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Abstract
Hardware, software, and coding standards for digital media have played a significant role in making multime-
dia presentation an intrinsic compponent of many systems. However, these standards are primarily concerned
with the storage, encoding and transport of media content, and have not been intended to address the integra-
tion of multimedia data into more general programming environments for media presentation. PREMO (PRes-
entation Environments for Multimedia Objects) is a project within the SC24 committee of the International
Organisation for Standardization (ISO) aimed at developing an API (Application Programmer Interface) that
integrates the processing and presentation of distributed multimedia with that of synthesised graphics. This re-
port summarises the contents of the PREMO standard and explains how the integration of graphics into a gen-
eral framework for media processing is achieved.
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1.  Introduction

The use of multimedia is now so widespread that the term
‘multimedia computing’ has become almost a tautology.
Few people today would conceive of purchasing or using a
computer system that was not capable of displaying or
processing multimedia data. Standards are now available
for the encoding, transport and presentation of a rich variety
of media data. Many of these, such as MHEG11, MPEG40,
MIDI and VRML27 are well known even amongst non-pro-
fessional computer users. New standards, such as PNG and
SMIL59 are under development in response to the opportu-
nities and needs created by the world wide web. This appar-
ent wealth of media standards makes it all the more
important to situate PREMO and understand its role:

• PREMO is a presentation environment. PREMO, like
previous SC24 standards, aims at providing a standard
“programming” environment in a very general sense.
The aim is to offer a standardised, hence conceptually
portable, development environment that helps to pro-
mote portable multimedia applications. PREMO con-
centrates on the application program interface to
“presentation techniques”; this is what primarily differ-
entiates it from other multimedia standardization
projects. PREMO has also been developed at a time

when object-oriented programming techniques have
become of interest to the graphics community43,58, and
this is reflected in the standard by the explicit use of
object-oriented concepts as the foundation of PREMO.

• PREMO is aimed at a multimedia presentation.
Whereas earlier SC24 standards concentrated either on
synthetic graphics or image processing systems, multi-
media is considered here in a very general sense; high–
level virtual reality environments41, which mix real–
time 3D rendering techniques with sound6, video, or
even tactile feedback, and their effects, are, for exam-
ple, within the scope of PREMO.

In the remainder of this section, we will explore these
two points in more detail, and in so doing establish the fun-
damental rationale for the technical content and approach of
PREMO that is described in the remainder of this report. 

1.1  What PREMO Is

Programming interfaces for graphics (“graphics packages”)
are now widely known and used. These include de jure
standards developed for example within ISO, such as GKS
and PHIGS32,34, and industry-developed platforms such as
GL48 and Inventor56 that have now become de facto stand-
ards themselves. The process is ongoing, with a new gener-
ation of graphics applications emerging based on the Java
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technologies (e.g. Java3D52), and also in response to the
needs and opportunities of web-based applications (e.g.
VRML27). In contrast, programming interfaces for multi-
media are rather less well known; while toolkits for multi-
media applications have been developed, for example
MET++1 and MADE31, standards for multimedia have con-
centrated largely on formats for the storage and transport of
media, declarative models of media content (for example
HyTime47). While the interface to presentation engines for
such formats does provide a starting point for the applica-
tions programmer, the level of control over media process-
ing that these affords is significantly lower than can be
achieved in computer graphics. And significantly, none of
the existing presentation models or engines integrates their
media content with synthetic graphics. 

The separation between synthetic graphics and other
presentation media may reflect the different communities in
which the fundamental developments took place (e.g. much
of the early interest in multimedia was stimulated by appli-
cations in publishing and human-computer interaction,
whereas graphics originally had stronger links with engi-
neering and scientific applications). Irrespective of these
differences in origin, two technological trends have meant
that there is now a growing need to integrate these two
threads of activity. At one end of the cost-performance
spectrum, virtual environments and visualisation are emerg-
ing as mature technologies with needs that encompass both
synthetic graphics and other media, e.g. 3D audio, acoustic
and haptic rendering. At the other end of the cost spectrum,
the availability of powerful, low-cost personal computing
platforms has made it feasible to develop multimedia appli-
cations for mass markets, and for users of such machines to
experiment with multimedia. An issue that spans this spec-
trum of applications is how application programs can ac-
cess, construct, and control multimedia and graphics
presentation. This is the context in which PREMO has been
designed.

PREMO as middleware

The term “middleware” has come to the fore in recent years.
It refers to a software layer, between the fundamental serv-
ices of an operating system and more specific application
development environments. PREMO provides a level of
middleware which supports the implementation of a range
of processing models for multimedia presentation. As an
form of middleware, PREMO does not define stand-alone
services in the way, for example, that a PHIGS renderer
does. Instead, it provides an environment where various,
vendor–specific components can cooperate. The middle-
ware nature of PREMO has implications for how the soft-
ware objects defined by the standard are described. On the
one hand, these must not be too detailed, otherwise it would

restrict the range of possible implementations, but on the
other hand these objects must provide a non-trivial set of
services. This strive for balance has fundamentally shaped
the standard.

Why is middleware important? Consider, for example,
the task of implementing a distributed multimedia applica-
tion such as a multi-platform video–conferencing system.
Due to the variety of available media formats, resource re-
quirements, means of distribution control, etc., a significant
portion of such an application is dedicated to issues like
configurability, adaptability, access to remote resources,
distribution, etc. A similar level of adaptiveness is also re-
quired when using media in combination, for example syn-
thetic graphics, video, and computer animation. No one
applications package addresses such a variety of needs, and
without middleware such as PREMO, much of this infra-
structure has to be developed from scratch, or adapted from
a similar application. And the costs involved in modifying
software to meet new demands are well known.

In addition to enabling interoperation, the existence of a
middleware level such as PREMO can also assist in system
evolution. The variety of graphics formats, available primi-
tives, animation algorithms, etc., continues to expand, and
portable applications increasingly have to adapt to an evolv-
ing environment. PREMO assists in this process by factor-
ing out at least some of the technological constraints into
components that can be interchanged and replaced, and by
providing a flexible and extensible architecture in which
new software components can be defined for use by existing
applications.

Multimedia presentation is not the only concern that is
open to support by middleware. Another, well known, ex-
ample is architectural support for distributed object–orient-
ed applications, as is provided by the CORBA49

specification of the Object Management Group (OMG).†

Although PREMO itself is not related to the various OMG
specifications, PREMO should be viewed as a multimedia–
oriented extension of the basic object services and architec-
ture provided by systems like CORBA or, as another exam-
ple, Java’s RMI28,57 services. Seen in this way, PREMO
fills the gap between the application-independent set of fa-
cilities offered by CORBA, and a distributed multimedia
application. Indeed, the relationship between PREMO and
a distributed object–oriented architecture is so close, it
would be ill-advised to attempt an implementation of PRE-
MO without the use of such services. More information on
how the PREMO specification builds on the concept of dis-
tributed multimedia without committing to a particular
model will be found in 14 and 29.

†In fact, a liaison existed between OMG and the relevant ISO
group, during the development of PREMO, which clearly influ-
enced the design of the standard.
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PREMO as a reference model

As PREMO describes an implementation environment (a
prototype is currently under preparation in Java24), the
specification encompasses a range of concepts needed in
multimedia systems development. By providing a broad,
application independent model of media processing, the
specification itself also serves as a reference model for dis-
tributed multimedia. This is significant, as in practice,
“portability of programmers” is almost as important as the
“portability of programs”. Although only the latter role of
information processing standards is usually publicised by
organizations like ISO, the need for “programmer portabil-
ity” in this area was also considered to be a major goal for
PREMO. Having a common, well understood set of princi-
ples and techniques as a reference point greatly helps in un-
derstanding both the specificities and the commonalities of
various multimedia programming environments. To
achieve this goal, the PREMO specification deliberately
sets out a number of details which are sometimes hidden in
other systems. As a reference model, PREMO is not only
significant in a didactical sense; a unifying set of concepts
may play an important role in classifying, relating and or-
ganising the growing range of software toolkits that are
available to the potential developer of a multimedia system.
Without such concepts, this technological cornucopia is in
danger of becoming an anarchic ensemble of incompatible
and/or incomparable artifacts.

1.2  What PREMO Isn’t

The characteristics that define what PREMO is – middle-
ware and reference model – also reflect what PREMO is
not. In particular, PREMO is intended to build on and utilise
existing media standards, not to replace them. Given that
there are standards in place for media formats and process-
ing, these are two concerns that PREMO does not address.

PREMO is not a Media Format

The PREMO specification does not describe any new for-
mat for the representation and storage of media data. In-
stead, the standard makes it quite clear that the data
processed by PREMO-based applications is expected to be
stored in existing formats; ALAW, JPEG, MHEG, MIDI,
MPEG, SMIL, VRML, to name a few. What PREMO does
provide are mechanisms by which new PREMO objects can
be defined for new formats, and by which existing objects
can coordinate the formats that they use to exchange and
process media data. 

PREMO is not a Media Engine

The object types defined in the PREMO standard are not
sufficient in themselves to realise a working multimedia ap-
plication. To do this would have required the standard to
commit to particular kinds of media processors and render-
ers, with specific interfaces. All that this would achieve

would be to add yet another type of media engine into the
growing collection of such devices. Instead, PREMO pro-
vides a number of object types that can act as “wrappers”
around existing engines, and allow these to be used within
a processing network involving other devices that may be
based on quite different media formats or models. Rather
than thinking of PREMO as a media engine, a somewhat
better analogy is to view PREMO as a software architecture
for multimedia applications; the objects defined by PREMO
represent the basic constructs, the building blocks, for mul-
timedia applications. Even this analogy is not quite the
whole story though. Although parts of the PREMO specifi-
cation provide building blocks that are “shaped” for sup-
porting a particular architectural model of an application,
these in turn rely on a set of lower-level PREMO objects,
and users of PREMO is free to build on these, or modify the
higher-level components, in order to instantiate whatever
model of multimedia architecture that is most appropriate
for their needs.

Just as PREMO is not a media engine, it is not a com-
plete environment, either. It does not, for example, provide
a framework for quality of service management. This may
seem strange, since quality of service is a particularly fun-
damental problem with multimedia applications. However,
quality of service management is currently bound tightly up
with network management issues; as of yet, there is no
emerging consensus on what application mechanisms are
needed to implement quality of service, and indeed, it seems
probable that, like the concept of a network, ‘quality of
service’ actually spans a whole range of levels of concern,
from well known physical properties such as bandwidth and
latency of raw transmissions, up to questions that impinge
on the eventual presentation of the data, for example syn-
chronization constraints between lip motion in video frames
and the corresponding speech in an audio stream. What
PREMO does provide here is a basic set of hooks and facil-
ities which a quality of service management protocol is free
to utilise for monitoring and realising its requirements.

PREMO is not a user-oriented Specification

In addition to the technical problems of building a media
application, multimedia systems designers need to address
the question of how well a particular media system (both in
terms of technology, and media content) meets the demands
of its users. Like the issue of quality of service, usability in-
volves a spectrum of concerns, from low level issues of sig-
nal quality, through questions about the cognitive resources
and processes needed to interact with an application,
through to questions of how a particular system is situated
in the work context and environment of its users. These hu-
man factors must obviously be addressed by media systems
designers by making appropriate use of the technologies at
their disposal. PREMO is one such technology – the speci-
fication itself does not describe how it should be used to re-
alise user requirements.
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1.3  Structure of the Report

In this introduction we have set out the need for a standard
to address distributed multimedia, and the rationale for de-
signing the standard to be extensible from the outset. The
remainder of this report is intended to provide an overview
of PREMO. Section 2.introduces the concept of a PREMO
component, around which the standard is structured as a
means of promoting extensibility. Thereafter, the four
‘components’, or parts, that make up the official PREMO
standard are summarised. Sections 3 to 7 then each take one
of these components as its focus, and describes its design,
main functional provisions, and role within the standard.

2.  The Structure of PREMO

The concepts of modularity, data abstraction and compo-
nent-based design are now well established within software
engineering, where structures such as classes, modules and
packages are used to manage the complexity of systems de-
velopment by allowing the decomposition of a design into a
set of parts which can be developed independently or incre-
mentally, before being composed to form the desired sys-
tem. The object-oriented basis of PREMO allows one level
of structuring. However, this is relatively fine-grained, and
in practice multimedia applications require families of ob-
jects that can be assembled to implement particular func-
tionalities. Today, this concept is becoming widely adopted
in the form of design patterns22 and software architectures.
These were, however, less well known when development
of PREMO began, and consequently a somewhat simpler
approach was adopted to structure the standard.

PREMO is defined as a collection of components, each
of which provides one or more profiles. A component de-
fines a collection of entities, such as object and non-object
types. Object types provide services (in the form of opera-
tions that can be invoked by clients), or can have a more
passive role, for example as data encapsulators. As not all
of the types defined within a component are necessarily
needed in a given context, PREMO components define one
or more profiles, each consisting of a cluster of entities. A
component can build on (extend) the profiles of other com-
ponents, in the same way that a class in object-oriented pro-
gramming can be defined as an extension to existing
classes. The components defined in the PREMO standard
are general purpose; they provide a progressively richer,
more structured model of multimedia processing. It was the
intention of the designers that functionality to address spe-
cific technologies, such as 3D audio, or virtual reality, or
specific application domains, for example medical simula-
tion or battlefield models, could be realised by the develop-
ment of new components that extend some or all of the
profiles defined in the standard. The four components of the
PREMO Standard are as follows:

1) Fundamentals. This specifies the object model used by
PREMO, and the requirements that a PREMO system
places of its environment. Although the PREMO object
model is similar to the core model of the OMG, it con-
tains particular features needed to address the require-
ments of distributed systems.

2) Foundation. Object and data types that are generic to
multimedia applications are defined in this component,
including facilities for event management, synchroni-
zation, and time. 

3) Multimedia Systems Services. Multimedia systems typ-
ically integrate a variety of logical and physical
devices, for example input and output with devices
such as video editors, cameras, speakers, and process-
ing with devices such as data encoders/decoders and
media synthesizers (e.g. a graphics renderer). This
component of PREMO defines the infrastructure
needed to set up and maintain a network of heterogene-
ous processing elements for media data. These facili-
ties include mechanisms by which media processors
can advertise their properties and be configured to
match the needs of a network, and can then be inter-
connected and controlled. MSS was originally defined
by the Interactive Multimedia Association33 and subse-
quently adopted by SC24 and refined into a PREMO
component.

4) Modelling, Rendering and Interaction. The MSS com-
ponent defines concepts of media streams and process-
ing resources that are independent of media content. In
the MRI component, these facilities are used to define
generic objects for modelling and rendering data, and
basic facilities for supporting interaction. To support
interoperability, the component defines a hierarchy of
abstract primitives for structuring multimedia presenta-
tions. These are not sufficient in themselves to build a
working presentation, but provide the abstract super-
types from which a set of concrete primitives could be
derived.

3.  The PREMO Object Model

Although with the emergence of UML21 there is now some
level of consensus on a set of concepts for object oriented
modelling, at the implementation level there still remain a
number of different approaches, as represented by the range
of programming languages that are claimed to support ob-
ject oriented techniques. These differences vary from the
fundamental, such as whether a system is class based, or ob-
ject-based (using prototypes44 to define the structure of ob-
jects), to finer details, such as the various levels of visibility
or accessibility that can be assigned to the components of an
object. 
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Within a development project using an object oriented
target language, the choice of object model is effectively
made once the target language is chosen. Indeed, the precise
details of the available object model may be one criteria by
which the language is chosen. In the case of PREMO, how-
ever, the situation is rather more complicated. Like the
standards that it follows (GKS and PHIGS)4, PREMO is in-
tended to be independent of any particular programming
language. Thus, just as one can obtain a C binding or a
FORTRAN binding for GKS, it should be possible to obtain
a C++53 or Ada’955 binding for PREMO. The need to pro-
vide this flexibility raises a number of difficult technical
questions, not the least being whether it should be possible
to bind PREMO to a language with no explicit support for
object-oriented programming (e.g. FORTRAN). For now,
the main point is that if PREMO is to be language independ-
ent and described in an object oriented framework, it re-
quires the definition of some object model that to define the
concepts from which the remainder of the standard will be
constructed.

One of the fundamental issues that had to be decided at
an early stage in the project was whether to adopt a “classi-
cal” object oriented approach, in which objects are instanc-
es of classes that can be arranged in a hierarchy through
inheritance9,50, or opt for a more radical approach based for
example on the use of prototypes and delegation. The
former is typical of the models that underlie object oriented
design methods, and has been in widespread use in the form
of languages such as Simula, SmallTalk, and C++. Proto-
type based approaches have, in contrast, been largely the
concern of the research community; there has already been
discussion on the value of such approaches in graphics and
multimedia10. In particular, the use of delegation, and the
notion of “trait” objects used for example in the SELF
system54 are attractive from the viewpoint of building high-
ly adaptable and extensible systems. However, technical is-
sues aside, the fact that prototype models are strongly
bound to experimental systems, and are not in widespread
use, represented a serious barrier to their use within PRE-
MO. The result is that the PREMO object model is based
from the outset on a fundamental distinction between ob-
jects and classes, which in PREMO are called “object
types”. The remainder of this section describes other high-
level design decisions that affected the content of this com-
ponent.

3.1  Overview

A PREMO system consists of a collection of objects, each
with a local (internal) state, and an interface consisting of a
set of operations. Each object is an instance of an object
type, which defines the structure of its instances. An object
type can be defined as an extension to one or more other ob-
ject types through inheritance; note that this allows for mul-
tiple inheritance. An important property of the model is that
objects are never accessed directly. Instead, a PREMO cli-

ent requests a facility called an “object factory” to generate
an object satisfying specific criteria, and if it is able to com-
ply, the factory will return a handle to the new object called
an object reference. All subsequent activities involving the
object is then done via the reference, for example invoking
an operation on the object, or passing the object as a param-
eter to another operation. This separation of objects (i.e.
physical storage) from their references is needed to support
the aim of distribution, as an object reference can be used to
encode both local address information and the location of a
particular object across a network. 

3.2  From Language Bindings to Environment Bindings

Although the choice of a class, rather than object-based
model is relatively straight forward, a number of further op-
tions are rather less clear cut. In particular, the aim of mak-
ing the standard language independent introduces a tension
in the design, between introducing features that offer de-
scriptive or computational power but are specific to a re-
stricted set of languages, or using a simple, less powerful
model to describe the standard in the expectation that it will
be easier to map the model onto the facilities of a given im-
plementation language. Features that are problematic range
from the mundane, for example how (or even whether) ob-
jects are copied, through to complex problems such as the
management of remote (distributed) objects.

One approach that PREMO employs to prevent over-
commitment to a particular object model is to introduce the
notion of an environment binding. Previous standards in
computer graphics have also been developed using a lan-
guage independent description, and have been mapped onto
a specific implementation language through a language
binding, that associates the abstract data types and opera-
tions defined in the text of the standard with concrete data
types and operation signatures within the target language.
Such a binding is still needed for PREMO. However, while
some concepts in the standard will be mapped onto lan-
guage-specific features (for example, object types and oper-
ations), other aspects of the model, for example how objects
are to be copied, or how remote objects are accessed, are left
as facilities to be provided by the environment of a PREMO
implementation. These facilities may be realised through
language constructs, but more generally they may be pro-
vided by library packages, or even via the use of other
standards. Thus, access to distributed objects within a C++
implementation of PREMO could be realised through a cus-
tom-built mechanism, or through a separate standard such
as CORBA. In the case of a Java implementation, these two
options again exist, but in addition it is possible to use the
Java RMI package. By viewing features such as object copy
and remote access as requirements on the environment,
rather than requirements on the object model, the object
model itself is simplified and is consequently easier to map
against the provisions of a specific implementation model.
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3.3  Object References

It is widely accepted that a fundamental component of ob-
ject orientation is that each object in a system has an identity
that is independent of that object’s state. Therefore, two ob-
jects that have the same state can nether the less be distin-
guished. At a very practical level, this corresponds to the
use of pointers to reference objects within an implementa-
tion. These pointers, or object references, may be implicit or
explicit. In the case of SmallTalk or Java, for example, it is
not possible to access an object other than through an object
reference - this is enforced in the definition of the languag-
es, which provide no constructs for referring to an object
other than through pointers. C++ and Ada’95 have a differ-
ent model. Objects in these languages are defined as gener-
alised records, and a pointer to an object is a well defined
type that is quite distinct from the type of the object itself. 

As PREMO objects can be distributed, various mecha-
nisms for accessing objects may be used within even a sin-
gle system. For example, local objects might be referenced
via pointers, while remote objects are referenced by some
form of extended URL. To avoid confusion or implementa-
tion bias, the standard introduces the concept of an object
reference as an explicit part of the object model, with the in-
tention that this be bound to whatever means are used within
the target language and/or environment to access or refer to
specific objects. The approach taken in PREMO combines
elements of the explicit and implicit approach. In line with
the former, the model defines both the concept of an object,
and an object reference. However, the distinction is there to
simplify the use of multiple implementation strategies —  it
is not possible to refer to, or use, an object directly. Instead
all access to an object, for example to invoke an operation,
must be via an object reference.

3.4  Active Objects

Concurrency is by definition an integral aspect of multime-
dia presentation, and will certainly be a property of the type
of distributed application which PREMO is intended to sup-
port. Fundamental to such a model is the idea that several
threads of control, or processes, can be active within a sys-
tem at one time, and that such processes interact through
communication events. Here again there is a tension be-
tween adopting a simple model based on a particular set of
facilities, or a more general model that is harder to use with-
in the standard but is hopefully easier to implement.

On the one hand, there is a natural and appealing parallel
between the idea of a process and that of an object. A proc-
ess is an entity which encapsulates a thread of control and
that interacts with its environment through events; an object
is an entity that encapsulates state and interacts with its en-
vironment through operations. Languages such as Eiffel46

and Java24 have built on this view by treating processes (or
threads) as particular types of object; in Java for example,
an object will be active if it implements the Runnable inter-

face. In contrast, other languages have maintained a separa-
tion between these concepts. In Ada’95 for example,
processes are realised through a sophisticated task model,
quite separate from the notion of task, while in C++ there is
as yet, unfortunately, no standard model for dealing with
processes.

The PREMO object model assumes that all objects are
conceptually active; as we will discuss in section 4.1, the
standard does however, for efficiency reasons, define cer-
tain types of objects to have trivial activity. What the stand-
ard does not do is to mandate any particular mechanism
through which object activity should be realised. What is re-
quired is that each object has the capability to have an inter-
nal thread of activity. In parallel with this internal activity,
an object may receive requests for an operation to be in-
voked; these requests arrive at operation receptors. At any
time an object can select which requests it is willing to serv-
ice. The PREMO object model does not completely specify
the execution order for operations, for example pending re-
quests may be serviced sequentially or concurrently.

3.5  Operation Dispatching

The delays inherent in remote object access and operation
invocation mean that asynchronous operations are a funda-
mental tool in the development of distributed systems. Syn-
chronous operation calls, in which the caller is suspended
until the called operation terminates, are also required. To
support multimedia applications, the design of PREMO
also allows for a third kind of operation, sampled. A sam-
pled operation is similar to an asynchronous one, in that
once the operation has been invoked the caller is able to
continue its processing while the request is held in a queue.
The difference is that the queue of requests for a sampled
operation is effectively a one-place buffer, with any request
for the operation overwriting any pending request.

Each PREMO operation is defined as using one of these
operation request modes. The existence of these modes is
one of the more significant differences between the PRE-
MO object model, and that found in most programming lan-
guages, or indeed the model defined by the OMG.

3.6  Attributes

One of the positive aspects of object orientation is the em-
phasis on data hiding and encapsulation —  clients of an ob-
ject should only use the operations in the interface of an
object, and should not have access to the internal state. In-
stead, if access to a variable is required, it should be realised
through operations that retrieve and/or set the value of the
variable. A number of such state variables appear within
PREMO object types, and rather than define explicit opera-
tions for manipulating these variables, the standard intro-
duces the concept of an attribute. The definition of an
attribute looks like that of a variable, however an attribute
of an object type is understood as being a shorthand for a
pair of operations in the interface of that object type which
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set and get the value of an (internal) state variable. An at-
tribute can be declared as read–only, or write–only, mean-
ing that the corresponding ‘set’ or ‘get’ operation is not
available.

3.7  Non-object Data Types

SmallTalk was for some time presented as the prototypical
object oriented programming system, and many of the ideas
it pioneered were adopted in subsequent languages and sys-
tems. One of its strengths was its simple ontology; every-
thing in the system is presented as an object, even “atomic”
data such as numbers and characters. While this view pro-
duces a remarkably uniform model, it does have a number
of consequences. First, there are a number of general raised
by such an approach, including how one interprets the
“identity” of numbers, how one relates binary operations on
data “objects” to the conventional mathematical view of
numbers. Second, there is the issue of efficiency: treating
data values as objects implies that operations such as addi-
tion are handled by the same run-time dispatch mechanism
as other operation calls. Data processing in computer graph-
ics and multimedia often involves a considerable amount of
numerical processing with large data sets (geometric struc-
tures, digital image formats, etc.) and here the need to use a
general dispatch model is clearly an efficiency concern. Fi-
nally, while PREMO is intended to be language independ-
ent, the most likely targets for a language binding were seen
as the family of object-oriented languages, including C++,
Ada’95 and Java, in which object-oriented structures have
been added to a language in which primitive data are treated
as values. For these reasons, PREMO has adopted a model
that distinguishes between non-object data types, such as in-
tegers and characters, and object types. 

4.  The Foundation Component

The implementation of most multimedia systems involves a
number of fundamental concerns: control and management
of progression through media content, synchronisation be-
tween activities, time, and coordination. Existing standards
provide specific facilities for some of these tasks, while for
others an implementor may need to utilise a general library
(for example, for synchronisation) or develop ad-hoc solu-
tions. Without mandating any specific approach to these
general concerns, the PREMO Foundation component pro-
vides a set of general-purpose object and data types that can
be used by a developer to implement the functionality men-
tioned above. A developer can either use these facilities
“raw”, to create a customised architecture, or they can be
used via the higher level object types and services provided
by Parts 3 and 4 of PREMO which are described later in this
report. As the Foundation component is essentially a
toolkit, the remainder of this section describes its main pro-
visions in terms of the principle media system requirements
that are supported.

4.1  Structures, Services, and Types

The requirement that, conceptually, all PREMO objects are
active means that in principle all access to an object must al-
low for the possibility that the object will have its own
thread of control. Depending on the implementation plat-
form, this assumption may impose a high overhead on the
cost of accessing components of objects; such access will
for example have to pass through the operation receptor and
request handling infrastructure. For some aspects of media
processing, these overheads are unavoidable; they are need-
ed to support the provision of distributed services across a
media network. However, in a typical media application,
not all objects will necessarily be used as “active” entities
that provide services. One use of objects is as data encapsu-
lators, similar to the use of records (structures) in languages
such as Ada and C. There is clearly a trade-off here, be-
tween the elegance and simplicity of a homogeneous object
model on the one hand, and the practical problems involved
in storing and processing large multimedia datasets on the
other. For example, a visualisation application may need to
operate on a volume data set containing in the order of 106

vectors. If each vector is represented as an object, the over-
head in processing this dataset will become significant.

PREMO has adopted an approach that retains a funda-
mentally simple object model while allowing implementors
to avoid the overhead of the full operation request system
where it is not required. The approach is based on the top-
level organisation of the PREMO object type hierarchy
shown in Figure 1. All object types in PREMO are subtypes
of PREMOObject , in which fundamental object behav-
iour, such as the ability of each object to return information
about its type, is defined. Below this the hierarchy bifur-
cates. SimplePREMOObject  serves as a supertype for
those object types that represent data encapsulators. Such
object types are referred to as structures. EnhancedPRE-
MOObject  is the abstract supertype for those object types
that provide services, and which therefore incur the over-
head of the operation dispatch mechanism. This separation
is further formalised through the profiles that are defined in
each component to identify those object and non-object

SimplePREMOObjectEnhancedPREMOObject

PREMOObject

objects used as
passive data stores

objects used to
provide services

general object system
facilities

Figure 1:  Two kinds of object type in the PREMO hierarchy
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types that should be made available to clients of the compo-
nent. Each profile consists of lists of object types, either un-
der the category “provides type”, or “provides service”.
Only an object type that inherits from EnhancedPRE-
MOObject  is allowed to appear in the “provides service”
clause, and it is only objects of these types that a client can
expect to interact with through operation dispatching.

4.2  Inter-Object Communication

Although ultimately all interaction between objects within
a PREMO system takes place via operation requests, this is
not a particularly useful way of representing communica-
tion and cooperation within a distributed system. In the case
of multimedia, two models are now well known:
• Stream based models, in which information related to

processing is sent on communication channels or
media streams between objects; these may be the same
streams that are used to carry media data. 

• Event based models, in which there is conceptually a
separate mechanism by which specific operations in
the interface of a collection of objects can be invoked
in response to a specific situation in one object.

PREMO does define media streams that in principle can
be used to support communication between objects; these
are described in section 5.1. However, streams are a com-
paratively “heavyweight” facility, intended primarily to
manage the transport of media data. Consequently, the
foundation component defines a collection of object types
that provide an event management facility specifically for
inter-object communication.

The event mechanism is based on callbacks and event
handlers. Callbacks are now widely used in the graphics and
user interface management communities, having been pop-
ularised through systems such as the X library, GL, and
more recently the Java AWT20. Essentially, a callback is
just an operation in the interface of an object that will be in-
voked by some other entity within a system in response to
an event. A typical low level example is an operation in a
user interface object that a run time system will invoke to
notify the object of a mouse-button being pressed or re-
leased. Callbacks often take parameters that carry informa-
tion about the event that has taken place. Since the event
management facilities in PREMO are used to address a

range of concerns, it was sensible to introduce a systematic
approach for carrying event information. To this end, an
Event object types is defined to carry such information,
specifically the name of the event, a reference to the source
of the event, and additional data specific to the event. 

Figure 2 provides an overview of the approach. Objects
that are interested in a particular event, (object A in the fig-
ure) must (i) be of a type that inherits from the Callback
object type, which provides a general callback opera-
tion, and (ii) must register their interest with an instance of
the EventHandler  object type. When an object (B in the
figure) wants to notify the system that an event has oc-
curred, it invokes the dispatchEvent operation on an event
handler (iii), and all objects that have registered with that
handler to be notified of the event will have their callback
operation invoked (iv). Chains of event handlers can be set,
as the EventHandler  object type itself inherits from
Callback , and defines its callback operation to have
the same effect as dispatchEvent . Thus, object A in the
figure could be an event handler that subsequently distrib-
utes the event received by the callback to further objects.

In the case of a basic event handler, objects are only re-
quired to register with the handler if they should to be noti-
fied of a particular event; any object in the system can signal
to the handler that such an event has occurred. A specialised
form of event handler, called an ANDSynchroniza-
tionPoint, provides a richer service. Objects not only
register to be notified of an event, they also register as noti-
fiers for a particular kind of event. When appropriate, a no-
tifier signals the event handler as usual, however, the event
handler postpones the notification of objects interested in
the event until all objects that have registered as notifiers
have signalled the event to the handler. This object type has
a role in the general synchronization facilities of PREMO,
which are discussed next.

4.3  Synchronization

Like event handling, synchronization requirements in PRE-
MO span a range of levels. At the level of data streams, fine-
grained synchronization may be used to implement quality
of service requirements, for example maintaining an ade-
quate alignment between related audio and visual content.
At a higher level, a multimedia presentation will typically

callback
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Listener

A

Notifier

B

Event Handler

dispatchEvent
(i)

(ii)

(iii)(iv)

Figure 2:  Overview of Event Management



D.J. Duke and I. Herman / A Standard for Multimedia Middleware

© D.J. Duke & I. Herman

consist of a collection of components, some of which may
be presented in parallel. In addition to any fine level of syn-
chronization between such strands, synchronization be-
tween key milestones (such as the start/end of component
strands) may be required. Beyond direct control of media
presentation, synchronization may also be needed within
the control structure that manages the overall media system.

Synchronization models and mechanisms have been
widely reported in the multimedia literature, see for exam-
ple 7, 12, 25 and 42. Synchronization in PREMO is supported
at two levels - in terms of events, and in terms of time. Event
based synchronization has obvious application in dealing
with the processing of structured presentations composed of
more primitive media streams, however it also has a role in
synchronizing the presentation of the data within a stream,
where significant milestones are defined by the content of
the stream, rather than its absolute position. An example of
this is the synchronization of ultrasound or other medical
scan data, where milestones defined by physiological
events need to be aligned. Such an example is described in
more detail in 45. Time based synchronization is better
known, and involves ensuring that multiple activities reach
particular milestones at times specified relative to each ac-
tivity. 

The event and time-based approaches are both supported
by a common framework, the Synchronizable  object
type, which PREMO uses as the basis for representing,
monitoring and controlling the transmission and processing
of media data. Although the interface to this object type is
large, it is based around three main ideas:

1) An internal progression space, which acts as a coordi-
nate system for defining the concept of location within
some media stream or content. Synchronizable
objects do not themselves carry media data, but instead
are inherited by object types which are involved in the
transport and processing of such data. Conceptually,
the progression space represents the temporal extent of
some media representation, and progress through the
progression space is made during processing of that
media. 

2) Progression is controlled by a finite state machine; this
is actually achieved by having Synchronizable
inherit from another object type, called a Control-
ler, which is also defined in this component. Control-
lers are essentially finite state machines that can raise
events on entry to, exit from, and transitions between
states; their details are not of concern here. It suffices
to say that a Synchronizable  object can be in one
of four states: stopped, playing, paused, and waiting.
Conceptually, when an object is in the playing state,
progress is being made through its progression space.
Transitions between the states occur as a result of oper-
ation invocation, and also through interaction with ref-
erence points, which are discussed below. A number of
attributes define the parameters that affect how

progress is made, for example, the direction of progres-
sion. 

3) Reference points can be placed along the progression
space, either individually, or repeated with a given
period. Each reference point consists of an event, a ref-
erence to an event handler, and a special boolean ‘wait’
flag. When a reference point is encountered during pro-
gression, the event is sent to event handler specified.
The wait flag indicates whether progression should be
suspended at this point, and if has the value true, the
Synchronizable  object is placed into the ‘waiting’
state, where it will remain until the resume operation
in its interface is invoked. 

Reference points and the ‘wait’ flag are intended to be
used in conjunction with other PREMO facilities to imple-
ment synchronization schemes. For example, by combining
reference points with the ANDSynchronization  object
type described in section 4.2, processing of one part of a
presentation can be suspended once a particular milestone
has been reached until all other Synchronizable  ob-
jects that involved in implementing the presentation have
reached related milestones. An example of such a scheme is
shown in Figure 3.

4.4  Time

Media such as sound, video and animation is fundamentally
grounded in time, and to describe and control the presenta-
tion of such media it is necessary to have some means of
representing and measuring time. The question of how time
should be represented (for example, as a continuum, or dis-
cretized) has been the subject of much philosophical debate,
and is a non-trivial concern in areas such as real-time sys-
tems modelling and verification. PREMO adopts a prag-
matic approach, in which all representations of time are
based on ‘ticks’ produced by some clock. The granularity of
a ‘tick’ is not fixed by the standard, but rather depends on
the particular clock used. 

PREMO introduces object types to represent abstract
clocks, a subtype of clocks representing ‘real time’ system
clocks, and a resetable timer. All clocks are derived from
the abstract object type Clock, and specify a ‘tick unit’,
which is the unit (for example, seconds) represented by each
tick, and a measure of the accuracy of the clock. An actual
measure of time is obtained by invoking the inquireT-
ick operation in the interface - however, it is up to sub-
types of Clock to attach a meaning to the number of ticks
that are returned. Thus an object of type SysClock returns
the number of ticks (to its level of accuracy) since the start
of the defined PREMO era. The object type Timer defines
a start/stop timer by extending the interface of Clock with
operations for stopping, starting, and pausing the progres-
sion of time. For objects of this type, the number of ticks re-
turned by inquireTick  are the number of ticks that have
elapsed, while the object has been in its running state, since
it was started (i.e. ignoring time spent in the pause state).
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The link between time, and the event-based synchroniza-
tion model described in section 4.3, is defined by the object
type TimeSynchronizable , which couples the behav-
iour of a Synchronizable  object with that of a Timer
object, thus making it possible to measure and control the
speed of progression through the internal span of a syn-
chronizable object. The interface of TimeSynchroniz-
able allows reference points to be placed against positions
on the progression space specified in terms of time, for ex-
ample, placing a reference point 30 seconds from the start
of a video sequence. Obviously, the actual point in the video
content at which this reference point will be reached will de-
pend on the speed at which progression is being made
through the video. Two subtypes of TimeSynchroniz-
able are identified in the standard. A TimeSlave object
is one for which the rate of progression can be ‘slaved’ to
the rate of progression of some other time-synchronizable
object. A TimeLine  object can be used to set reference
points against milestones in real time.

4.5  Property Management

In the PREMO object model described in section 3., the at-
tributes and operations of a type are defined statically, when
the object type itself is defined. Once an instance of a type
is created, the interface of the object is fixed. This “static”
approach to object structure has clear benefits, not the least
being support for compile-time checking that can reduce the
likelihood of programmer error. However, as we mentioned
earlier in the report, more dynamic object models are also
available, and their potential use in graphics and multimedia
has been noted10. Features such as delegation, or on a more
modest level, the ability to alter the interface of an object at
run time (as adopted in Python55 for example) would play a
useful role in the implementation of constraint

management19 for example. However, the experience of the
MADE project31 was that implementing such features with-
in a class-based, ‘static’ object models was a significant
problem. 

PREMO introduces the concept of object properties as a
compromise between a purely static model and the facilities
offered by dynamic models. A property is a pair, consisting
of a key (i.e. a string) and a sequence of values. Each value
in the sequence can come from any PREMO non-object
data type, and as these include object references, an object
property is essentially a dynamically typed variable. The
EnhancedPREMOObject  type introduces operations to
define, delete, and inquire values associated with a given
property key. Properties can be used to implement various
naming mechanisms, store information on the location of
the object in a network, create annotations on object in-
stances, and underpin a framework for inter-object negotia-
tion. In support of this, the standard stipulates that objects
of certain types will have a property with a given key, and
possibly particular values. However clients of any object
whose type inherits from EnhancedPREMOObject  can
attach new properties at any time. Properties may also be
declared as ‘retrieve only’.

The basic facilities provided by EnhancedPREMOOb-
ject are developed by two further object types, Proper-
tyInquiry and PropertyConstraint . In the first of
these types, each property key can be associated with a cor-
responding ‘native property value’, which describes the
range of values (capabilities) that the corresponding proper-
ty can take on. This can be viewed as a form of dynamic typ-
ing. The PropertyConstraint  type extends this
model by ensuring that a value added to a property lies in
the corresponding native property value, if this exists. This
object type also introduces a number of ‘meta’ properties,
for example, the key ‘dynamicPropertyListK’ is as-
sociated with a list of values representing the keys of certain
properties. The operations bind and unbind allow keys

waiting

playing

position

position

dispatchEvent

resume

ANDSynchronizationPoint

Synchronizable objects

Reference
points

Figure 3:  Example of a Synchronization Scheme
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to be added to and removed from the values of dynamic-
PropertyListK . Only while a property’s key appears
under this property can the corresponding value be changed.

4.6  Object Factories

One specific use of properties is in the creation of objects.
In section 3.2 we noted that PREMO relies on its environ-
ment to provide certain fundamental services, and the crea-
tion of objects is one such service. In most object-oriented
programming languages, creation is a comparatively simple
mechanism, handled either by a language construct (e.g. the
‘new’ operator of Java20) or through some meta-object sys-
tem, in which classes are themselves objects and can re-
spond to message requesting object creation, as in
SmallTalk23. This situation is complicated in PREMO by
the use of properties to describe features of objects. For ex-
ample, a PREMO system may define a GIF decoder as an
object type that has a property, say “GIFversionK”
which can be set to either the value ‘87a’ or ‘89a’ represent-
ing the two versions of the specification that are in wide-
spread use. Alternatively a system may offer two types of
GIF decoder object, one for each version of the standard, in
which the property “GIFversionK” is fixed. There is
thus interaction between the structure of the type hierarchy,
and the use of property keys.

In fact, from the viewpoint of a PREMO client, the spe-
cific type of an object will often be uninteresting. What is
important is (i) that the object is a member of a subtype of a
given type, and/or (ii), that the properties of an object satisfy
a given constraint. In the example above, what the client
may really want is a device that can decode JPEG v87, and
the client is not concerned whether this device is an instance
of an object type specifically for this version, or is an in-
stance of a more general object type that can be configured
to the given requirement. 

In order to hide these issues, and provide a uniform in-
terface for object creation, the foundation component of
PREMO introduces the concept of an object factory. A fac-
tory is itself an instance of the GenericFactory  object
type that provides a single operation, createObject .
This operation accepts an object type, and a set of con-
straints in the form of a sequence of key / permitted value
pairs, and (if possible) returns a reference to an object that
is an instance of the given type or a subtype, and whose
properties satisfy the constraint. 

Factories are themselves objects, and a PREMO system
provides a factory finder object that is able to locate a fac-
tory capable of producing an object that will meet given
constraints.

5.  The Multimedia Systems Services Component

Multimedia systems typically integrate a variety of logical
and physical devices. For example input and output might
involve devices such as video cameras, microphones, and a
sophisticated speaker system. Processing in turn may in-
volve logical devices such as data encoders/decoders, me-
dia synthesizers (e.g. a graphics renderer), and a video
mixer. The data produced an consumed by these devices
takes a variety of forms, for example a discretised audio sig-
nal, a sequence of video frames, or a discrete graphics mod-
el. In turn, these forms can be encoded in a variety of
formats (ALAW and ULAW for audio, for example). Final-
ly, different protocols may be available to communicate
such data, depending on the source and destination hard-
ware, and on the available network infrastructure.

As explained in the introduction, PREMO does not aim
to define new standards for the encoding or transport of me-
dia data. Rather, it seeks to provide a set of facilities that ab-
stract away from the details of low level system services,
instead providing an application developer with a uniform
high level view of media processing. To this end, the multi-
media systems services (MSS) component of PREMO de-
fines the infrastructure for creating and maintaining a
network of heterogeneous processing elements for media
data. This includes object types for describing generic re-
sources, devices, and facilities for organising a collection of
such components into higher level units with a single inter-
face. MSS encompasses mechanisms by which media proc-
essors can advertise their properties for network
construction, can be interconnected and controlled, and can
be configured dynamically to match the needs of a network
while in operation.

MSS was originally defined by the Interactive Multime-
dia Association33, a large consortium of industrial vendors
and developers. IMA were aware of the work within SC24
on the development of PREMO, and donated the MSS
framework to the Committee. It was subsequently adopted
by SC24 as the basis of a distinct PREMO component. Dur-
ing the development of the standard, several of the main
provisions of MSS were refined and integrated with facili-
ties from the Foundation component.

5.1  The Paradigm of Media Networks

In order to abstract away from the details of specific media
types, media processing elements are viewed as “black box-
es” that can be interconnected through a high-level interface
to construct a network of such elements appropriate for a
given application. At this level, a PREMO application using
MSS resembles a dataflow network, where the nodes corre-
spond to media processors, and the data streams carry media
content. The adoption of a dataflow-oriented view of media
system architecture is not peculiar to PREMO. It has ap-
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peared in published approaches to multimedia systems (for
example, 26), and is also increasingly used in “plug and
play” applications environments, for example for
visualisation51. 

Figure 4 contains an example of a small network. It rep-
resents a video engine combining input from a local file (for
example, in MPEG) with audio clips stored as media prim-
itives within a remote database (scene). The audio primi-
tives in the scene are constructed by a number of audio
modellers (MIDI devices, or waveform editors, for exam-
ple). The combined audio/video output is presented on a TV
device. 

The devices in the figure are all instances or subtypes of
specialised object types defined in the fourth component of
PREMO, and which is discussed in section 6. What makes
the construction and operation of such a network possible
are that all of the object types involved extend the virtual
device and resource concepts defined in Part 3. This allows
the devices to be connected together, and subsequently to
exchange media data along the streams shown. In the re-
mainder of this section we describe the principle concepts
and types that the MSS component provides for the creation
of such networks.

5.2  Virtual Resources

A high level view of a media network is of a collection of
resources that cooperate in the task of creating and/or
processing media. These resources encompass physical de-
vices (such as cameras or mixing suites), software processes
such as graphics renderers and audio filters, as well as sup-
porting infrastructure such as connections and software for
managing collections of lower-level resources. What is fun-
damental to this view is, first, that a resource is something
that has to be acquired for a task, and second, that many of
what we consider to be resources are inherently configura-
ble. For example, an audio mixer may involve both hard-
ware and software elements, access to which must be
acquired before the mixer can be installed in a processing

network. In fact, a number of mixers might potentially be
available, differing in characteristics such as the number of
channels that they can accept, the kind of audio formats that
can be processed, and the type of filters that can be applied. 

The property description and management facilities de-
scribed in section 4.5 form the basis for realising this mod-
el. The characteristics of a particular resource are described
by properties; some of these can be set by a client of the re-
source, often to one of a set of possible values defined as the
native property values for the given key. Other properties,
representing immutable aspects of a particular resource (for
example the number of input channels to the audio mixer)
are read only, but still play an important role in establishing
a media network. 

The fundamental operation of a PREMO resource is de-
fined by the VirtualResource  object type. Each re-
source (or more generally, each subtype of
VirtualResource) defines a set of property keys and
values that are relevant to the description and control of the
resource. In addition, each resource encapsulates a number
of configuration objects. These objects store data about the
resource to which they are associated, and this information
is used by other objects, for example in providing commu-
nication services or quality of service management. The
MSS component defines three types of configuration object
explicitly; each inherits from PropertyConstraint :
• Format objects represent the details of a media for-

mat, for example the organisation of a bitstream;
• MultimediaStreamProtocol  objects provides

information about how media data is conveyed
between processing nodes; and

• QoSDescriptor  objects capture quality of service
characteristics, such as the level of guaranteed service,
and bounds on delay and jitter.

It must be emphasised that the PREMO standard does
not describe all details of these object types; for example the
specifics of particular media stream formats. The purpose of
these object types is to provide placeholders and hooks that
can be specialised or used as required within a particular im-
plementation environment. What the VirtualRe-
source object type does provide are operations for

sceneaudio
modeller

TVvideo
enginevideo file

handler

audio
modeller

Figure 4:  Simple Multimedia Network
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accessing particular configuration objects using semantic
names (strings), acquiring the physical and software re-
sources managed by the object, and validating whether the
configuration requirements expressed by the combination
of properties and configuration objects can be satisfied.
Each resource is also associated with a stream control ob-
ject, the purpose of which is described next.

5.3  Stream Control

Virtual resources are involved in the production and trans-
port of media data. Control and monitoring of media
streams is provided in PREMO by the StreamControl
object type. Different kinds of resource will have different
views on media streams, ranging from a low-level signal
oriented view, through levels that abstract signals into pack-
ets, and packets into media samples or chunks. This range
of views is accommodated by basing stream control on the
TimeSynchronizable  object type discussed in
section 4.3; by inheriting from this type, stream control can
be defined with respect to the coordinate system of the pro-
gression space, or (relative) time. To facilitate fine control
over progress, the StreamControl  object type refines
the state machine inherited from Synchronizable  by
introducing states that allow media content to be drained
(discarded) or buffered and subsequently released. These
facilities, along with the ability to place reference points
along the progression space connected to the event handling
system, are intended, for example, for use as part of an over-
all quality of service management strategy. A further object

type, SyncStreamControl , allows progression through
its stream to be synchronized (slaved) explicitly with the
progression of some other object that is derived from the
Synchronizable  type. 

Virtual resource objects have an associated Stream-
Control object that allows, where applicable, monitoring
and control of the end-to-end processing carried out by that
resource. Stream control objects are also a feature of an im-
portant kind of resource, the virtual device.

5.4  Virtual Devices

The “nodes” in the dataflow network shown in Figure 4 are
defined to be so called VirtualDevice  objects that form
the basic building block for interaction and processing ca-
pabilities within PREMO. The anatomy of a virtual device
is shown in Figure 5. 

The principle features that the VirtualDevice  object
type adds to a resource is the presence of “openings”, called
ports, which act as input or output gateways for the virtual
device, and the concept of a “processing element”. Ports are
the means by which data can be passed from one device to
another. A port is not itself an object, rather, it an identifier
or handle that is used to reference a particular opening, and
through the interface of a virtual device, access and control
information about that opening. Like a resource (and hence
a device itself), each port is associated with a collection of
configuration objects that characterise the flow of data
through the port. More specifically, each port has associated
QoSDescriptor , Format, and MultimediaSt-
reamProtocol  objects. The client can set the properties
of these objects, and can refer to them when configuring a
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network. These configuration objects are combined into a
port configuration object, which also contains a reference to
an event handler dedicated to that port, and a Sync-
StreamControl  object that controls and monitors the
transfer of media data via the port. Just as with Virtual-
Resource , an operation is provided by VirtualDe-
vice to validate the requirements captured by the
configuration of each port.

The “processing element”, shown within the virtual de-
vice in Figure 5, is a conceptual, rather than concrete, com-
ponent. That is, there is no object type for a processing
element, nor does the VirtualDevice  introduce varia-
bles or operations to implement it. The only part of a virtual
device that directly relates to processing is the end-to-end
stream control and configuration objects inherited from
VirtualResource . One of the tasks to be addressed in
implementing the VirtualDevice  type is to decide how
the transfer of media data within the device is to be effected.
By not being prescriptive about this aspect, the PREMO de-
signers have sought to better accommodate the wide range
of existing media processing software that might be
“wrapped” within a subtype of VirtualDevice  for use
in a PREMO–based network. 

5.5  Virtual Connections

The lines in Figure 5 entering and leaving device ports rep-
resent the flow of media along streams. PREMO itself does
not define a “Stream” object type, since much of the detail
here depends both on the underlying network technology,
and the context of the connection (i.e. whether two devices
are on the same host, local network, etc.). Streams however
are established and maintained by objects derived from an-
other subtype of VirtualResource , the Virtual-
Connection  type. As a resource, a virtual connection
object contains a stream control object that represents the
end-to-end flow of media data along the stream controlled
by the connection. A subtype of VirtualConnection sup-
ports multicasting, with operations to attach and detach a
device/port combination to and from the connection. All
connections are unidirectional.

If the underlying devices are located on the same hard-
ware, a connection may be realised by directly linking the
input and output ports of the associated devices. More gen-
erally, the devices will be on distinct, possibly remote, ma-
chines and using different local facilities for inter–object
communication. In such cases a virtual connection may
need to create a virtual connection adapter, that provides
appropriate interfaces to the end-parties while managing
any recoding or translation of raw data required. Connec-
tion adapters exist only as concepts within the PREMO
standard; they do not correspond to any particular object
type, and in fact their implementation will in general require
a collection of objects to manage the transfer between the
different protocols. 

5.6  Higher-Levels of Organization: Groups and 
Logical Devices

Even the simplest non–trivial media network, involving two
devices with a single connection between them, involves a
significant number of objects: the devices themselves, the
connection, the connection adapter (if needed), event han-
dlers for the ports and devices, and possibly supporting ob-
jects to, for example, monitor quality of service. For a
realistic application, the number of objects is significantly
greater, and the problem of tracking which particular groups
of objects are relevant to any given part of the network be-
comes significant. 

To prevent organizational anarchy, it is often convenient
for clients to interact with a single object that represents
each “significant component” of a network. PREMO pro-
vides a Group object type to support management of a col-
lection of devices and connections. Group objects are
resource objects which control a number of other virtual re-
sources (in particular devices and connections), and their re-
spective network. By default, the constituent devices
remain hidden to the external client; instead, groups provide
a single entry point for stream control, as well as other serv-
ices. By using the basic group interface, the client does not
have to know about the interfaces of these constituent de-
vices. As Group inherits from VirtualResource , each
group is itself a resource, and consequently, the configura-
tion of group components can be validated, and the compo-
nents themselves acquired, via the one group interface,
rather than individually. As a group is itself a resource, a
group can itself be a member of a further group.

Although groups can be organized into hierarchies, it is
important to remember that a group is not a device; it has no
ports of its own. Instead, a client using a number of groups
is responsible for ensuring that, where necessary, compo-
nents of distinct groups are connected. A specialised form
of group, called LogicalDevice , combines the central
resource management capabilities of a group with the
processing model of a virtual device. Resources are added
to and managed by a logical device in the same was as a
group, but the client of a logical device can also dynamical-
ly define ports on the interface of the device. When defined,
each port on the logical device is associated explicitly with
a port on a device that it manages. A logical device thus ac-
quires input and output ports, and can be built into a net-
work in the same way as other devices.

5.7  Working in Unison

At this point we have described the main features of the
multimedia systems services component. Given the impor-
tance of this component to the aim underlying PREMO, of
supporting the development of distributed multimedia sys-
tems, it is useful to summarise the roles played by the vari-
ous object types described here. We do so by outlining the
steps involved in setting up a network using MSS.
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1) Assuming that the client has a suitable factory, it first
uses the factory to create the various objects (devices,
connections, and other resources) that make up the net-
work. Part of the specification for the objects given to
the factory may involve constraints on properties of the
objects, for example a device is able to receive data
using a particular format.

2) The connections are defined by sending each connec-
tion object a Connect  request, specifying the source
and destination device/port combinations.

3) The client may create a group object, and then add all
of the resources to the group by sending the request
addResourceGraph  to the group. At this point the
structure of the network has been fixed, but no actual
resources (e.g. bandwidth) have been allocated to it.

4) Using the acquireResource  request of the group
object, the client attempts to allocate the resources
needed for each of the objects in the network. Inability
of the underlying system to meet this request will result
in an exception which the client can detect. In this situ-
ation it may modify its requirements by changing prop-
erties of any of the objects within the group, for
example by settling for a less reliable connection.

5) Once the resources have been allocated, the client can
start the transport of media data through the network by
accessing the StreamControl  object of the group.

6.  The Modelling, Rendering, and Interaction 
Component

A feature of the MSS component is that its provisions are
independent of the data processed by the devices and re-
sources within a network. Thus the same approach can be
used for setting up a video editing system as for setting up a
virtual reality modelling and rendering environment. The
fourth component of PREMO describes general facilities
for the modelling and presentation of, and interaction with,
multidimensional data that utilises multiple media in an in-
tegrated way. That is, the data may be composed of entities
that can be rendered using graphics, sound, video or other
media, and which may be interrelated through both spatial
coordinates and time. 

The MRI component is interesting for two reasons. It is
the point within the PREMO standard where the actual
structure and content of media data becomes significant. It
is also the point at which ‘traditional’ computer graphics,
i.e. modelling and rendering of synthetic scenes, is integrat-
ed into the broader concerns of multimedia. This integration
within an object-oriented framework highlights a signifi-
cant design issue regarding the implementation of graphics
(and for that matter, other media) processing, which we dis-
cuss in the first of four sub-sections.

The actual description of the MRI component ranges
over three concerns, which are each covered by a separate
heading thereafter. Section 6.2 concerns is the design of a
hierarchy of modelling primitives for characterising multi-
media presentation. Section 6.3 deals with the collection of
devices that extend the VirtualDevice  type of the MSS
component to allow modelling, rendering and interaction to
take place within a media network of the kind described in
section 5.1. Section 6.4 focuses on a particular device, the
Coordinator , that plays a key role in mapping presenta-
tion requirements of media streams against the devices that
are available for processing media.

6.1  Object-oriented Rendering

A fundamental question that must be addressed within any
object oriented graphics or multimedia system concerns the
allocation of fundamental behaviour, such as transforma-
tions and rendering, to object types defining media content
within an API. Two quite distinct approaches emerge. The
first is to attach behaviour to the object types that are affect-
ed by that behaviour. For example, geometric objects and
other kinds of presentable media data can be defined with a
‘render’ method, with the interpretation that such an object
can be requested to produce a rendering of itself. Such an
approach can be extended to collections of presentable ob-
jects, and fits well with the concept of an object as a con-
tainer for data along with the operations that manipulate that
data. The second approach is to define objects whose prin-
ciple purpose is to act as information processors, and which
receive the data that they operate on as parameters to oper-
ation requests or through some other communication mech-
anism. In this case, a ‘renderer’ object would receive
presentable objects as input through some interface, and
produce a rendering of those objects via some output mech-
anism. From the discussion in section 5.4 it may already be
clear that PREMO has adopted for the second option. Sep-
arating operations (in the form of devices) from the data that
they manipulate may appear to violate a central tenant of
object–oriented design. However, it has two important ben-
efits for PREMO.

1) First, a direct and desired consequence of a distributed
model is that one model or data set may be rendered by
several processes working in parallel at various loca-
tions. It is difficult to see how this can be realised effi-
ciently in an architecture in which each media object
renders or processes itself. Either such objects must be
able to support multiple concurrent threads internally,
or any object that is to be rendered must first be copied.
In contrast, treating renderers as a form of processing
device means that multiple renderers can be created
(relatively) easily to operate on a given database of
objects representing media data (see for example
Figure 4). Such a database can either be shared by sev-
eral renderers, or there may be several copies of the
data. Strategies for managing the distribution, update,
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and access control of data within such a system are
well known, and thus this approach is rather more prac-
tical and flexible than the alternative.

2) It supports an approach to application development
based on interconnecting a number of processing
devices —  irrespective of whether those devices are
operating on continuous media such as video, or a
series of discrete data sets within a rendering pipeline.
Once such a network has been defined, it can be used
for a variety of data sets or models, and can be readily
modified. In contrast, in an architecture where (for
example) graphics objects render themselves, the con-
trol of processing and flow of data is encoded within
specific operations, making it difficult to develop an
application that can be modified or extended without
wholesale reprogramming of those operations. 

By opting for a model in which media data is essentially
passive, while media processors are active objects that pro-
vide services, PREMO aims to provide a uniform, integrat-
ed treatment of both digital media and synthetic graphics.

6.2  Primitives

The potential domains of application for a system such as
PREMO are diverse. When considering the design of a
component for modelling and rendering, this raises the dif-
ficult problem of identifying an appropriate set of ‘media
primitives’ —  or indeed, whether to include any model of
primitives at all. Two directions initially appear feasible
when considering how primitives for modelling and render-
ing could be supported in a system like PREMO. First, it
would be possible to take an existing set of primitives from
an established system, for example the node set provided by
Open Inventor56, and adopt these to the needs of PREMO,
possibly through some further extensions. The problem
here is in finding a set of primitives suitable for the range of
applications addressed by PREMO, and then deciding on
what, if any, extensions to include. The second approach is
to derive some minimal framework of elementary primi-
tives from which those used in practice can be derived by
composition. 

Although an interesting research problem, both this and
the first approach are biased towards a model in which PRE-
MO devices for modelling and rendering would effectively
be implementing a new standard for graphics primitives. It
is simply unrealistic today, given the investment in graphics
and media technologies, to expect industries to adopt a new
standard for media data. Instead, the philosophy underlying
PREMO is to view the standard as a framework for support-
ing the integration of different modelling and rendering
technologies, with their own models of media data, within a
heterogeneous distributed system. This has already been re-
flected in the discussion on virtual devices, where we noted
that the virtual device specification does not mandate any

specific strategy for implementing the processing element,
thus allowing existing media processors to be accommodat-
ed. 

In this context, the role of primitives is rather different
from their role in a detailed standard such as PHIGS32.
PREMO clearly cannot attempt to describe a closed set of
primitives for modelling and rendering. Instead, it defines a
general, extensible framework that provides a common ba-
sis for deriving primitive sets appropriate to specific appli-
cations or renderer technologies. Graphics modellers, for
example, may use specific representations such as construc-
tive solid geometry, NURBS surfaces, particle systems etc.
Audio modellers may use primitives that represented cap-
tured waveforms, or raw MIDI data for synthesis. The aim
of the primitive hierarchy defined in this part is to provide a
minimal common vocabulary of structures that can be ex-
tended as needed, and which can be used within the proper-
ty and negotiation mechanisms of PREMO as a basis for
devices involved in modelling and rendering to identify
their capabilities for use in a network. The seven categories
of primitive defined in PREMO are:

1) Captured  primitives. These allow the import and
export of data encoded in some format defined exter-
nally to PREMO, for example MPEG40.

2) Form primitives. Here the appearance of the primitive
is constructed by some renderer or more general media
engine. These include geometric primitives (polylines,
curves etc.), as well as audio primitives for speech and
music, etc.

3) Wrapper primitives allow an arbitrary PREMO value
to be carried as a primitive, for example for use in
returning the measure of an input device. 

4) Modifier  primitives alter the presentation of forms,
for example visual primitives encompass shading, col-
our, texture and material properties that affect (for
example) the appearance of geometric primitives. 

5) Reference primitives enable the sharing and reuse
of clusters of primitives via names that can be defined
within structures.

6) Forms and modifiers are combined within Struc-
tured primitives. An Aggregate is a subtype of
Structured  which contains a set of primitives,
where some members of the set may be interpreted in
application dependent ways; it is thus up to an applica-
tion subtyping from Aggregate to impose a specific
interpretation on such combinations. Of particular
importance, given that PREMO is concerned with mul-
timedia presentation, is the TimeComposite  primi-
tive and its subtypes which allow a time-based
presentation to be defined by composing simpler frag-
ments. Subtypes of TimeComposite  provide for
sequential and parallel composition, as well as choice
between alternative presentations as determined by the
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behaviour of a state machine; these primitives are simi-
lar to provisions found in the HyperODA standard2.
Additional control over timing is achieved via temporal
modifiers, and subtypes of TimeComposite  define
events that can be used within the PREMO event han-
dling system to monitor the progress of presentation. 

7) Tracer primitives carry an event. This event can be
detected at the port of a device configured to use
MRI_Format , and will be dispatched to the event
handler associated with the port. This facility is used
for coarse-level synchronization. 

6.3  Modelling and Rendering Devices

The MRI component derives a number of object types from
the VirtualDevice  type of the MSS component, as de-
scribed in section 5.4. As in MSS, these do not represent
concrete devices. They instead define the interface that a de-
vice must offer in able to provide certain kinds of service
within a PREMO system, and in the case of Part 4, with
primitives derived from the hierarchy described above. The
device network shown in Figure 4 incorporates a number of
devices, the types of which would inherit from MRI object
types. The MRI component defines a subtype of Virtu-
alDevice  for use as the base type for deriving devices for
modelling, rendering and interaction. The so-called
MRI_Device  object type is required to support a format at
its input and/or output ports that allows MRI primitives to
be transmitted and received. Such a device is also required
to define properties setting out which primitives it can ac-
cept, and some measure of the efficiency with which it can
process primitives. In the standard, the following speciali-
sations of MRI_Device  are defined:

1) Modeller  and Renderer guarantee to provide an
output or (respectively) input port that accepts
MRI_Format  streams for carrying primitives. The
devices also contain properties that characterise their
ability to process primitives.

2) A MediaEngine is a device that can act both as a
Modeller  and a Renderer , i.e. a device that can
transform one or more streams of primitives into new
streams.

3) The Scene object type defines a database that can be
used to store primitives produced and/or accessed by
other devices within a network. It is assumed, for
example, that multiple devices may have concurrent
read access to specific primitives, but the exact form of
concurrency control is not specified. The interface of
the device allows requests for access to be granted or
denied depending on the policies adopted. 

4) Two devices are introduced to support interaction. The
InputDevice  object type (a mouse would be a con-
crete example) supports interaction in either sampled,
request or event mode through the stream and event

handling facilities defined in other parts of PREMO,
while the Router object type allows streams of data
to be directed based on an underlying state machine.

When accessing primitives stored in a scene, or coordi-
nating the processing of multiple media streams, it is neces-
sary to be able to determine when a particular stream has
been fully processed (or received, in the case of database ac-
cess). This task is supported by the Tracer primitive,
which carries a reference to an Event. Whenever such a
primitive is encountered at the port of a device that is a sub-
type of MRI_Device, the event carried by the tracer will
be dispatched to an event handler associated with the port.
In this way, other objects that need to be aware of the
progress of media processing can register interest in such
events and be updated of processing activity.

6.4  Coordination

By using the primitives derived from the hierarchy de-
scribed in section 6.2, an essentially declarative description
of a multimedia presentation can be defined. Typically
however, at some point this presentation will need to be
processed or presented, and during this activity the internal
structure of the presentation, for example as a collection of
media data to be presented in parallel, becomes important.
If a media network contains a device that can process such
structures directly, the problem is solved. However, it is
also possible that the presentation of a structured media
primitive will require the services of multiple devices,
whose activities must then be coordinated to reflect both
coarse synchronization constraints, as well as quality of
service requirements, inherent in the declarative model.

The MRI component defines a subtype of
MRI_Device  called a Coordinator . Such a device en-
capsulates a number of other media devices (derived from
VirtualDevice), each of which provides the coordina-
tor with one input port. The coordinator itself has one input
port, and as it receives primitives in MRI_Format, the co-
ordinator is responsible for decomposing any structured
presentation into components that can be processed by the
devices that it encapsulates. In the example, the coordinator
may receive presentations that involve synthetic graphics,
video, and audio components. The audio component of the
presentation is delegated to the logical device responsible
for audio rendering, while the graphics and video are man-
aged by the second logical device. The coordinator is also
responsible for ensuring that its components maintain any
synchronization constraints captured by the overall presen-
tation. It may achieve this by monitoring the overall end-to-
end progression of its encapsulated devices, and placing
synchronization constraints on those progression spaces, or
by using more specific mechanisms available within PRE-
MO or a given implementation.
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7.  Closing Remarks

This report has presented an overview of the PREMO stand-
ard. In the process, we have set out some of the design con-
straints that have determined the shape of the standard, and
have discussed some of the alternatives that were consid-
ered. The description of PREMO object types and their be-
haviour has been, by necessity, incomplete and informal. In
the process of developing the standard, the formal descrip-
tion techniques LOTOS8,39 and Object-Z16,17 were used to
develop more precise models of particular aspects of PRE-
MO, specifically the object model13 and the synchroniza-
tion facilities18.

Further information about the development of the PRE-
MO standard can be found in the papers 14, 15, 29, 30, and 31;
it must be remembered however, that the content of the
standard evolved, and the material in some of these papers
reflects some design choices that were subsequently modi-
fied. The definitive description of PREMO is, of course, the
official ISO/IEC Standard, published in four parts 35, 36, 37,

and 38. The authors are currently producing a book on PRE-
MO, which is expected to be published late in 1998.
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