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Abstract
This paper develops an approach for the splat-based visualization of large scale, non-uniform data. A hierarchical
structure is generated that permits detailed treatment at the leaf nodes of the non-uniform distribution. A set of
levels of detail (LODs) are generated based on the levels of the hierarchy. These yield two metrics, one in terms
of the spatial extent of the bounding box containing the splat and one in terms of the variation of the scalar field
over this box. The former yields a view-dependent choice of LODs while the latter yields a view-independent LOD
based on the field variation. To show the utility of this general approach it is applied to a set of application data
for a whole earth environment and some test data. Performance results are given.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Display Algorithms.
Volume Rendering, Splatting, Multiresolution, View-Dependent, Visualization

1. Introduction

This paper presents the following results. It develops an
approach for organizing multiresolution splats of 3D data
into a hierarchical structure. The hierarchical structure and
the multiresolution splats are generated automatically for a
given dataset. The structure is detailed in terms of a global,
earth-based hierarchy. However, the methods are general
and applicable to other types of data distribution. A view-
dependent procedure permits on-the-fly selection of levels
of detail (LODs) based on the user viewpoint, using an
adjustable screen space error metric. This results in effi-
cient display with emphasis given to important or visually
prominent details. The method is extended to non-uniform
data distributions, including those containing incommensu-
rate parts and distinctly different topologies. Lastly, the ap-
proach is applied to non-uniform 3D weather patterns with
holes and to various test datasets.

We use splatting because it is efficient and lends itself to
a multiresolution framework. Splats can be treated indepen-
dently and, if desired, without reference to the underlying
data topology. Thus splats can be applied to irregular volume
data sets20, 10 and even to unstructured points with no ex-
plicit topology. (However, as discussed below, optimal splat-

ting would take into account the local distribution of data
points around the splat.)

1.1. Non-uniform data

Increasingly there are sources that produce non-uniform 3D
data. This is especially true for digital data acquired from
measuring devices or sensors. But it is also true for com-
puter simulations such as finite element calculations (e.g.,
for a helicopter) that employ multiple, interlocking curiv-
linear meshes. The goal is ultimately to view relevant data
simulaneously, such as real acquired data and virtual simu-
lation results that may have completely unrelated data distri-
butions.

To visualize non-uniform data in the form of unstruc-
tured grids, the approach is usually to resample on a regular
grid 16, 18. However, there are data for which the details of
the original distribution are important. For the Doppler radar
data discussed below, the signature of a severe storm cell or
even a tornado may be contained in a few sample points. The
same is true for a computational fluid dynamics simulation
of combustion in an engine, where the flame front may be
only a few sample points wide and quite non-flat. A regu-
lar sampling that would capture these features will typically
produce lots of extra points, even in adaptive, hierarchical
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approaches where higher resolution samples are displayed
only where needed. A more efficient alternative is to use a
sampling that depends on the local distribution of the origi-
nal data. The trade-offs here are similar to those in using reg-
ular triangulations6 versus triangular irregular networks4 to
represent complex surface geometry.

Ideally, one would like an approach that automatically de-
cides when to perform a regular resampling of the grid at
lower resolutions and when to reveal the details of the non-
uniform structure at high resolution. To do this, we have cho-
sen a view-dependent hierarchical structure that is regular in
its upper part but reveals the non-uniform distribution of the
original data in its lower part. A multiresolution splatting
structure fits naturally into this hierarchical scheme. In ad-
dition the scheme can be extended to the fusion of different
types of data structures for simultaneous visualization.

2. Previous Work

Splatting17 is a technique where a continuous volume is rep-
resented for the purpose of rendering by the compositing of
independent footprint functions. The footprints are projec-
tions onto screen space of 3D kernels centered on the sam-
ple points in the volume dataset. This method can provide
high quality images and is efficient with respect to other di-
rect rendering algorithms (e.g., ray-casting) since it uses 2D
convolution of samples along the viewing ray instead of 3D
convolution, such as in ray-casting. Since they are precom-
puted, the splat kernels can also be of higher quality than are
typically used in ray-casting methods. Recently Zwicker et.
al. 20 have developed a general framework for splatting that
removes aliasing artifacts without excessive blurring and is
suitable for regular or irregular volume datasets. This work
is based on a similar but less general approach developed by
Swan et. al.15 The method of Zwicker et. al. derives a signif-
icant part of its efficiency from the use of elliptical Gaussian
kernels for which one can derive an analytic expression of
the footprint in screen space. There has been relatively little
work applying splatting to non-uniform data. Ma et.al. ap-
ply spherical splats to the visualization of 3D shock waves
on unstructured grids9. They center the spherical splat on
each grid point and use a radius that is the average distance
to the nearest neighbors. This can be a gross approximation
for highly non-uniform data. An accurate splat would re-
flect the shape of the corresponding local region around a
data point (or, generally, the enclosing Voronoi cell). Since
this shape is not elliptical in general, it cannot be treated
with existing compositing algorithms20. An alternative is
to place additional points in the neighborhood of the ex-
isting data point, taking into account the local data distri-
bution, and place elliptical Gaussians at these points. The
criterion is to provide uniform coverage over the space of
the volume. Mao10 has done this using a 3D generaliza-
tion of a stochastic Poisson disk algorithm. This approach
gives good results when applied to multigridded hexahedral

or tetrahedral datasets. However, the stochastic resampling
step is quite time-consuming. Also, the resulting resampled
dataset can be a factor of 20 or more larger than the orig-
inal non-uniform dataset. Instead of a stochastic method,
we use a much faster procedural method for placing addi-
tional splats in the neighborhood of each non-uniform data
point. Added points can also be aggregated for multires-
olution rendering. Axis-aligned sheet buffers17 are often
used in splatting to improve efficiency and remove artifacts
such as color bleeding. The latter is due to the independent
splat approximation in areas where splats overlap. However,
sheet buffers introduce popping artifacts, especially notice-
able during interactive rotation from one set of sheet buffers
to another. Recent work removes the popping artifacts by us-
ing sheet buffers parallel to the image plane instead of par-
allel to the data axes12. However, sheet buffers are less ap-
propriate for non-uniform data, since they amount to a regu-
lar resampling where high resolution details may be lost, as
discussed above. An alternative is to slice the splats along
the direction perpendicular to the image and interleave the
slices. Hierarchical techniques can improve volume render-
ing interactivity through progressive refinement using esti-
mated errors stored at each level of the hierarchy5, 19 Ma
et al 8 reported experimental results in which they exam-
ined the performance benefits of various types of quantiza-
tion in a system that stored time-varying volume data in a
sequence of octrees. Sutton and Hansen14 have shown that
a flexible branch-on-need tree (TBON) can efficiently ac-
commodate temporal changes in the data. These approaches
and most others consider uniform data. Our hierarchical ap-
proach applies to non-uniform data and is extended to in-
corporate view-dependence, permitting the system to effi-
ciently and continuously present the best view as the user
viewpoint changes. In addition the approach provides a gen-
eral, adaptive tree structure that is generated automatically
and is appropriate for fusing incommensurate datasets. Al-
though we do not consider time-dependent data in this paper,
our tree structure can be extended to the TBON14 or other
time-dependent structures.

3. Embedded, Adaptive Volume Tree Structure

We present a method for automatically generating a volume
tree structure in an environment where there may be differ-
ent types of data with different organizations and several
orders of spatial magnitude difference between overviews
and close-ups of important details. We particularize to earth-
based data in this paper, but the method is general. At the top
level, the structure has an overall hierarchy that is effective
in supporting all the different types of data. At mid level are
volume trees that align with top-level nodes and may differ
in different regions depending on the data organization in the
regions. At the bottom the structure depends on the details
of the non-uniform data distribution. This structure is shown
for earth-based data in Fig. 1. Here the top-level structure is
a forest of quadtrees that covers the entire earth3. The mid-
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level is a volume tree aligned with a quadtree node. At the
bottom level the leaf nodes contain zero, one or two non-
uniform data points.

The structure in Fig. 1 turns out to work well for atmo-
spheric data. The atmosphere is a thin layer with respect
to the earths ellipsoid, so it is appropriate to use a lat/lon
quadtree until the lat/lon dimensions are of the same order
of magnitude as the altitude dimension. After that we switch
to a volume tree. The quadnode is divided intoNx×Ny×Nz

bins wherex,y,z are the longitude, latitude, and altitude
directions, respectively. The bin sort of non-uniform data
points is fast (O(n) wheren is the number of points). This
is a key step because the bins provide a structure that is
quickly aggregated into a hierarchy for detail management
and for view frustum culling. However, the data element po-
sitions are retained in the bins for full resolution rendering, if
needed. The hierarchy provides significant savings in mem-
ory space and retrieval cost since only data element coordi-
nates for viewable bins at the appropriate LOD are retrieved.
Note that the bins are not rectilinear in Cartesian space. At
present we ignore this effect in performing the volume ren-
dering because the earths curvature is small for the bins ren-
dered and lat/lon quadcells are nearly rectilinear except at
high latitudes. In general, the bin widths in each direction
are non-uniform (e.g., each of the bins in the, say,Nz direc-
tion may have a different width). This gives useful flexibility
in distributing bins such as, for example, when atmospheric
measurements are concentrated near the ground with a fall-
off in number at higher altitudes.

Each of the dimensionsN in thex,y,zdirections is a power
of 2. This permits straightforward construction of a volume
hierarchy that is binary in each direction. Our tests show that
this restriction does not impose an undue hardship, at least
for the types of atmospheric data we are likely to encounter.
The number of children at a given node will be 2, 4, or 8. If
all dimensions are equal, the hierarchy is an octree. Typically
the average number of children is between 4 and 8. We re-
strict the hierarchy to the following construction. (Others are
possible.) Suppose thatNx = 2m , Ny = 2n , Nz = 2p where
m> n > p. Then there will bep 8-fold levels (i.e., each par-
ent at that level has 8 children),n− p 4-fold levels, andm−n
2-fold levels. If two out of three exponents are equal, there
will be only 8-fold and 4-fold levels. The placement of 2,
4, and 8-fold levels within the hierarchy will depend on the
distribution for the specific type of volumetric data.

The above bin size is determined by the minimum spacing
of the underlying data points. As stated above, there are no
more than two points per bin. The reason for this choice is
that we want a smooth transition between rendering of bin-
based levels of detail and rendering of the raw data. If the
data are distributed in well-separated clumps, an immense
number of regularly spaced bins is required. However, in
our procedure only filled bins are stored and accumulated
into the tree. Where there are no filled bins, there are no tree

branches. As the bins are accumulated, the properties at par-
ent nodes are derived from weighted averages of child prop-
erties. The parent also carries the following factors: (1) the
total raw volumetric data elements contained in the children;
(2) the total filled bins contained in the children; (3) the av-
erage scalar field value and its variance. The dimensions of
each node in the tree can easily be calculated on-the-fly and
are not stored. Note that the bin structure and volume hier-
archy are static in space. However, we can efficiently apply
this structure even to distributions of volumetric elements
that move in space as long as the range of local spatial den-
sities (and the volume of the data) does not change much
over time.

Figure 1: Embedded, adaptive volume tree in global earth
environment.

4. View Dependence

The above hierarchical structure provides efficiencies in ren-
dering the volumetric data. Adjusting an error metric derived
from the hierarchy (e.g., in terms of the RMS deviation of
scalar values contained in a node from their average value)
permits one to select from the multiple resolutions contained
in the hierarchy. One could use a larger error for initial in-
teractive visualization of the volume and then, when pausing
for more detailed inspection, smaller errors for progressive
refinement of the volumetric rendering. Such a procedure
could also be employed for compression and then progres-
sive transmission of the volumetric data. Similar approaches
have been developed by others5, 19. The hierarchy also per-
mits quick culling, as the viewpoint changes, of volume ele-
ments that are not in the view frustum.

Interactive navigation of large scale data requires addi-
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tional efficiencies. Here some data elements may be close to
the viewpoint, some at midview, and others far away from
the viewpoint. The rendering system should take into ac-
count the projection of these elements onto the screen and
thus their perceivability to the user. Several neighboring el-
ements that are small or far away may fall within a single
pixel. Such elements should be rendered at lower resolution,
resulting in an image that displays several LODs at once. To
be effective such a set of LODs should be updated every time
the viewpoint changes, which can be every frame for contin-
uous navigation. To achieve these goals, we will extend hier-
archical splatting by using a variation of the view-dependent
approach that has been applied by us6 and others7, 4 to sur-
face polygonal data.

The view-dependent approach needs a measure of spa-
tial extent, which is provided in the volumetric case by the
cell size of the nodes in the hierarchy. The non-uniform data
points in the leaf nodes are handled separately. (See below.)
Using the notation of the last section, the cells are rectilin-
ear with sidesLx, Ly, Lz. SupposeLz is the largest dimen-
sion. Then, depending on orientation, the screen projected
linear footprint of the cell can have a value ranging from
(L2

x + L2
y)1/2 to (L2

x + L2
y + L2

z)1/2. (See Fig. 2) One could
store the orientations of the axes for each of these sides and,
using the current viewpoint location, compute the precise
footprint for each cell. For the earth-based case, not much
information need be stored (at the expense of some compu-
tation to find the current cell orientation) since the cells are
regular and everywhere along a radial from the earths center.
Currently we have chosen to forego extra computation and
use a fixed linear footprint for all orientations, conservatively
set at(L2

x +L2
y +L2

z)1/2. A simple analysis of edges visible
in various orientations shows that footprints near this size are
more likely than those near, say,(L2

x + L2
y)1/2 in size. This

choice also generalizes to other hierarchical structures that
may not be so uniform in orientation. The footprint is then
perspective projected onto the screen (see Fig. 2), converted
to pixels, and compared to a screen space error metric. Test-
ing is done from parent to child in the hierarchy until the
footprint falls below the error metric. Performance results
in the Application section below show that the fixed linear
footprint is not overly expensive in terms of extra splats ren-
dered. An error metric of 1 pixel should result in an image
that is barely distinguishable from one rendered with high
resolution splats, depending on how close using an averaged
splat is to compositing.

We now have two error metrics controlling the rendering
speed and quality, a screen space metric and a scalar value
error metric. The screen space metric addresses pixel-based
visual quality. The scalar value metric determines the reso-
lution of detail in the scalar field. As discussed above, the
latter could be dynamically adjusted when one pauses at a
certain view. It could also be keyed to ranges in the scalar
field, being made smaller for those ranges deemed more im-
portant. Finally it could be coupled to a viewing device such

Figure 2: Screen projection of a hierarchy cell at different
orientations.

as an interactive magic lens1, bringing out greater detail in
the lens subview.

It is important to note that a choice of view-dependent
metric greater than or equal to one pixel will have the ef-
fect of removing aliasing in the sense of Swan et. al.15, but
with fewer splats. There will be in general an error associ-
ated with compositing an averaged splat, but this will be con-
fined to a space of 1 pixel or less for a metrics less than or
equal to 1 pixel. The nature of this approximation and how to
adjust the averaged splat to minimize it will be the subject of
a future paper. However, for our application below a screen
space error of 1 pixel causes minimal differences from full
detail rendering. Also, the error can be adjusted on-the-fly.
As part of future work we will also look at mechanisms for
combining the two metrics into one.

5. Splat Structure

Several approaches have been applied to splat footprint
construction and compositing. Polygon and texture-based
methods11, 5, 13 using 2D or 3D textures can take advan-
tage of graphics hardware to composite and render overlap-
ping polygons. These approaches work well for regular data.
However, for non-uniformly distributed data, one must either
constrain to uniform bounding boxes for the splats (Meredith
et. al. use cubic boxes11 or face significant complications in
correctly projecting, sampling, and rendering non-uniform
splats. Using regular bounding boxes amounts to an approx-
imation that smooths out non-uniformities. As stated at the
beginning of the paper, we would like an approach that per-
mits retention of these details, although uniform splats may
also be used.

We have chosen to construct splats that are not necessarily
uniform in their orientation or aspect ratios. However they all
fit into rectilinear bounding boxes. The approach of Zwicker
et. al.20 permitting efficient perspective projection and cor-
rect anti-aliasing for arbitrary elliptical kernels can thus be
applied. Other approaches, including texture-based methods,
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Figure 3: Side cut-away view of a single Nexrad radar. The 9 gray sweep lines are surrounded by regions of higher confidence
in the accuracy of the readings, At lower elevations, spacing between the sweeps is close enough to assume readings from a
continuous medium.

can be applied as well. Using splats of non-uniform orienta-
tion and aspect ratio requires more computation than uni-
form splats. However, the view-dependent hierarchical ap-
proach helps keep the splat construction and rendering effi-
cient. Interactive techniques, such as magic lenses, can also
be applied; the hierarchy helps with quick retrieval of data
in this case.

Figure 4: Splatting in a 2D cell formed by nearest neighbors
of central point.

The issue for a non-uniform distribution is illustrated in
Fig. 4. (This would describe the non-uniform regions at the
leaf nodes of the above hierarchical structure.) A single el-
liptical splat, even if optimally oriented, cannot provide uni-
form coverage for all the neighbors of the central data point.
For example in Fig. 4a if it provides correct coverage for the
top neighbors, it overlaps the bottom neighbors too much.
On the other hand, multiple elliptical splats (Fig. 4b) can be
oriented and sized to provide better coverage over the cell.
We have developed and are implementing a procedure, based
on the Voronoi cell describing the region around a point, to
place and orient splats to give more uniform coverage in non-
uniform cells. Closest splats are combined to give LODs. At
the moment we use elliptical, textured splats centered at the
sample points with appropriate scale and orientation. The
splat construction and compositing could be replaced with
that of Zwicker et. al.20, which provides and accurate, an-
alytic expression of the integration of the footprint in screen
space.

6. Application Results

In order to evaluate our approach, we have organized and
rendered a variety of test and application data. The main ap-
plication data are from Nexrad 3D Doppler radars. The vol-
ume is collected as a series of conical scans at increasing an-
gle (Fig. 3). To our knowledge, the only work that explicitly
acknowledges the 3D structure of Nexrad and grapples with
its anisotropy is by Djurcilov and Pang2. They explored the
creation of smooth isosurfaces in the context of missing data

and irregular grids. The focus of their work is on the ren-
dering of a collection of cones from a single Nexrad station,
accurately reflecting the absence of measurement data, with
the additional display of uncertainty information. Because of
the curvilinear nature of the radar scan (Fig. 3), the data can
be both sparse and blurred when usual visualization tech-
niques (i.e., isosurfaces and volumetric rendering) employ-
ing regular grids are applied. Further there can be holes in
the data produced by regions of null readings. Finally there
can be multiple overlapping radars. (For example, there are
3 overlapping radars covering North Georgia, and 9 cover-
ing central Oklahoma.) The overlapping areas can provide
regions of increased spatial complexity and non-uniformity.

Among the products collected by the Nexrad radars are re-
flectivities and wind velocities. The reflectivities determine
the amount of precipitation in a sampled region and even
the type of precipitation. The wind velocity is a line-of-sight
reading; high positive/negative values for adjacent points in-
dicate the presence of high shear and can be part of the signa-
ture of a tornado. The tornadic signature can be corroborated
by the 3D structure of the reflectivity and velocity data in the
region.

Fig. 8 (left) shows a volume rendering of the reflectivity
readings from a NEXRAD Doppler Radar covering North
Georgia from a severe storm that passed over the Atlanta
area in late March 1996. The red and yellow band running
North-South through the central region is an area of very
heavy rainfall. The color bars to the bottom left show the
transfer function from reflectivity to RGBA values. The left
bar is RGB and the right two bars show RGBA blended with
black and white. Fig 8 (right) shows the velocity readings of
the same storm at the same time. The major feature running
from Northwest to Southeast is the line perpendicular to the
wind direction for the entire storm. Because Doppler radar
gives velocity only along each radial line, there will be a sign
change in velocity values where the radar is perpendicular
to the wind direction. In Fig. 8 right, the storm is heading
Northeast. We have set up the color ramp to change abruptly
from cyan (positive) to blue (negative).

Fig 9 shows a close-up of the velocity dataset with
small orange and yellow circles drawn to indicate mesocy-
clones that were detected by WDSS, which is Doppler radar
weather analysis software.

c© The Eurographics Association 2002. 129



Jang, Ribarsky, Shaw, and Faust / View-Dependent Multiresolution Splatting

7. Performance Results

Table 1 shows the performance of our screen-space metric
being used to select the level of detail to render. The screen-
space error metric in this case is 2 pixels. As we move from
an altitude of 2667 km down to an altitude of 4km, greater
and greater levels of detail are selected using the algorithm
presented above. The image size being rendered is 800 x 600
pixels, and the computer user to render these images was an
SGI 195MHz R1000 with Infinite Reality 2 graphics. Ren-
dering times reach a maximum of 1.7 seconds before view
frustum culling starts to eliminate a significant amount of the
radar from the view.

Image Maximim Octree Splats
Level Rendered Rendered Time (S)

1 11 9,681 0.072
2 12 12,414 0.117
3 12 44,488 0.346
4 13 121,393 1.080
5 14 152,331 1.681
6 15 151,898 1.705
7 16 112,697 1.307
8 17 65,885 0.854
9 18 28,965 0.423
10 20 10,129 0.174

Fig. 6 shows the first 5 corresponding images. We have
cropped out the non-weather imagery to save space.

Figure 5: Two overlapping radar volumes. The new radar
has been added 150 miles southeast of the original radar.

Fig. 5 shows two radars volume rendered together by our
system. The data is in fact another volume scan timestep
from the same series of radar volumes from March 1996. In
overlap areas, overlapping reflectivity readings are treated as
adjacent reflectivities from the same radar, and are therefore
rendered using the same algorithm. Our intent is to be able
to support any number of radars overlapping, and to be able
to draw them in a seamless manner.

8. Conclusions and Future Work

We have demonstrated an interactive view-dependent mul-
tiresolution volume rendering system for non-uniform data.
The octree structure we have built allows the user to se-
lect the appropriate level of detail that they want to see,
and the system automatically renders to the required reso-
lution. Fig. 7 shows the screen-space rendering system at
work with the metrics of 4, 8, 16, and 32 pixels. Render-
ing times in this case were 1.26sec, 0.328sec, 0.063sec and
0.014sec respectively, indicating that we are well within the
range of real-time for viewing volume rendered approxima-
tions of the data. In situations where the user will navigate
quickly around the scene, we will set the screen-space size
to be quite large as that few splats are drawn quickly. Note
that the volume-rendered image maintains is overall charac-
ter, even at the 32-pixel metric.

Our next step with this work is to build the volume render-
ing system into our multi-threaded terrain rendering system
VGIS 3. The octree system was designed to correspond to
VGISs quadtrees, so we anticipate that combining volume-
rendered radar weather and out-of-core LOD terrain render-
ing will proceed with only modest effort.
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metrics. The images are from the same dataset as Fig. 5, but cropped.

tured grids. InIEEE Visualization 2001, pages 199–
206, October 2001.

17. Lee Westover. Footprint evaluation for volume render-
ing. In Forest Baskett, editor,Computer Graphics (SIG-
GRAPH ’90 Proceedings), volume 24, pages 367–376,
August 1990.

18. Jane Wilhelms. Pursuing Interactive Visualization of
Irregular Grids.Visual Computer, 9(8):450–458, 1993.

19. Jane Wilhelms and Allen Van Gelder. Multi-
dimensional trees for controlled volume rendering and
compression. In Arie Kaufman and Wolfgang Krueger,
editors, 1994 Symposium on Volume Visualization,

pages 27–34. ACM SIGGRAPH, October 1994. ISBN
0-89791-741-3.

20. M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa
volume splatting. InIEEE Visualization 2001, pages
29–36, October 2001.

c© The Eurographics Association 2002.132



Jang, Ribarsky, Shaw, and Faust / View-Dependent Multiresolution Splatting

Figure 8: (left) Image of Doppler radar reflectivities over North Georgia. Heavy rainfall is evident along a front from the
southwest towards the center (yellow and red splats). Doppler velocities are shown in the right image for the same time step.
We have drawn a more limited radius of radar. Because the winds are heading northeast, the northeast half show positive
velocities (away from the radar) and the southwest half show negative velocities (toward the radar).

Figure 9: Close-up view of velocity of Doppler radar. Mesocyclones (red and orange circles) have been detected in the velocity
profile. This view of the velocity volume shows how they are distributed near an outcrop of negative velocities (dark blue top
center) in among the positive velocity zone (green/cyan). The empty area to the right has been made transparent to expose the
mesocyclone glyphs. Mesocyclones to the left arise from velocity shears (blue-purple) that are at low-elevation scans and hard
to see from this view.
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