distorted (see Fig-
ure 4.1). The resulting texture coordinate space of the affected vertices is
severely stretched, which can lead to problems in such applications as texture
mapping and finite-element methods like radiosity. In order to overcome this
deficiency, we introduce rule-based mesh growing, which is an extension of
parameterized Lindenmayer systems. But first, we shortly reiterate on some
properties of pL-systems which are relevant to our own extension.

4.1 Parametric L-Systems

L-systems are defined by a number of symbols that represent components of
a plant, and a set of rules, which define a string of replacement symbols for
each of the available symbols. In order to simulate a biological system, a start
symbol is taken, and in each replacement step, all symbols are transformed in
parallel according to the given rules. Thus the start symbol can be thought
of as a seed, and the ruleset encodes the growth of the plant.

49
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Figure 4.1: Shifting a vertex by a large vector gives rise to severly distorted faces.

In order to generate three-dimensional models, L-systems have been ex-
tended by three significant concepts:

• Parameterized symbols : for placing the parts of a plant in space and
generating parts of different sizes it is necessary to associate parameters
with each symbol, that encode the properties of each part of a plant.

• Parameterized rule expansion: in order to modify the parameters, it
is necessary to calculate new values for the parameters at each rule
expansion step. These calculations are associated with each expansion
rule.

• Encoding of a hierarchical structure: L-systems only operate on one-
dimensional strings. In order to represent hierarchical structures, such
as trees, it is necessary to introduce grouping symbols. With these
symbols it is possible to encode branching structures.

4.2 Mesh-Based pL-Systems

In order to use parameterized L-systems in the context of a mesh-based
modeling system, we introduce mesh-based pL-systems, by associating each
parameterized symbol of the system with a face in a mesh. Thus the right-
hand side of each production rule is not a linear sequence of symbols, but a
template mesh with each face representing a symbol.



CHAPTER 4. RULE-BASED MESH GROWING 51

Figure 4.2: Mesh growing example. The top-left mesh is the starting mesh, where the
center face is associated with a rule, that defines a cube-shaped mesh (stem). In the top-
right mesh, the first mesh has been expanded (according to the associated rule) by the
cube-shaped mesh. The top face of the cube-shaped mesh, again is associated with a rule,
that defines a tent-shaped mesh (branch). In the bottom-left mesh the result of this next
mesh-growing step can be seen. Finally, the two top faces of the tent-shaped mesh are
again associated with the rule that defines a cube-shaped mesh (the left-top face can not
be seen, since it is at the back of the mesh). The result of this next replacement step can
be seen in the bottom-right image.

Thereby the topological structure of an object generated with such a
mesh-based pL-system is automatically encoded in the connectivity infor-
mation of the mesh, and we do not need to introduce grouping symbols in
order to encode the hierarchical structure, like this is necessary in pL-Systems
which operate on one-dimensional strings.

It is also very easy to avoid producing degenerate meshes that contain
T-vertices, or malformed faces: if the template meshes which are contained
in the rules are well-formed, they will not introduce any degeneracies into
the growing mesh, and as a result, the final mesh will be well-formed, too.

Figure 4.2 demonstrates how a mesh can be grown from simple building
blocks (templates). Each rule in such a system consists of a symbol associated
with a face and a replacement mesh, where each face is again associated with
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a symbol. In our example in Figure 4.2 the replacement geometry is either
a cube-shaped mesh (in the first and third expansion step) or a tent-shaped
mesh (in the second expansion step).

Summing up, a mesh-based pL-system consists of the following parts
(we forego a completely formal specification, since this would be needlessly
complex):

• an initial mesh: a symbol is associated with each face of this initial
mesh.

• a set of rules : each of these rules consists of a symbol on the left side,
and a replacement mesh on the right side. A symbol is again associated
with each face of the replacement mesh.

• parameters : in order to parameterize the L-system, an environment of
variable bindings (parameters) is maintained.

• calculations : each rule can be augmented with arbitrary calculations
that modify the parameters.

• conditionals : each rule can be augmented by conditionals that allow
the definition of alternative replacement geometries based on the result
of arbitrary calculations.

Mesh growing consists of taking the initial mesh, and applying all replace-
ment rules in parallel. Each face that is associated with the left-hand symbol
of a replacement rule is replaced by the mesh specified on the right-hand
side of the rule, subject to the calculations and conditions that are part of
the rule. Symbols that do not appear as the left-hand side of any rule are
terminal symbols and denote faces that will not be changed anymore. Af-
ter all rules have been applied in parallel, a new mesh is generated, again
with symbols associated with each face. Successive rule expansion steps are
applied until only terminal symbols are left in the mesh. Figure 4.3 gives a
simple example of a ruleset.

4.3 Attaching Meshes in a Rule

In order to connect the mesh in a rule to the growing mesh it is necessary to
transform the mesh in the rule in such a way that both meshes can be joined
without creating degenerate geometry. This can be achieved by specifiying a
suitable transformation between both meshes. Defining this transformation
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Figure 4.3: A simple, yet meaningful example ruleset. Notice how the ruleset-node and
the building block meshes form a directed cyclic graph (DCG) by using the expansion faces
as back-references to the ruleset node. This example also demonstrates, that arbitrary
transformation nodes may be inserted into the DCG.

by hand is possible, but straightforward only for the most simple of config-
urations. For arbitrary meshes it is a sumptuous and error-prone job. In
order to relieve the designer from this burden, we introduce a auto-attach
operator, which constructs a transformation which will scale, translate and
rotate the replacement mesh in the rule to fit onto the current expansion face
(see Section 4.5.2 for a detailed description of the auto-attach operator).

Currently we have no provision for avoiding intersection of the geometry
of neighbouring replacement meshes. But, in practice it turns out that this
does not pose any problem, since it is very easy to design the rules in such
a way, that no neighbouring faces will be replaced and no two replacement
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meshes will intersect. In order to solve the self-intersection in a general,
global way, open pL-systems have to be used, that store space occupancy in
an environment [MP96].

Coming back to our initial problem of defining transformations for the
placement of replacement geoemtry, we see, that no matter whether such a
transformation has been defined by hand or automatically – ultimately the
replacement mesh has to be attached to the growing mesh.

An ideal solution would merge both connecting faces without deforming
any of the two meshes and without introducing any degenerated geometry.
Unfortunately this result can only be achieved in very ideal, and therefore
rare, circumstances. Both connecting faces must have the same number of
vertices, they must be placed in a common plane and corresponding vertices
must be perfectly aligned. Given these preconditions, both meshes can be
joined by merging corresponding vertices of both connecting faces and by
finally removing the connecting faces.

We presume that rules are designed in such a way, that connecting faces
always have the same number of vertices. This poses no great constraint to
the designer but avoids the necessity of creating complicated interconnecting
geometry. Another problem is to find corresponding vertices in the connect-
ing faces. We can not simply use the face-interal vertex numbering, because
there is no correlation between this numbering and the concrete geometrical
configuration of faces (see Figure 4.4).

Figure 4.4: Face-interal vertex numbering is not useful to define corresponding vertices,
because there exists no correlation between the numbering and the concrete geometrical
configuration, therefore severly degenerated connectivity information could be introduced.

In order to find the corresponding vertices of two arbitrary orientated
faces, we choose of all permutations of pairwise mapped vertices the one
configuration which yields a minimum summed length of distances between
mapped vertices.



CHAPTER 4. RULE-BASED MESH GROWING 55

4.3.1 Direct Merge

Provided that both faces share a common plane we can now directly merge
both meshes by replacing the connecting face vertices of the replacement
mesh by the corresponding vertices of the growing mesh, and by removing
both connecting faces (these would otherwise be inside the resulting mesh
and introduce topological problems). Provided that both faces are congruent,
no geometrical deformations are introduced. This scenario resembles the
ideal situation described above, plus we have solved the problem of finding
corresponding vertices.

But what happens if both connecting faces are not congruent. We can
still find corresponding vertices by using our method described above, but if
we directly merge both meshes, the faces adjacent to the replacement meshs
connecting face will be distorted. The magnitude will depend on how well
both connecting faces match. From our experience, this poses no problem
for models of natural objects, since the deformations simply introduce some
random variations to the model which makes it look even more natural.
Again, it is left to the designer to provide appropriate connecting faces.

If both faces are not parallel and/or if they are located at some distance,
this will introduce additional distortions to adjacent faces. Nevertheless, from
our experience we can say, that this too poses no problem for a majority of
applications - in most cases it even possitively affects the final geometry (see
Figure 4.5).

If, after all, deformations can not be tolerated for a certain application and
if it is also not possible to provide appropriate rules to prevent deformations,
one has to find other means of connecting meshes, namely indirect merging.

4.3.2 Indirect Merge

If the replacement mesh must not be deformed, the only solution for merg-
ing is to introduce additional geometry. This means, that the replacement
meshes connecting face vertices are not replaced by the growing meshes con-
necting face vertices, but that in between each pair of corresponding edges
of the connecting faces additional quadrilaterals will be inserted (see Figure
4.5). Of course both connecting faces still have to be eliminated, since they
would again be placed inside the connected mesh and introduce topological
problems. Although the expansion mesh geometry will remain unchanged,
the newly created connection-faces themselves could now be sources of un-
wanted problems, namely self-intersections of the surface in the vicinity of
the transition. Self-intersections will occur, if the replacement mesh and the
growing mesh intersect. Notice that this was not a problem for direct merging
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as long as only the connecting face and adjacent faces penetrated the growing
mesh, since the replacement meshs connecting vertices where replaced by the
corresponding growing mesh vertices, which effectively eliminated the part
of the expansion mesh which intersected the growing mesh.

In order to prevent this unwanted behaviour, the replacement mesh has
to be positioned at a safe distance from the growing mesh, thus eliminat-
ing the possibility of parts of the replacement mesh penetrating the growing
mesh. We assume one half of the maximum diagonal length of the connecting
face plus a small ∆ as a safe distance. This efficiently prevents any penetra-
tion and due to the additional ∆ it also prevents the creation of degenerate
connection-faces (which could happen if two corresponding edges incidentally
coincided).

Figure 4.5: Direct merge vs. indirect merge (A) initial situation - the green replacement
mesh has to be attached to the bottom mesh. (B) direct merge - both meshes are connected
along the edges of the connecting faces, the connecting faces can be removed. It has to be
noticed that deformations of adjacent faces of the replacement mesh might be introduced
(see blue contour line of the resulting mesh). (C) indirect merge - to prevent deformations,
additional faces (red) are introduced which connect corresponding edges of both connecting
faces. Notice that if the replacement mesh is positioned by aligning the face centers of the
connecting faces, self-intersections might be introduced. (D) to prevent self-intersections,
the replacement mesh is shifted along the face-normal, the distance we use is half the
maximum diagonal length of the connecting face. (E) no matter how the replacement
mesh is positioned, no self-intersections or other degenerated geometry will be introduced.
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4.4 Extensions for Rule-Based

Mesh Growing

In order to accommodate both the mesh representation and the traversal
environment structures, which have been introduced in the previous chapter,
to rule-based mesh growing, we introduce two necessary extensions, namely
expansion indices and join indices. Furthermore, we define an additional
mesh operator apply face operators which bridges the gap between generalized
subdivision meshes and rule-based mesh growing.

4.4.1 Expansion Indices

With respect to our mesh representation defined in Section 3.2 we define an
additional per-face property named expansion index. The expansion index is
an integer value which simply specifies the index of the appropriate expansion
rule for this face.

4.4.2 Join Indices

The join index is the second extension to the mesh representation defined in
Section 3.2. It determines which faces should be connected (joined) through-
out the mesh growing process as specified in Section 4.5.5.

4.4.3 Apply Face Operators

The apply face operators operator serves as a link between generalized subdi-
vision meshes and rule-based mesh growing. It takes a mesh growing ruleset
as a parameter and applies the productions which are defined in the ruleset
to the current mesh. In the following section a detailed description of face
operators is given.

4.5 Face Operators

In the style of mesh operators introduced in Chapter 3, which perform vertex
placement operations on submeshes, we introduce the notion of face opera-
tors. Face operators are applied to single faces, and cover for example the
direct and indirect merging operators defined in the previous sections.

If a given submesh M (i) = (V (i), F (i)), where V (i) is an ordered sequence

of vertices v
(i)
1 , v

(i)
2 , ..., v

(i)
n , and F (i) is the set of faces f

(i)
1 , f

(i)
2 , ..., f

(i)
m of the
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mesh, and R = (VR, FR) is a replacement mesh, then a face operator

φ(M (i), r, R) = M ′ (4.1)

is said to replace the r-th face of submesh M (i) by the given replacement mesh
R. For certain operators (see Section 4.3.2), a join geometry J = (VJ , FJ)
is created, which may be empty for arbitrary face operators φ. The mesh
M ′ = (V ′, F ′) is the result mesh after applying φ, where

V ′ =
(
V (i) ∪ VJ ∪ VR

) − ((
V (i) ∩ VJ

) ∪ (VJ ∩ VR) ∪ (
V (i) ∩ VR

))
(4.2)

and

F ′ =
(
F (i) ∪ FJ ∪ FR

) − ((
F (i) ∩ FJ

) ∪ (FJ ∩ FR) ∪ (
F (i) ∩ FR

))
(4.3)

Finally, more than one replacement operation may be performed, the number
limited only by the number of faces in the given mesh M (i). In practice,
the parallel rewriting process commonly defined for L-systems, is serialized,
which means that a given sequence of face operators e.g. (φ1, φ2, φ3) is also
applied sequentially (not in parallel). Each operator is applied to the result
mesh of its predecessor. E.g.

M (i+1) = φ3(φ2(φ1(M
(i), r1, R1), r2, R2), r3, R3) (4.4)

This poses no problems, since each replacement rule is associated only with
single faces, so each possible permutation of the replacement order, will yield
the same result mesh.

In the following sections we will give a detailed description of all available
face operators and we will also demonstrate their application using examples.

4.5.1 Attach

The attach operator is either applied implicitely (performing a direct merge
– if no face operator is defined in a rule – or it can be specified explicitely if
indirect merging should be performed.

4.5.2 Auto-Attach

The auto-attach operator automatically creates a suitable transformation
node between two meshes that should be joined together. This operator is a
variable transformation node which adapts to the current environment each
time it is traversed. This means, that it takes a look at the current expansion
face which is stored in the traversal environment and also gathers information
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about the connecting face of the subsequent expansion mesh. Using this
data, a transformation is constructed which will scale, translate and rotate
the subsequent expansion mesh to fit onto the current expansion face (see
Figure 4.6). Another advantage of using Auto-Attach nodes is, that meshes
can be altered without the risc of breaking subsequent transformations or
the need of re-calculating transformations by hand. A formal description of
this operator is given in Appendix 9.2.

Figure 4.6: Auto-Attach: in the initial configuration (top left), a leaf-shaped mesh should
be attached twice to a simple branching structure. First of all, the auto-attach operator
translates the leaf-shaped mesh to an appropriate position (so that the face centers of
both connecting faces are aligned). In the next step, the leaves are rotated, such that
the tangent planes of the connecting faces are in parallel. Finally, the leaves are scaled
accordingly.

4.5.3 Tropism-Attach

Tropism-attach operators are, like auto-attach nodes, variable transformation
nodes which adapt to the current environment, but unlike their counterparts,
tropism-attach nodes do not transform subsequent expansion meshes to fit
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perfectly onto the respective expansion face, but tweak the transformation
towards a user-specified center of the tropism force (t ∈ R). The magni-
tude depends on a user-specified tropism strength (0.0 ≤ s ≤ 1.0), where a
strength of s = 0.0 means no tweaking at all and s = 1.0 results in a com-
plete transformation towards t. In practice values of 0.0 < s < 0.3 are used
because greater values easily result in transformations which in turn result
in degenerated meshes.

4.5.4 Face-Split

The face-split operator is used to split single faces into a regular grid of
smaller faces. This is useful for creating architectural models, especially
claddings. The most important parameters are the number of rows and
columns (rows > 0, columns > 0) of the regular grid and the size of the
border (0.0 < bordersize < 1.0). A border is necessary to avoid the creation
of T-vertices at edges between the split-face and its neighbouring faces. Be-
yond these basic parameters a handful of additional parameters can be used
to assign sheet numbers and expansion indices to sub-faces. For an example
see Figure 4.7.

Figure 4.7: Custom face split with 4 rows, 3 columns, and border 0.15.

4.5.5 Joins and Join-Geometry

Up to now, the topology of a mesh can not be more complex than the com-
bined complexity of the expansion meshes used to generate this mesh. This
means, that the only way to add, for instance, a hole is to attach a mesh with
a hole. It is not possible to change the topology of the growing mesh itself.
Of course this is a severe limitation which prevents the efficient creation of
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a whole class of models like ladders, scaffolds, fences and similar objects. In

Figure 4.8: Notice that the whole object is one single mesh, and not a CSG object or the
like. The complex strut pattern is the result of a combined process using rule-based mesh
growing and join operators. Join indices have been specified procedurally. The model
consists of 9246 faces; model generation takes about 0.1 seconds; photorealistic rendering
takes 17 seconds; image resolution of 1600x1200 pixels; all values measured on an Athlon
650MHz processor.

order to overcome these problems we introduce the notion of a join operator
which allows for joining pairs of faces in the growing mesh. A join operator
can be assigned to a face and will create a numerical join id for this face.
Faces with identical join id will be connected (see Appendix 9.3 for details).
The value of the join id is either assigned statically in the scene description
file (which is appropriate only for simple objects where only few faces are
joined), or the value can be an arithmetic expression which will be evaluated
each time the join operator node is traversed throughout the mesh growing
process, the latter being the only way to assign join identifiers in highly re-
cursive scene graphs where the same replacement mesh is attached multiple
times, but each time a unique join identifier should be assigned. Figure 4.9
shows the creation of a simple object using join operators and Color Plate
4.8 depicts a complex crane model, where join operators have been used to
specify the complex strut geometry.

4.6 Combining Both Techniques

Both presented techniques, generalized subdivision meshes and rule-based
mesh growing can be combined by using a rule-based growing step as an
even more generalized subdivision rule. The apply face operators operator
defined in Section 4.4 has been defined in order to permit the application of
a rule-based mesh growing step as an operator in a mesh operator sequence.
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Figure 4.9: Joins

Strictly speaking, no actual subdivision takes place, but since new geom-
etry is introduced there is some similarity between a normal subdivision step
and such a mesh growing step. Thus it is possible to alternate between sub-
division steps that use texturing functions for vertex placement, and mesh
growing steps that expand the geometry in places where it is necessary to
add more detail.

Using this combined scheme we can now generate complex geometry that
uses the advantages of both of these schemes. As an example, Color Plates
7.9 and 7.10 show a forking branch of a tree.

The branching structure of the tree was modeled using a mesh growing
step. Afterwards a number of smoothing steps were used to make structure
look more natural. The resulting structure, although convincing in its overall
form, still lacks detail. After assigning suitable texture coordinates to the
vertices in the original mesh, the method of DeRose et al. [DKT98] can be
used to generate texture coordinates at each subdivision level.

In Figure 4.10 these texture coordinates were used to modulate the dis-
placement in the vertex placement step of the following subdivision steps.
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The left image shows the unmodified groove structure, in the right image,
some random displacement of the ridges was added to obtain a more natural
look. The actual texture coordinates can be found in Figure 4.11.

4.7 Summary

In this chapter we proposed an extension to pL-systems called mesh-based
pL-systems which allows the definition of L-system-like rulesets to operate
directly on meshes. In our scheme, rules specifying replacement geometry
are associated with single faces in a mesh. Each face which has an associated
rule is replaced by the so-defined replacement geometry, which in turn may
also contain faces with associated rules. Thus complex meshes can be rep-
resented by compact rulesets. In combination with generalized subdivision
meshes (see Section 3) a powerful method for generating and representing
complex and detailed geometrical shapes in a truly multiresolution fashion is
available. In the next chapter we will point out selected issues concerning the
implementation of our proposed framework in a general purpose rendering
system. After this, we will use this implementation in the more practical
setting of an prototype plant editor, in order to show its applicability to
real-world applications.
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Figure 4.10: Texture coordinates are used to modulate the displacement of vertices to
create a groove structure (left), some random displacement of the ridges was added to
obtain a more natural look (right).

Figure 4.11: u-coordinates at a forking branch: u1 = 0.0+0.5
2 , u2 = 0.5+1.0

2 .



Chapter 5

Implementation

5.1 ART - Advanced Rendering Toolkit

The Advanced Rendering Toolkit (ART for short) [Tea01] is a set of Ob-
jective C Libraries that provide a wide range of functionality suitable for
graphics applications. The ART libraries do not deal with the user interface,
they provide classes and methods starting with primitive graphics objects
like vectors, points and matrices up to classes that make it possible to de-
fine complete three-dimensional scenes and a number of different methods
to manipulate and render these scenes. The Advanced Rendering Toolkit
is distributed under the terms of the GNU Library General Public License
[Fou00].

Scenes are modeled using a scene description language that is based on
Objective C. A scene description contains the complete information about
geometry, surface characteristics, and illumination in a scene. All this infor-
mation is organized in a scene graph, which is a directed acyclic graph (DAG).
Each object which can be stored in the scene graph is derived (either directly
or indirectly) from class ArNode which implements all necessary scene graph
related methods.

One of the highlights in ART is its support for a number of different color
models which currently include RGB, CIEXYZ, Spectrum8, Spectrum16,
Spectrum45, Spectrum450, polarized light and fluorescence. Spectral col-
ortypes are modelled as 8, 16, 45 and 450-band spectra respectively and cover
the visible spectrum from 380nm to 830nm. To the best of our knowledge,
ART is the only general purpose rendering system which supports combined
rendering of polarization and fluorescence effects ([WTP01]).

In consideration of the fact, that the Advanced Rendering Toolkit shows
a clean and modular design and is therefore easily extensible, it was decided
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to implement our proposed generalized subdivision meshes and rule-based
mesh growing scheme in ART. See Section 5.3 for details on how we incor-
porated directed cyclic graphs which are necessary to represent L-system-like
structures into a rendering system actually based on directed acyclic scene
graphs.

5.2 Scene Graphs, Scene Graph Traversal,

and Traversal Environment

As stated above, ART is a scene graph based rendering system. A scene graph
contains the complete description of an entire scene. This includes geometry,
transformations, surface and material attributes, illumination information,
camera definitions, and so on. For all possible entities classes have been
defined, which encapsulate all information necessary to completely describe
each of these different entities.

A particular scene is defined by creating instances of these classes to rep-
resent concrete objects and attributes, and by organizing these objects in a
directed graph. In order to render a scene, the renderer traverses the scene
graph and at each node performs various actions according to the type of
object (e.g. calculating ray-object intersections, evaluating a solid texturing
function, etc.). Furthermore, all the attributes encountered throughout scene
graph traversal are collected in a so-called traversal environment, thus the
traversal environment acts as a kind of container, which at each time holds
the currently valid set of attributes. For example, if an attribute defining a
wooden surface texture is encountered it is stored in the traversal environ-
ment and applied to all subsequent geometric shapes, until a new surface
attribute is encountered which then replaces the previous surface attribute.
See Figure 5.1 for an example scene graph.

5.3 Directed Cyclic Scene Graphs

The main task of implementing our proposed schemes is to give ART the
ability to process directed cyclic scene graphs. As a matter of fact, the
Advanced Rendering Toolkit is based on directed acyclic scene graphs. If
we decided to simply extend the existing scene graph framework by DCG
properties we would have rendered useless some highly optimized and proven
scene graph traversal code. At least we would have had to rewrite key parts
of the existing code, which would have resulted in potentially unpredictable
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Figure 5.1: Scene graph, scene graph traversal and traversal environment. This part of
a scene graph (center) defines a simple CSG object, which consists of three single spheres
with different surface and material properties. The colored frames at the left and right
side denote the traversal environment as it appears at each node when the scene graph is
traversed. Only surface and material attributes are shown in order to keep this illustration
simple, in fact various additional attributes are stored in the traversal environment too
(e.g. current global-to-local transformation matrix, ...).
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side-effects and a need for extensive regression testing. In order to avoid this,
we introduce so-called reference nodes.

5.3.1 Named Nodes and Reference Nodes

The concept of reference nodes is similar to pointers in the C programming
language. Instead of pointing to a certain place in memory, reference nodes
point to a certain node in the scene graph. This is achieved due to a fea-
ture called named nodes, which makes it possible to assign unique names to
arbitrary nodes. In turn, a reference node is assigned the name of the node
it should point to. As a result, the combined use of named nodes and ref-
erence nodes make it possible to represent directed cyclic graphs within the
framework of a directed acyclic graph. As a matter of fact, existing traversal
code needs not to be adjusted and simply stops traversing the scene graph on
reaching a reference node, like it was an acyclic graph. Only new parts of the
scene traversal framework which actually make use of cyclicity need to inter-
pret reference nodes like pointers to other nodes - so we effectively decoupled
existing code (specific to acyclic scene graphs) from newly introduced cyclic
features (i.e. rule-based mesh growing).

5.3.2 Value Nodes

Rule-based mesh growing is based on parametric L-systems and therefore
depends on the availability of parameters which are used to pass information
among different rules and nodes, in order to perform calculations like incre-
ment and decrement of branching angles and indices, and logical evaluations
of conditions.

In standard pL-systems, a set of parameters a1, a2, ...an ∈ R is associated
with each specific rule (module). Although floating point parameters are
sufficient to model all necessary types of other parameters, there are addi-
tional types for integers, two-dimensional and three-dimensional points, and
vectors - as a convinient extension for modeling purposes.

Throughout the ART framework, value nodes are typed nodes which hold
a specific value (e.g. integer value node, value = 17). In addition a compre-
hensive collection of arithmetic operator nodes is available which allows the
construction of arbitrary arithmetic expression trees. Since such a framework
is also useful for applications other than generalized subdivision meshes and
rule-based mesh growing, e.g. shading language contructs and user-specified
solid texturing functions [THP98], [Pea85], [Per85], [Wor96], a basic imple-
mentation of value nodes has already been part of the ART framework.
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We extended the existing implementation by the possibility of assigning
names to value nodes, creating a notion of variable-like constructs. Named
value nodes are stored in the traversal environment when such a node is bee-
ing traversed, allowing for later reuse of a once defined variable. In order to
provide a more convinient tool for the specification and manipulation of vari-
ables and expressions we implemented a parser for C/C++ like expressions
[Str97] which transforms a user-specified string (containing an expression)
into a valid, partial scene graph, comprised of the value and arithmetic op-
erator nodes. In addition to primitive types long and double we introduced
additional types for two-dimensional points (Pnt2D), two-dimensional vec-
tors (Vec2D), three-dimensional points (Pnt3D), and three-dimensional vec-
tors (Vec3D) which can be used exactly like other primitive types (see Table
5.1. The following example should give some insight:

level++;

angle += 22.5;

angle = (angle < 150.0) ? angle : 150;

selection = (level < 3) ? 1 : (angle > 90) ? 2 : 3;

Although value nodes are typed internally for performance and implementa-
tion reasons, the user does not have to deal with types and can specify fully
untyped expressions. The parser automatically derives type information nec-
essary for creating typed value nodes which are used internally. This can be
seen in the above example where the variable level is treated as an integer
value and the variable angle as floating point. Even if floating point values
and integer values are mixed up like in line 3, the parser will insert appro-
priate casts where necessary. Another exampe demonstrates how points and
vectors are fully integrated as primitive types:

x = 1.0;

y = 2.0;

z = 7.5;

v = Vec3D(0.1, 0.1, 1.5);

p = Pnt3D(x,y,z) + v;

u = atan(p.y, p.x);

Of course, also a comprehensive set of trigonometrical and other functions
can be used.

5.3.3 Assignment Nodes

As we have seen in the above examples, value nodes can not only be created
with a static value, but also new values can be assigned, which is absolutely
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Expression Summary
sequence expr , expr
conditional expression expr ? expr : expr
subtract and assign value −= expr
add and assign value + = expr
modulo and assign value %= expr
xmodulo and assign value %%= expr
divide and assign value /= expr
xdivide and assign value //= expr
multiply and assign value *= expr
simple assignment value = expr
logical inclusive or expr || expr
logical and expr && expr
not equal expr != expr
equal expr == expr
greater than or equal expr >= expr
greater than expr > expr
less than or equal expr <= expr
less than expr < expr
subtract expr – expr
add expr + expr
modulo expr % expr
xmodulo expr %% expr
divide expr / expr
xdivide expr // expr
multiply expr * expr
cast (type) expr
unary plus + expr
unary minus – expr
not ! expr
post increment value ++
post decrement value −−
member selection expr.member
function call symbol ( sequence )
2-dim point constructor Pnt2D ( expr , expr )
2-dim vector constructor Vec2D ( expr , expr )
3-dim point constructor Pnt3D ( expr , expr )
3-dim vector constructor Vec3D ( expr , expr )

Table 5.1: This table gives an overview of expressions that can be used for generalized
subdivision meshes and rule-based mesh growing.
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essential for constructing meaningful rulesets. Whenever values should be
assigned to existing value nodes (=, + =,− =, ∗ =, / =, % =, %% =) a so-
called assignment node is used. An assignment node holds a named reference
to a value node (left-hand side of assignment) and an expression tree (right
hand side of assignment). Whenever such an assignment node is traversed,
it evaluates the given expression, and assigns it to the named value, which is
stored in the traversal environment for subsequent evaluation. Each named
value stored in the environment is in fact a stack, onto which the value of a
new assignment is pushed on assignment node traversal, and which pops off
the latest value after all child nodes have been traversed.

5.3.4 Rules

A single rule lhs : rhs specifies, that the left-hand side which specifies a
single symbol should be replaced by the given right-hand side, which consists
of a valid partial scene graph comprised of a set of transformation nodes,
mesh nodes, reference nodes, value nodes and assignment nodes. Transfor-
mation nodes denote either static or variable (depending on value nodes)
transformations (translate, scale, rotate, ...). Mesh nodes contain a static
mesh description which serves as a building block for mesh growing.

With regard to the scene graph framework presented so far, a single rule
can be represented by simply assigning a name to the root node of a partial
scene graph. The partial scene graph then represents the right-hand side and
the assigned name serves as left-hand side. Reference nodes can be used to
refer to a specific rule by referencing the required name (left-hand side). See
Figure 4.3 for an example ruleset.

5.4 Winged-Edge Mesh Representation

We use a winged-edge data structure for mesh representation. This data
structure has been originally proposed in the nineteen-seventies by Baum-
gart [Bau72], [Bau75], and has since then stood the test of time. Although
there exist countless different implementations, the basic concept is always
the same: lists for vertices, edges, and faces are maintained, and each vertex,
edge, and face stores indices for adjacent elements which point back into the
appropriate lists. Which elements store which indices mostly depends on
which queries a specific application needs to perform. The more adjacency
information is stored, the richer the data structure is. Of course more ad-
jacency information means simpler and more performant queries, but also a
higher memory footprint. Some frequently used queries are, for example:
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Figure 5.2: Winged-edge mesh representation: there are direct references from faces to
vertices, from vertices to edges, and from edges to faces.

• find all edges for a given face in (counter)-clockwise order

• find all vertices for a given face

• find all faces adjacent to a given vertex

• find all edges adjacent to a given vertex

• find all vertices for a given edge

• find all adjacent faces for a given edge

• find the next edge for a given edge with respect to a given face
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• ...

A winged-edge data structure has already been implemented in the Advanced
Rendering Toolkit. In order to use it for generalized subdivision meshes and
rule-based mesh growing we had to adjust it to some additional requirements
that originate from our proposed schemes.

The original implementation is an extremely memory and runtime ef-
ficient data structure implemented purely in C using different structs for
vertices, edges, and faces, and for reasons of performance, macros to query
and navigate the data structure. In general, it was optimized towards rep-
resenting predefined static meshes, but it was not well suited for frequent
modification of connectivity information, which is necessary for rule-based
mesh growing. Nevertheless we decided to go along with the existing data
structure, although the necessary adaptions for mesh growing turned out
to be quite involved. On the other hand we now have a very performant
implementation.

The basis of the mesh data structure are tables of simple data structures
for faces (fa - face array), vertices (va - vertex array), and edges (ea - edge
array) (see Table 5.2). Each face (ArmFace), vertex (ArmVertex ), or edge
(ArmEdge) is uniquely identified by the index in its respective table. Refer-
ences between faces, vertices, and edges therefore use the respective index to
indicate the target.

The references between these data structures are built from two parts: the
index of the referenced entity, and the side of the referenced entity, which the
reference points to. As an example a pentagon has 5 edges, thus these edges
are locally numbered 0 to 4, in counter clock-wise order, and a reference to
edge 3 of the pentagon contains both, the index of the pentagon and a 3
indicating that the third edge of the pentagon is referenced.

There are direct references from faces to vertices, from vertices to edges,
and from edges to faces. The references from an edge to its two adjacent faces
are stored directly in the edge data structure. Since faces can have different
numbers of vertices, and vertices can have different numbers of adjacent
edges, the references from faces to vertices (fvra - face vertex reference array),
and from vertices to edges (vera - vertex edge reference array) are stored in
two extra tables. The faces and vertices only contain the base index of the
respective references in these reference tables (vrbi - vertex reference base
index, erbi - edge reference base index). The number of face sides is stored
in num v (number of vertices), the number of vertex sides is stored in num e
(number of edges).
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struct ArmFace

{

UInt8 type;

UInt8 num_v;

long vrbi;

};

struct ArmVertex

{

UInt8 type;

UInt8 num_e;

long erbi;

};

struct ArMesh

{

ArmFace * fa;

ArmVertexRef * fvra;

ArmVertex * va;

ArmEdgeRef * vera;

ArmEdge * ea;

long num_f;

long num_fvr;

long num_v;

long num_ver;

long num_e; /* = num_ie + num_be */

long num_ie; /* inside edges */

long num_be; /* border edges */

};

struct ArmEdge

{

UInt8 type;

UInt8 flags;

ArmFaceRef fr[2];

};

Table 5.2: Data structures for faces, edges, and vertices, and the mesh data structure.
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An Interactive Editor

6.1 Overview

In order to use and test our proposed generalized subdivision meshes and
rule-based mesh growing schemes in a real-world application, we created a
prototype implementation of an interactive editor for the creation of simple
plants. The editor is based on ideas from both Weber and Penns plant model
[WP95] and the user interface of Deussen’s XFrog editor [LD96]. In addition
to this, we created an interface for semi-automatic parameter extraction from
photographs on top of the editor framework. The editor was implemented us-
ing the Java programming language [AGH00] and the Java 3D API [SRD00],
because this allowed a rapid prototyping approach concerning our ideas for
the editor. Since our approach proved to be feasible, we currently work on
porting the editor to a native C/C++ and OpenGL implementation which
is more performant and which can be more easily integrated with the actual
rendering system (Advanced Rendering Toolkit). This also renders unnec-
essary the now mandatory convertation of plant model data which is gener-
ated by the editor to the environment of the rendering system. The decision
was taken because although we performance-tuned the Java implementation
[Shi00], the actual performance nevertheless drops for about 30% to 60% com-
pared to a native C/C++ and OpenGL implementation. This is mainly due
to the fact that Java is compiled to an intermediate, plattform-independent
bytecode representation which has to be interpreted or compiled just-in-time
by a Java Virtual Machine which inescapably introduces some performance
penalty. Another point is the lack of explicit memory management in Java
(a garbage collector decides which objects are not needed anymore and frees
the associated memory). This is a big advantage on the one hand - it really
allowed us to use Java as a rapid prototyping environment, but simultane-
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ously it leads to yet another performance penalty, particularly when using
large datastructures which consist of a high number of small chunks, which
are frequently subject to change (mesh data structures). Finally, a tight in-
tegration with the existing non-Java rendering system proved to be difficult.
Altough the Java Native Interface [Lia99] provides means of interfacing Java
code with native C/C++ code, this is a quite tedious undertaking and would
have vitiated the big advantage of Java’s platform independence.

In summary, we do not regret having used the Java platform as a rapid
prototyping environment, since we could really try out many different ideas
with a minimum of coding and virtually no debugging effort, but finally we
decided against Java for the real production implementation mainly because
of non-Java-specific issues concerning the desired interfacing with existing
software, and also a number of performance issues (but which in fact would
have not been sufficient alone to decide against the Java implementation).

6.2 Simple Plant Model

Our simple plant model describes the structure of plants by using only two
different components: stem and leaf. Stem components are constructed by
connecting a number of quadrilateral cross-sections. Additionally, stem com-
ponents may split off a number of stems and/or leaves. Leaf components are
arbitrary shaped components which can not split off any components.

Various parameters are defined as distribution functions along the compo-
nents length. Throughout this paper, distribution functions are continuous
functions defined in the interval [0.0, 1.0] which is linearely mapped to the
real length of the respective component.

Instances of components are connected to form a directed cyclic graph
(DCG) which completely describes the appearance of a specific plant and
which is actually used internally to create a ruleset for rule-based mesh grow-
ing. From this description a skeleton mesh is generated which is displayed to
give immediate feedback to the designer. The skeleton model is rendered in
real-time and can be rotated and examined from arbitrary directions. If the
directed cyclic graph (ruleset) or single parameters are changed throughout
the design process, the skeleton mesh is recreated on-the-fly to maintain a
consistent visual feedback for the designer [Shn98], [PRS+94].

Finally, the skeleton mesh, which of course is only a very crude approxi-
mation of the plants final shape, can be used as a basemesh in our generalized
subdivision meshes scheme to apply mesh operators for smoothing transitions
and adding small scale detail.
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6.2.1 The Stem Component

Stem components are defined by a number of parameters: length, width,
a function diameter distribution(x), and a set of branching patterns
{bp1, . . . , bpn}. All parameters are fully explained in Tables 6.1 and 6.2. The

Parameter Description
length Stem length.
width Maximum diameter of the stem.
diameter distribution(x) Defines the actual diameter at position

x ∈ [0.0, 1.0] along the stem as a frac-
tion of width.

{bp1, . . . , bpn} Each branching pattern completely de-
fines the distribution of a specific com-
ponent along the length of the stem,
including branching angles and branch
scaling.

Table 6.1: Stem component

Parameter Description
number of branches Number of components to branch off

along the length of the stem.
branching distribution(x) Defines the positions of branches along

the stems length.
angular distribution(x) Defines the branching angle for each

position along the stem.
length distribution(x) Defines the scaling of each branch along

the stem.

Table 6.2: Branching pattern (x ∈ [0.0, 1.0]).

skeleton mesh of a stem component is constructed by connecting two or more
quadrilateral cross-sections. A stem with constant or linear diameter distri-
bution (diameter distribution(x) = const or diameter distribution(x) =
a + bx) and no branches can be constructed by connecting only two quadri-
lateral cross-sections - one positioned at the bottom and one at the top of
the stem.

A more complex diameter distribution requires the interconnection of
more than two cross-sections. The number and positions of cross-sections is
carefully chosen so that the resulting shape differs by less than a predefined
fraction ε from the idealized shape defined by the given diameter distribution.
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A value of ε = 0.1 has proven to minimize the number of faces while it is
still maintaining a near perfect resemblance of the idealized stem shape. An
example for a non-linear diameter distribution and the resulting skeleton
mesh is given in Figure 6.1.

If one or more branching patterns are associated with a stem compo-
nent the skeleton mesh has to be further refined by inserting additional
cross-sections at branching positions. This is necessary to maintain a well-
formed mesh structure while simultaneously providing connecting faces where
branching geometry can be attached. If the number of branches is too large or
if two or more branching patterns are combined (see Figure 6.3) the problem
of overlapping branches may arise. Since branching meshes are ultimately
attached to single faces of the stems skeleton mesh (rule-based mesh growing)
and distinct faces must not overlap in order to guarantee a well-formed mesh
geometry, branches may have to be repositioned. This is done in such a way
that (a) no branches overlap and (b) the accumulated difference of original
and adjusted branching positions is kept to an absolute minimum. Config-
urations may arise where branches are distributed too densely for the opti-
mization process to find a valid solution. In such a case, all branches which
can not be placed without violating any rules are rejected. Fortunately, this
is not a serious problem, since too densely packed branches would yield un-
realistic results anyway. Finally, for each branch the associated component
is forced to generate its own skeleton mesh which is scaled and orientated ac-
cording to the length distribution(x) and angular distribution(x) functions
and attached to the stem mesh according to its (potentially repositioned)
branching position.

Figure 6.1: Left: a non-linear diameter distribution and the resulting skeleton mesh.
Note that values in the interval [0.0, 1.0] are used to scale the width parameter along
the stem. right: a simple branching distribution and the resulting skeleton mesh.
Branching positions pos1 to posnumber of branches are distributed in such a way that
for each position i the following holds true:

∫ posi

x=posi−1
branching distribution(x)dx =

∫ 1.0
x=0.0 branching distribution(x)dx

number of branches .
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Figure 6.2: Left: angular distribution and the resulting skeleton mesh. The interval
[−1.0, +1.0] is mapped to [−π

2 , +π
2 ], where an angle of 0 results in a branch created normal

to the stem direction. Positive angles denote an upward rotation, whereas negative angles
denote an downward rotation. right: length distribution and the resulting skeleton mesh.

Figure 6.3: Two branching distributions (left, center) are combined (right).

6.2.2 The Leaf Component

A leaf component is defined by a set of control points which specify the leafs
outline, and an axial and lateral cross-section. A skeleton mesh is created
by simply connecting the control points after they have been re-positioned
according to the user-specified cross-sections. No special problems arise with
the generation of leaves. See section 6.3.2 for a detailed description of the
user interface which is used to model leaf components from photographs.

6.3 Semi-Automatic Parameter Extraction

From Photographs

On top of our simple plant model we created a graphical user interface. It
is similar to [LD96] since this kind of interface seems to be a natural fit
for the interactive modeling of complex plant models and also for defining
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rulesets for our proposed rule-based mesh growing scheme. The user can ar-
range stem- and leaf components and connect them to form a directed cyclic
graph which defines the structural properties of a specific plant. Beyond
that, for each component an additional dialog is available which can be used
to extract parameters from photographs to quickly find an approximate pa-
rameterization. This feature turned out to significantly speed up the process
of parameterizing components, since instead of defining a large number of
parameters manually, it is now possible to define the same number of pa-
rameters by simply drawing some lines and shapes on a photograph. Even
for non-experienced users, the number of iterations necessary to create a
satisfying model is reduced significantly.

In order to parameterize a specific component the user has to select the
desired component in the DCG and to open the dialog for parameter extrac-
tion. Extracted parameters are instanteniously transfered to the associated
component and the real-time preview skeleton mesh is updated accordingly,
again ensuring immediate visual feedback and reducing the number of mod-
eling iterations. After opening a parameter-extraction-dialog, it is first nec-
essary to load a photograph. Due to the powerful libraries provided for the
Java platform, all common image storage formats can be imported. Next, a
number of component specific modeling actions can be performed which will
be explained in the following sections, where the actual component interfaces
will be explained in detail.

6.3.1 Stem Dialog

Three different modeling actions are available in the stem dialog, which in
fact is sufficient to extract the much higher number of actual parameters
which have been defined in Section 6.2.1:
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Action Description
Axis The axis of a stem is specified by simply drawing a line

from the bottom to the top of the stem. This informa-
tion is used to extract the length parameter and also to
define a mapping from pixel coordinates to model space.

Shape The shape of a stem is defined by drawing the outline
of the stem. From this information the diameter distri-
bution function is generated.

Branch A branch is defined by drawing a line from the begin-
ning to the end of the branch. For many stems it is
sufficient to mark the bottom-most and the top-most
branch. This especially holds true if branches are po-
sitioned in a regular order. If the resulting branching
pattern is not sufficient for a specific plant, an arbitrary
number of additional branches may be marked. The po-
sition, orientation and length of all lines is used to derive
appropriate branching-, angular- and length distribution
functions.

Figure 7.6 gives an example of the usage of the stem dialog. The first two
images show the same photograph of a birch tree. In the left image the main
stem, its outline and some child branches have been marked by the user. In
the center image a branch and its child branches (twigs) have been marked.
The right image finally shows the resulting rendered tree. Figure 6.5 only
shows two of three stem dialogs which where used to create the rendered
image. In Color Plates 7.13 and 7.14 two different plants are shown that
have been “cloned” by using our Java prototype editor.

6.3.2 Leaf Dialog

Photographs which are well suited to be utilized in the leaf dialog should be
taken in the normal direction to the leafs surface and from a close distance.
The first is important to catch the undistorted outline of the leaf, while the
latter is recommended to create a high resolution image of the leaf. This is
of importance because the photograph is not only used to define the shape
of the leaf, but also to automatically extract a texture map for the leaf mesh
(see Figure 6.4), which is applied in the photorealistic rendering step. Four
different modeling actions are available in the leaf dialog:
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Action Description
Axis The axis of a leaf is defined by drawing a line from

the beginning of the stem of the leaf, up to the tip
of the leaf. This information is used to define a
mapping from pixel coordinates to model space.

Shape The shape of a leaf is defined by marking a num-
ber of points along the leafs outline. It is best to
mark extremal points which best describe the leafs
shape.

Axial cross-section A separate widget is used to draw an axial cross-
section of the leaf.

Lateral cross-section A separate widget is used to draw a lateral cross-
section of the leaf.

Currently the user has to define the faces which create the leafs shape
manually by connecting previously defined vertices (a future implementation
will take care of this by automatically creating an appropriate triangulation
for the user specified vertices. The user-specified cross-sections are finally
used to reposition the initially flat leaf geometry in order to resemble the
requested shape.

6.3.3 Summary

The plant model and the associated editor undoubtedly demonstrate the
practicability and applicability of our generalized subdivision meshes and
rule-based mesh growing schemes. Although the plant model and the editor
are far from complete and can only be seen as a kind of feasibility study – a
number of impressive shapes could be created, which legitimates the assump-
tion that the theoretical framework we proposed, in fact has the potential to
simplify and enhance the modeling of complex shapes – which, after all, was
our primary intention.
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Figure 6.4: User interface for leaves (left) and rendered image (right).

Figure 6.5: User interface for extracting stem parameters (left, center) and rendered
image (right).
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Figure 7.1: Images of a chair rendered at different levels of generalized sub-
division. Observe how random variations are introduced in submesh 4 (cen-
ter row, right) by the application of an add normal height operator, and
how these variations are smoothed by subsequent Catmull-Clark subdivision
steps.
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Figure 7.2: Levels of detail. The camera has been placed directly in front of
a prickle which as a result is shown in very high detail. The same geometry
has been used for the large number of prickles visible in the distance, but
a much smaller number of subdivision steps has been applied. Individual
prickles have been attached to the main cactus body by means of rule-based
mesh growing and auto attach operators. The distribution of prickles over
the surface has been procedurally defined.
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Figure 7.3: Another cactus model. After the global shape has been suffi-
ciently subdivided using Catmull-Clark subdivision rules, a rule-based mesh
growing step is performed which attaches a number of small features to the
surface. Note that no individual transformations for the attached geome-
try had to be defined, since the auto attach operator automatically creates
suitable transformations.
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Figure 7.4: The model of this bush-like plant has been created by rule-based
mesh growing and subsequent Catmull-Clark subdivision steps. The ruleset
has been inspired by the Weber and Penn plant model.
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Figure 7.5: A number of different trees which have been created by rule-based
mesh growing and subsequent Catmull-Clark subdivision steps. The ruleset
has been inspired by the Weber and Penn plant model.
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Figure 7.6: This model of a birch has been created using our prototype
implementation of a plant editor.
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Figure 7.7: Ficus Elastica. The model has been created using our prototype
implementation of a plant editor. Leaf textures have been automatically ex-
tracted from a photograph of this plant. The base mesh consists of only 273
faces. This crude approximation is smoothed using Catmull-Clark subdivi-
sion.
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Figure 7.8: Rubbertree. The model has been created using our prototype
implementation of a plant editor. Leaf textures have been automatically ex-
tracted from a photograph of this plant. The base mesh consists of only 681
faces. This crude approximation is smoothed using Catmull-Clark subdivi-
sion.
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Figure 7.9: Generalized subdivision has been used to create ridges on a
forking branch. Observe how more and more detail is added on each level of
generalized subdivision.
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Figure 7.10: Ridges on a forking branch.
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Figure 7.11: Wrought iron candle holder with rust stains. The basic geometry
has been created using rule-based mesh growing. At the same time, specific
vertex placement operators where used to create the deformations caused
by the rust stains. The position and shape of the rust stains was defined
procedurally. The scene description file has only about 2.5kb (including
comments, surface-, material-, light-, and camera definitions).



CHAPTER 7. RESULTS 96

Figure 7.12: Tropism attach. A three-dimensional grid is created by rule-
based mesh growing. Each section is attached using a tropism attach oper-
ator. Finally, a series of images has been rendered using higher and higher
values for the tropism strength.
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Figure 7.13: Ficus (photograph and rendered image). The model has been
created by using our approach for semi-automatic parameter extraction from
photographs.

Figure 7.14: Ficus lyrata (photograph and rendered image). The model has
been created by using our approach for semi-automatic parameter extraction
from photographs.
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Conclusion and Future Work

A general approach for procedural mesh definition has been presented, which
combines multiple techniques derived from subdivision surfaces to parametric
Lindenmayer systems (pL-systems). More exactly we proposed two different
mechanisms for mesh modification: generalized subdivision meshes and rule-
based mesh growing.

In generalized subdivision meshes different subdivision rules can be ap-
plied at each level of subdivision. Furthermore we split the standard appli-
cation of a subdivision operator in two distinct operations: mesh refinement
and vertex placement ; mesh refinement is the logical introduction of newly
created vertices and the generation of the associated, possible changed, con-
nectivity information, without calculating the actual vertex positions; vertex
placement is the process of calculating new vertex positions in a mesh.

Rule-based mesh growing is an extension to pL-systems which works not
on single symbols, but on connected symbols, where each symbol is associated
with faces in a mesh. Thus the right-hand side of a production rule is a
template mesh, which implicitely defines a group of connected symbols. Mesh
growing replaces single faces by instances of template meshes according to
a given ruleset. We also call this extension to pL-systems mesh-based pL-
systems.

This combined approach yields exceptional modeling power, that we used
to efficiently define highly complex geometry, such as trees and plants. By
implementing our proposed framework in a general purpose rendering sys-
tem using directed cyclic graphs, it is now possible to define highly complex
scenes using as little as a few kilobytes. Although the actual renderer used
for producing the images in this thesis generated the complete meshes at
each subdivison level, the proposed approach could be used to generate all
necessary geometry on-the-fly. We are currently working on a rendering sys-
tem for both interactive and realistic rendering, that only generates these
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parts of the geometry that are visible, and disposes the mesh parts that have
already been rendered.

On top of the basic implementation of generalized subdivision meshes and
rule-based mesh growing we implemented a prototype of an interactive plant
editor in order to demonstrate the applicability of our approach to real-world
applications. Most of the plant models depicted in this thesis have been
created with the help of this editor. Although far from complete and more
or less intended as a kind of feasibility study, it undoubtedly demonstrates
the practical relevance of our approach.

Figure 8.1 gives an overview of our frameworks principal architecture:
based on the general-purpose rendering system ART (Advanced Rendering
Toolkit) our proposed generalized mesh subdivision scheme has been imple-
mented, including a number of mesh refinement and vertex placement op-
erators (e.g. add normal height, add local vector, add global vector, flat
quadrilateral subdivision, Catmull-Clark subdivision and Loop-subdivision).
Based on this, our proposed rule-based mesh growing mechanism has been
implemented, which allows the definition of rulesets and template meshes
and also provides a number of operators (e.g. attach, auto attach, tropism
attach, join and face split).

As a final conclusion – we have created a thorough framework for the
modeling and creation of very complex geometry. We have brought together
previously separate techniques like subdivision surfaces, procedural genera-
tion of geometry, and L-systems – and combined them in a unified framework.
One of the most immediate challenges awaiting us, will be to adapt and create
techniques for efficient rendering of such complex geometry. Then we will be
able to use this as a cornerstone for the creation of much more sophisticated
botanical and architectural modeling frameworks.
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Figure 8.1: Architectural overview - relating generalized subdivision meshes, rule-based
mesh growing and the plant editor to the Advanced Rendering Toolkit.
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Appendix

9.1 Scene Description Example

In the following, an example for a ART scene description file utilizing rule-
based mesh growing and generalized mesh subdivision is given. Although the
mesh growing and subdivision specific code is rather short, the whole file is
quite long. This is for two reasons – extensive comments have been included
throughout the file, and a large part of the description is dealing with general
definitions for surface materials, lights, camera, and so on. Nevertheless we
have included the complete scene description for completeness.

A simple branching, tree-like shape is created by alternately attaching
simple meshes representing sections of a stem (red) and a bifurcation (green).
A parameter is used to count the number of branching levels, and after
a specific limit level has been reached, a mesh which has no more symbols
attached to it, is used to terminate the recursive mesh growing process (blue)
(see Figure 9.1 for the rendered image).

/* ===========================================================================

Copyright (c) Institute of Computer Graphics and Algorithms,

Vienna University of Technology.

This file is part of the ART libraries. These libraries are free; you can

redistribute them and/or modify them under the terms of the GNU Library

General Public License as published by the Free Software Foundation;

either version 2 of the License, or (at your option) any later version.

The ART libraries are distributed in the hope that they will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of FITNESS

FOR A PARTICULAR PURPOSE or MERCHANTABILITY. See the GNU Library General

Public License for more details.

The precise terms of the license are stated in the file ’LICENSE’ which

is distributed with the ART libraries. If you do not find it, write to:

Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

===========================================================================
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NAME: MeshGrowingExample

TYPE: art source

PROJECT: Advanced Rendering Toolkit

CONTENT: mesh growing example

===========================================================================

AUTHORS: sm Stefan Maierhofer

===========================================================================

HISTORY:

12-Dec-2001 18:56:00 sm created

=========================================================================== */

ArObj createStemMesh();

ArObj createForkMesh();

ArObj createTerminalMesh();

/* ---------------------------------------------------------------------------

Define START mesh.

--------------------------------------------------------------------------- */

ArObj createGrowingMesh()

{

/* -----------------------------------------------------------------------

Vertices.

----------------------------------------------------------------------- */

ConstPnt3DArray point_array =

{

PNT3D( -2.00, -2.00, 0.00 ),

PNT3D( 2.00, -2.00, 0.00 ),

PNT3D( 2.00, 2.00, 0.00 ),

PNT3D( -2.00, 2.00, 0.00 ),

PNT3D( -1.00, -1.00, 0.20 ),

PNT3D( 1.00, -1.00, 0.20 ),

PNT3D( 1.00, 1.00, 0.20 ),

PNT3D( -1.00, 1.00, 0.20 ),

PNT3D_END

};

ArObj vertices = VERTEX_SET( point_array, 0, 0, 0, 0 );

/* -----------------------------------------------------------------------

Faces.

----------------------------------------------------------------------- */

ConstIndexArray point_index_array =

{

FACE, 0,3,2,1,

FACE, 0,1,5,4,

FACE, 1,2,6,5,

FACE, 2,3,7,6,

FACE, 3,0,4,7,

FACE, 4,5,6,7,

FACE_END

};

/* -----------------------------------------------------------------------

Assign surface material 0 to all faces.

----------------------------------------------------------------------- */

ConstIndexArray sheet_index_array =

{ 0, 0, 0, 0, 0, 0, INDEX_END };

/* -----------------------------------------------------------------------

Assign "stem" rule to top face.

----------------------------------------------------------------------- */
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ConstIndexArray expansion_index_array =

{ 0, 0, 0, 0, 0, arsymbol("stem"), INDEX_END };

/* -----------------------------------------------------------------------

THE ACTUAL MESH GROWING AND SUBDIV DESCRIPTION STARTS HERE !!!

----------------------------------------------------------------------- */

/* -----------------------------------------------------------------------

Init variables first.

----------------------------------------------------------------------- */

ArObj init = VARIABLES("level = 0;");

/* -----------------------------------------------------------------------

Define RULESET.

----------------------------------------------------------------------- */

ArnNamedNodeSet * rules =

RULESET(

/* ---------------------------------------------------------------

Replace "stem" faces by stem mesh.

--------------------------------------------------------------- */

"stem",

AUTO_ATTACH(createStemMesh()),

/* ---------------------------------------------------------------

Replace "fork" faces by either a fork mesh or apply

rule "terminal" depending on recursion level.

--------------------------------------------------------------- */

"fork",

[

VARIABLES("level += 1;")

inScope:

NODE_SELECTION(

VALUE("(level < 7) ? 0 : 1"),

AUTO_ATTACH(createForkMesh()),

NODE_REFERENCE("terminal"),

0

)

],

/* ---------------------------------------------------------------

Terminal mesh - has no symbols assigned to its faces.

--------------------------------------------------------------- */

"terminal",

AUTO_ATTACH(createTerminalMesh()),

0

);

/* -----------------------------------------------------------------------

First, apply mesh growing ruleset to this mesh.

Second, perform 2 levels of Catmull-Clark subdivision.

----------------------------------------------------------------------- */

ArMeshOperatorSequence sequence =

MESH_OPERATORS(

FACE_OPERATORS(rules), 1,

SUBDIV_CATMULL_CLARK, 2,

0);

/* -----------------------------------------------------------------------

HERE THE MESH GROWING AND SUBDIV DESCRIPTION ENDS !!!

All the rest is just standard scene description code.
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----------------------------------------------------------------------- */

ArObj faces =

MESH(

SOLID_SHAPE,

PER_FACE_SHEET | PER_FACE_EXPANSIONS | PER_VERTEX_NORMALS,

point_index_array,

sheet_index_array,

0, 0, 0, 0,

expansion_index_array,

sequence

);

ArObj mesh = [ faces apply : vertices ];

return [init inScope: mesh];

}

/* ---------------------------------------------------------------------------

Creates mesh growing object.

--------------------------------------------------------------------------- */

ArObj create_Object()

{

/* -----------------------------------------------------------------------

Specify a table of surfaces. Each face will be mapped to a specific

surface depending on its sheet number.

----------------------------------------------------------------------- */

ArObj meshSurface =

SELECTED_SURFACE(

HIT_SHEET_INDEX,

SURFACE_TABLE(

INTERPOLATED_NORMAL_SURFACE( // sheet 0

LAMBERT_REFLECTOR( COLOUR_RGB(0.6, 0.6, 0.6) ) ),

INTERPOLATED_NORMAL_SURFACE( // sheet 1

LAMBERT_REFLECTOR( COLOUR_RGB(1.0, 0.0, 0.0) ) ),

INTERPOLATED_NORMAL_SURFACE( // sheet 2

LAMBERT_REFLECTOR( COLOUR_RGB(0.0, 1.0, 0.0) ) ),

INTERPOLATED_NORMAL_SURFACE( // sheet 3

LAMBERT_REFLECTOR( COLOUR_RGB(0.0, 0.0, 1.0) ) ),

0)

);

/* -----------------------------------------------------------------------

Create the START mesh and apply the surface defined above.

----------------------------------------------------------------------- */

ArObj mesh = [createGrowingMesh() apply : meshSurface ];

/* -----------------------------------------------------------------------

Create a white background.

----------------------------------------------------------------------- */

ArObj sky =

[

INFINITE_SPHERE apply: LAMBERT_EMITTER(COLOUR_RGB(1.0,1.0,1.0), 1.0 )

];

/* -----------------------------------------------------------------------

Create a number of lights.

----------------------------------------------------------------------- */

ArObj lights =

UNION

(

SPHERE_LIGHT(PNT3D( 150, -300, 50), 0.1, COLOUR_GRAY(0.5) ),
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SPHERE_LIGHT(PNT3D(-300, -300, 100), 0.1, COLOUR_GRAY(0.5) ),

SPHERE_LIGHT(PNT3D( 300, -300, 200), 0.1, COLOUR_GRAY(0.5) ),

SPHERE_LIGHT(PNT3D( 300, 300, 300), 0.1, COLOUR_GRAY(0.5) ),

SPHERE_LIGHT(PNT3D(-300, 300, 400), 0.1, COLOUR_GRAY(0.5) ),

0

);

return [ mesh or: sky or: lights ];

}

/* ---------------------------------------------------------------------------

Creates camera.

--------------------------------------------------------------------------- */

ArObj create_Camera()

{

return

[ CAMERA

imageSize: IVEC2D( 320, 200 )

ray: RAY3D( PNT3D( 15.0, -30.0, 10.0 ),

VEC3D( -15.0, 30.0, -2.5 ) )

zoom: 1.0

];

}

/* ---------------------------------------------------------------------------

Creates scene.

--------------------------------------------------------------------------- */

ArObj create_MeshGrowingExample()

{

return

[ SCENE

object: create_Object()

camera: create_Camera()

renderer: STANDARD_MIDPOINT_RAYTRACER

];

}

/* ---------------------------------------------------------------------------

Create stem mesh.

--------------------------------------------------------------------------- */

ArObj createStemMesh()

{

ConstPnt3DArray point_array =

{

PNT3D( -1.00, -1.00, 0.00 ),

PNT3D( 1.00, -1.00, 0.00 ),

PNT3D( 1.00, 1.00, 0.00 ),

PNT3D( -1.00, 1.00, 0.00 ),

PNT3D( -1.00, -0.80, 4.00 ),

PNT3D( 1.00, -0.80, 4.00 ),

PNT3D( 1.00, 0.80, 4.00 ),

PNT3D( -1.00, 0.80, 4.00 ),

PNT3D_END

};

ArObj vertices = VERTEX_SET( point_array, 0, 0, 0, 0 );

ConstIndexArray point_index_array =

{

FACE, 0,3,2,1,

FACE, 0,1,5,4,

FACE, 1,2,6,5,
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FACE, 2,3,7,6,

FACE, 3,0,4,7,

FACE, 4,5,6,7,

FACE_END

};

/* -----------------------------------------------------------------------

Assign surface material 1 to all faces.

----------------------------------------------------------------------- */

ConstIndexArray sheet_index_array =

{ 1, 1, 1, 1, 1, 1, INDEX_END };

/* -----------------------------------------------------------------------

Assign "fork" rule to top face.

----------------------------------------------------------------------- */

ConstIndexArray expansion_index_array =

{ 0, 0, 0, 0, 0, arsymbol("fork"), INDEX_END };

ArObj faces =

MESH(

SOLID_SHAPE,

PER_FACE_SHEETS | PER_FACE_EXPANSIONS | PER_VERTEX_NORMALS,

point_index_array,

sheet_index_array,

0, 0, 0, 0,

expansion_index_array,

NO_MESH_OPERATORS

);

ArObj mesh = [ faces apply : vertices ];

return mesh;

}

/* ---------------------------------------------------------------------------

Create fork mesh.

--------------------------------------------------------------------------- */

ArObj createForkMesh()

{

ConstPnt3DArray point_array =

{

PNT3D( -1.00, -1.00, 0.00 ),

PNT3D( 1.00, -1.00, 0.00 ),

PNT3D( 1.00, 1.00, 0.00 ),

PNT3D( -1.00, 1.00, 0.00 ),

PNT3D( -0.05, -1.00, 1.50 ),

PNT3D( 0.05, -1.00, 1.50 ),

PNT3D( 0.05, 1.00, 1.50 ),

PNT3D( -0.05, 1.00, 1.50 ),

PNT3D_END

};

ArObj vertices = VERTEX_SET( point_array, 0, 0, 0, 0 );

ConstIndexArray point_index_array =

{

FACE, 0,3,2,1,

FACE, 0,1,5,4,

FACE, 1,2,6,5,

FACE, 2,3,7,6,

FACE, 3,0,4,7,

FACE, 4,5,6,7,



CHAPTER 9. APPENDIX 107

FACE_END

};

/* -----------------------------------------------------------------------

Assign surface material 2 to all faces.

----------------------------------------------------------------------- */

ConstIndexArray sheet_index_array =

{ 2, 2, 2, 2, 2, 2, INDEX_END };

/* -----------------------------------------------------------------------

Assign "stem" rule to the left and right faces

----------------------------------------------------------------------- */

ConstIndexArray expansion_index_array =

{ 0, 0, arsymbol("stem"), 0, arsymbol("stem"), 0, INDEX_END };

ArObj faces =

MESH(

SOLID_SHAPE,

PER_FACE_SHEETS | PER_FACE_EXPANSIONS | PER_VERTEX_NORMALS,

point_index_array,

sheet_index_array,

0, 0, 0, 0,

expansion_index_array,

NO_MESH_OPERATORS

);

ArObj mesh = [ faces apply : vertices ];

return mesh;

}

/* ---------------------------------------------------------------------------

Create terminal mesh.

--------------------------------------------------------------------------- */

ArObj createTerminalMesh()

{

ConstPnt3DArray point_array =

{

PNT3D( -1.00, -1.00, 0.00 ),

PNT3D( 1.00, -1.00, 0.00 ),

PNT3D( 1.00, 1.00, 0.00 ),

PNT3D( -1.00, 1.00, 0.00 ),

PNT3D( -0.10, -0.10, 2.00 ),

PNT3D( 0.10, -0.10, 2.00 ),

PNT3D( 0.10, 0.10, 2.00 ),

PNT3D( -0.10, 0.10, 2.00 ),

PNT3D_END

};

ArObj vertices = VERTEX_SET( point_array, 0, 0, 0, 0 );

ConstIndexArray point_index_array =

{

FACE, 0,3,2,1,

FACE, 0,1,5,4,

FACE, 1,2,6,5,

FACE, 2,3,7,6,

FACE, 3,0,4,7,

FACE, 4,5,6,7,

FACE_END

};
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/* -----------------------------------------------------------------------

Assign surface material 3 to all faces.

----------------------------------------------------------------------- */

ConstIndexArray sheet_index_array =

{ 3, 3, 3, 3, 3, 3, INDEX_END };

ArObj faces =

MESH(

SOLID_SHAPE,

PER_FACE_SHEETS,

point_index_array,

sheet_index_array,

0, 0, 0, 0, 0,

NO_MESH_OPERATORS

);

ArObj mesh = [ faces apply : vertices ];

return mesh;

}

Figure 9.1: Example for mesh growing and subsequent Catmull-Clark subdivision.
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9.2 Auto-Attach

Given two polygons A = [vA
i ] and B = [vB

j ] with vA
i ∈ R

3, vB
j ∈ R

3 and
0 ≤ i < n, 0 ≤ j < n and surface normals denoted as �n....

Find a transformation M with B⊗ = M × B such that

− �nA

|�nA| =
�nB⊗

|�nB⊗|
and the sum

n−1∑
0

|vB⊗
n − vA

n |
2

is minimized.
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Figure 9.2: Polygons A is the current expansion face and polygon B is the connecting
face of the respective expansion mesh. In order to connect both meshes by joining faces A

and B, it is necessary to transform the expansion mesh so that the transformed polygon
B⊗ is in parallel to face A and the summed distance of respective vertices in both poylgons
is minimized. An Auto-Attach node creates such a transformation.

9.3 Join Algorithm

DEFINE JoinReference
{

faceref
joinid

}

JoinReference joinfaces[] = EMPTY_SET
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TRAVERSE node IN CSG
{

IF (node INSTANCEOF JoinOperator)
{

ref = NEW JoinReference
ref->faceref = node->evaluateFaceRef()
ref->joinid = node->evaluateJoinId()
ADD ref TO joinfaces

}
}

FOR EACH ref IN joinfaces
{

ref2 = NEAREST_NEIGHBOUR OF ref IN joinfaces
WITH ref->joinid

IF (ref2 != NULL)
{

CONNECT FACES ref->faceref, ref2->faceref
REMOVE ref, ref2 FROM joinfaces

}
ELSE
{

REMOVE ref FROM joinfaces
}

}
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and Radomı́r Měch Mech. From the Theory to Vi-
sual Model of Plants. Proceeding of the 2 nd CSIRO
Symposium on Computational Challenges in Life Sci-
ences, 1996. Document is available at the internet ad-
dress http://www.cpsc.ucalgary.ca/Redirect/bmv/papers/l-
sys.csiro96.html.

[PHM93] Przemyslaw Prusinkiewicz, Mark S. Hammel, and Eric Mjol-
sness. Animation of Plant Development. Proceedings of SIG-
GRAPH 93, pages 351–360, August 1993. ISBN 0-201-58889-7.
Held in Anaheim, California.

[PHMH91] Przemyslaw Prusinkiewicz, Mark S. Hammel, Radomı́r Měch
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