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Abstract
These tutorial notes provide an introduction, review, and discussion of the state-of-the-art on simplification meth-
ods, Level Of Detail, and multiresolution models for surface meshes, and of their applications.
The problem of approximating a surface with a triangular mesh is formally introduced, and major simplification
techniques are classified, reviewed, and compared.
A general framework is introduced next, which encompasses all multiresolution surface models based on de-
composition, and major multiresolution meshes are classified, reviewed, and compared in the context of such a
framework.
Applications of simplification methods, LOD, and multiresolution to computer graphics, virtual reality, geograph-
ical information systems, flight simulation, and volume visualization are also reviewed.

1. Introduction

Triangles are the most popular drawing primitive in Com-
puter Graphics (CG). Due to the simplicity of their basic
elements and of their connecting structure, triangle meshes
are easily manipulated by all graphics libraries and hardware
subsystems. In several applications, surfaces are described
by very dense triangle meshes. Detailed triangle meshes are
obtained by automatically acquiring the shape of physical
objects with range scanners, or by extracting isosurfaces
from high resolution datasets in volume visualization; huge
meshes are needed to describe large terrain areas; displaying
CAD surfaces usually involves their conversion into dense
triangle meshes; very large meshes may be produced in rep-
resenting complex scenes in the context of virtual reality ap-
plications. Also digital images, especially range images, can

be regarded as surfaces, and their reconstruction through tri-
angle meshes can help their processing and understanding.
Storage, manipulation, and rendering of huge meshes may
easily require memory and processing resources beyond the
power of state-of-the-art computers, especially in a real-
time, interactive environment. Therefore, adapting the res-
olution of a mesh to the needs of each application is a basic
issue. For example, using a lower level of detail for small,
distant, or background objects may drastically improve per-
formance in data analysis and visualization. Moreover, a
highly complex data representation may contain significant
geometric redundancy, e.g. when mesh complexity directly
depends on the characteristics of the acquisition or fitting
process adopted.
This has led to substantial research into devising robust and
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efficient techniques for the controlled simplification of sur-
face meshes. Many papers and different approaches have ap-
peared, and potential users are being overwelmed by diffuse,
unstable or even contradictory knowledge. Survey papers on
surface simplification are still rare89; 55.

Multiresolution geometric models support the representa-
tion and processing of geometric entities at differentLev-
els Of Detail (LODs). Such models are useful in several
applied fields to handle geometric data efficiently, depend-
ing on specific application needs. The main advantages of a
multiresolution model are: data reduction, whenever an ap-
proximate representation at low resolution is adequate; fast
data access, by exploiting spatial indexing; and hierarchical
processing, where speedup is achieved by propagating infor-
mation across different LODs.

Multiresolution models were proposed in the literature for
representing surfaces in computer graphics, virtual reality
and GIS, for 3D volumes in CAD and object recognition,
for volume data in scientific visualization, and for digital im-
ages in computer vision and image processing. Motivations
for the use of both simplification and the multiresolution rep-
resentation of surfaces have been reviewed by Heckbert and
Garland54.
A major approach to multiresolution modeling is based on
a decomposition modeling scheme, where resolution is con-
trolled through the level of refinement of the domain decom-
position: the underlying idea is that he accuracy in the repre-
sentation is somehow proportional to the number of cells in
the subdivision.
Independently of the decomposition scheme adopted, differ-
ent architectures have been proposed to handle multireso-
lution: from a simple collection of versions of an object at
different resolutions (see, e.g., the LOD nodes in the Open-
Inventor toolkit and in VRML106; 105 and its use in virtual
reality applications39); to models that maintain relations be-
tween consecutive levels of detail (see, e.g., quadtrees, im-
age pyramids, pyramidal and hierarchical triangulations); to
more sophisticated models that maintain a compact structure
from which many different representations can be extracted,
even at variable resolution across domain.

Many other aspects characterize different multiresolution
models, such as the shape of cells, the spatial decomposi-
tion scheme, the induced hierarchy, etc. Such characteristics
make each model more or less suitable to a given applica-
tion, and no model is best for all needs.

1.0.0.1. Tutorial notes organization. In the following, we
focus on two-dimensional models based on the decomposi-
tion of a surface into polygonal regions. Extensions to dif-
ferent applications, and higher dimensonal domains are also
outlined.

Preliminary formalism and terminology that will be used
in the rest of the paper are introduced in Chapter 2.

Chapter 3 presents an introduction to surface mesh sim-

plification methods, and propose a new taxonomy (Sec-
tion 3.1). The simplification methods are then presented with
more details in Section 3.2. Then, an analysis and a compar-
ison of the different approaches adopted to measure theap-
proximation erroris proposed in Section 3.3, togheter with
an empyrical comparison of different simplification codes.

Chapter 4 introduces and characterizes the differ-
ent multiresolution representation schemes. TheMulti-
Triangulation (MT), a general framework which allows to
interpret all multiresolution models proposed in the litera-
ture as special cases of itself, is presented in Section 4.1.
Different multiresolution models are then reviewed in Sec-
tion 4.2. A qualitative evaluation of the models that we re-
viewed, based on some issues that have relevant impact in
surface modeling, processing, and visualization, is given in
Section 4.3.

Chapter 5 reviews some applicative domains and the sys-
tems or methodologies proposed.

Finally, Chapter 6 briefly list the subjects that, due to
space and time limits in preparing these notes, we had to
leave out. Some references to literature on such subjects are
also given.

Readers are encouraged to send comments or cor-
rections to the authors at: puppo@ima.ge.cnr.it or
r.scopigno@cnuce.cnr.it

2. Preliminaries

In this chapter, we give preliminary formalism and terminol-
ogy that will be used in the rest of the paper. We introduce:
surfaces and hypersurfaces, i.e., the objects to be modeled;
simplicial meshes, i.e., the modeling tools; and graphs and
posets, i.e., combinatorial structures that will be used to or-
ganize meshes into multiresolution representations.

2.1. Surfaces and hypersurfaces

2.1.1. Manifold surfaces

A manifold surface(or 2-manifold) S is a subset of Eu-
clidean space IRk, for somek � 3, such that each point of
S has an open neighborhood homeomorphic to the open disc
in IR2.

A manifold surface with boundaryS is a subset of Eu-
clidean space IRk, for somek� 2, such that each point ofS
has an open neighborhood homeomorphic to either the open
disc, or to the half-disc (which is obtained by intersecting the
open disc with the closed half-plane of the positivex coor-
dinates). Theboundaryof a manifold surface with boundary
S , denoted∂S , is the set of all points ofS that do not have a
neighborhood homeomorphic to the open disc.

Although most of the methods surveyed in this paper can
also deal with non-manifold situations, the manifold condi-
tion is commonly assumed, hence we will always conform to
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it throughout the paper. Hereafter, a surface will be always
considered as a 2-manifold, either with or without boundary,
embedded in the three-dimensional space IR3.

2.1.2. Parametric surfaces

A parametric patchis the image of a continuous function
ψ : Ω�! IR3, whereΩ is a compact domain in IR2. We de-
note a parametric patch byψ(Ω), with a compact notation
that specifies both the function describing the patch and its
domain. The space IR3, in which a parametric patchψ(Ω) is
embedded, is called thephysical space, while the space IR2

containing the domainΩ is called theparameter space. The
boundary of domainΩ, denoted∂Ω, is formed by a finite
set of closed curves, calledtrimming curves. We will refer
interchangeably to trimming curves in parameter space, and
to their images in physical space.

Under suitable conditions on the functionψ, a parametric
patch is a manifold surface, possibly with boundary at its
trimming curves (i.e.,∂ψ(Ω)� ψ(∂Ω)).

A parametric surfaceis a collection of parametric patches
P = fψ1(Ω1); : : : ;ψk(Ωk)g, such that for each pair of
patchesψi(Ωi);ψ j (Ω j ), i 6= j , we haveψi(Ωi)\ψ j(Ω j ) =
∂ψi(Ωi)\∂ψ j (Ω j ) (i.e., patches do not intersect, while thay
can touch along their boundaries). The boundary of a para-
metric surfaceP is contained in the collection of boundaries
of its patches, namely, it is formed by all portions of bound-
aries that are not shared between two different patches. We
will always assume that a parametric surface is a 2-manifold,
either with or without boundary.

2.1.3. Scalar fields

A scalar fieldis a continuous functionφ : Ω! IR, whereΩ is
a compact domain in IRk, k� 1. The image ofφ embedded in
IRk+1 space, i.e.,F = f(X;φ(X)) j X 2Ωg � IRk+1 is called
ahypersurface.

For k= 2, F is a 2-manifold with boundary (correspond-
ing to the image of∂Ω), called anexplicit surface(in the
literature, also terms non-parametric surface, height field,
21

2D-surface, functional surface, topographic surface are
used intechangeably to denote an explicit surface). Fork= 3,
F is a volumewith manifold boundary, embedded in IR4.
Although we will not consider scalar fields in higher dimen-
sions, the extension of 3D models to a generic dimension is
often straightforward.

2.2. Approximating meshes

Complicated surfaces/hypersurfaces can be approximated
through meshes made of polygonal/polyhedral cells for dig-
ital processing and rendering purposes. Although most of
the models and methods reviewed in the following can be
easily used on generic polygonal/polyhedral meshes, for the
sake of simplicity, throughout the paper we will always deal

with simplicial meshes, namely meshes formed of trian-
gles/tetrahedra, in the 2D/3D cases, respectively.

2.2.1. Simplicial meshes

A k-simplex(or a simplexof order k), with 0� k � n is a
subsett of IRn, defined as the locus of points that are con-
vex combinations ofk+1 affinely independent points; such
points are called theverticesof t. Examples of simplexes are
a point (0-simplex), a straight-line segment (1-simplex), a
triangle (2-simplex), a tetrahedron (3-simplex). Theinterior
of a simplext (denoted byint(t)) is the locus of points which
can be expressed as convex combinations of the vertices oft,
with coefficients restricted in(0;1). We say that aq-simplex
t 0 is a(proper) faceof ak-simplext (with q< k) if the set of
vertices oft 0 is a subset of the set of vertices oft; if t 0 is a
q-simplex, we say thatt 0 is aq-faceof t.

A finite setT of simplexes in IRn is asimplicial mesh(also
called aregular simplicial complexwhen the following con-
ditions hold:

1. for each simplext 2 T, all faces oft belong toT;
2. for each pair of simplexest0;t1 2 T, eithert0\ t1 = /0 or

t0\ t1 is a simplex ofT;
3. each simplext is a face of some simplext 0 (possibly coin-

cident witht) having maximum order among all simplices
of T.

A simplicial meshT is called ad-simplicial-meshif d is
the maximum among the orders of simplexes belonging to
T (d is called theorder of T). The union of all simplexes
of T, regarded as point sets, is thedomainof T and it is
denoted by∆(T). A d-simplicial complex whose domain is
a (polyhedral) setΩ is called asimplicial decompositionof
Ω.

We call any finite set ofd-simplexes in IRn a d-set. A d-
simplicial-mesh is completely characterized by the collec-
tion of its d-simplexes, i.e., by itsassociated d-set, there-
fore we will refer to a mesh and to its associatedd-set in-
terchangeably. In the following, we will deal with 2- and
3-simplicial-meshes, also calledtriangulations and tetra-
hedrizations, respectively, embedded in either IR2, or IR3, or
IR4. We will refer to ad-simplicial-mesh by calling it simply
a mesh, whenever no ambiguity arises.

2.2.2. Approximation error

Whenever a simplicial mesh is used to approximate a do-
main, or a (hyper)surface, it is important to measure the qual-
ity of representation by giving a quantitative estimate of the
approximation error. We give formal definitions of the ap-
proximation error separately for the three cases of manifold
surfaces, parametric surfaces, and scalar fields.

2.2.2.1. Error on manifold surfaces. Let S be a surface,
andT be a mesh approximating it. Each trianglet of T ap-
proximates a corresponding “triangular” patch ofS . We dis-
tinguish among three cases:
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1. SurfaceS is known at every point, and arepresentation
functionρ : S ! T is defined, mapping each point of the
surface into the point representing it in the mesh. There-
fore, we can define a difference functionδT : S ! IR as
δT(X) = jX�ρ(X)j, and an error function

E(T;S) = kδTkS ;

wherek � kS is some norm on functions defined overS
(e.g., theL2 norm, orL∞ norm).

2. SurfaceS is known only at a finite set of sample points
D, and for each trianglet of T, the subsetDt of data
spanned by the portion ofS approximated by the trian-
gle is known. In this case, for each pointX 2D, we can
define the differenceδT(X) as the Euclidean distance be-
tweenX and the trianglet related to it (i.e., such that
X 2Dt ), and the error function as

E(T;S) = kδTkD ;

wherek�kD is a discrete norm. In practice, we could con-
sider either the mean square or the maximum of deffer-
ences over all data.

3. No direct correspondence between a point ofS and its
representative inT is known. In this case, some com-
bination of Hausdorff distance, and usual norms can be
adopted. For instance, we can define:

δT(X) =min
Y2T

jX;Yj; X 2 S ;

δS (Y) =min
X2S

jX;Yj; Y 2 T;

E(T;S) =�(kδTkS ;kδSkT);

where norms are defined as before, and� can be either
an average, or a max, or a min, or a projection operator. In
the discrete case, i.e., whenS is known only at a finite set
of dataD, the definition is analogous by using a discrete
norm.

2.2.2.2. Error on parametric surfaces. In this case, the
approximation occurs at two levels:

1. in the parameter space, the domainΩ and the trimming
curves of∂Ω of each parametric patch are approximated
with a polygonal domaiñΩ, and polygons of∂Ω̃, respec-
tively;

2. the approximated domaiñΩ is triangulated, and each tri-
angle of the resulting triangulatioñT is pojected into
physical space through a functioñψ to obtain the mesh
T approximatingP .

Therefore, if we have a functioñρ : Ω ! Ω̃ mapping each
point in parameter space into its approximation, then a rep-
resentation functionρ : P ! T relating the surface to its ap-
proximation is defined by the commutative diagram

Ω
ρ̃
�! Ω̃

ψ # # ψ̃
S

ρ
�! T

and the definition of error given in the first case of the pre-
vious paragraph can be applied. An alternative is to adopt a
Hausdorff distance directly in physical space, as in the third
case of the previous paragraph.

2.2.2.3. Error on scalar fields. Also in this case, the do-
mainΩ is approximated through a polygonal/polihedral re-
gion Ω̃, where a triangulatioñT is defined, and the approxi-
mating meshT is defined by the image of a piecewise linear
functionφ̃ : Ω̃! IR, which is linear over each simplex ofT̃.
An error function analogous to that of parametric surfaces
can be used.

More often, however, surfaceF is known only on a finite
set of samplesD. In this case, domainΩ is assumed to be a
polygon/polihedron containing alla data (usually, their con-
vex hull), henceΩ̃ � Ω. Therefore, the error at each datum
X is simply given bye(X) = jφ(X)� φ̃(X)j, and the error
function is defined by a discrete norm:

E(T;F ) = ke(X)kD ;

e.g., the maximum error, or the mean square error at data
points.

2.3. Combinatorial structures

The following combinatorial structures will be used in the
definition of multiresolution models.

2.3.1. Graphs and trees

A directed graphis a pairG= (N;A), whereN is a finite set
of nodes, andA�N�N is a set ofarcs. An arc(n1;n2) will
be saidoutgoingfrom n1, andincomingto n2. A node with
no incoming arcs is called asourceor root, a node with no
outgoing arcs is called adrain or leaf. A node that is neither
a source nor a drain is saidinternal.

A pathin G is a sequencen1; : : : ;nk of nodes such that for
eachi = 1; : : : ;k� 1 the pair(ni ;ni+1) is an arc ofA. The
lengthof a path is the number of its nodes. Acycleis a path
n1; : : : ;nk with n1 = nk. We will write n1 * n2 to mean that
there exists a path fromn1 to n2, andn1 $ n2 to mean that
eithern1 * n2, or n2 * n1, or both; we will writen1 6* n2,
andn1 6$ n2 to negate such assertions, respectively.

G is saidconnectedif for any two nodesn1;n2, there exists
a noden0 (possibly coincident with eithern1 or n2), such that
n1 $ n0, andn0 $ n2.

A Directed Acyclic Graph (DAG)is a connected directed
graphG with no cycles (i.e., such that for any two nodes
n1;n2, we haven1 * n2 ) n2 6* n1). Given two nodes
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n1;n2 in a DAG, if (n1;n2) is an arc, then we say thatn1 is a
parentof n2, andn2 is achild of n1; if n1* n2 we say that
n1 is anancestorof n2, andn2 is adescendantof n1.

A rooted DAGis a DAG with a unique source (root); a
lattice is a DAG with a unique source, and a unique drain;
a tree is a rooted DAG such that for any (non-root) nodeni
there exists exactly one path from the root toni . The level
of a nodeni in a tree [in a rooted DAG] is the [minimum]
length of a path from the root toni .

A subgraph G0 = (N0;A0) of a graphG= (N;A) is a graph
such thatN0 � N, A0 � A, and each arc ofA0 joins nodes of
N0. A consistent subgraphof a rooted DAG (or a tree)G is a
subgraphG0 of G containing its root, and such that for each
noden2 N0 also all its ancestors belong toN0, and all arcs
of A joining nodes ofN0 belong toA0. Given a consistent
subgraphG0 of a DAG (or a tree)G, the setA� � A of arcs
connecting the leaves ofG0 to nodes ofNnN0 is called acut
in G generatingG0.

2.3.2. Posets

Let C be a finite set. Apartial order on C is a reflexive,
antisymmetric and transitive relation� on its elements. For
everyc;c0 2 C , we will write c< c0 to mean thatc� c0 and
c 6= c0; we will write c� c0 to mean thatc < c0 and there
does not exist any otherc00 such thatc< c00 < c0. Note that
relation� is the reflexive closure of relation<, which is
in turn the transitive closure of relation�. A pair (C ;�) is
called aposet.

An elementc2 C is saidminimal if there does not exist
anyc0 2 C such thatc0 < c; c2 C is the leastelement ofC
if c� c0 for anyc0 2 C .

A subsetC 0 � C is called alower setif 8c0 2 C 0, 8c� c0

thenc 2 C 0. For anyc 2 C , the setCc = fc0 2 C j c0 � cg
is the smallest lower set containingc, and it is called the
down-closureof c. We also define thesub-closureof c as
C�

c = fc0 2 C j c0 < cg = Ccnfcg.

Given a lower setC 0
� C , aconsistent orderon C 0 is any

total order�C 0 on its elements such that8c;c0 2C 0, c� c0 )
c�C 0 c0.

A poset can be represented by a DAG havingC as set of
nodes and an arc fromc to c0 wheneverc� c0. We will often
refer to(C ;�) and to the DAG representing it interchange-
ably. Therefore, we will use interchangeably the following
terminology: poset - DAG; element - node; least element -
root; lower set - consistent subgraph. Note that a cut in a
DAG always defines a consistent subgraph, hence a lower
set in the corresponding poset.

3. Mesh Simplification

In this chapter we initially give a brief introduction to surface
mesh simplification methods, and propose a new taxonomy

(Section 3.1). The scope of our analysis is limited to simpli-
fication methods for manifold or non-manifold surfaces im-
mersed in 3D space. The many other approaches proposed
for other types of data (images, height fields, range maps
or triangulated terrains)66; 55 are not considered here. The
simplification methods are then presented with more details
in Section 3.2. Then, an analysis and a comparison of the
different approaches adopted to measure theapproximation
error is proposed in the last section .

3.1. Simplification techniques

Substantial results have been reported in the last few years
on surface simplification. The data domain of the solutions
proposed generally covers all types of triangular meshes
(e.g. laser range data, terrains, synthetic surfaces). Differ-
ent error criteria have been devised to measure the fitness
of the approximated surfaces. Any level of reduction can be
obtained with most of the approaches listed below, on the
condition that a sufficiently coarse approximation threshold
is set. The following are some of the existing methods:

� coplanar facets merging:
coplanar or nearly coplanar facets are searched for in
the mesh, merged into larger polygons, and then retri-
angulated into fewer facets than those originally required
47; 62; 56; face merging is driven by a co-planarity test.
The superfacesmethod 61 extends this approach by
providing bounded approximations and more robust re-
triangulations of the merged faces;

� controlled vertex/edge/face decimation:
these methods work by the iterative elimination of compo-
nents (vertices, edges, triangles), chosen upon local geo-
metric optimality criteria. All decimation methods are re-
stricted to manifold surfaces, and generally preserve mesh
topology.

– the originalmesh decimationapproach97 applies mul-
tiple passes over the triangle mesh and progressively
removes those vertices that pass a distance or angle cri-
terion (based on local geometry and topology checks).
The resulting holes are then patched using a local re-
triangulation process. The candidate vertex selection
criterion is based on alocal error evaluation;

– a decimation approach can also be adopted to simplify
a mesh by iteratively collapsing edges in a single ver-
tex 45; 88; 1, or by collapsing faces48;

– extensions to the decimation method which support
global errorcontrol have been proposed (Global error
is defined here in opposition tolocal error, i.e. whether
the approximation error introduced by the elimination
of the current vertex is operated by comparing the re-
sulting new mesh patch with the initial meshM0 or
with the intermediate, partially simplified meshMi ;
see Section 3.3.1 on error evaluation for a more precise
definition). In particular, thesimplification envelopes
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method21 supports bounded error control by forcing
the simplified mesh to lie between two offset surfaces
(but it works only on orientable manifold surfaces).
Some other methods adopt heuristics for the evaluation
of theglobal error introduced by each vertex removal
and re-triangulation step, and work under an incremen-
tal simplification framework99; 11; 3; 63; 88; 45;

– controlled local modifications of re-triangulated
patches, based on edge flipping, have been proposed
to improve approximation accuracy in mesh decima-
tion 11; 3;

– the decimation approach has also been generalized
to the simplification of 3D simplicial decompositions
(tetrahedral sets)87; 14; 49;

� re–tiling:
new vertices are inserted at random on the original surface
mesh, and then moved on the surface to be displaced over
maximal curvature locations; the original vertices are then
iteratively removed and a re–tiled mesh, built on the new
vertices, is given in output103;

� energy function optimization:
themesh optimizationapproach, originally proposed in59,
defines anenergy functionwhich measures the “quality”
of each reduced mesh. Mesh reduction is iteratively ob-
tained by performing legal moves on mesh edges: collaps-
ing, swapping or splitting (in the latter case, a new vertex
is inserted in the edge and two new edges connect it to the
front-most vertices). Legal moves selection is driven by
an optimization process of the energy function. At each
step, the element whose elimination causes the lowest in-
crease in the energy function is deleted.
An enhanced version,progressive meshes, provides mul-
tiresolution management, mesh compression, selective re-
finements and enhanced computational efficiency57; 80,
and is based only on edge collapsing actions;

� vertex clustering:
based on geometric proximity, this approach groups ver-
tices into clusters, and for each cluster it computes a new
representative vertex90. The method is efficient, but nei-
ther topology nor small-scale shape details are preserved.
The visual and geometric quality of the meshes simplified
with a clustering approach have been improved in72.
Another extension to the clustering approach was pro-
posed to cope with the perceptual effects of degradation
86. Here, clustering is driven by bounding box decompo-
sition into subvolumes; couples of edges internal to each
subvolume are merged on a test based on curvature and
size.
A very recent approach40 applies an efficient error eval-
uation, based onquadric error matrices, to a less general
clustering approach which performs only vertex pair con-
tractions (a vertex pair is eligible for contraction if either a
connecting edge exists or the vertices satisfy a proximity
criterion). The solution is characterized by its high com-

putational effciency and the capability to simplify discon-
nected or non-manifold meshes;

� wavelet-based approaches:
the wavelet decomposition approach seems very promis-
ing for surface simplification (and, moreover, multireso-
lution comes for free). Conversely, a regular, hierarchi-
cal decomposition is required to support wavelet decom-
position, and computational efficiency is not at the best.
Wavelet approaches have been proposed to manage regu-
larly gridded meshes42; 53 or more generic meshes36; 8.
In particular, themultiresolution analysisapproach is
based on a three-phase process (re–meshing, re-sampling
and wavelet parametrization) to build a multiresolution
representation of the surface, from which any approxi-
mated representation can be extracted36. An extension to
this approach has recently been proposed to manage the
approximation of both geometry and surface color8;

� simplification via intermediate hierarchical representa-
tion:
an intermediate octree representation2 may be adopted to
automatically produce simplified representations, because
the octree may be purged at various levels and then con-
verted into a (simplified) boundary representation;
alternatively, an intermediate voxel-based hierarchical
representation (built using signal-processing techniques
for the controlled elimination of high-frequency details),
together with adaptive surface fitting, was proposed in
50; 51.

Several approaches have also been proposed for particular
occurrences of the simplification problem (but, because of
no general applicability, they will not be discussed in the
rest of the tutorial). Among these are: the simplification of
range maps, i.e. regular meshes automatically acquired by
a range scanner (see for example theadaptive subdivision
approach by De Haemer and Zyda47); or the simplification
of the isosurfaces fitted on high resolution volume datasets.
In the latter case, some less general techniques – peculiar
to volume rendering applications – have been proposed, and
may be subdivided in the two following main streams:

� adaptive fittingapproaches: ad hoc data traversing and fit-
ting are devised to reduce output data complexity: (a) by
using approximated fitting22, (b) by bending the mesh75,
(c) by adapting the poligonalization criterion to the shape
of the surface6; 76, (d) by subdividing bi-cubic patches un-
til they are sufficiently close to the underlying samples95;

� datasets simplificationapproaches: first, the volume
datasets is organized into a hierarchical108; 50; 22 or a mul-
tiresolution12; 14 representation; then, isosurfaces are fit-
ted onto the simplified datasets.

3.1.1. A characterization

Simplification approaches may be classified firstly by char-
acterizing the input and output domains.
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All of the methods briefly reviewed above accept inin-
put simplicial meshes, but only a few of them can manage
non–manifold meshes (e.g. vertex clustering and intermedi-
ate hierarchical representation).

If we take into account theoutput, and given the scope of
this tutorial (to review simplificationand multiresolution),
an simplification methods characterization can be based on
the capability to produce amultiresolution output. Only a
few approaches support directly this feature (multiresolu-
tion analysis, progressive meshes, multiresolution decima-
tion), but most other incremental methods can be simply
extended to support it. The adoption of anincrementalap-
proach is thus another important characteristics. A simplifi-
cation method is characterized as an incremental one when
simplification proceeds through a sequence of local mesh
updates which, at each step, reduce the mesh size and mono-
tonically decrease the approximation precision (e.g. mesh
decimation, progressive meshes, clustering via quadric ma-
trices).
If we consider the topology of the meshes produced in out-
put, most simplification approaches produce manifold sim-
plicial meshes (e.g. decimation, energy function optimiza-
tion, re-tiling), while others may produce not 2-manifold ge-
ometries (e.g. vertex clustering may produce dangling faces,
edges, or points). Moreover, simplification methods may be
characterized by highlighting two main orthogonal classes
96:

� approaches whichpreserve mesh topology(e.g. mesh
decimation, mesh optimization), and those which don’t
(e.g. vertex clustering, intermediate hierarchical represen-
tation);

� approaches based onvertex subset selection(e.g. copla-
nar facets merging, mesh decimation) orre-sampling(e.g.
mesh optimization, re–tiling, multiresolution analysis, in-
termediate hierarchical representation).

The importance ofpreserving mesh topologydepends di-
rectly on the application domain. It is not mandatory if the
goal is to speedup rendering, at least for the lower resolution
representation of a LOD model (and topology simplification
is generally a must to produce highly simplified models out
of topology–rich objects). On the other hand, topology has
to be preserved if the simplification goal is to produce a rep-
resentation which might be nearly indistinguishable from the
original, or which preserves shape features (e.g. medical ap-
plication requirements).
The choice between using asubsetof the original vertices or
usingre-sampledvertices again depends on the application
and this usually affects approximation precision. There are,
in fact, many applications where re-sampling is not allowed
or feasible, e.g. in the case of datasets where the sampling
of a scalar/vectorial field is associated with the mesh ver-
tices and we cannot safely recompute the field value in the
re-sampled locations. On the other hand, better approxima-
tion accuracy is obtained when vertices are resampled, e.g.

by moving the vertices on the lines of maximal curvature.

Another possible classification may be based on the simpli-
fication goal21:

� Min-#: when, given some error boundε, the objective is
to build the approximated mesh of a minimal size which
satisfies precisionε (size is generally measured in number
of vertices);

� Min-varepsilon: when, given an expected size for the ap-
proximated mesh, the objective is to minimize the error, or
difference, between the original and the resulting mesh.

Other important characteristics are:

� the adoption of alocal or a global approach; in the first
case, mesh modifications are operated upon a local opti-
mization criterion (e.g. simplification envelopes and other
decimation approaches); in the second one, a global opti-
mization process is applied to the whole mesh (e.g. energy
optimization approaches, re-tiling, multiresolution deci-
mation, and multiresolution analysis);

� the measurability, and preservation under tight bounds of
the approximation errorintroduced (e.g. simplification
envelopes and some other decimation approaches);

� the preservation ofgeometricor attribute discontinuities
of the mesh, for example feature edges and color or
pictorial information (e.g. mesh decimation, progressive
meshes).

An attempt to give an overall characterization of different
simplification algorithms is presented in Table 1. Columns
2-4 characterize the strategy adopted to manage mesh ap-
proximation: the goal which drives the simplification pro-
cess (Min-#, Min-ε, or both); if the approach simplifies the
meshincrementally; and thetopologic entitytaken into ac-
count during simplification (v: vertices,e: edges,f: faces,
v-pair: vertex pairs). Columns 5-8 characterize the approxi-
mation error management policy. Theεloc column is marked
if for each simplification step theL∞ error introduced is eval-
uated by alocal shape comparison between the modified
patch and the corresponding patch just before the current
step;εglob is marked if aglobal shape comparison with the
starting input mesh is performed (using anL∞ norm again);
or columnother is marked if another policy is adopted, e.g.
energy function optimization (which adopts anL2 norm),
or clustering evaluation. Moreover, we mark those meth-
ods which guaranteeboundedaccuracy on the whole mesh
in column 8. The multiresolution column highlights those
methods which produce in a single run a realmultiresolu-
tion output, encoded with anad hocrepresentation.Preserv-
ing mesh characteristicsis evaluated in columns 10-12 in
terms of: the preservation of global mesh topology (column
meshTop); possible relocation of the vertices of the simpli-
fied mesh (columnvertLoc), with valueunchangedor relo-
cated; the preservation of feature/solid edges or angles (col-
umn featEdg). The estimated simplificationspeedreported
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in column 13 (measured inKTr/sec, i.e. thousands of tri-
angles simplified for CPU second) has been taken directly
from the results presented in the original papers. Since these
results were obtained on different meshes and on different
machines, they only give a rough and imprecise estimate of
the efficiency of the algorithms, but are presented in the table
to give the order of magnitude of simplification times (and
also to emphasize proposals which did not report any eval-
uation of running times, indicated in the table with the “??”
tag). Finally, column 14 lists whether the code is available in
thepublic domain, as part of acommercial product, or isnot
availableat all.

The capability to preserve discontinuities of vertices/faces
attributes is a very important feature, but it has been not in-
cluded in Table 1. This is because although this feature is
only supported by a few proposals86; 57; 8; 98, most other ap-
proaches could simply be extended to support it (e.g. by pro-
viding an enhanced classification of vertices for the vertex
decimation approach).

An overall comparison of simplification approaches is not
easy, because simplification accuracy largely depends on the
geometric and topological structure of the input mesh and
on the required results. For example, the presence of sharp
edges or solid angles is managed better bycoplanar facet
merginganddecimationapproach, while on smooth surfaces
mesh optimizationand re–tiling give better results. On the
other hand, the good results in the precision and concise-
ness of the output mesh given bymesh optimizationand
re–tiling techniques are counterbalanced by substantial pro-
cessing times. Although no time comparisons between dif-
ferent methods have been reported in the literature, an in-
formed guess would be that themesh decimationand the
recentquadric matrices clusteringapproaches are the most
efficient methods.

3.2. Review of simplification methods

3.2.1. Coplanar facets merging

All of the following approaches are based on the idea to de-
tect and merge set of nearly-coplanar faces, appeared first in
47; 62.

3.2.1.1. Geometric Optimization (Hinkler, Hansen).
The Geometric Optimization method56 detects in a single
pass coplanar or nearly coplanar triangular patches, merge
these triangles in larger polygons and then re–triangulates
them in fewer triangles. The methods is based on: (a) quick
grouping facets in nearly coplanar sets; (b) a fast approach
for merging coplanar sets; and (c) simple and robust re–
triangulation.

Coplanar face sets are grouped by sorting faces on their
respective normals (normals are immersed in a discrete 3D
space). The error criterion is based on the angular difference

between normals: faces are merged if their global normals
spans in a (�ε;+ε) interval.

Evaluation
Because only one grouping of the nearly coplanar facets is
applied, the criterion may be classified asglobalbut, because
it estimates only differences among normals, the evaluation
of the error is highlyapproximatedand inaccurate (due to
the surface invariance of the criterion, the same difference
on normals may results in different errors for couple of small
or large facets).
The simplified mesh do not assure a bounded precision.
Significant sharp edges are maintained by definition.
The new mesh has vertices which are a subset of the original
ones.
Times:authors state the method reduces from 0.7 to 2.7 K
Tr/sec (workstation model not declared).

3.2.1.2. Superfaces (Kalvin, Taylor). The Superfaces
method61 merges nearly-planar faces as well, but it supports
bounded approximation and more roboust re-triangulation.
To simplify a surface meshS, the faces ofSare grouped into
a set of surface patches (calledsuperfaces) and each surface
patch is approximated with a new triangulation which satis-
fies a given tolerance (no vertices of the initial mesh is at a
distance larger than a user-specified tolerance from the re-
triangulated superfaces).
Superfaces are created by growing from seeds (a single orig-
inal face, randomly selected). The criterion used to merge an
adjacent face into the current growing superface is twofold:
its vertices have to be within anε=2 distance from the plane
which approximates the superface, and face orientations
must be similar to those of the faces already inserted in the
set. Once detected, superfaces borders are simplified (differ-
ent strategy for border straightening are provided, based on
co-linear vertices removal). Re-triangulation is operated by
dividing superfaces into star-shaped polygons and then de-
composing them.

Evaluation
It is an efficient approach, which provides bounded pre-
cision, preserves topology and maintains significant sharp
edges.
The criterion used to detect nearly co-planar faces is more
precise than Hinkler and Hansen’s one56.
The new mesh has vertices which are a subset of the original
ones.
Times:authors state their method is more efficient than the
Geometric Optimization one. It reduces from 0.3 to 0.8
KTr/sec, on a mesh with 350K triangles extracted from a
volume dataset (human skull), on a IBM R6000/550.

3.2.2. Controlled vertex/edge/face decimation

Methods based on the iterative elimination of components
(vertices, edges, triangles) and driven by euristics on local
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Table 1: Characterization of different simplification algorithms.
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geometrical optimality, which evaluate the (local/global) ap-
proximation error generated by each new elimination.

3.2.2.1. Decimation of Triangle Meshes (Schroeder,
Zarge, Lorensen). The Mesh Decimation method97 re-
duces triangle mesh complexity by applying multiple passes
over the mesh and using local geometry and topology to re-
move vertices that pass a distance or angle criterion. For each
removed vertex, the resulting hole is patched using a local
triangulation process.
The Decimation method first classifies mesh vertices in the
six classes presented in Figure 1. Only vertices of classsim-
ple, boundaryandinterior edgeare candidate for removal.
The decimation criterion is based onlocal error (Local er-
ror as opposed toglobal error, i.e. whether the error evalu-
ation is operated on the current partially simplified meshMi
or on the original meshM0. See Section 3.3.1). evaluation.
For each vertex candidate to elimination the algorithm com-
putes: the distance of the vertex from theaverage plane, in
the case ofsimplevertices; the distance of the vertex from
the newboundary edge, in the case ofboundaryvertices,
or from the new interior edge, in the case ofinterior edge
vertices. If distances are lower than a user-specified thresh-
old, then the vertex is removed and the resulting surrounding
triangle patch is re-triangulated (a recursive loop splitting al-
gorithm is adopted for re-triangulation).

Evaluation
It is a fast method, but it does not assure bounded approx-
imation. It computes anapproximatedestimate of thelocal
error, which does not take into account the relation between
the new patch and the original mesh (and error therefore ac-
cumulates).
On the other hand, significant sharp edges are maintained by
adopting athresholdfor the maximalsolid angle(used for
interior edges or corner vertices classification), which pre-
vents vertex elimination on the sharp edges. The new mesh
has vertices which are subset of the original ones.
An implementation of the Mesh Decimation algorithm is
available on the web, part of the Visualization Toolkit (VTK)
by Bill Lorensen, Ken Martin and William Schroeder, at
http://www.cs.rpi.edu/�martink/.
Times:no info in the original paper, but timings have been
reported in68: 2.-2.5 KTr/sec on a SGI Onix and very com-
plex meshes (hundreds of thousands of faces extracted from
the Visible Human dataset). For other results see our tests in
Subsection 3.3.3.

3.2.2.2. Triangle Removal (Hamann). The Triangle Re-
moval method48 reduces mesh complexity by removing tri-
angles. The criterion to weight candidate triangles is based
on a local estimate of the surface curvature (each triangle
is assigned a weight proportional to the sum of the abso-
lute curvature at its vertices) and of triangle equiangularity.
Then, iteratively, the triangle with the lowest weight is re-
moved, replaced by a new point that lies on a local surface

Figure 1: Mesh Decimation: vertices classification.

approximant point, and the affected region is re-triangulated
and re-weighted.

Evaluation
The evaluation of the approximation error introduced is not
supported, unless surfaces obtained by the graph of a known
bivariate function are used. The criterion proposed to de-
tect removable triangles seems not very computationally ef-
ficient
The new mesh will contain new vertices which are relocated
on the removed surface patch.
Times:no info is reported.

3.2.2.3. Hierarchical Triangulation Modeling (Soucy
Laurendeau). The Hierarchical Triangulation Modeling
method99 extends the Schroeder et al. approach97 by provid-
ing a global error management. In particular, for each face of
the intermediate simplified mesh it stores all of the removed
vertices which project on the face. Aglobal error approx-
imation is evaluated by computing for each face of a new
patch the distance between these removed vertices and the
face. The global error evaluated is therefore an approxima-
tion (a slight underestimation) of the real error. To determine
if a vertex can be decimated, it has to be temporarily re-
moved, the patch has to be re-triangulated and errors for all
the faces of the new patch are evaluated. Only if these errors
are lower then the selected error threshold, then the vertex is
decimated.

Patch re-triangulation is fulfilled via 2D constrained De-
launy triangulation. Moreover, the paper discuss: condi-
tions for retriangulation, curvature optimization, discontinu-
ity preservation, and special handling of contour vertices.

An interesting extension of this method has been pro-
posed to manage the problem of both compressing shape and
preserving color detail through texture mapping98. A map-
ping is mantained during simplification between the original
mesh vertices and the simplified mesh faces. Once the mesh
has been simplified, a texture is built for each face using the
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color of the associated removed vertices.

Evaluation
The approach computes an approximated estimate of the
gloal error (under-estimate based onvertex – triangledis-
tance computation).
The new mesh has vertices which are a subset of the original
ones.
This proposal is the base of a commercial simplification
package (IMEdit/IMCompress 2.0 by Innovmetric,
http://www.innovmetric.com./ ).
Times:no info is reported.

3.2.2.4. Error-bounded Triangle Mesh Reduction (Bajaj
and Schikore). The Error-bounded Triangle Mesh Reduc-
tion method3 follows the vertex decimation strategy to pro-
duce a reduced model in which errors in both the geometric
representation and any number of scalar variables defined
at the nodes of the surface mesh are bounded by a user-
specified level.
It proposes a novel method for globalerror propagation
(originally devised for 2D meshes with scalar data94), which
bounds the errors incurred from all steps of mesh simplifica-
tion. For each decimation step, a mapping is defined between
the removed patch and the new patch resulting from the dele-
tion of the candidate vertex. This mapping allows to quantify
errors in both the geometry and the data defined on the mesh,
because the mutual projection of the two patches segments
the triangulations into pieces within which the variables and
the geometry all vary linearly. Thus, it suffices to compute
errors at the intersections of the projected edges in order to
compute the error bound for each new triangulated patch.
Edge flipping is also proposed to find, in a greedy manner
and for each decimation step, the new patch which gives the
lowest error.

Evaluation
The simplified mesh is defined on a subset of the original
vertices.
A global error criterion is proposed (based onmesh – mesh
comparison).
Edge flipping is proposed to improve new patch approxima-
tion.
Times:no times produced; experiments are run on isosurface
from volume data, no standard dataset used.

3.2.2.5. Multiresolution Decimation (Ciampalini et al.).
The Multiresolution Decimation method11 extends the Mesh
Decimation approach by providing both increased approxi-
mation precision, based on global error management, and
multiresolution output. Error evaluation is based on a mixed
local error propagationanddirect global errorevaluation.
In the first case, for each decimation step an estimate of the
local error is computed by computing amesh–to–meshdis-
tance between the removed and the re-triangulated patches;

local errors are then propagated to give a global bound. In
the second case,global error is directly estimated by main-
taining for each simplified face the set of decimated vertices
which map on the face, and by computingvertex–to–face
distances. Then, to reduce error under-estimation which is
possible with both approaches, the larger of the two is set at
each step the estimatedglobal error. Candidate vertices are
incrementally decimated in a number of passes, and at each
pass the global error thresholdεi value is increased, until
εi becomes higher than the user selected target precisionε.
The explicit ordering in vertex removal has been adopted to
improve simplified mesh quality and to increase the number
of different level of detail representations produced in the
multiresolution output. The quality of the simplified mesh
is also enhanced by performing flipping on each simplified
patch (the edge flipping test is driven by heuristics which
evaluates mesh accuracy).

The multiresolution output (the list of all of the faces gen-
erated during the simplification process, with for each face
its approximation accuracy interval) allows the efficient ex-
traction of whichever level of detail representation in the ap-
proximation accuracy interval (0.,ε) in interactive times.

Evaluation
The new mesh has vertices which are a subset of the original
ones.
The adoption of a global error criterion allows to simply de-
rive from the simplification process amulti–resolutionmesh
representation.
The code is available at
http://miles.cnuce.cnr.it/cg/jade.html.
Times:it simplifies from 0.15 – 0.2 K Tr/sec, on a SGI In-
digo2 workstation. For other results see our tests in Sec-
tion 3.3.3.

3.2.2.6. Hausdorff–distance Enhanced Decima-
tion (Klein, Leibich, Strasser). The Hausdorff–distance
Enhanced Decimation method63 extends the Mesh Decima-
tion approach by replacing its approximated local error es-
timate with the Hausdorff distance between the original and
the simplified mesh (a global error criterion). Thismesh–
to–meshdistance is evaluated by maintaining trace, during
simplification, of all the original faces that map to simpli-
fied faces, and then computingface–to–meshdistances. For
all the original faces which are contained into a simpli-
fied face, the computation ofvertices–to–facedistances is
enough. Conversely, for all original faces which map into
more than one simplified face, their distance has to be com-
puted by evaluating distances of mutual edge intersections
or by adaptively decomposing the face.
Using the Hausdorff distance allows a more precise and sym-
metric evaluation of the error. Moreover, because this dis-
tance is always less than the non symmetric distance induced
by theL∞ Norm, a Hausdorff–based decimator provides re-
duction rates higher than those of the canonical algorithm.
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Evaluation
The new mesh has vertices which are subset of the original
ones.
It adopts a global error criterion (but it seems of faily com-
plex evaluation).
Times:no times produced; experiments on CAD and medical
data, no standard dataset used.

3.2.2.7. Simplification Envelopes (Cohen, Varshney et
al.). The Simplification Envelopes method21 extends Dec-
imation methods with global error control. The simplified
mesh is forced to lie within a user specifiable distanceε
from the original meshM. It manages manifold bordered
meshes or of meshes with holes and guarantees preservation
of topology.
Given the requested precisionε, the method builds twosim-
plification envelopes M+ε and M�ε, defined as poligonal
surfaces which approximate the offset surfaces built at dis-
tance+ε=� ε from M. An important difference between
envelopes and offset surfaces is that envelopes do not self-
intersect by construction.
Once the envelopes have been constructed, two different al-
gorithms are proposed to simplify the mesh. The first one
is a local approach, similar to Mesh Decimation (vertex se-
lection, patch removal and re-triangulation); re-triangulation
is driven by a greedy strategy, which looks for equiangular
aspect ratio (but it does not guarantee optimality). The sec-
ond one, aglobalapproach, has the advantage of performing
multiple vertices removal in a single step, thus preventing to
be trapped in ”local minima” during the simplification pro-
cess, but requires quadratic times and is therefore unefficient
on large models.

Simplification of border edges (edges adjacent to a sin-
gle face) may not be managed with the standard surface
envelopes. An auxiliary data structure, theborder tubes
(pseudo-cylindrical surfaces built on the border edges), is
constructed and used to manage border edge simplification:
each simplified edge is accepted only if it does not intersect
the border tube surfaces.

Adaptive approximation is proposed, because during the
construction of the envelopes it is possible to smootly con-
trol the level of approximation (for example, let theε-value
varies proportionally to the distance from the observer). But
the definition of an analitical rule to drive smooth and con-
tinuos variations of theε-value on the mesh surface is not
simple.

Evaluation
It manages only manifold triangle meshes, with no degen-
eracies (e.g. no coincident triangles or T-vertices).
The new mesh has vertices which are a subset of the original
ones.
Adoption of a roboust global error criterion, which also pre-
serves sharp-edges, topology and prevents self-intersection
of the simplified mesh (the latter is an exclusive feature).
Times:experiments on CAD and range scanned data; 0.09

Ktriang/sec simplified on the bunny dataset (69K faces) and
0.07 Ktriang/sec on the phone dataset (165K faces) on a HP
735/125 ws. For other results see our tests in Section 3.3.3.

3.2.2.8. Simplification Inside a Toler-
ance Volume (Gueziec).The Simplification Inside a Toler-
ance Volume method45; 44 adopts an edge collapse (Figure 2)
approach to decimate meshes. Candidate edges are selected
upon their length, shorter first, and four tests are performed
to check for edge decimability: to prevent changes in mesh
topology, to avoid the generation of sliver faces (the paper
defines a measure for thecompactnessof a triangle, mea-

sured in terms of its area and edges length:c= 4
p

3a
l2
0+l2

1+l2
2
), to

reduce surface normals variation and to maintain a bounded
error. The latter test is the most original part of the paper. It
constrains the reduced mesh to stay within a tubular neigh-
borhood of known width, defined around the simpified sur-
face, calledtolerance volume. With respect to the Simplifi-
cation Envelopes method, the tolerance volume is not built
in a preprocessing step, but conversely it is incrementally
computed during the simplification. The tolerance volume is
defined as a union of balls whose radii are the current error
values hold by the simplified surface vertices, smootly in-
terpolated in between surface vertices (approximation errors
are computed on the vertices). For each simplification step,
approximation errors are recomputed for all vertices adja-
cent to the collapsed edge, the tolerance volume is updated
and the method verifies if its size remains under the global
tolerance value set by the user.

Evaluation
The edges are removed by collapsing edges into single ver-
tices (vertices are thus relocated).
It adopts an approximated global error criterion, but this re-
sults in a over-estimation of the error, i.e. the bound given
by the error volume may be much larger than the effective
approximation error of the simplified mesh.
Times: times produced on a IBM Risc6000; no standard
dataset used, experiments on: femur mesh (medical data):
180K triangles, 1:20 reduction in 25 min.; arteries mesh
(medical data): 57K triangles, 1:5 reduction in 8 min.

3.2.2.9. Full-range Approximation
(Ronfard and Rossignac). The Full-range Approximation
method88 adopts an edge collapse approach. Edges collaps-
ing cost is evaluated in a preprocessing phase and stored in
a priority queue. Then, it iterates on edge collapsing and re-
laxation (i.e. the cost of all edges adjacent to the collapsed
one are re-computed and the priority queue is updated) un-
til required compression ratio is obtained. Edge collapsing
is implemented by moving the first vertex in the second one
(i.e. no vertex relocation).
The approach is incremental, and is driven by a peculiar
global evaluation of the approximation error introduced by
each edge collapsing step. Two errors are evaluated on each
candidate edge: thelocal geometric error(LGE) and thelo-
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cal tessellation error(LTE).
LGE gives an approximated measure of the mesh variation
for each edge collapse. At the initialization step, for each
vertexvi we built the set of planesPvi where the faces inci-
dent inv lie. For each candidate edge(v1;v2), LGE is com-
puted as the maximum distance from the planes inPv1 and its
collapsed positionv2. Edges are stored in the priority queue
by increasing LGE errors. For each edge collapse, the set of
planes associated to the two vertices are unified and associ-
ated to the merged vertexv2.
Conversely, LTE measures the amount of rotation undergone
by the normal vectors of all the faces involved in an edge col-
lapse. LTE is therefore used as a penalty function in order to
take into account smootness and validity of the simplified
mesh: an edge collapse is operatediff LTE is below a se-
lected threshold.
The heuristic proposed gives therefore an approximation of
the global error, because the LGE distance is not a precise
measure of the distance between the original surface and the
simplified mesh.

Evaluation
Incremental approach, based on edge collapsing (vertices are
not relocated).
Topology is not preserved.
It uses an approximated global error criterion, which might
produce an over-estimation of the error.
Times:authors report times in the range few seconds – sev-
eral minutes (no details on the dataset and the workstation
used).

3.2.2.10. Mesh Simplification (Algorri and Schmitt).
The Mesh Simplification method1 adopts a decimation ap-
proach based on vertex characterization and edge collapsing.
Vertices are characterized depending on a nearly-planarity
test (following a user-selected planarity threshold), and then
the edges connecting adjacent nearly-planar vertices are col-
lapsed in the center of the edge.
Because no evaluation of the approximation error is pro-
vided, the simplification process may be driven only by se-
lecting different planarity and collinearity threshold values.

Evaluation
Approach based on edge collapsing (vertices are relocated).
Topology is preserved.
The method support a local error criterion (based on pla-
narity or collinearity of vertices). Approximation error is not
bounded.
Times:roughly 0.2 KTr/sec (medical dataset, SUN Spark-
Center 80MHz CPU, no precise timings).

3.2.2.11. Generalized Unstructured Decimation (Renze
and Oliver). The Generalized Unstructured Decimation
method 87 extends the vertex decimation strategy tovol-
ume tessellations, e.g. unstructured tetrahedrizations. Once

a candidate vertex is selected, the 2D- or 3D-hole is retrian-
gulated using a general unconstrained Delaunay tessellation
algorithm, and the tessellation obtained is then checked for
consistency.

Evaluation
The simplified mesh is defined on a subset of the original
vertices.
Vertex classification and selection is not discussed, and nei-
ther is error evaluation.
Times: times measured on a SGI R4400 150MHz, 0.8K
vert/sec removed on surfaces and 0.08K vert/sec onvolume
data (3D tessellations).

3.2.3. Re-Tiling Polygonal Surfaces (Turk)

The Re-Tiling Polygonal Surfaces method103 distributes
randomly a user-specified number of new vertices over the
input mesh and connect them to create a re–tiling of the sur-
face that is faithful to both the geometry and topology of
the original surface. Then, an iterative relaxation procedure
is applied to move each point away from all nearby points
(following a repellingforce which falls off linearly with dis-
tance). Once the points have been placed, the next task is to
connect them to form a triangular mesh that reflect the topol-
ogy of the original mesh. The problem is solved in steps.
First, amutual tessellation, i.e. containing old and new ver-
tices, is built. Second, (part of) the old vertices are removed
one at the time and the surface is re-triangulated locally.
Topology consistency checks prevent old vertex removal in
the case that their removal will modify the topology.
Point relaxation may be uniform on the mesh, or the density
of vertices may be increased in regions of high curvature (to
more accurately represent the object’s features).
Main points of the method are: (1) a roboust re–tiling
method, (2) the use of an estimate of surface curvature to
distribute more new vertices at regions of higher curvature
and (3) a method for the smooth interpolation between mod-
els that represent the same mesh at different levels of detail.
The latter provides smooth interpolation, with no jumps or
discontinuities, but not a real “multiresolution” management
because no knowledge on the precision of the obtained inter-
polated mesh is provided. Moreover, the approach proposed
for the interpolation between any coupleMi , Mi+1 of level
of detail produces an intermediate mesh whose complexity is
equal to that ofMi+1, the mesh at higher resolution. This ap-
proach therefore privileges interpolation smoothness rather
than effective mesh simplification.

Evaluation
The method best suits models that represent curved surfaces,
with no sharp edges (which may be smooted or removed).
The process of re–tiling does not take into account the error
between the new and the old mesh, apart from the increased
density of vertices in the areas at higher curvature (that is
done following aglobal relaxation criteria). No error metric
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is provided. The user has no means to set (to drive the sim-
plification) or to be acquainted (after simplification) with the
error of the simplified mesh.
The new mesh has vertices which are not a subset of the orig-
inal ones.
Times:no info is reported.

3.2.4. Energy Function Optimization

These methods perform mesh reduction incrementally (by
the elimination of vertices, edges, faces) and are driven by
the optimization of theenergy function, which measures the
“quality” of each reduced complexity mesh.

3.2.4.1. Mesh Optimization (Hoppe, De Rose, et al.).
The Mesh Optimization method59, given a set of pointsV0
and an initial triangular meshM0 built onV0, produces itera-
tively a meshMj with the same topological type that fits the
data well and has a smaller number of vertices thanM0. To
solve the problem authors design and minimize anenergy
function that captures the competing desires of thight geo-
metric fit and compact representation. The process is based
on a non-linear optimization process, where the number, po-
sition and connectivity of the vertices vary to reduce theen-
ergy functionvalue.
Theenergy functionis defined over a simplicial complexMi
and its geometrical realizationVi (i.e. theMi vertex coor-
dinates inR3) in terms of three components:E(Mi ;Vi) =
Edist(Mi ;Vi)+Erep(Mi ;Vi)+Espring(Mi ;Vi) , whereEdist is
the sum of squared distances of the points inV0 from the cur-
rent mesh (L2 norm),Erep is proportional to the number of
vertices in(Mi ;Vi), andEspring is the sum of the edge lenghts
in (Mi ;Vi).
The method does not guarantee the detection of theenergy
functionglobal minimum, but it is able to produce good re-
sults. The optimization process is modulated by selecting
adequate values for the three parameters introduced in the
energy function components.
The energy functionminimization is obtained through it-
eration on two nested subproblems: an inner minimization
(optimization of vertex positions) and an outer minimization
(evaluation of legal modifications of the mesh, e.g. edge col-
lapse, split or swap). The first is acontinuousoptimization
problem, the second adiscreteone. The outer step has a sim-
ilarity with the Mesh Decimation97 method: in both cases
the mesh is iteratively simplified, but here the simplification
steps (orlegal moves) operated on the mesh areedge–based.

Evaluation
An advantage of this approach is the high quality of the ap-
proximated mesh, but it is counterbalaced by the long pro-
cessing times required.
The method adopts a peculiar error metric, based on the op-
timization of the energy function. By definition, the evalua-
tion of the energy function takes into consideration all of the
vertices of the initial mesh, and therefore the method applies

Figure 2: Mesh Optimization: edge-based legal moves.

a global error approach. On the other hand, the method is
driven by a set of tuning parameters, and a measure on the
effective error of the reduced mesh is not given to the user
(apart from the energy function value, which is hard to be
interpreted by a common user). The only parameter which
can be simply interpreted is the number of vertices of the re-
duced mesh.
The method preserves topology. Feature elements (sharp or
boundary edges, corner vertices) may be recovered by the
selection of ad hoc values of the energy function parame-
ters. The ouput mesh will contain new vertices, because new
positions are selected for the vertices in the inner phase op-
timization.
Times:40-50 minutes on a Dec Alpha to simplify meshes
with 4K - 9K vertices (reduction factor: 1:15). For other re-
sults see our tests in Section 3.3.3.

3.2.4.2. Progressive Meshes (Hoppe).The Progressive
Meshes method57; 80 encompasses both a revised mesh sim-
plification approach based on edge collapsing and energy
function optimization, and a new multiresolution represen-
tation.
The adoption of a single and invertible legal move,edge col-
lapsing, allows to store the whole simplification process in
a multiresolution data structure (calledProgressive Meshes
(PM) representation). The PM scheme is composed of a
coarse low resolution meshM0, togheter with the sequence
of refinement records obtained by inverting the simplifica-
tion steps operated to buildMk from the input meshM0.
These refinement records allow the incremental refinement
of Mk into a meshMi at whatever precision, with interactive
times (see Figure 3).
During simplification, the selection of the edges to be col-
lapsed is done via a priority queue, ordered by the energy
cost improvement estimated for each edge collapse.
Moreover, the paper addresses many collateral problems,
such as: preserving both scalar attributes defined at the mesh
vertices and discontinuities (e.g. mesh color); geometric
morphing between meshes; progressive transmission on low
bandwith channels or networks; mesh compression; and res-
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Figure 3: The invertible edge collapse/refine action.

olution modeling via selective refinements.

Evaluation
Analogously to the previous method, the error metric based
on the optimization of the energy function gives aglobal
evaluation of the mesh quality, but the effective approxima-
tion error is not produced.
Feature elements (sharp or boundary edges, corner vertices)
are recovered. The ouput mesh will contain new vertices,
because new positions are selected for each edge collapsing
action.
The PM representation allows to confine the lenghty simpli-
fication process to a pre-processing phase, and gives the pos-
sibility to reconstruct whatever level of detail interactively.
Times:the Fandisk mesh is simplified in 19 min. on a SGI
Indigo2 150MHz, i.e. 0.01 KTr/sec (times presented in the
paper); the current code version has been higly optimized
and simplifies, on the same dataset, 0.03 KTr/sec. For other
results see our tests in Section 3.3.3.

3.2.5. Clustering Methods

3.2.5.1. Vertex Clustering (Rossignac and Borrel). The
Vertex Clustering method90 simplifies a mesh by the detec-
tion and unification of cluster of nearby vertices (detected
with a simple process based on on discrete gridding and co-
ordinates truncation). Each cluster is replaced by a unique
vertex, whose geometrical position may be the center of
mass of the cluster or the vertex with maximal weight in
the cluster (vertex weights are defined to emphasize the rel-
ative perceptual importance). Then, aneliminationprocess
updates the mesh topology by removing duplicate or degen-
erate edges and triangles which were formerly incident in
the clusterized vertices, and now in the same unique cluster
vertex.

The algorithm has been implemented and included in the
IBM 3D Interaction Accelerator
(see the web at http://www.research.ibm.com/3dix/ and
http://www.research.ibm.com/3dix/ description03a.html).

Simplified meshes accuracy has been improved in72 by
adopting enhanced vertex weighting and floating cell clus-
tering (i.e. space decomposition is not uniform but driven by

high-weight vertices locations), and by rendering with thick
lines all of the faces which collapsed into edges.

Evaluation
The error introduced is bounded (in the Hausdorf distance
sense) by the user-controlled accuracy, which drives clus-
ter size selection. The method is of simple implementation
and fast, but it is not concerned with preserving the topology
or geometric accuracy of the original mesh. It may produce
very crude approximations.
Times:no time is reported.

3.2.5.2. Perceptually Driven Clustering (Reddy). The
Perceptually Driven Poligon Reduction method86 adopts an
approach similar to that of Rossignac and Borrel (clusteriza-
tion of edges based on discrete gridding) to merge pairs of
edges into a single entity. The main objective of this proposal
is to enforce the clusterization and simplification process
with a finer control of the perceptive quality of the simplified
meshes, i.e. to define simplified meshes which, under some
conditions, could be undistinguishable from the original one
(e.g. viewed with a given zoom–out factor). Edge merge is
therefore driven by a surface curvature test weighted by edge
lenght.

Evaluation
The error introduced is bounded by the cluster size selection.
The method is enough simple to implement, but it is not con-
cerned with preserving the topology or geomeric accuracy of
the original mesh.
Times:time are reported only relative to a very simple ob-
ject, and are in the range 0.1-0.05 KTr/sec on an SGI Indigo2
Reality Station.

3.2.5.3. Simplification using Quadric Error Metrics
(Garland and Heckbert). The Surface Simplification us-
ing Quadric Error Metrics method40 is based on the iter-
ative contraction of edges pairs (a generalization of edge
contraction), which allows also to join unconnected regions
of the model. The atomic action,vertex pairs contraction,
may be conceived as a less general vertex clustering action.
As simplification proceeds, a geometric error approximation
is maintained at each vertex of the current model. The er-
ror approximation is represented using quadric matrices, ex-
tending a previous aproach88. For each vertexv, the error
is the sum of squared distances to the planes incident inv
(or associated tov after some contractions which have gen-
eratedv). Instead of explicitly storing plane sets (as in88),
authors represent the error sum by an error quadric matrix.
After each contraction action, the planes associated to the
contracted vertices are merged by simply adding the two
matrices. This imply both efficient storing (a 4x4 matrix for
each vertex) and efficient evaluation of error by using simple
vector–matrix operations.
The algorithm is incremental, because all the valid pairs are
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selected in a preprocessing phase and inserted in a heap
sorted upon minimum cost; quadric error matrices are also
computed in this phase. Then, a valid pair is iteratively ex-
tracted from the heap, contracted and the heap is updated by
re-computing the cost of all adjacent pairs.
The main advantages of this approach are computational ef-
ficiency and generality. It allows the simplification of dis-
connected or non-manifold meshes. If maintaining topology
is not a must, then this solution permits drastic simplification
of models via easyaggregationof disconnected components
or by closing topological holes.

Evaluation
Topology is not preserved, but non-manifold and discon-
nected objects are managed.
It is an incremental method, extremely efficient both in terms
of simplification times and quality of the mesh produced (the
improvement against other clustering approaches is great).
Times:few seconds needed to simplify thebunnymesh, from
69K triangles to a 100-faces model on a SGI Indigo2 R10000
195MHz.

3.2.6. Wavelet-based Methods

The wavelet decomposition approach seems very promis-
ing for surface simplification (and, moreover, multiresolu-
tion cames for free). A difficulty in adopting wavelet decom-
position is the need to provide a regular, hierarchical decom-
position. A wavelet approach has been proposed to manage
either regularly gridded meshes42 or more generical meshes
36; 8.

3.2.6.1. Multiresolution Analysis via Wavelet (Eck, De
Rose et al.). The Multiresolution Analysis method70; 36; 71

is based on the wavelet mutiresolution approach, i.e. on the
use of a simple base mesh plus a sequence of local correc-
tion terms, called wavelet coefficients, which capture the de-
tail present in the object at various resolutions. It provides
a solution for the so-calledremeshing problem, i.e. given an
arbitrary input meshM build a simplified meshK j which is
guaranteed to be within a prescribed toleranceε1 and which
satisfy the subdivision connectivity restriction (needed for
wavelet decomposition).

This approach deals with meshes of arbitrary topological
type, and it provides: bounded error, a compact multiresolu-
tion representation, and mesh editing at multiple resolution
scales.

The approach is composed of three main steps:

1. Partitioning: the imput meshM is divided in a (small)
number of triangular regionsT1; :::;Tn, and the associated
low resolution triangulation built on it is called thebase
mesh K0; a Voronoi diagram and Delaunay triangulation
approach is adopted;

2. Parametrization:for each regionTi , a local parametriza-
tion is built on the corresponding face of the base mesh
K0;

3. Resampling: jrecursive quaternary subdivision of the
base mesh faces are performed to build meshK j , and the
coordinates of the new meshK j are obtained by mapping
K j vertices inR3 using the parametrization built in the
previous phase.

An extension of this approach has been proposed to man-
age the approximation of both geometry and surface color8.

Evaluation
The wavelet surface reconstruction is not simple, because the
surface has to be remeshed to support a regular subdivision
connectivity. This may introduce error in the higher levels of
detail and topology must remain fixed at all levels of detail.
The representation is lossy (i.e. even at the higher level of
decomposition, the representation is approximated under er-
ror ε1). Moreover, the number of faces of modelK j is in
general twice the number of faces of the original mesh (and
K j is an approximation of the latter).
Topology is preserved, but the topology of the model must
remain fixed at all levels of detail. Preserving sharp corners
or edges is not easy.
Regarding easy of implementation, a sophisticated math
knowledge is required.
Times:efficiency is low both in the construction of the mul-
tiresolution representation (remeshing) and in the recon-
struction by resampling of an approximated meshesKj , re-
spectively done at a rate of 0.04 KTr/sec and 0.03 KTr/sec
on an SGI Onyx ws.

3.2.7. Simplification via Intermediate Hierarchical
Representation

3.2.7.1. Octree-based Simplification (Andujar et al.).
The Automatic Generation of Multiresolution Boundary
Representations method2 produces a mutiresolution bound-
ary representation by converting the input mesh into an inter-
mediate MDCO octree representation, and then converting
back the octree in boundary representation. The hierarchical
structure of the octree allows easy reconstruction of models
P1; :::;Pn at different level of details, where representationPk
is built by pruning octree’s node at level greater thank.
Given an octree purged at levelk, two approaches are pro-
posed to reconstruct a simplified boundary representation.
The first builds aface octreefrom the leaf gray nodes of
the purged octree, with tolerance lower or equal to the leaf
nodes’ diagonal lenght. The face octree is then converted in
brep. The second approach detects and merges the planar
and connected regions associated to the leaf gray nodes.

Evaluation
Approximation error depends on both the rasterization preci-
sion adopted for the construction of the octree representation
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and the threshold used in theoctree–to–brepconversion, and
the composition of these two is additive. The effective con-
trol on the approximation is not very precise.
Topology is not preserved. Vertices coordinates are not a
subset of the initial ones.
Times:no times are reported.

3.2.7.2. Voxel-based Simplification (He et al.). The
Voxel-based Simplification method50; 51 (called alsoCon-
trolled Topology Simplificationin the revised paper) pro-
duces a multiresolution triangle mesh hierarchy by convert-
ing the input mesh into a pyramid of raster volumes. The
input objects are first 3D rasterized to built a voxel represen-
tation, and then a pyramid of reduced resolution volumes is
built by the progressive elimination of the high-frequency
features (i.e. adopting a standard image–processing ap-
proach). A surface-fitting technique (e.g. marching cubes69)
is applied on the volume datasets to produce different LOD
meshes.
But converting into voxel representation and then fitting an
isosurface might even produce a fitted mesh which is larger
in size than the original one (e.g. in the case of objects with
large planar regions). To cope with this problem, authors
adopt an adaptive fitting approach based on theSplitting Box
algorithm76 in the revised version of the paper51.

Evaluation
The algorithm works only on closed surfaces.
Approximation error depends on both the rasterization preci-
sion adopted for the construction of the voxel representation
and the threshold used in the adaptive surface fitting, and the
composition of these two is additive. The effective control
on the approximation is not very precise.
Topology is not preserved. Vertices coordinates are not a
subset of the initial ones.
The speed of the method is low and the production of both
very compact and accurate simplified models seems hard to
be obtained.
Times:times measured on a SGI Onyx 2xR4400 100MHz;
surface extracted in 100-200 sec. using the adaptive fitting
algorithm; 3D rasterization times are not reported.

3.3. Discussion

The different approaches adopted to measure theapproxima-
tion error introduced in the simplification process are pre-
sented and characterized in Subsection 3.3.1. The results of
an empyrical comparison on the accuracy provided by dif-
ferent simplification code are presented in Subsection 3.3.3.
The empyrical comparison was done usingMetro, a simple
tool for measuring the “disparity” of two surface meshes,
introduced in Subsection 3.3.2.

3.3.1. Simplification Error Evaluation

This section presents the various techniques for evaluat-
ing and bounding the approximation error introduced in the

mesh simplification process. A keen control of the approx-
imation accuracy is critical, for example to prevent highly
perceivable discrepancies between different LODs or to pro-
duce simplified and hopefully nearly indistinguishable rep-
resentations of the highly complex meshes acquired via
range scanners.
A definition of theapproximation errorbetween two meshes
is given in Subsection 2.2.2 – paragraph “Error on mani-
fold surfaces”, definition (3). AL2 norm has been adopted to
measure error in some simplification approaches57; 59. Here,
we consider error measures based on theL∞ norm, which
has been adopted more often21; 63; 11 and can be informally
stated as follows.

Definition 3.1 Given two piecewise linear objectsMi and
Mj , Mi andMj areε-approximationsof each otheriff every
point onMi is within a distanceε of some point ofMj and
every point onMj is within a distanceε of some point ofMi .

The approximation error is managed in many different
manners by the various simplification approaches. A char-
acterization may be based on the policy chosen to bound the
approximation error:

1. approaches which supportlocally bounded errors, i.e.
the approximation accuracy is known around each sur-
face entity (e.g. most of the mesh decimation methods
97; 99; 3; 11; 63; 88);

2. approaches which only supportglobally bounded ap-
proximation errors, i.e. the accuracy is known only for the
entire simplified mesh (e.g. the simplification envelopes
21, superfaces61 and clustering approaches90, methods
based on the conversion into an intermediate hierarchical
representation2; 51);

3. approaches which control accuracy withother criteria ,
which are not compatible with Definition 1; usually, cur-
vature is taken into account to define a global bound on
the surface (e.g. geometric optimization56, triangle re-
moval decimation48, mesh simplification1);

4. approaches whichdo not evaluatethe approximation ac-
curacy (and are generally driven by the user-required sim-
plification rate).
(e.g. re-tiling103; methods based on the evaluation of an
energy function59; 57 may be included in this class, if we
do not consider the energy function as a valid measure of
the approximation error, as defined in Def.1);

Methods of class (1),locally bounded, are generally it-
erative methods based on a sequence of local updates to
the mesh geometry/topology. For each iteration, the current
meshMi is slightly modified to produce meshMi+1. Modi-
fications are limited to the two patchesTi andT 0

i , which (a)
surround the decimated/collapsed/flipped elementei , and (b)
share the border. In this case, different methods have been
proposed to evaluate, at each step, the variation in the local
error bounds:

� local evaluation; we evaluate only the approximation in-
troduced by replacing patchTi with T 0

i ; either:
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– using a fastapproximatedapproach, e.g. measuring
the distance of the decimated vertex from the average
plane to patchTi 97 (Figure 4.a),or

– using apreciseapproach, which is based on the obser-
vation that the mutual projection of the two patchesTi
andT 0

i segments the associated hole into pieces within
which both geometries vary linearly3. Thus, it suf-
fices to compute errors at the intersections of the pro-
jected edges; the maximal of these errors gives an up-
per bound of the local error (see Figure 4.b);

� propagation-basedevaluation; at each step, we assign to
each new face/vertex inT 0

i the sum of the currentlocal
evaluationof the approximation error and the maximal
error associated with the faces/vertices inTi 3; 11;

� global evaluation; we directly estimate the approxima-
tion introduced by representing with the simplified patch
T 0

i the corresponding section of the initial meshM0. Many
approaches have been proposed; they can be divided into
two classes:

– approximateapproaches;

� if all removed vertices are stored with the current
simplified face f onto which they “project” (i.e.
which are at the shortest distance fromf ), a global
error approximation is the maximal distance from
these vertices tof 99; 11 (see Figure 4.c). This crite-
rion is efficient, but returns an underestimation be-
cause theL∞ mesh–to–meshdistance might not be
located on one of the initial mesh vertices; more-
over, the criterion is very imprecise in the first sim-
plification steps when few, or even none, of the re-
moved vertices are associated with each simplified
face;

� another approach has been proposed for methods
based on edge collapsing88. At initialization time,
for each vertex we store the list of planes where
the faces incident in the vertex lie. Planes lists have
to be maintained and updated during simplification
(after each edge collapse action, the two lists asso-
ciated with the extremes of the collapsed edge are
merged). The error is then evaluated at each step as
the maximum distance between the new collapsed
vertex position and all the planes in the vertex list.
The evaluation of distances is much more efficient
in 40, wherequadric error matricesare used. This
approach returns an upper-bound for the approxi-
mation error, but in some cases the bound might
be considerably over-estimated with respect to the
actual error.

– preciseapproaches; these compute the Hausdorff dis-
tance between the original and the simplified mesh
(mesh–to–meshdistance). This can be done either:
by maintaining trace, during simplification, of all the
original faces that map to simplified faces, and then
computingface–to–meshdistances by performing, if

enhancing approximation 

vertex removal
and re-triangulation

by flipping edges

Figure 5: The example shows how flipping may improve
mesh quality.

needed, an adaptive decomposition of faces63; or, by
extending Bajaj et al.’s local method3, to compare
patchT 0

i with the corresponding section of the initial
meshM0. In both cases, computing times are now pro-
portional to the complexity of meshesT 0

i with respect
to the correspondingM0 subsection (i.e. the more we
proceed with simplification, the higher the complex-
ity of each section ofM0 which is associated with the
current patch, and the higher the processing cost for
computing edge intersection and distances);

In the case of incremental methods, the accuracy of the
simplified mesh may be improved by adopting a greedy ap-
proach based on edge flipping11; 3, operated over the filling
patches (Figure 5). But in order to effectively improve the
approximation accuracy, edge flipping has to be driven by
the evaluation of theglobal error variation caused by each
potential flipping, and not only by a simpler equiangularity
test.

Most of the methods reviewed offer no immediate provi-
sion to accurately control the perceptual effect of the degra-
dation, because in most cases the approximation introduced
into simplification has no immediate interpretation in terms
of visual degradation86. Perceivable visual degradation may
be caused either while visualizing a single simplified repre-
sentation (e.g. in the case of eccessively approximated rep-
resentation, loss of topology features, fuzziness of the sim-
plified surface, etc.), or while changing the level of detail,
the so calledinter-frame flickeringwhich is common if the
meshes in the LOD representation present large visual dif-
ferences.
Defining a measure for visual degradation is no easy task
and is being hotly debated. Driving simplification by pre-
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Figure 4: Various methods to evaluate approximation error: (a) approximated local , (b) precise local, (c) approximated global.

serving curvature and sharp edges gives good control on the
appearance of the shape, one reason being that most render-
ers draw elementary components by shading colors accord-
ing to surface normals86. But taking into account the shape
is not enough: pictorial information (color or texture) is an
important factor in perception, and therefore color disconti-
nuities have to be managed carefully86; 57; 8; 98.

3.3.2. The Metro tool

Due to the many approaches adopted to evaluate simplified
mesh accuracy, a uniform and general tool for the evaluation
of approximation precision is needed to compare the results
of different simplification methods. For this reason we de-
veloped an ad-hoc tool, calledMetro.

The first release ofMetrowas described in20. The current
version of the tool, rel. 2.0, has been completely re-designed
in order to increase precision in the evaluation of mesh ac-
curacy, improve efficiency (it is now nearly ten times faster),
and reduce memory allocation.

Metro numerically compares two triangle meshesS1 and
S2, which describe the same surface at different levels of

detail. It requires no knowledge of the simplification ap-
proach adopted to build the reduced mesh.Metro evalu-
ates the difference between the two meshes on the basis of
theapproximation errorpreviously stated in Definition 1. It
adopts an approximate approach based on surface sampling
and the computation ofpoint–to–surfacedistances. The sur-
face of the first mesh (hereafterpivot mesh) is sampled, and
for each elementary surface parcel we compute a point–to–
surface distance with the not–pivot mesh.Point–to–surface
distances are computed efficiently by using a bucketed data
structure for the representation of the non-pivot mesh.
The idea is therefore to adopt an integration process over the
surface; the sampling resolution characterizes the precision
of this integration (users may select thesampling step size).
Sampling on the surface is achieved by adopting a classical
incremental scan conversion approach or a Montecarlo sam-
pling approach.
At the end of the sampling process, we switch the pivot and
not–pivot mesh and execute sampling again, to get a sym-
metric evaluation of the error (but we observed that when
a sufficiently thin sampling step is adopted, for example
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0.01% of the bounding box diagonal, nearly equal values
were obtained whatever mesh was chosen as the pivot).

Metro returns bothnumericaland visual evaluations of
surface meshes “likeness” (Figure 6 shows a snapshot of
its GUI). Most of the numerical results (mesh surface area,
feature edges total length, mean and maximum distances
between meshes, mesh volume) are reported in the tables
in Section 3.3.3 . Error is alsovisualizedby rendering the
higher resolution mesh with a color for each vertex which
is proportional to the error. A histogram reporting the error
distribution is also visualized.

The error evaluated byMetro may be affected by finite
numerical precision, although double precision is adopted in
numerical computations. An “ad hoc” management has been
provided for a number of dangerous cases, such as nearly co-
incident vertices, facets with small areas, and very elongated
triangles.

3.3.3. Empirical Evaluation of Simplification Codes

Five representative (and available) simplification codes,
listed below, have been tested on three datasets, which rep-
resent three main classes of data. Results have been reported
in a submitted paper18. We briefly report in the following the
comparison methodology and some discussion of the results
obtained.

The test meshes used were:bunny, repre-
sentative of range-scanned meshes (available at http://www-
graphics.stanford.edu/data/);fandisk, representative of CAD
models (available at http://research.microsoft.com/research/
graphics/hoppe/); andfemur, representative of medical sur-
faces fitted on volume datasets (courtesy of Istituto Ortope-
dico Rizzoli (IOR), Bologna, Italy).

The following simplification codes were compared, us-
ing theMetro tool (see Subsection 3.3.2) on a SGI Indigo2
R4400 200MHz CPU, in terms of the size of the meshes pro-
duced, the approximation quality, and the running times:

1. Mesh Decimation 97; code provided in the Visualiza-
tion Toolkit 1.3 (VTK) by Bill Lorensen, Ken Martin and
William Schroeder (http://www.cs.rpi.edu/�martink/);

2. Simplification Envelopes21, rel. 1.2; code developed at
the Department of Computer Science of the University of
North Carolina, code courtesy of Jonathan Cohen et al.
(http://www.cs.unc.edu/�cohenj);

3. Multiresolution Decimation 11; code Jade rel. 2.0, im-
plemented
by the Visual Computer Group of CNUCE/IEI-C.N.R.
(http://miles.cnuce.cnr.it/cg/jade.html - Jade rel. 2.0 has
been slightly improved in terms of approximation error
management with respect to the description and results
reported in11);

4. Mesh Optimization 59; code developed by Hugues
Hoppe et al., Univ. of Washington
(http://research.microsoft.com/research/graphics/hoppe/);

5. Progressive Meshes57; code developed by Hugues
Hoppe, Microsoft inc.
(http://research.microsoft.com/research/graphics/hoppe/)

We initially also planned to test a representative
of commercial tools, i.e. the Polygon Reduction Ed-
itor available underSGI Cosmo Worlds(available at
http://www.sgi.com/Products/cosmo/worlds/CosmoWorldsUG/
Reference/polyed.htm). This simplifier seems to be based on
the clusteringapproach, and presents a simple GUI which
allows the user to set threshold values to delete points by
curvature, edges by length and triangles by area (see Sub-
section 5.1.2). The simplification process is driven by atrial
and errorapproach, and the quality of the mesh produced de-
pends on the skill (and the luck) of the user. The production
of results of a quality comparable to the simplified meshes
produced using the codes above appeared to be nearly im-
possible.

The results relative to the evaluation of the approximation
error are summarized in the graphs in Figure 7. In the graphs
on the left we plot themaximal error(Emax) evaluated by
Metro on simplified meshes of different sizes. Theaverage
error (Eavg) is reported in the graphs on the right. For all
graphs, the simplified mesh size is mapped on the X axis,
and the error is mapped on the Y axis.

As we expected, the best results in terms ofaverage error
were given by the Progressive meshes and mesh Optimiza-
tion codes (which are based on anL2 metric over the object
surface, meaning that they try to minimize the root mean
square error). On the other hand, methods based on theL∞
metric produce better results when we consider themaximal
error.
It is noticeable that Simplification Envelopes and Multires-
olution Decimation produce the best results when high ac-
curacy is needed (i.e. for reduction factors not higher than
75%).

Finally, all of the solutions tested share a common weak-
ness: they are defined to work on a single, topologically–
sound mesh. This is not the general case in rendering CAD
models or in virtual reality sessions, where we may need
to simplify scenes or objects composed by multiple com-
ponents, with a not topological–clean composition between
components. New solutions are required for these applica-
tions to provide increased generality and robustness. First
attempts in this direction have been recently proposed73; 40.

The original bunny mesh is shown in Figure 8, toghether
with three simplified meshes obtained with the Multireso-
lution Decimation code11 at different approximation. Top-
right: 14.339 faces (� 20% of the original), 7.278 vertices,
error 0.001% of the mesh’s bounding box diagonal . Bottom-
left: 6.901 faces (� 10%), 3.559 vertices, error 0.005%.
Bottom-right: 1.361 faces (� 2%), 789 vertices, error 0.1%.
Flat shading is used in all of the images, to enhance mesh
disparity.
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Figure 6: TheMetro tool.

4. Multiresolution Meshes

The concept ofLevel Of Detail (LOD)is generically related
to the possibility of using different representations of a ge-
ometric object (a surface, a volume, an image, etc.), having
different levels of accuracy and complexity.

In case the object geometry is represented with a mesh,
the level of detail of a single representation is directly pro-
portional to the size of the mesh. In the simplest case, a LOD
representation consists of a collection of meshes of different
sizes, each representing the object at a given resolution. Each
mesh is defined independently of the others, and it is tagged
with somerangeof detail, which is used as a filter to select
a mesh from the LOD representation, according to the needs
of any given application.

A LOD representation can be built easily by the repeated
application of any simplification algorithm with different pa-
rameters of simplification. Such a simple framework is a
straightforward application of the mesh simplification tech-
nology, and it has been incorporated into leading edge graph-
ics languages and packages, such as OpenInventorTM 43; 106,
and VRML 105. However, a simple LOD representation has
three main drawbacks:

1. since each mesh is stored independently, the number of
levels of detail must necessarily be small, in order to
maintain memory requirements into reasonable bounds;

2. because of the previous limitation, not only there is just
a modest possibility of adapting resolution to application
needs, but also changes between two consecutive levels
are abrupt, hence causing undesirable “popping” effects
in visualization during the transition from a level to an-
other;

3. the resolution of each mesh is uniform over the whole ob-
ject it represents, hence there is no possibility of grading
the resolution of large objects (e.g., terrains, buildings,

ships, planes, cars) that might span several ranges of dis-
tance from an observer within the same view.

In order to overcome such limitations, more sophisticated
models have been developed in the literature, which we will
call multiresolution meshes. Informally, a multiresolution
mesh is a model that can provide a high number (virtually, a
continuous range) of meshes representing a single object at
different resolutions. The number of different levels of detail
that such a model can provide will not be fixed a priori, but
it will rather be proportional to the size of the mesh repre-
senting the object at the maximum possible resolution. The
desirable properties of a multiresolution model are:

� the model must support efficient query processing, i.e., it
must be possible to extract a mesh from the model at a
given resolution in short (real) time;

� the size of the model must not be considerably higher than
the size of the mesh at the highest resolution it can pro-
vide;

� any mesh extracted from the model must be “continuous”,
i.e., it is important to avoid cracks due to abrupt transition
between different LODs within a single mesh;

� the transition between different meshes extracted from the
model must be as “smooth” as possible, i.e., it is impor-
tant to avoid abrupt changes when moving from a mesh to
another at a close LOD.

For historical reasons, we will distinguish between
domain-uniform models, i.e., multiresolution models that
only support the extraction of meshes whose resolution is
uniform over the whole object represented, anddomain-
variable models, i.e., models that also support the extraction
of meshes whose resolution is gradually changing over dif-
ferent zones of the object represented. In general, we can
assume that the desired level of detail/accuracy/resolution of
a mesh can be specified by athreshold functiondefined ei-
ther in the space embedding the object represented, or on
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Figure 7: The graphs show the performance of the various simplification codes on the three meshes.

the object itself. Such a function gives, for instance, ei-
ther the maximum error allowed, or the required density
of the mesh at each point in space. Domain-uniform mod-
els only support threshold functions that are constant over
the whole domain/object, while variable-resolution models
support arbitrary threshold functions, or some special cases
like distance-increasing functions. Variable-resolution mod-
els are all very recent.

Before reviewing the literature on multiresolution models,
we provide a framework encompassing all models, which
will help us understanding general structures and properties,
as well as comparing the features of different models.

4.1. A general framework

In this section, we describe theMulti-Triangulation (MT),
a structure that was introduced in82; 83, which provides a
general framework for multiresolution meshes. Indeed, all
multiresolution models proposed in the literature can be in-
terpreted as special cases of the MT, hence they will be re-
viewed in the next section according to this framework.

The general idea underlying the MT is that any multires-
olution mesh can be built through local operations that pro-
gressively modify an initial mesh through either refinement
or simplification, and that local modifications can be ar-
ranged into a partial order according to their dependencies.
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Figure 8: The original bunny mesh (top-left, 69.451 triangles and 34.834 vertices) and three meshes simplified by the Multires-
olution Decimation code. Top-right: 14.339 faces (� 20%), 7.278 vertices, error 0.001%. Bottom-left: 6.901 faces (� 10%),
3.559 vertices, error 0.005%. Bottom-right: 1.361 faces (� 2%), 789 vertices, error 0.1%.
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In order to have an intuition of the framework, let us con-
sider first the simple LOD model given by the sequence
of meshes depicted in Figure 9a. All meshes decompose
the same rectangular domain into triangles, an each mesh
can be obtained from the one preceding it (or following it)
through some local modification. In other words, the se-
quence records the evolution of a mesh through a process
of either refinement or simplification, as indicated by the ar-
rows. Although in the example each local modification con-
sists of insertion/deletion of one or more vertices, local mod-
ifications could be any combination of generic operations
that modify the mesh locally, such as vertex split, edge col-
lapse, triangle collapse, etc. Indeed, the framework is inde-
pendent of the kind of local operations adopted.

The key observations to move from this LOD model to the
concept of MT are the following:

1. the sequence of meshes can be viewed as an initial mesh,
namely the mesh at coarsest resolution, plus a sequence
of local modification, where each modification is speci-
fied by the portion of mesh that is modified, called afrag-
ment, as in Figure 9b.

2. some fragments in the sequence are mutually indepen-
dent (for instance, we can apply modification 2 even if
modification 1 is not performed), while other modifi-
cations have dependencies (for instance, modification 4
cannot be applied, unless modification 1 occurs first).

The second observation suggests that fragments can be
arranged into a partial order, which can be represented by a
rooted DAG, having its root at the initial mesh, and one arc
between each pair of nodes such that the start node of the arc
has some triangle “covered” by the fragment corresponding
to the end node (see Figure 12).

In the following, we will give more formal definitions and
results on the Multi-Triangulation, by abstracting on its con-
struction technique, while relying exclusively on the concept
of local modification.

4.1.1. The Multi-Triangulation

For the sake of simplicity, the MT is described here for de-
composing planar domains, while its extension to generic
surface meshes, and to higher dimensions is straightforward
(see35; 27 for details on such extensions). Formal proofs of
the properties reported in the following can be found in83.

Given two triangulationsTi andTj , we define theirinter-
ference
, and theircombination�, as follows:

Ti 
Tj = ft 2 Ti j 9t 0 2 Tj ; int(t)\ t 0 6= /0g; (1)

Ti �Tj = Ti � (Ti 
Tj )[Tj ; (2)

i.e.: interference is the set of triangles in the first triangula-
tion that overlap with the second triangulation; combination
is the mesh obtained by joining triangles of the second mesh,
with those of the first mesh that do not interfere with them,
as if the second mesh were “pasted” on top of the first one.

Note that the combination is neither commutative nor asso-
ciative.

If Ti 
Tj 6= /0 then we sayTi andTj are interfering, oth-
erwise we say they areindependent. If Ti �Tj is also a tri-
angulation, and∆(Ti �Tj ) = ∆(Ti)[∆(Tj), thenTj is said
compatible over Ti , andTi �Tj is said amodificationof Ti .
Examples of interference and combination, which also illus-
trate compatibility, are given in Figure 10.

Given a sequence of triangulationsT0; : : : ;Tk we define
its combinationas the successive combination of its ele-
ments�k

i=0Ti = T0�T1� : : :�Tk. We say thatT0; : : : ;Tk is a
compatible sequenceif 8 j = 1; : : : ;k, Tj is compatible over

�
j�1
i=0 Ti .

Definition 4.1 (Multi-Triangulation) Let Ω be a (compact)
polygonal domain in IR2. A multi-triangulation (MT)on Ω
is a poset(T ;�) whereT = fT0; : : : ;Thg is a set of triangu-
lations, and� is a partial order onT satisfying the following
axioms:

1. ∆(T0)�Ω, and8i = 1; : : : ;h, ∆(Ti)�Ω;
2. 8i; j = 0; : : : ;h; i 6= j ,

a. Ti � Tj ) Ti 
Tj 6= /0;
b. Ti 
Tj 6= /0 ) Ti is in relation withTj (i.e., eitherTi <

Tj or Tj < Ti);

3. the sequenceT0; : : : ;Th of all elements ofT defines a con-
sistent total order ofT and it is a compatible sequence.

The elements ofT are calledfragments. The 2-setTT =
[h

i=0Ti , i.e., the set of all triangles of the multi-triangulation,
is called theassociated 2-setof T . Given any subsetT 0 � T ,
the total order of its elements consistent withT0; : : : ;Th will
be called thedefault order.

Fragments of an MT will be used to build different trian-
gulations ofΩ through combination. The order relation will
be used as a sort of dependence between triangles, mean-
ing that if Ti < Tj , thenTj cannot be used to build a trian-
gulation, unless alsoTi is used. Note that precedence does
not necessarily imply interference: ifTi < Tj , we can have
Ti � : : :Tk � : : :Tj with Ti 
 Tk 6= /0, Tk 
 Tj 6= /0, while
Ti 
Tj = /0 (see Figure 11). Hereafter, an MT will be de-
noted simply by its set of fragmentsT , while the order�
will be omitted, whenever no ambiguity arises.

An MT can be represented by a DAG, having one node per
fragment of the MT, and such that there is an arc in the DAG
from Ti to Tj if and only if i < j , and there is some triangle

of Ti that belongs to� j�1
k=0Tk, while it does not belong to

�
j
k=0Tk (i.e., it is “obscured” by triangles ofTj ). We can

also label arc(Ti ;Tj ) with the set of triangles ofTi that are
obscured byTj . Figure 12a shows the DAG describing the
MT corresponding to the LOD model depicted in Figure 9.
It is easy to see thatT0 is a least element ofT , hence the
corresponding DAG is rooted atT0.

An MT has always the following property, which allows

c
 The Eurographics Association 1997



Puppo and Scopigno / Simplification, LOD and MultiresolutionPrinciples and Applications

SIMPLIFICATION

REFINEMENT

0 4

5

6

7

1

2

3

(b)(a)

Figure 9: A simple LOD model (a), and its interpretation as a sequence of local modifications (b).

TjTi Tj Ti TjTi Tj TiTjTi Tj Ti

Ti

(a) (b) (c)

Ti Tj Tj TjTi

Figure 10: Examples of interference and combination (each fragment is included in a dotted reference frame): Tj is compatible
over Ti (a); Tj is not compatible over Ti because the domain of the result does not cover the union of the two domains (b); Tj is
not compatible over Ti because the result is not a triangulation (c).

T1 T2 T3

Figure 11: Precedence does not imply interference: T1 � T2 � T3, hence T1 < T3, while T1
T3 = /0.
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Figure 12: The DAG describing the MT correspondig to the LOD sequence in Figure 9.

us to relate meshes that can be extracted from it to its lower
sets:

Given a lower setT 0, any consistent order of its el-
ements form a compatible sequence, and the com-
bination of any such sequence always gives the
same mesh; in particular, we can always obtain
such a mesh by adopting the default order.

Henceforth, the combination obtained from any consistent
order of a lower setT 0 will be called the combination of
T 0, and it will be denoted�T 0. The combination�T of the
whole setT will be called thetop of T . In Figure 13, four
among the 25 possible meshes that can be extracted from the
MT depicted in Figure 12 are shown.

We already remarked that a lower set is always related
to a cut in the DAG identifying it. We can further obtain
a nice relation between the mesh obtained by a lower set
in an MT, and the set of triangles labeling the arcs in the
corresponding cut. To this purpose, we extend the DAG to a
lattice, by adding a node corresponding to the topT of T ,
and an arc(Ti ;T) from each fragment that has some triangle
belonging to the top, suitably labeled with such triangles.
With such a representation, we have the following:

The combination of a lower set produces a mesh
composed of the collection of triangles labeling
the corresponding cut in the lattice.

Figure 14 shows the lattice representation of the MT of Fig-
ure 12 with a cut, corresponding to the first mesh depicted in
Figure 13.

The number of different meshes that can be extracted by
cutting an MT will be said theexpressive powerof T . Due
to the combinatorial nature of lower sets (or cuts), we can
expect that the expressive power is a fairly large number,
much higher than the numberh of meshes in the initial LOD
model, provided that fragments are sufficiently small, and
not too much dependent from each other. However, so far
we have only seen that each cut in the MT corresponds to a
mesh. We wonder next whetheranypossible mesh that can
be obtained by assembling triangles of the MT (not necessar-
ily through combination!) does correspond to a cut or not.
If the affirmative case, we obtain a sort of maximality on
the expressive power of an MT. In fact, maximality is ver-
ified for an MT under some suitable conditions, which are
very reasonable, and verified by all multiresolution meshes
known in the literature. We investigate next such properties.
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T1 T4 T5T0
T0

T2 T3 T7T0 T2 T6T1T0
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T5 T6 T7T4

Figure 13: Four out of the possible 25 coverings that can be extracted from the MT of Figure 12, together with the combinations
generating each of them.
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Figure 14: The lattice representation of MT of Figure 12, with a cut defining a lower set that generates the first mesh of Figure
13.
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Tj Ti1 Tj Ti2 Ti=Tj Ti1 Ti2Tj

Tj Ti Ti1 Ti2

Figure 15: Ti is not minimally compatible over Tj because
each of the two subsets Ti1 and Ti2 of Ti is compatible over
Tj . Triangulations Tj �Ti1 and Tj �Ti2 cannot be obtained
from Tj and Ti , while Tj �Ti is obtained as Tj �Ti1 �Ti2 .

We call supportof a fragmentTi of T the combination
of its sub-closure (recall that the sub-closure of an element
is its down-closure minus the element itself): in practice, the
support is the smallest triangulation (in terms of the lower set
defining it) over which fragmentTi can be combined. The
set of triangles of the support that are interfering withTi ,
i.e., those labeling its incoming arcs in the lattice, is called
the floor of Ti : in practice, the floor is composed by those
triangles that are obscured byTi once it is combined with its
support.

Definition 4.2 (Canonical form) If a fragmentTi is compat-
ible over another fragmentTj , and no subsetT 0

i � Ti is com-
patible overTj , thenTi is saidminimally compatibleoverTj .
A multi-triangulationT is in canonical formif every frag-
mentTi of T is minimally compatible over its support.

In practice, if a triangulation is in canonical form, there is
no possibility to combine only a portion of a fragment with
the fragments preceding it. This fact has relevance to the ex-
pressive power, as shown in Figure 15. However, any MT
can be transformed into another MT in canonical form hav-
ing the same associated 2-set: this is done by breaking each
fragment into pieces, each of which is minimally compati-
ble over its support. Therefore, we will always assume that
an MT is in canonical form.

Definition 4.3 (Non-redundancy)A multi-triangulationT
is non-redundantif

1. there are no duplicate triangles, i.e., each triangle of the
associated 2-set belongs to exactly one fragment;

2. 8i; j = 0; : : : ;h, if e is an edge common toTi andTj , and
Tj < Ti , thene is an edge of the floor ofTi .

The meaning of non-redundancy is the following. Trian-
gles, which are the atoms of the structure, are not replicated
in different fragments to warrant that the size of the MT
is the same as the size of its associated 2-set. Edges can
be replicated, since they provide an interface for combin-
ing triangulations. However, if different triangulations share

(a) (b)

Figure 16: A redundant MT (a): the triangulation in (b) is
made from some of its triangles, but it cannot be obtained
through combination.

a common edge, they must form a sequence in the DAG
encoding the poset. If an MT is redundant, there can exist
meshes that cannot be obtained through combination (see
Figure 16). On the other hand, if an MT is in canonical form
and non-redundant, then its expressive power is maximum,
as stated in the following theorem.

Theorem 4.4Let T be a non-redundant multi-triangulation
in canonical form. Then for any triangulationT generated by
its associated 2-setTT there exists a lower setT 0 � T such
thatT =�T 0.

Although properties given so far hold for generic MTs, in
practical cases we will be interested in structures that allow
us to control the resolution of a mesh by suitable cuts. To
this purpose, we will focus on monotone MTs, defined as
follows.

Definition 4.5 (Monotone MT) A multi-triangulationT is
increasingif and only if for every pair of lower setsT 0 and
T 00, (T 0 � T 00) ) j� T 0j < j � T 00j: Similarly, a multi-
triangulationT is decreasingif and only if for every pair
of lower setsT 0 andT 00, (T 0

� T 00)) j�T 0
j> j�T 00

j: A
multi-triangulation which is either increasing or decreasing
is saidmonotone.

It is straightforward to verify that a multi-triangulation is
increasing [decreasing] if and only if the size of each frag-
ment is larger [smaller] than the size of its floor.

A further interesting property of MTs is that also the col-
lection of all floors, plus the top, is an MT, having the same
associated 2-set, hence generating the same set of triangula-
tions. It is also true that an MT is increasing [decreasing] if
and only if its reverse is decreasing [increasing]. Since the
reverse of an MT generates the same triangulations, and has
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an opposed monotonicity, we can always consider increas-
ing MTs : a decreasing MT can be dealt with by working
on its reverse. In fact, all multiresolution meshes that we
will analyse in the following can be interpreted as increasing
MTs, even though some of them are constructed as decreas-
ing structures, and then reversed.

We finally give some definitions that are useful to evaluate
the complexity of algorithms that traverse an MT.

Definition 4.6 (Linear growth) An increasing multi-
triangulation T has linear growth if for each lower set
T 0 � T the ratio between the size ofT 0 and the size of its
combination is bounded by a constant. A decreasing multi-
triangulation has linear growth if and only if its reverse has
linear growth.
(Bounded width) A multi-triangulation T has bounded
width if the number of triangles labeling arcs outgoing from
a fragment is bounded by a constant.
(Logarithmic height) A multi-triangulationT haslogarith-
mic heightif the maximum length of a path from the source
to the drain is logarithmic in the number of arcs ofT .

We will see in the examples that linear growth, bounded
width, and logarithmic height are desirable properties since
they permit to achieve optimal time complexity in visiting
the structure. In particular, linear growth is fundamental to
achieve optimal time complexity (i.e., linear in the output
size) for algorithms extracting a mesh at a given resolution
from an MT, while bounded width and logarithmic height
are important for other traversal operations, such as point
location (see82; 27 for details).

4.1.2. Data structures

In this section, we classify information that describe an MT,
which can be stored in a data structure. As we will see in the
next section, the different kinds of information stored in the
various data structures represent, together with the special
cases of MT implemented, important characteristics of the
various multiresolution meshes. Relevant information about
a multi-triangulation include:

� Geometric information: all geometric elements forming
an MT are simplices (vertices, edges, triangles), and the
geometry of a simplex is completely defined by the set of
its vertices, which also uniquely determines the boundary
of the simplex; therefore, it is sufficient to store geometric
information (coordinates) only for the vertices of an MT.

� Structural informationabout the simplexes composing the
fragments in the model: all simplexes are defined combi-
natorially in terms of tuples of vertices; since a mesh is
a regular complex, its structure is completely defined by
the set of its maximal simplexes (triangles), which can be
encoded either explicitly, or through some structural rule
that implicitly provides the structure of each fragment.

� Topological information, which encode adjacency, bound-
ary and coboundary relations among the simplexes of

y

x

accuracy

x

y

Figure 17: The three-dimensional interpretation of local
modifications in a hypertriangulation.

an MT. We distinguish betweenlocal topology, which is
concerned with topological relations between simplexes
within the same fragment, andglobal topology, which
considers relations between simplexes not necessarily be-
longing to the same component (global topology includes
local topology). Most important topological links are ad-
jacencies between maximal simplexes (triangles).

� Spatial interference information, which relate fragments
and simplexes that have spatial interference, according to
the definitions given in the previous section. Interference
information can be encoded either explicitly or implic-
itly, either between pairs of interfering components, or
between all pairs of interfering simplexes (triangles) be-
longing to such components.

� Additional information, which might be needed to relate
an MT to a specific application. For instance, the accuracy
(error) of each fragment or simplex in the model might
be stored. This kind of information is often crucial to the
complexity of a data structure, and to the efficiency of al-
gorithms manipulating it.

In order to better understand the nature and complexity of
topological, and interference information, we describe some
further structures that give alternative views of the MT. In19,
an inceasing MT is interpreted as a simplicial complex em-
bedded in 3D space, called ahypertriangulation, by assign-
ing a third coordinate to each vertex of the MT, correspond-
ing to a “resolution” axis (i.e., the more refined the fragment,
the higher the third coordinate of its vertices). With such a
structure, each fragment can be seen as a “dome” resting on
its floor along its boundary (see Figure 17). It is readily ap-
pearent from such a structure the importance of triangle ad-
jacencies through edges, which permit to weld triangles of
different fragments to form meshes. Each edge in the struc-
ture may have different triangles incident at it, subdivided
in two groups, namely to its left and right side, respectively;
triangles of each group are in order of increasing refinement
(see Figure 18).

Interference links between components are directly rep-
resented by the arcs in the DAG (or lattice) representation;
interference links between triangles can be obtained by com-
bining information provided by the arcs, and by the triangles
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Figure 18: Triangles incident at an edge are subdivided in
two groups, each sorted by increasing resolution.

labeling them. In35, a graph representing interference be-
tween triangles is obtained as an “explosion” of the DAG
of fragments, obtained by replacing every nodeTi with as
many nodest1 : : :tp as the triangles inTi , and by transferring
to eacht j ( j = 1; : : : ; p) the arcs ofTi which correspond to
interferences involvingt j . In practice, in such a structure the
concept of fragment is lost, while each triangle is explicitly
related to the triangles that either obscure it, or are obscured
by it in the MT.

4.2. Review of multiresolution meshes

Multiresolution meshes can be subdivided in two main
classes, according to their structure, that we will conven-
tionally call tree-like models, andhistorical models, respec-
tively:

� tree-like modelsare based on nested subdivisions, accord-
ing to the basic idea that resolution can be refined by re-
cursively subdividing a region (a triangle, a patch) into a
set of smaller regions covering it exactly; the hierarchy of
nested regions can be described by a tree; in order to give
an interpretation of such models as MTs, it is necessary to
perform a suitable translation of their tree structure into a
DAG;

� historical modelsrely on either refinement or simplifi-
cation techniques for their construction, and they essen-
tially store the evolution of a mesh throughout the re-
finement/simplification process; being based more closely
on the concept of local modification, such models are all
straightforward specialization of the MT.

In the following, we review most relevant models that ap-
peared in the literature in the two classes. The order we fol-
low in the review is meant to improve comprehension, rather
than being strictly historical.

4.2.1. Tree-like models

Tree-like models have been studied for a long time, and
they have been adopted in many applications, and in several
fields. Intuitively, a tree-like model encodes a nested subdi-
vision of an initial mesh, assumed as the coarsest represen-
tation of the modeled object, through a recursive refinement
process: at each step of refinement, a simplex of the mesh is
refined independently into a local mesh, through a decompo-
sition rule that is characteristic of each specific model. The
hierarchy of meshes is represented as a tree where each node
is a local mesh, and each arc corresponds to a refinement op-
eration.

In general, a tree-like model cannot be interpreted directly
as an MT whose components coincide with the nodes of the
tree representing it. Let us consider the refinement of a sin-
gle simplex (triangle)t of a current mesh. If the boundary of
the meshTt refining it is not elementwise coincident with the
boundary oft (i.e., with its three edges), then such a refine-
ment cannot be considered a local modification, according
to the definition given in Section 4.1.1, sinceTt would not
be compatible over the mesh containingt (see, for instance
Figure 20).

In other words, two interfering nodes of the tree may not
be compatible because their common border is subdivided
differently. Therefore, in order to obtain the MT correspond-
ing to a given tree-like model, nodes of the tree must be clus-
tered to form compatible components35. More precisely, an
MT T representing a tree-like model is obtaineded as fol-
lows:

� the fragments ofT are obtained from the nodes of the
tree by iteratively joining pairs of nodes corresponding
to complexes in which two adjacent triangles have been
refined by decomposing a common edge consistently;

� relation < is defined by imposing that, for every arc
(n1;n2) of the tree, if noden1 was included into a compo-
nentTi 2 T , and noden2 was included into a component
Tj 2 T , thenTi < Tj must hold. In other words, each node
in the DAG representing the MT inherits all arcs incoming
to, and outgoing from the nodes that have been clustered
to form it.

Since an MT has maximum expressive power, we know
that any mesh that can be extracted from a tree-like model
will necessarily correspond to a cut in the MT obtained
through clustering. Loosely speaking, if edges of triangles
are split too often in the refinement process generating the
tree-like model, then the nodes of the tree tend to be clus-
tered into large fragments, hence allowing only a reduced
number of cuts, i.e., supporting a reduced number of LODs.
Moreover, since the relations between different nodes that
must be custered to form a fragment are not encoded in the
tree, algorithms for extracting generic meshes (e.g., meshes
at variable resolution) from tree-like models will usually be
involved.
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Figure 19: A quadtree surface model is affected from cracks.

4.2.1.1. Quadtrees. The quadtree is a general spatial
structure based on the recursive quaternary subdivision of
a square domain into quadrants, obtained by splitting the
square with two orthogonal lines through its center91. The
corresponding hierarchy can be represented by a quaternary
tree, where each node corresponds to a mesh made of four
square cells, while its children represent the four meshes re-
fining each such cell.

If a quadtree is used as a base mesh to represent a surface,
a bilinear patch of surface is associated to each quadrant of a
mesh. Such a representation is straightforward for the case of
scalar fields, like terrains10; it can be adapted to parametric
patches whose computational domain can be a square; but
it is not directly applicable to manifold surfaces, unless the
surface represented is homeomorphic to a plane domain.

Despite the simplicity of the quadtree, and a number of
good properties it has (especially as a spatial index), surface
representation with such a model has a big drawback. In or-
der to extract a mesh from a quadtree, the tree can be visited
top-down, and meshes corresponding to each node can be
either collected, or recursively refined, according to the de-
sired level of detail. However, if a mesh is extracted, which
combines nodes from different levels of the tree, the result-
ing surface will have cracks (see Figure 19). Such a kind of
mesh will be saidnon-conforming.

Although the quadtree is not a simplicial model, the MT
framework can be easily generalized to the case of rectangu-
lar meshes, hence encompassing also this structure. If the
MT representation of a quadtree is computed, it is easily
seen that all nodes at each level of the tree must be clus-
tered to form a single component, hence giving a pyramid
of full rectangular meshes. Indeed, all edges of a quadrant
are always split during refinement, thus each quadrant must
be clustered with its siblings to the same fragment. The re-
sulting MT reduces to a simple LOD model, with a single
fragment per level, and each fragment providing a whole,
independent, surface mesh. Those meshes are the only con-
forming ones that can be extracted from the quadtree. Note
that this fact prevents from extractingadaptivemeshes, i.e.,

Figure 20: A quaternary triangulation.

meshes whose level of detail is different over different por-
tions of the domain.

The quadtree can be generalized to an arbitrary dimen-
sion, in order to model higher dimensional objects, by main-
taining similar characteristics (and problems).

4.2.1.2. Quaternary triangulations. The quaternary tri-
angulation is a straightforward generalization of the
quadtree to a triangular mesh. Starting from a triangular
universe, the recursive splitting rule consists of subdividing
each triangle into four by joining the midpoints of its edges
(see Figure 20). The interpretation of such a structure as MT
is completely analogous to that of the quadtree. A single
fragment per level of the tree is obtained through clustering,
hence only one conforming mesh per level can be extracted.

The quaternary triangulation is widely used in domain de-
composition for the finite element methods, and it has been
applied also to surface representation in the case of terrains
41. More recently, such a decomposition rule has been used
in the context of manifold (free-form) surfaces, to support
multiresolution based on thewavelet transform(see Chapter
6).

4.2.1.3. Adaptive hierarchical triangulations. The main
problem of quadtrees and quaternary triangulations is that
all edges of a regions are split when the region is refined.
In the context of terrain modeling, other tree-like models
have been developed, which try to preserve the possibility of
performing adaptive refinement, by letting some edges “sur-
vive” across different levels of the tree.

A diametrically opposed philosophy performing refine-
ments that never split edges, propagates long edges from the
coarsest level down to the most refined level, hence produc-
ing horrible meshes full of slivery triangles25. A compro-
mise has been proposed in93, adopting an error-driven re-
finement rule that permits to split a triangle according to the
five patterns depicted in Figure 21, i.e., by inserting a point
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Figure 21: Heuristic rules for refining a triangle.

Figure 22: A hierarchical Delaunay triangulation.

on one or more of ite edges, and/or inside the triangle it-
self. In this way, edges that survive through different levels
can provide an interface to weld triangles from different lev-
els to form meshes at variable resolution. However, such a
possibility was not exploited in93. In 34, another model was
proposed, in which an error-driven refinement of a triangle is
performed by inserting an arbitrary number of new vertices
(selected through an error-driven criterion) inside a triangle,
and/or on some of its edges, and by computing the refined
mesh as the Delaunay triangulation of such a set of vertices
(see Figure 22). Also in this case, some edges may survive
across different levels, hence giving a reasonably large set of
fragments in the corresponding MT, which permit to perform
adaptive refinement. Such structures are increasing and non-
redundant MTs in canonical form, but they might not have
the desirable properties of linear growth, bounded width, and
logarithmic height, at least in theory. However, they have a
good behavior in practical cases. Their major drawback is
still the presence of some slivery triangles, due to the coex-
istence of an irregular subdivision with a nesting structure.
The model proposed in34 has been extended to 3D in4, and
applied to volume data visualization.

In 34, a comprehensive study of tree-like models is pre-
sented, covering several issues about data structures, neigh-
bor finding, and mesh extraction. Two algorithms for ex-
tracting meshes at variable resolution from tree-like models

Figure 23: A restricted quadtree is built by first balancing
the tree locally, then triangulating each quadrant.

are also presented. The first algorithm is a simple top-down
visit of the tree, which accepts a triangle as soon as it sat-
isfies the required level of detail. The resulting structure is
a non-conforming subivision called a generalized triangula-
tion, in which some triangles are added new vertices along
their edges (just as in quadtrees and quaternary triangula-
tions). A triangulation of such generalized triangles is per-
formed next to conform the mesh, hence obtaining a contin-
uous triangulated surface. The whole algorithm is completed
in time linear in its output size. Note that the final triangu-
lation step produces triangles that might not be part of the
original structure, hence the resulting mesh is not necessar-
ily one of the meshes that can be extracted from the corre-
sponding MT. The main drawback, in this case, is that there
is no control on the accuracy of such new triangles, hence the
accuracy of the final structure might be worse than desired.

The second algorithm is essentially an adaptation of an
earlier algorithm working on hypertriangulations19, which
will be reviewed in Section 4.2.2.5. In this case, the accuracy
of the result is warranted, but the algorithm works only for a
class of distance-increasing threshold functions, and its com-
putational complexity is suboptimal. The implementation is
somehow involved because of neighbor finding operations
across different levels of the tree.

4.2.1.4. Hierarchies of right triangles. In the attempt to
overcome the problem of cracks in quadtrees, a modified
structure, called arestricted quadtree, was introduced in104,
and applied to the representation and rendering of free-form
patches. A restricted quadtree is essentially a quadtree in
which adjacent leaves are allowed to differ for no more than
one level. All leaves form a mesh which is conformed by tri-
angulating each quadrant according to predefined patterns: a
quadrant is subdivided into four right triangles by its diag-
onals, and each such triangle is further subdivided into two
right triangles by joining the center of the quadrant with the
opposite edge, only if the adjacent quadrants along such an
edge are at a deeper level than the current quadrant (see Fig-
ure 23). An efficient algorithm to build such a structure from
terrain data has also been described in33.

Note that such a construction technique gives a conform-
ing mesh only at the leaf level. If a coarser mesh is extracted
from the quadtree, then the resulting mesh must be suitably
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balanced, and triangulated a posteriori, hence giving a result
whose triangles are not part of the original structure.

A way to overcome this drawback is to consider the whole
hierarchy as formed by right triangles. In53, a hierarchy of
right triangles refining a square domain was introduced, and
used to give representations of images at variable resolu-
tion. The hierarchy starts with a triangulation of the square
made of four right triangles, obtained by splitting the square
through its diagonals. Then, a tree is built by recursively
splitting each triangle into two right triangles, obtained by
joining the midpoint of its longest edge with the opposite
vertex. The resulting hierarchy permits to grade refinement
through the domain, thus supporting variable resolution.

The structure and power of this model is better understood
by considering its corresponding MT, depicted in Figure 24.
In this case, each fragment is formed by four right triangles
(two right triangles for border fragments), and all have either
the shape of a square, or of a diamond (of a right triangle, for
border fragments). Each triangle is matching along each of
its short edges with one triangle at the same level, and with
another triangle at the next level, and along its long edge
with one triangle at the same level, and with another triangle
at the previous level. Each fragment is characterized by its
central vertex, hence the MT can also be interpreted as an
order relation establishing dependencies among vertices. It
is easy to verify that this MT is in canonical form, increasing,
non-redundant, and it has linear growth, bounded width, and
logarithmic height.

Although in 53 recursive splitting has been only used as
a simplification mechanism, full exploitation of this kind of
hierarchy as a support to variable resolution has been pro-
posed independently in67, and in37, for the purpose of ter-
rain visualization in flight simulation. In both such papers,
algorithms for extracting a reduced mesh satisfying the re-
quired LOD for a given eye position are presented, which are
based on recursive refinement and hierarchical dependencies
of vertices in the mesh.

In 37, a data structure that maintains explicitly the tree of
triangles is adopted, where for each triangle only its accuracy
is stored, while geometry is provided implicitly by its posi-
tion in the tree. A mesh at variable resolution is extracted by
traversing the tree top-down, and recursively refining trian-
gles that do not satisfy the threshold function: at each refine-
ment operation, vertex dependencies are propagated trhogu
the tree, and further refinements are forced on adjacent tri-
angles in order to ontain a conforming mesh.

In 67, only the raw grid of vertices (i.e., geometrical in-
formation) is stored, and a mesh at a given resolution is ex-
tracted on-the-fly by a bottom-up visit of the tree, and up-
ward propagation of vertex dependencies. In this case, the
basic idea is that a pair of adjacent triangles can be merged
into their parent if the consequent loss of accuracy does not
exceeds the threshold function. Since accuracies of triangles

are not stored, and computing them exactly is too an expen-
sive operation, heuristics are adopted to estimate them on-
the-fly. Further heuristics are used to purge large portions
of the domain through simple operations. See also Section
5.2.2.

In summary, the main advantage of hierarchies of right tri-
angles is that extremely compact data structures can be used,
because the hierarchy is implicitly defined on the basis of
fixed patterns: there is no need to encode structural, topolog-
ical, and interference information explicitly. Each triangle
can be in fact treated as a code, which can be manipulated
algebraically in order to obtain its geometry, its adjacencies,
and its interferences (see53; 37 for details).

The extreme regularity of this structure, besides being its
main advantage, is also its main limitation. In the case of
scalar fileds, data points must necessarily be regularly dis-
tributed on a square grid; in the case of parametric surfaces,
each patch must have a square computational domain, there-
fore it is difficult to handle patches with complicated trim-
ming curves; in the case of closed manifold surfaces, the
structure cannot be applied directly: if the surface has the
topology of a sphere, the structure can be generalized by
starting from an octahedron as base mesh, while it is not
clear how to extend the framework to model surfaces with a
more complex topology.

This kind of hierarchy is extensible to the higher dimen-
sional cases, to model hypersurfaces produced by scalar
fields over (hyper)cubic domains. Higher dimensional mod-
els maintain similar characteristics of regularity, and easy
symbolic manipulation (see52 for details on the 3D case).

4.2.2. Historical models

Historical models are multiresolution meshes whose struc-
ture is obtained by recording the evolution of a mesh through
a sequence of local modifications. Let us consider one
among the many mesh simplification algorithms based on lo-
cal modifications (see Chapter 3). Each single simplification
step performed by the algorithm can be considered to gen-
erate a new fragment, namely the fragment composed of all
triangles that appear in the mesh after simplification. Such
fragments together with the usual interferences between tri-
angles that replaced by modifications, define a decreasing
MT, rooted at the mesh at full resolution. The correspond-
ing increasing MT is obtained by reversing the structure, or,
equivalently, by considering each fragment as formed by the
triangles that disappear from the mesh at a single simplifi-
cation step. Conversely, an increasing MT can be obtained
directly by considering fragments generated at single steps
of a refinement algorithm. All historical models can be con-
sidered to fall into this class of construction techniques. The
main differences between the various models are:

1. the simplification/refinement criterion adopted to build
the structure;
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(b)(a)

Figure 24: An MT based on right triangles: the fragments shown level by level (a), and the corresponding DAG (b).

2. the amount of information stored;
3. the operations supported, and the efficiency of algorithms

that implement them.

The review of models in this class not only gives an interest-
ing insight of the evolution from LOD to variable-resolution
models, but it also allows us to discuss the effectiveness, and
efficiency of multiresolution meshes, and on the necessary
traedoff between space and time complexity.

4.2.2.1. Delaunay pyramids. In its original formulation
24, the Delaunay pyramid is a LOD model for terrain sur-
faces, made of a sequence of Delaunay triangulations, and
obtained on the basis of a predefined sequence of error tol-
erancesε0 > :: : > εh. The first triangulation represents the
surface at an accuracyε0, and each other triangulation is ob-
tained from the one preceding it in the sequence, by applying
the refinement algorithm described in38, until the next accu-
racy is met. All levels are encoded in a global data struc-
ture, which stores all spatial interferences between triangles
of consecutive meshes, in order to support navigation (e.g.,
point location).

In 5, a pyramid with many levels is considered, having
triangles that “survive” across different levels, and a more
compact data structure is proposed, which avoids replicat-

ing surviving triangles. Such a data structure implicitly intro-
duces the concept of fragment, which is exploited in a later
work 32 to extract meshes at variable resolution, by adapting
a general algorithm proposed for MTs in82 (see part Explicit
and implicit MTs in Section 4.2.2.4).

The Delaunay pyramid is directly applicable to the case of
scalar fields, and it has been extended to the 3D case for vol-
ume visualization in12. The framework could be extended to
deal with parametric surfaces, by using a constrained Delau-
nay triangulation in parameter space. An extension to man-
ifold surfaces is hardly feasible due to the difficulty of re-
producing the Delaunay refinement framework on free-form
meshes sembedded in 3D space.

The interpretation of a Delaunay pyramid as an MT is
straightforward. In the original formulation, the pyramid is
formed by a small number of layers, and eahc layer is a mesh
completely different from the previous one in the sequence,
hence there is just one fragment per layer. The advantage
over quadtrees and quaternary triangulations is that in this
case the tessellation used at each level is adaptive. In the for-
mulation of5, the DAG describing the MT can be built di-
rectly from the pyramid data structure. The resulting MT is
analogous to theexplicit MTdescribed in a later section: it is
increasing, non-redundant, and in canonical form; in theory,
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it might have not linear growth, bounded width, and loga-
rithmic height, though in practice it shows a good behavior.

Such drawbacks were eliminated in an alternative model
proposed in23, which is essentially a Delaunay pyramid built
bottom-up, starting at the full resolution mesh: each level is
obtained from the previous one through a decimation process
which eliminates an independent set of vertices of bounded
degree. In this way, the corresponding MT is formed by a
large number of fragments, namely one for each decimated
vertex, and has linear growth, bounded width, and logarith-
mic height, hence supporting point location in optimal time.
In 23, an algorithm was also described, for extracting in time
linear in its output size a representation at variable resolu-
tion based on an arbitrary threshold function. The algorithm
is based on a top-down traversal of the pyramid, and on a
greedy construction of the result. Unfortunately, the greedy
approach, which accepts a triangle in the solution as soon
as its accuracy satisfies the threshold function, does not war-
rant that the desired threshold will be fulfilled everywhere:
indeed, at a later stage, the algorithm might not be able to re-
fine some triangles that do not satisfy the threshold, because
not fragment dependencies can be fulfilled.

The construction algorithm adopted in23 gives theoreti-
cally good features to the resulting model, but in practices it
achieves a lower compression (i.e., it needs more triangles
to get to a certain accuracy) with respect to the greedy tech-
nique adopted for the original Delaunay pyramid. In27, dif-
ferent techniques for building a multiresolution mesh based
on decimation are analysed in the more general context of
MTs. Experimental results and theoretical analysis show that
the best results from both the theoretical and practical point
of view are obtained with a modified decimation technique
that eliminates maximal sets of independent vertices, by se-
lecting such vertices among those that cause the least er-
ror increase. However, results obtained with a simple greedy
decimation (or refinement) achieve almost the same quality
in terms of growth, width, and height of the structure. There-
fore, the performance of traversel algorithms in the practical
cases is almost the same, independently of the construction
algorithm.

4.2.2.2. Linear sequences.In 19, it was noted that by trac-
ing the change of accuracy of a mesh through a process of
refinement or simplification, it is possible to assign alife to
each simplex, namely the range of accuracies through which
the simplex “survives” in the mesh. Life of simplexes can
be used as a filter: if all simplexes that appear during refine-
ment/simplification are stored, each tagged with its life, then
the collection of simplexes of a mesh at uniform resolution
can be obtained by a simple scan of the sequence. In5 and
14 more efficient data structures were proposed that support
filtering from the sequence in optimal time.

Following a similar principle, an extremely compact
model based on the Delaunay triangulation was proposed
in 65 to model parametric and manifold surfaces. In this

case, a greedy refinement or decimation through on-line in-
sertion/deletion of vertices into/from a Delaunay triangu-
lation is performed (in computational space for parametric
surfaces, and on a local planar projection for manifold sur-
faces). In terms of the corresponding MT, this structure is
completely analogous to Delaunay pyramids with many lev-
els. The main characteristics of this multiresolution mesh is
in its data structure: only the simplest mesh, plus the sorted
sequence of vertices inserted during refinement, or removed
during decimation, are stored, each tagged with the approxi-
mation error of triangles incident at such vertex at time of its
insertion. All structural, topological, and interference infor-
mation are assumed implicitly given thorugh the Delaunay
construction rule. The great advantage in terms of storage re-
quirement is paid in terms of efficiency in the traversal algo-
rithms: an algorithm for extracting a domain-uniform mesh
must scan the sequence of vertices and explicitly build the
mesh through an on-line Delaunay triangulation algorithm,
until the desired accuracy is met; an algorithm for extract-
ing domain-variable meshes is also outlined, which requires
intricate tests based on the circumcircle criterion (hence in-
volving numerical computation) in order to trace vertex de-
pendencies.

Independently, a similar model, calledprogressive meshes
(PM) was proposed in57, based on a different simplification
strategy. In this case, the basic local modification isedge col-
lapse, which is reversed intovertex splitto obtain an equiv-
alent refinement sequence (see Figure 25). The correspond-
ing MT is in canonical form, non-redundant, and increasing.
In the worst case, it might not have linear growth, bounded
width, and logarithmic height, but it has good behaviour
in practice. As for the previous model, the data structure
adopted is implicit and very cheap in terms of storage: only
the initial mesh, and the sequence of vertex splits are sotred;
each vertex split requires one new vertex, plus three indices
to existing vertices. The extaction of a domain-uniform mesh
is simpler than in65, because no numerical computation is
required, while topology of the existing mesh is modified
through symbolic updates; an algorithm for domain-variable
meshes is just outlined in57, which requires involved traver-
sals of the list to find vertex dependencies on-line. Progres-
sive meshes have been used for different applications, such
as terrain surfaces, manifold surfaces, and color images.

4.2.2.3. Hierarchies of vertices. In the attempt to obtain
efficient algorithms for extracting domain-variable meshes
from a PM, more sophisticated data structures encoding also
vertex dependencies were proposed in110, and more recently
in 58.

The basic observation behind these structures is that a ver-
tex v can be split while extracting a mesh only if all other
vertices that surroundv in the original PM sequence belong
to the current mesh already. If the PM is interpreted as an
MT, the previous condition can be restated as follows. The
DAG desribing the MT can be seen as a vertex hierarchy:
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Figure 25: An operation of vertex split: vertex v splits to
form an edge, thick edges are duplicated, and two new trian-
gles appear; the shape of each triangle already incident at v
changes because the two new vertices move away from v.

indeed, each fragment has the shape of the right side, and a
floor like the left side of Figure 25; this means that the two
internal vertices of a fragment depend on the central vertex
of its floor, and on all boundary vertices of the fragment.
Such vertices have been inserted in the current mesh already
if and only if the down closure of the current fragments
has been traversed already (i.e., all corresponding fragments
have been combined already).

In 110, a PM is built by collapsing independent sets of
edges, following a technique similar to that used in23 to
build a Delaunay pyramid bottom-up. In this way, a binary
balanced tree is obtained, where the children of each vertex
v are the endpoints of the edge that collapsed inv. The cor-
responding MT has linear growth, and logarithmic height,
but it does not necessarily has bounded width. In the MT
terminology, the tree of vertices only encodes dependencies
btween central vertices of a fragment and its floor. The re-
maining dependencies with boundary vertices of the frag-
ment are encoded separately. This data structure is somehow
equivalent to, though more involved than, the data structure
for implicit MTs described below.

Variable resolution extraction from such a structure is per-
formed in two steps: first, the binary tree is traversed bottom-
up, and vertices crresponding to too detailed fragments are
discarded on the basis of some LOD criterion; next, vertex
dependencies are traced back from the remaining vertices,
in order to include all vertices that must be necessarily in-
serted. The extracted mesh is obtained by performing vertex
splits only at selected nodes, in the original order of the PM.
The main problem of such an algorithm is that the hierarchy
is visited bottom-up, hence all vertices of the model must be
analyzed to obtain even the simples possible mesh.

In a recent paper58, a similar binary tree (actually, a for-
est) of vertices is used, which is built top-down in a pre-
processing step by traversing the PM. Remaining vertex de-
pendencies are stored locally to each node, by maintaining
all vertices marked, and triangles shaded in Figure 25. It is
claimed in58 that such information is sufficient to determine
all vertex dependencies. An algorithm is proposed, which
extracts a mesh at variable resolution by traversing the tree
top-down, and forcing vertex split whenever the resolution

condition requires it. A split operation is performed by recur-
sively managing vertex dependencies through a stack. Such
an algorithm is essentially analogous to that working on im-
plicit MTs that will be described in the following. Although
neither its correctness, nor the minimality of the extracted
mesh are proved, it produces qualitatively good results and
it can achieve real time performance.

4.2.2.4. Explicit and implicit MTs. Besides being a the-
oretical framework, an MT can be directly implemented
through suitable data structures, and used to extract meshes
at variable resolution, and to perform other traversal opera-
tions (see35 for details on operations).

In 82 a general algorithm for extracting a mesh at variable
resolution from an MT is proposed, which works by travers-
ing the MT starting at its root, visiting the DAG in breadth-
first order, and marking all triangles that cannot be part of
the solution. A queue of fragments that must be visited is
maintained, which is initialized with the root, while trian-
gles selected for a potential solution are added to a list. After
traversal, such a list will contain all triangles of the solution,
plus some extra (marked) triangles that are purged through
a single scan. In82, a formal proof is given that the algo-
rithm extract the smallest possible mesh for a given threshold
function, and that runs in time linear in the size of the lower
set generaing the mesh. If the MT has linear growth, then
the time complexity is output-sensitive optimal, i.e., linear
in the size of the extracted mesh. Independendtly, a similar
algorithm was proposed in7, achieving similar results.

Such an algorithm requires a data structure based on in-
terferences that directly implements the lattice of Figure 14,
namely it encodes all fragments and triangles, and for each
fragment two lists of triangles forming it and its floor, re-
spectively, and for each triangle the fragment holding it, and
the fragment having it in its floor. No topological informa-
tion is encoded, while each triangle is tagged with its approx-
imation error. An MT encoded with such a structure will be
called anexplicit MT.

In a recent paper27, an improved version of the algorithm
working on explicit MTs were proposed, which works in a
single step (no final list scan is required), and is interrupt-
ible, namely it always maintains a current valid mesh, which
can be returned at any time if the algorithm is interrupted
before its completion. This feature is relevant in real time
applications. Results presented in27 show that real time per-
formance can be achieved on reasonably large meshes.

A dynamic algorithm is under development, which is
based on the possibility to update a current cut, by moving
it up and down through the DAG, in order to adapt the reso-
lution of a current mesh to a changing threshold function28.
With such an algorithm, even better performances might be
achieved in dynamic scenarios like flight simulation.

A possible drawback of explicit MTs is their storage re-
quirement. Indeed, the number of triangles in the structure
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can be relevant, compared with the number of its vertices,
hence the storage might be much larger that that needed,
e.g., by linear structures. In29, an alternative data structure,
called implicit MT is proposed, which can be used to en-
code any MT built through refinement/simplification rules
that are implicitly defined, such as PMs, or historical Delau-
nay sequences; In this case, araw DAG is maintained, where
for each node a minimum amount of information is stored,
necessary to perform the local modification corresponding to
the node. For instance, in the Delaunay case, it is sufficient to
store the central vertex, wile for PMs, it is sufficient to store
the same information present at each element of the PM se-
quence. In other words, such a data structure is obtained by
taking elements of a linear structure, and arranging them in
the partial order that defines the corresponding MT.

As shown in29, the space occupied by an implicit MT
is not much higher than that of a corresponding linear se-
quence, while efficient extraction algorithms for variable
resolution meshes can be applied, because intereferences
among fragments are encoded explicitly in the data struc-
ture. However, since triangles forming a mesh must be re-
computed explicitly during extraction, time performance is
affected. In the experiments presented in29, the extraction
algorithm runs on the average ten times faster on the ex-
plicit data structure, than on the implicit one. A futher draw-
back, which is common also tolinear models, and vertex
hierarchies, is that the minimal elements for which accu-
racy is encoded in the data structure are fragments, rather
than triangles. This fact prevents the extraction algorithm
from the possibility to select some triangles from a fragment,
while discarding other triangles, on the basis of the accu-
racy of each single triangle. As a consequence, the extracted
mesh might be not the minimal one that satisfies the thresh-
old function. In the experiments presented in29, a mesh ex-
tracted from the implicit structure is, on average, twice larger
than the corresponding mesh extracted from the explicit MT.

Explicit and implicit MTs have been applied to terrain
surfaces, and manifold surfaces27, and their application to
parametric surfaces is under development31.

4.2.2.5. The hypertriangulation. Thehypertriangulation
proposed in19 is somehow unique in the context of multires-
olution meshes, since it is the only model based on topolog-
ical information. The main principle behind this structure
comes from the embedding of fragments of an MT into a
higher dimensional space, as explained in Section 4.1.2, and
shown in Figure 17. The data structure based on triangle ad-
jacencies (see Figure 18) permits to traverse the structure by
moving through the domain, and across levels of resolution,
while no interference information is encoded. Each triangle
in the hypertriangulation is tagged with itslife, defined as
above.

Such a data structure is exploited to design an algo-
rithm for extracting variable resolution representations for
a special class of threshold functions, namely those that are

monotonically increasing with distance from a given view-
point, such as those needed in flight simulation. The algo-
rithm is based on the incremental construction of a mesh,
starting at a triangle near the viewpoint, and proceeding on
the surface iteratively in breadth-first order: at each cycle, the
border of the current mesh is considered, and a new triangle
is extracted through adjacencies from the hypertriangulation,
which is adjacent to the current mesh, and extends it from
outside its border. While moving away from the viewpoint,
the algorithm exploits the sorted sequence af adjacencies at
each edge to extract triangles from progressively coarser lev-
els of detail.

This traversal technique ensures that the extracted model
will satisfy the threshold function everywhere, but the com-
putational complexity is suboptimal in the worst case, i.e.,
O(nlogn), where n is the size of the hypertriangulation.
However, in the experiments shown in19 good performance
were achieved on reasonably large datasets.

Hypertriangulations built from a Delaunay refinement
technique38, have been used to model terrain surfaces in
19; hypertriangulations built from a decimation technique11

were used for representing manifold surfaces in the context
of an interactive multiresolution modeler15. The hypertri-
angulation can be directly extended to higher dimensional
cases, though the size of the data structure based on topolog-
ical information can grow exponentially with the dimension
of the complex.

4.3. Discussion

We finally give a qualitative evaluation of the models that we
reviewed, based on some issues that have relevant impact in
surface modeling, processing, and visualization. Our discus-
sion does not intend to be exhaustive. Many different issues
can be brought either in favor or against each model or class
of models. We follow here a track that derives both from the
arguments used by the different authors that proposed such
models, and from the comparative study we have carried out
while trying to fit such models to our framework.

4.3.0.6. Modeling issues.

� Adaptivity and data distribution.A main purpose of mul-
tiresolution models is data compression for intermediate
levels of precision. Models that are based on irregular sub-
divisions offer in general better possibilities in adapting
to surface characteristics, thus, they usually achieve better
data compression. Note also that models based on irreg-
ular subdivisions admit any kind of distribution of data,
while models based on regular subdivisions require regu-
larly distributed data.
In this view, quadtrees, and their variants (including trees
of right triangles), can be considered less adaptive than all
others, since they are based on regular subdivisions. His-
torical models in general offer excellent adaptivity: the
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high independence of local modifications enhances the
possibility to adapt refinement locally as the accuracy in-
creases, while the strict hierarchy of tree-like models im-
poses boundaries at each refinement, which could prevent
the possibility of improving the adaptivity on a local basis.

� Expressive power.It is important that a multiresolution
mesh provides many possible meshes at different resolu-
tions that can be obtained by combining its components.
As we already discussed, the expressive power is reletad
to the fact that the MT corresponding to a given model
is in canonical form and non-redundant, and that its frag-
ments are sufficiently small, and can be combined in many
possible ways to obtain meshes. All models reviewed cor-
respond to non-redundant MTs in canonical form.
Concerning the size of fragments, quadtrees, quaternary
triangulations, and the original Delaunay pyramid with
few levels have a poor behavior, since they are made of
few large fragment, each corresponding to a whole mesh,
hence they have the expressive power of a simple LOD
model. Tree-like models based on irregular triangulations
have better characteristics, though fragments can become
considerably large, unless such models are built by per-
forming only small refinements between consecutive lev-
els. All other models correspond to MTs with small frag-
ments, each corresponding to local modification that in-
volves an expectedly small number of triangles, hence
they are expected to have a high expressive power. MTs
with bounded width warrant that the size of a fragment is
always bounded by a small constant, hence giving a fur-
ther theoretical support to such a feature.

� Shape.The shape of cells in the mesh should be main-
tained as much regular as possible. In particular, regions
with elongated shape (slivers) should be avoided. This is-
sue has impact in visualization, and in numerical process-
ing.
Models based on regular subdivisions exhibit the best fea-
tures in terms of shape, since they guarantee the same
shape (e.g., square, right triangle) for all regions. Tree-
like models based on irregular subdivisions are often af-
fected by slivers: in general, slivers are a consequence of
refinements that avoid edge splitting in order to let some
edges survive across different levels of resolution. There-
fore, in the case of tree-like models, either the mesh gets
corrupted by slivers, or the multiresolution mesh results
with a small expressive power.
For historical models, the shape of cells (simplexes)
is highly dependent on the local modification criterion
adopted in building the structure. Criteria based on the
Delaunay triangulation, either on a local basis, as in11; 65,
or on a global basis, as in23; 24; 27 are aimed to maintain-
ing triangles as more regular as possible in retriangulat-
ing the mesh because of vertex insertion or removal. Edge
collapse used in PMs57; 110 might increase the number of
edge indicences at some vertices, hence obtaining sharp
angles at the corresponding triangles. However, the visual

effect of meshes obtained with this technique appears rea-
sonably good.

� Conforming meshes.As outlined previously, it is impor-
tant that a mesh extracted from a multiresolution mesh is
conforming, i.e., it defines a continuous surface (or hyper-
surface).
Quadtrees and quaternary triangulations have a poor be-
haviour in this respect, since no mesh extracted from
them are conforming, except those corresponding to reg-
ular grids. Restricted quadtrees give a conforming mesh
only at the highest level of resolution, while extracting
a conforming mesh at an intermediate level involves an
unwieldy procedure. The remaining tree-like models pro-
vide conforming meshes through suitable extraction pro-
cedures.
All historical models provide only conforming meshes
through suitable extraction algorithms.

� Storage.The storage cost of a multiresolution model is
important to evaluate its goodness. Storage requirements
are due not only to the intrinsic structure of a model, but
primarily to the data structure adopted to encode it.
Models based on regular subdivisions, such as quadtrees,
quaternary triangulations, and hierarchies of right trian-
gles achieve the best results in this respect, since it is pos-
sible to exploit their regular structure to maintain struc-
tural, topological, and interference information implicitly,
while encoding only the vertices of the model in com-
pact structures such as bidimensional arrays. The efficient
computation of the structure of cells and fragments, topo-
logical links, and interferences can be performed by us-
ing locational codes and symbolic computation. Tree-like
structures based on irregular triangulations require encod-
ing structural information explicitly at each node of the
tree, together with hierarchical links among nodes. For the
sake of efficiency in traversal operations, it might be also
necessary to encode adjacencies between nodes that con-
form at their common boundaries, hence requiring a high
storage cost.
For historical models, there is a great variety of data
structures of increasing complexity and efficiency. Linear
structures are the most compact ones, since they encode
only vertices and a small amount of additional informa-
tion; implicit MTs and vertex hierarchies also encode in-
terference information; explicit MTs and Delunay pyra-
mids encode both interference information and structural
information on fragments; hypertriangulations do not en-
code interference information, but encode topological in-
formation, which might require even more space. Empir-
ical evaluations reported in29 show that implicit MTs re-
quire about twice, and explicit MTs require about seven
times the space occupied by linear models for an equiv-
alent MT (linear models are taken as reference, because
they are the most compact structures for encoding MTs
based on irregular triangulations).
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4.3.0.7. Processing issues.Processing issues refer to the
operations one wants to perform on a multiresolution mesh.
Such issues have great impact on the design and implemen-
tation of systems, and they are often related to some of the
modeling features that we have just discussed.

� Construction.All construction algorithms are essentially
based on the simplification technology, hence their per-
formance can be evaluated on the basis of the discussion
made in Chapter 3. The worst case time complexity of
such algorithms is seldom significative, since it is usu-
ally much pessimistic with respect to the practical perfor-
mance. However, since all models can be built off-line in
reasonable time, we can consider all of them valid in this
respect. Nevertheless, because of the huge amount of data
that must be processed in some applications (e.g., terrain
data), the possibility of building different parts of a model
independently seems a critical issue. Tree-like models,
and especially quadtrees and their variants, seems most
suitable to support data partition, provided that suitable
data structures for secondary storage are developed. His-
torical models, on the contrary, being based on a global
approach, suffers from the need for maintaining always
all data available.

� Extraction of a mesh.This is the principal operation that
is performed on a mutliresolution mesh for the purpose of
visualization. The most relevant issues about algorithms
implementing it are the ability of extracting meshes either
at uniform or variable resolution, and their time perfor-
mance.
Simple and efficient algorithms for extracting meshes at
uniform resolution have been proposed for all models
reviewed. In some cases, such as for quadtrees, quater-
nary triangulations, and the Delaunay pyramids, such al-
gorithms are almost trivial; for most other models, al-
gorithms are based on some simple traversal of the data
structure, and collection of simplices that form the result-
ing mesh. Such an operation is more expensive for linear
sequences that do not encode simplices explicitly, due to
the need of computing the mesh on-line from its vertices.
Algorithms for extracting meshes at variable resolution
have been proposed only for most recent models, though
it is possible to extend such techniques also to earlier
models. Due to the poor expressive power of quadtrees
and quaternary triangulations, variable resolution can be
obtained from these models only by “cheating”, i.e., by
extracting first a non-conforming mesh through a sim-
ple traversal of the hierarchy, and triangulating non-
conforming regions in a second step, to obtain a conform-
ing mesh. As remarked already, a mesh obtained in such
a way is not among those generated by the corresponding
MT, and there is no control over its structure. For tree-like
models based on irregular triangulations, a correct algo-
rithm for variable resolution extraction needs that suitable
links are maintained in the data structure to reconstruct
either tragments of the corresponding MT, or adjacencies

of the corresponding multitriangulations, hence making
computation unwieldy.
For the case of historical models, and for hierarchies of
right triangles, we can outline three basic classes of al-
gorithms, on the basis of the MT interpretation of each
model:

1. algorithms based on top-down traversal of the DAG;
2. algorithms based on bottom-up traversal of the DAG;
3. algorithms based on breadth-first traversal of the do-

main.

Most algorithms belong to the first class. The first such al-
gorithm was proposed in23 for the Dlauanay pyramid built
bottom-up: such an algorithm has an optimal time perfor-
mance, but cannot warrant that the extracted mesh fulfills
the required threshold everywhere. Such a problem was
fixed in the algorithms proposed in82; 7; 27 for the explicit
MT, which achieve optimal performance, while guaran-
teeing that the extracted mesh is the smallest one satisfy-
ing the threshold everywhere. Similar results are obtained
on a hierarchy of right triangles by the algorithm proposed
in 37, which is performs a top-down visit of the tree of tri-
angles, together with a downward propagation of vertex
dependencies. Algorithms proposed for the implicit MT
29, and for the PM with vertex hierarchies58 follow a sim-
ilar technique by achieving optimal time performance, but
they cannot warrant the minimal size of the result. Algo-
ritms for linear structures proposed in57; 65 also belong to
this class: even such algorithms cannot guarantee the min-
imality of the result, and, moreover, they are much slower
than the previous ones because of the need of computing
both the mesh structure, and fragment interferences on-
line.
Only two algorithms have been proposed in the second
class : the one proposed in110 works on a PM with vertex
hierarchies, while the one proposed in67 works on a hi-
erarchy of right triangles. In these cases, it is possible to
achieve the minimum size of the result, but the time per-
formance is not output-sensitive: it is always necessary to
traverse the whole multiresolution mesh to obtain even the
simplest possible mesh. It should be pointed out that the
approach followed in67 contains lots of heuristics and ap-
proximate error evaluations, aimed to speedup traversal of
the dataset, which make the algorithm fast, but might lead
to a mesh that either does not fulfill the threshold function
everywhere, or is larger than necessary.
An intersting extension of the first two classes is the dy-
namic algorithm proposed in28, which exploits the pos-
sibility to traverse the DAG describing an MT both top-
down and bottom-up, starting at a current cut, in order to
update a current mesh to a changing threshold.
The third class of algorithms require topological informa-
tion. Hence, only an algorithm of this class, working on
hypertriangulations has been proposed19. Such an algo-
rithm supports only distance-increasing threshold func-
tions, it cannot warrant the minimality of the result, and
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it has suboptimal time complexity, though practical per-
formance show a good behavior. This algorithm has also
ben adapted to work on irregular tree-like models34.

� Zooming.Tree-like models favor operations like focusing
over a specific area of interest, through a top-down traver-
sal of the tree: the area of interest is localized on a given
subdivision, and only those regions that fall in such an
area are considered for further expansion at the desired
level of resolution. Regular models, being based on sub-
divisions with a constant number of regions, are better
suited to this task.
Not all historical models support zooming: essentially, ef-
ficient zooming techniques require interference informa-
tion. Only Delaunay pyramids, and explicit and implicit
MTs provide such information. The remaining models
give small or no support at all.

� Navigation.A generalization of zooming is navigation of
the structure. Many tasks (especially interactive manipu-
lation) require navigating the structure both through dif-
ferent levels of resolution, and across domain. Navigation
across domain requires topological information.
Regultree-like models can be traversed afficiently by ex-
ploiting adjacencies and interferences implied by their
regular structure. Hierarchical Delaunay triangulations
explicitly encode interference, local topology, and adja-
cency information between siblings, therefore supporting
navigation.
Among historical models, only the hypertriangulation en-
codes topological information: global adjacencies in such
a structure can be also used to move across levels of reso-
lution.

� Geometric queries.The possibility of performing effi-
ciently geometric queries, such as point location, ray
shooting, clip, etc., enhance the application of multires-
olution meshes in the modeling and rendering contexts.
Regular tree-like models naturally offer a spatial indexes
that support such operations with high efficiency through
standard algorithms (e.g., point location can be done in
logarithmic time)92. Similar techniques can be applied to
irregular tree-like models, though with a lower theoretical
efficiency26.
Point location can be also performed efficiently on Delau-
nay pyramids, and explicit MTs, and optimal logarithmic
time complexity is achieved in the Delaunay pyramid built
bottom-up, and in general on MTs with bounded width
and logarithmic height. More complex queries need both
interference and topological informations, hence they are
not fully supported by any historical model. A more de-
tailed analysis of requirements for supporting geometric
queries on MTs is given in35.

5. Applications

5.1. Applications to graphics and virtual reality

LOD representation is an important resource in interactive
graphics and virtual reality systems, and it will be widely

adopted in the near future in all interactive applications. An
overview of LOD support in Virtual Reality solutions is pro-
posed in85. The support given for the LOD representation in
OpenInventor and VRML2.0 is presented briefly in the fol-
lowing subsection.
Given a 3D scene, the LOD representation of the objects
contained has to be built. Modern toolkits or modeling en-
vironments provide tools for the controlled simplification of
polihedral meshes. Some of them will be reviewed in Sub-
section 5.1.2.
Moreover, the tools for the construction of variable resolu-
tion meshes out of multiresolution models are presented in
Subsection 5.1.5.

5.1.1. LOD in OpenInventor and VRML 2.0

Open InventorTM 43; 106 is an object-oriented toolkit for de-
veloping interactive, 3D graphics applications (see the Web
at: http://www.sgi.com/Technology/Inventor.html). It also
defines a standard file format for exchanging 3D data among
applications.
Later on, Open Inventor served as the basis for the VRML
(Virtual Reality Modeling Language)105 standard (see the
Web at: http://vag.vrml.org/), a file format for describing
interactive 3D objects and worlds. VRML is designed to
be used on the Internet, intranets, and local client systems.
VRML is capable of representing static and animated dy-
namic 3D and multimedia objects with hyperlinks to other
media such as text, sounds, movies, and images. VRML
browsers, as well as authoring tools for the creation of
VRML files, are widely available for many different plat-
forms.

The Open Inventorclasses of database primitives in-
clude shape nodes (for example, sphere, cube, cylinder,
quad mesh), property nodes (for example, material, lighting
model, textures, environment), and group nodes (for exam-
ple, separator, level-of-detail, and switch).
In particular theSoLevelOfDetailnode, using the OpenIn-
ventor terminology, allows you to specify the same object
with varying levels of detail or complexity, and provides
hints allowing to automatically choose at rendering time the
appropriate version of the object. The children of this node
are arranged from highest to lowest level of detail. The size
of the objects when projected into the viewport determines
which child to use. This node is very useful for applications
requiring the fastest rendering possible. It has one field, the
screenAreafield, which specifies the area on the screen to
use for comparison with the bounding box of the level-of-
detail group. To determine which child to traverse, Inventor
computes the 3D bounding box of all children in the level-of-
detail group. It projects that bounding box onto the viewport
and then computes the area of the screen-aligned rectangle
that surrounds the bounding box. This area is then compared
to the areas stored in the screenArea field.
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Analougously, the VRML 2.0 LOD grouping contains any
number of child objects, referred to aslevels.

LOD f

exposedField MFNode level []

field SFVec3f center 0 0 0 # (- ∞, ∞)

field MFFloat range [] # (0, ∞)

g

The main difference between OpenInventor and VRML
is the different policy adopted to drive the selection of the
rendered level of detail: VRML level selection depends on
the object distance from the viewpoint.

Thelevelfield contains a list of nodes which represent the
same object or objects at varying levels of detail, ordered
from highest level of detail to the lowest level of detail. The
rangefield specifies the ideal distances at which to switch
between the levels. Thecenterfield is a translation offset in
the local coordinate system that specifies the centre of the
LOD node for distance calculations.
The number of nodes in the level field shall exceed the num-
ber of values in the range field by one (i.e., N+1 level values
for N range values). The range field contains monotonic in-
creasing values that shall be greater than 0. In order to cal-
culate which level to display, first the distance is calculated
from the viewer’s location, transformed into the local coor-
dinate system of the LOD node (including any scaling trans-
formations), to the center point of the LOD node. The LOD
node evaluates the integer functionL(d) to choose a level for
a given value ofd (whered is the distance from the viewer
position to the centre of the LOD node).

Specifying too few levels will result in the last level being
used repeatedly for the lowest levels of detail. If more levels
than ranges are specified, the extra levels are ignored. An
empty range field is an exception to this rule. This case is
a hint to the browser that chooses the level automatically to
maintain a constant display rate.

5.1.2. Construction of LOD representation

Given a framework with visualization toolkits or graphics
libraries which support LOD representation, from the user
point of view a very handy tool should build automatically
the sequence of representations of a given object which op-
timize its visualization in the framework of visualization
toolkits or graphics libraries which support LOD represen-
tation.
The tools which are currently available show more limited
capabilities. They only support the construction of simpli-
fied representations of the objects and their composition in a
LOD model. The choice of the different levels of detail (i.e.
the complexity of each single model, and the degree of geo-
metrical/visual approximation) is therefore left to the user.

5.1.2.1. SGI Cosmo Worlds. Cosmo Worlds (see on the
Web at: http://cosmo.sgi.com/worlds/developer/DataSheet/)
supports the creation and editing of the 3D models that make

up a virtual world. Among the tools provided, theOptimiza-
tion Toolssuite gives the user total control for streamlining
visual response and interactivity, optimizing playback per-
formance, or speeding downloads of complex scenes. The
Polygon Reduction Editor, the Polygon Builder, the Inline
Editor, and the LOD Editor provide users with a choice of
methods for simplifying the displayed or downloaded scene.

The Poligon Reduction Editor reduces polygon count of
an object or group of objects in the scene, while trying to
keep the shape’s integrity. Using the sliders (see Figure 26)
user may experiment with different types of polygon reduc-
tion:

� delete points by curvature; deletes points and re-
triangulates the shape to compensate for lost points. Mea-
sures the dihedral angle between each adjacent pair of tri-
angles and removes those triangle pairs that have a com-
mon dihedral angle less than the value specifyed with the
slider;

� discard triangles by area; finds the area of triangles in the
object and gets rid of the smallest triangles;

� discard edges by length; calculates the lengths of all edges
of the object and discards the smallest;

� merge initial coordinates; merges nearby points into a sin-
gle point if they are within a certain distance of each other.

The results of simplification actions are presented in the ed-
itor’s graphic window.
All methods above are based on a clustering approach. This
provides good efficiency, but low quality of the simplified
meshes produced (see Subsection 3.3.3).

Once multiple levels of detail have been created, the LOD
representation can be built using the Cosmo’s Level of Detail
Editor (Figure 27). User may select the distances at which to
display each representation, or the selection of the ranges
may be omitted, thus creating a “performance LOD” group-
ing that allows the browser to select the appropriate level
for optimal performance. In this case, the browser selects
the level with the lowest index that it can render while still
maintaining an acceptable frame rate. Some browsers may
ignore this option.

A new set of simplification tools has been recently an-
nounced in the framework
of the OpenGL Optimizerapplication programming inter-
face (API) (see the Web at: http://www.sgi.com/Technology/
OpenGL/optimizer/presentation.html). The OpenGL Opti-
mizer API is under developement to meet the demands of
visualizing complex CAD data sets. This API is built on top
of OpenGL.
The OpenGL Optimizer modular structure is composed of 5
distinct sections. The section labeled “Simplifiers” will con-
tain the technology that enables to automatically generate
and utilize different LOD.

5.1.2.2. IBM Interaction Accelerator. IBM 3D Inter-
action Accelerator is a workstation-based interactive soft-

c
 The Eurographics Association 1997



Puppo and Scopigno / Simplification, LOD and MultiresolutionPrinciples and Applications

Figure 26: The graphic interface of the Polygon Reduction Editor of Cosmo Worlds (image courtesy of SGI inc.).

ware product that enables real-time visualization and in-
spection of very large and highly complex mechani-
cal and architectural CAD models (see the Web at:
http://www.research.ibm.com/3dix/). It includes a simplifi-
cation module, based on the Vertex Clustering algorithm90.
An example of a mesh at different levels of detail, obtained
with the Interaction Accelerator software, is presented in
Figure 28.

5.1.2.3. IMCompress. IMCompress 2.1 is a an automatic
polygon reduction
tool, included in the PolyWorks integrated line of software
tools for building 3-D polygonal models from 3-D digitizer
data (see the Web at: http://www.innovmetric.com./anglais/
pageed.html#IMEdit
or http://www.innovmetric.com/
anglais/pagepol.html#POLYWORKS). It guarantees true
3-D tolerances between compressed and original models.

It also automatically preserves local topology and surface
edges of models. It is completely automatic (may be exe-
cuted as a command-line library, or it may also be used in-
teractively when called up from IMEdit system). It requires
only one input parameter, which is the desired reduction
level. Reduction levels are specified as true 3-D tolerances
in model units, or as the desired numbers of triangles. Sev-
eral reduction levels may be specified in a single pass of the
program for generating LOD representations.
It supports preservation of textures (e.g. pictorial info, sur-
face color) and materials. The IMTexture module generates
texture maps for compressed models from the color per ver-
tex information of the original model (see Figure 29).

5.1.2.4. HP DirectModel. The DirectModel
toolkit has been recently announced by Hewlett Packard
(see the Web at: http://hpcc920.external.hp.com/wsg/ prod-
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Figure 27: The graphic interface of the Level of Detail Editor of Cosmo Worlds (image courtesy of SGI inc.).

ucts/grfx/dmodel/overview.htm). DirectModel is a toolkit
for creating technical 3D graphics applications. Its primary
objective is to provide the performance necessary for inter-
active rendering of large 3D geometry models. DirectModel
is implemented on top of traditional 3D graphics APIs and
provides the application developer with high-level 3D model
management, advanced geometry culling and simplification
techniques.
The Direct Model toolkit provides four simplifiers: Octree-
based spatial hierarchy (based on the clustering approach),
convex hull (useful for simplifying models that could be
viewed from a distance), bounding box (the object is re-
placed by a coloured bounding box) and tri-stripper (con-
verts disjoint collections of triangles into tri-strips for ef-
ficient rendering). They can be used to simplify polygo-
nal models in a pre-processing stage prior to rendering the
model. A mesh decimator is also in the process of being
added to the toolkit.
An interesting feature of DirectModel is the extensibility of
the toolkit. Other simplifiers can be plug directly into the

toolkit by sub-classing the simplifier base class, and can be
used from within the application programs.

5.1.3. Controlling color and other mesh attributes

The preservation of attribute discontinuities during mesh
simplification is an important characteristic, that only a few
papers have taken into account carefully86; 57; 8; 98. The con-
trol of the pure geometric approximation is not sufficent in
many applications to assure that the required accuracy is ful-
filled.

The color/pictorial information defined over the mesh
(e.g. by setting explicitely the color of each vertex of a high
resolution mesh, as it is in the case of meshes returned by
range scanners) can been preserved during simplification by
building a mapping between the original mesh vertices and
the simplified mesh faces98. Once the mesh has been simpli-
fied, a texture is built for each face using the colors of the as-
sociated removed vertices. The simplified face textures may
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Figure 28: Mesh simplification with IBM Interaction Accelerator, original object on the left (image courtesy of IBM inc.); mesh
sizes: 10,108 facets, 1,383 facets), 474 facets, and 46 facets.

be stored in a very efficient manner in a single texure map
(see Figure 29).

Another type of mesh attribute can be the sampling of
a field over the mesh vertices (e.g. the value of a physical
variable like temperature, potential, pressure, etc.). In order
to use the field values in visualization (e.g. mapping field
values to color, or by computing iso-lines), a simplification
code must take into account the value of the field while re-
ducing the complexity of the mesh94; 57.

5.1.4. Progressive transmission of geometric data

The diffusion of three-dimensional web applications, and the
distribution of 3D data on the net, require that geometries
should be transferred as fast as possible. The LOD repre-
sentation gives a incomplete solution to this problem, be-
cause its main design goal is to speedup visualization. If the
problem is how to transfer effiently geometrical data, a dif-
ferent answer can be the design ofprogressive transmission
methodologies, analogously to how images are managed. If
we send a 3D mesh on a (slow) communication line, one
would like to receive, and render locally, progressively bet-
ter approximations of the model.
A first, naive possibility is to transmit a sequence of LOD
models, in order of increasing complexity. But in this way
the information transferred is redundant, and to be able to vi-
sualize a single model users must wait until the entire mesh
level has been completely transmitted.

A first proposal for a real progressive trasmission of 3D
geometries was proposed on top of theProgressive Meshes
scheme57. A very rough approximation is sent firstly, and

then a sequence of update records are transferred, which en-
able the remote receiver to refine progressively the initial
rough mesh. At each instant of time, the remote user is able
to visualize a current mesh which is locally reconstructed on
the base of the update records.
A similar approach can be adopted with all incremental sim-
plification methods based on local updates and global error
control.

5.1.5. Variable resolution modeling

5.1.5.1. Zeta - Resolution Modeling. Zetais a prototypal
system which supports the construction of variable resolu-
tion representations out of a multiresolution mesh; it gives a
unified solution to both the selective refinement problem and
its reverse, selective simplification15. Zeta has been designed
according to a precise constraint: selective updates (either re-
finement or simplification) have to be operated as incremen-
tal updates over a variable resolution mesh. Moreover, the
proposed approach must show an interactive response time.
Instead than simply taking into account the viewing space
“impact” of the represented data, a variable resolution repre-
sentation of an object can be designed following user’s inter-
pretation of the visual importance of different surface areas:
e.g., higher precision is generally needed in the representa-
tion of the face than the chest of a cyber-actor.
For this reason the considerable similarity betweenresolu-
tion modelingandshape modelinghas been pointed out in
15, in the sense that both should have been fulfilled through
a tight interaction with the user. While the construction of
the multiresolution representation is a process which can be
simply made in an automatic and unattended way11; 57, the
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Figure 29: Mesh simplification with IMCompress, the original meshes with colored vertices are on the left (top: 166 278 faces;
bottom: 419 616 faces); the simplified ones, with texture mapped color, are on the right (in both cases, a 512x512 texture is
mapped onto a 1000 faces model). Images courtesy ofInnovMetric Softwareinc.

resolution modeling phase generally involves a semantic in-
terpretation of the data which cannot be fulfilled without hu-
man intervention.
Given this framework, the rationale of the Zeta prototype is
to validate a new data structure and algorithms which allow
the user to directly “model resolution”. Standard CAD sys-
tems provide tools to assist users in the design of “shapes”,
but none of them actually provides the tools needed to man-
age resolution. The modeling framework can be conceived
as composed of three separate stages: a first stage where the
“shape” is designed in full detail (shape modeling), a second
stage where the multiresolution representation is built auto-
matically by means of recent surface simplification meth-
ods (multiresolution encoding), and a the third stage,res-
olution modeling, which supports the construction of dif-
ferent instances of the the input shape which are charac-
terised by variable resolutions/details. Zeta implements a
new approach to the last stage which is highly general, user-

driven and independent on the particular simplification ap-
proach used to build the multiresolution representation. The
approach proposed is based on the hypertriangulation mul-
tiresolution representation proposed in19. A set of kernel
functionalities support:a) topological walking on the sur-
face,b) efficient extraction of fixed resolution representa-
tion, c) unified management of selective refinement and se-
lective simplification,d) easy composition of the selective
refinement/simplification actions,e) no cracks in the vari-
able resolution mesh produced,f) multiresolution mesh edit-
ing functionalities, andg) interactive response times.

The interface ofZeta is presented in Figure 30. The first
release ofZeta is available on the World Wide Web at ad-
dress http://miles.cnuce.cnr.it/cg/swOnTheWeb.html. In the
snapshot, a mesh has been extracted at a low resolution (and
rendered wire frame). Then, some refinement actions have
been operated in the areas of the head and the arms (and the
result is shaded in the figure).
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Figure 30: The interface ofZeta, a resolution modeling prototypal system; the resolution modeling session started on a low
resolution representation of a mesh distributed by Cyberware Inc. (the GMM model consists of 78k facets); then we selectively
refined it (few composed refinement actions were operated in the areas of the head and the arms).

Because the mesh refinement/simplification process is
user-driven, a complex dialog session has to be managed.
Theuserhas control over: the action (refinementor simplifi-
cation) that has to be operated; thefocus point pf on the cur-
rent mesh, selected by picking the surface; the currentradius
r, which identifies the area size (to be refined/simplified)
surroundingpf on the current mesh; and the functionErr()
which determines, for each element of the mesh, the required
increase/decrease of precision by taking into account the dis-
tance of the element frompf . TheErr() function can be in-
teractively designed by the user using the lower-right graphic
area in the Zeta window (Figure 30 and Figure 31.d and 31.e,
where the defaultErr() function has been modified).
According to user inputs, the system modifies locally the
current mesh, by decreasing or increasing the mesh preci-
sion in the mesh subsection of radiusr and centred inpf .

Six different stages operated on the rabbit mesh are pre-
sented in Figure 31, to highlight someZeta’s capabilities.
The mesh colors in the second, third and fourth clips repre-
sent the error of each mesh face (using a color ramp from
blue to green).

5.1.5.2. Interactive Multiresolution Mesh Editing – Cal-
Tech. The Caltech Multi-Res Modeling Group has devel-
oped anInteractive Multiresolution Mesh Editingsystem111.

The user manipulates high resolution geometry as if work-
ing in a patch based system, with the additional benefit of
hierarchical editing semantics. Using sophisticated adaptive
subdivision techniques coupled with lazy evaluation, a scal-
able editing system has been defined, currently running on
both PC and SGI workstation hardware.
Through the use of subdivision and smoothing techniques
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Figure 31: Some subsequent stages of a resolution modeling session: (a) selection of the initial fixed error mesh; (b) selection of the radius
used (c) in the following selective refinement on the rabbit eye; (d) theErr function has been modified and two more selective refinements have
been operated on the cheek and the tail; (e,f) shaded and wire frame rendering of the final variable resolution mesh.
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the system supports large scale smooth edits as well as
tweaking detail at the individual vertex level, while main-
taining a concise internal representation. No smoothness
constraints need to be maintained explicitly and all the usual
artifacts of traditional patch based modelers, often visible
during animation, are avoided.

Subdivision is a natural extension of the existing patch-
based surface representations. At the same time subdivision
algorithms can be viewed as operating directly on polygonal
meshes, which makes them a useful tool for mesh manipu-
lation.

Combination of subdivision and smoothing algorithms of
Taubin102 allows to construct a set of algorithms for interac-
tive multiresolution editing of complex meshes of arbitrary
topology. Simplicity of the essential algorithms for refine-
ment and coarsification allows to make them local and adap-
tive, considerably improving their efficiency.

The images in Figure 32 show an example of an edited
mesh obtained using this Multiresolution Editing system.
The original is on the left (courtesy Venkat Krischnamurthy).
The edited version on the right illustrates large scale edits,
such as armodillo’s belly, and smaller scale edits such as his
double chin. All edits were performed at about 5 frames per
second on an Indigo R10000 Solid Impact.

5.2. Applications to GIS and flight simulation

Terrain modeling in the context of geographical information
systems, and flight simulators has probably been the first ap-
plication of the simplification and multiresolution technol-
ogy. Early techniques for refinement and simplification38; 66

were meant as compression tools, designed with the explicit
purpose of building compact approximated representations
of terrains through triangular meshes (called Triangular Ir-
regular Networks (TINs) in the GIS literature), starting from
huge grids of regularly sampled data. Also most existing
multiresolution models were initially designed to represent
terrains7; 19; 10; 23; 24; 34; 37; 41; 67; 93; 82.

On this basis, some prototypal systems that support either
GIS operations, or visual flythrough, or both, have been de-
veloped, and proposed in the literature. Some such systems
are reviewed in the following.

5.2.1. Multiresolution GIS

The application of multiresolution meshes to terrain process-
ing in the context of GIS has been studied thoroughly by the
joint group at DISI-University of Genova, and IMA-National
Research Council. One prototypal system has been devel-
oped, and another one is under development.

5.2.1.1. HTIN. The HTIN (Hierarchical Triangular Irreg-
ular Network) system is based on the hierarchical Delaunay

triangulation proposed in34. This system supports several in-
teractive tasks that can be controlled through a unified graph-
ical user interface.

The system contains an algorithm for building a multires-
olution mesh through refinement, on the basis of an initial
grid at high resolution, and of a sequence of error tolerances
provided by the user. Once the hierarchical triangulation has
been built, the system allows the user to perform interac-
tively the following operations at a user-defined accuracy:

� extraction and visualization of a domain-uniform terrain
mesh;

� extraction and visualization of contour lines;
� computation of overlays between a terrain mesh and other

triangulated maps;
� visibility computations, such as horizon, and viewshed

from a given point of view.

5.2.1.2. VARIANT. VARIANT (VAriable Resolution In-
teractive Analysis of Terrains) is a new prototype built on
top of the explicit MT data structure. The current version in-
cludes just an algorithm to build an explicit MT through re-
finement from an initial grid of data at high resolution, and
a viewer, which supports the real-time extraction and visu-
alization of a terrain mesh. The viewer can extract a mesh
either at domain-uniform resolution, or at domain-variable
resolution, according to a threshold function increasing with
distance from a viewpoint. The systems allows the user to
interactively move the viewpoint in space, and it reacts by
providing the mesh corresponding to each viewpoint posi-
tion in real time. The system also supports visual flythrough
controlled through the mouse. The GUI of VARIANT with
a perspective view of a terrain is shown in Figure 33.

An extension of VARIANT with algorithms for general
geometric queries, which are meant to provide a kernel for
more complex GIS operations, is described in30, and it is
currently under development.

5.2.2. Flight simulation

Serious terrain datasets used in flight simulators can be re-
ally huge. Even simple simulators used for videogames can
deal with considerably large terrain models. Most commer-
cial products for flight simulation encode terrains using reg-
ular square grids, which can be easily partitioned on disk,
and often adopt some naive multiresolution technique, such
as performing grid subsampling for areas far from the view-
point.

More advanced techniques, based on models discussed
in Chapter 4, have been included so far only in academic
prototypal systems. The models and algorithms proposed in
23; 19, and the VARIANT system described above achieve ex-
traction times that might support frame rate on moderately
large datasets (order 105 vertices). However, all such struc-
tures have been designed for the primary memory, while it
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Figure 32: Armodillo mesh: the original is on the left and the edited version is on the right (images courtesy of Caltech
Multi-Res Modeling Group).

Figure 33: The top view of a terrain mesh at variable resolution extracted by VARIANT (left); the GUI of VARIANT, with a
perspective view of the same mesh (right).

is still not clear yet how to support the construction, sec-
ondary storage, and efficient retrieval of models based on
irregular triangulations for huge datasets. The compactness
of data structures, and the management of secondary mem-
ory are crucial issues to handle larger datasets, e.g., about
order 106�108 vertices. This is perhaps one of the hottest
research challanges in the field of multiresolution modeling.

Interactive flythough on huge dataset can be achieved by
using multiresolution meshes based on hierarchices of right

triangles. Indeed, due to the regular structure of such mod-
els, it is easy to design eficient data structures and procedure
to store them on disk, and retrieve them efficiently. Two pro-
totypal systems based on such models have been developed
independently, which will be described in the following.

5.2.2.1. Vulture – CS Arizona. The Vulture system
has been developed at the Department of Computer Sci-
ence of the University of Arizona (see the web at
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http://www.cs.arizona.edu/people/will/rtin.html), and it is
based on the Right Triangular Irregular Network (RTIN) de-
scribed in37.

The system allows the user to load a terrain grid, and it
builds a hierarchy of right triangles in an initialization step
(which takes a few seconds for datasets smaller than 105 ver-
tices). The accuracy of each triangle in the hierarchy is eval-
uated and explicitly stored.

The system offers a GUI with functionalities similar to
the VARIANT system described above. The user can control
viewpoint position and view direction through mouse drag
on a top view of the terrain. The system can perform extrac-
tion and visualization of a terrain mesh at variable resolu-
tion, according to a threshold function increasing with dis-
tance from the viewpoint. The extraction algorithm achieves
real time performances on moderately large datasets (smaller
than 105 triangles).

Apparently, the current data structure needs further op-
timization, since storage requirements for moderately large
datasets is already quite high, which makes it not applicable
in practice to huge datasets.

5.2.2.2. Display algorithm – Georgia Tech. Another sys-
tem based on hierarchies of right triangles has been devel-
oped at the Georgia Institute of Technology. The system re-
lies on an extremely compact data structure encoding only
the raw grid ov elevation values, and on a bottom-up algo-
rithm for extracting meshes at variable resolution. This al-
gorithm can achieve frame rate on top level graphics work-
stations (SGI Onix RealityEngine2) for datasets of huge size
(about 107 vertices).

The basic principle on which the extraction algorithm re-
lies is the recursive merge of adjacent triangles into their par-
ents, whenever the loss of accuracy can be accepted. Merg-
ing two triangles means removing a vertex from the mesh.
The error made in merging is estimated on-the-fly as the dif-
ference between the actual elevation of the removed vertex,
and its interpolated elevation in the parent triangle. If the
projection in screen space of such a difference is not larger
than a given threshold, then merge can take place, otherwise
the vertex must be preserved in the output mesh. Allowed
merge operations are further constrained to vertex dependen-
cies, that are traced through the implicit hierarchy to warrant
that the result be a conforming mesh.

Error evaluation, though approximated, is an expensive
task to be performed at each vertex of the original grid. For
this reason, other heuristics are used, based on a block de-
composition of the dataset, which are aimed to either coarsen
or refine large blocks of data by a rough evaluation of their
accuracy. In this way, most vertices are either discarded
from, or included into the extracted mesh during a prelim-
inary traversal based on block decomposition, while the er-
ror estimation must be performed only at the vertices whose

“importance” cannot be evaluated in the context of block de-
composition.

5.3. Applications to volume data

Volume datasets used in current applications have a common
problem, the size of the datasets, which affects both storage
requirements and visualization times. Therefore, interactive
image generation from very large datasets could be not fea-
sible, even with the use of fast graphic hardware and par-
allelism. Approximate rendering algorithms can give only a
partial solution to this problem. It is also possible to manage
data complexity by adopting anapproximate representation
of the dataset. The latter approach is more general because it
remains totally independent of the rendering approach. The
methodology in this case is therefore to work ondata sim-
plification rather than ongraphics output simplification. A
comparison between these two approaches is given in16.

5.3.1. Simplification algorithms

The main approach to build an approximate representation
of a tetrahedral dataset is to choose a subset of the original
vertices and to build a new triangulation of (almost) the same
domain. A naiverandom subsamplingas proposed in109 has
serious drawbacks: there is no control on the accuracy of
the simplified mesh; the technique is not adaptive, i.e. data
density cannot vary over different regions of the domain.

An approach to the representation of regular volume
datasets based on the use of a hierarchical recursive partition
(an octree-like scheme) has been proposed in108. Each node
is obtained by recursive subdivision: it holds a basis function
to reconstruct the field, as well as a measure of both error
and importance factors, which are used for selective traver-
sal of the tree. The method cannot be extended to irregularly
distributed data. Using such a structure as aLoD represen-
tation, by considering each tree level as a separate layer, is
equivalent to use subsampling. Amultiresolutionrepresen-
tation is also possible, by selecting nodes at different levels,
but the field may result discontinuous across different lev-
els, thus causing unpleasant effects (e.g., aliasing in direct
volume rendering, and cracks in isosurfaces).

Most of the adaptive methods that try to select the smallest
set of point that approximate a dataset within a given error,
developed for the simplification of 2D surfaces, can be ex-
tended to simplify volume data, but only a few experiments
have been made12; 49; 87.

A LoD representation based on tetrahedral decomposition
was proposed in12. Independent simplified representations
of a volume dataset at different levels of approximation were
built by adopting a refinement technique.
This approach has been extended to provide a multiresolu-
tion model for volume data based on tetrahedral meshes and
data simplification14. Two methods for building approxi-
mated tetrahedral meshes are proposed: a top-down method
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that refines a coarse initial mesh by iteratively inserting ver-
tices, and a bottom-up method that simplifies an initial mesh
at the highest resolution by iteratively discarding vertices.
Since both methods are based on iterative local mesh mod-
ifications, each of them produces a fine-grained sequence
of meshes at increasingly finer (respectively, coarser) res-
olution. In other words, a high number of different tetra-
hedral meshes at different resolutions are obtained on the
basis of a moderate number of tetrahedra, namely all tetra-
hedra that appear during successive updates. Such tetrahe-
dra can be stored in a compact representation of a mul-
tiresolution model which supports fast on-line extraction of
a mesh at arbitrary resolution. A multiresolution visualiza-
tion systemTAn (Tetrahedra Analyser)has been developed.
The TAn prototype is available in the public domain at:
http://miles.cnuce.cnr.it/cg/swOnTheWeb.html.

5.3.2. Multiresolution management

Many approaches have recently been proposed for the mul-
tiresolution management of surfaces, while multiresolution
volume data management is still under developed. First steps
in this direction were made in17; 14, and further research has
still to be done.

6. Uncovered subjects

Due to space and time limits in preparing these notes, we
had to leave out some subjects that will be briefly addresses
in this chapter.

6.1. CAD surfaces

Simplification methods, and multiresolution meshes need
further specification to be applied to parametric surfaces in
the context of CAD modeling systems.

The further problem, in this application, is that not only
each parametric patch, but also its computational domain
is approximated. Therefore, the simplification process must
take care of preserving trimming curves, and of confor-
mity between meshes representing different patches adjacent
along them. This problem has consequences also in the con-
struction of multiresolution meshes, since models represent-
ing each parametric patch must be welded properly along
trimming curves at all levels of resolution.

A simplification algorithm for parametric patches is pre-
sented in64, which is used in65 to build a multiresolution
mesh based on linear sequences. A technique for building a
multiresolution mesh based on an explicit MT is presented
in 31.

6.2. Non-uniformly dimensional meshes

Some work has been done in the literature on simplification
algorithms and multiresolution meshes that permit to work

with meshes that are not uniformly domensional, e.g., to de-
scribe scenes in the 3D space containing not only objects
bounded by surfaces, but also “sticks” and isolated points.
There are at least two such models, proposed in90, and80, re-
spectively. The field of application of such models is mainly
in modeling complex objects and scenes composed of many
parts in virtual reality contexts.

In Chapter 3 we reviewed some such work from the point
of view of simplification algorithms, while we did not review
the corresponding multiresolution models.

A strong formalization of such models has not been given
yet in the literature. The MT framework “as is” does not
capture them, since it is based on regular complexes. On a
different perspective, a first formalization of non-uniformly
dimensional multiresolution models in the plane has been
proposed in84, for the special case of modeling geographic
maps. By exploiting the principles presented in such a paper,
it should be not difficult to extend the MT to deal with higher
dimensional cases.

6.3. Multiresolution models based on wavelets

A relevant part of the literature on multiresolution is regard-
ing methods based onwavelets. Wavelets are a mathematical
tool for hierarchically decomposing a function in terms of a
coarse overall shape, and of progressively finer details, en-
coded as a sequence of coefficients.

Wavelets have been applied in many contexts, such as im-
ages, curves, surfaces, and volume data. For the case of sur-
faces, wavelet methods usually rely on regular recursive sub-
divisions of a domain, such as the quaternary triangulation
discussed in 4.2.1.2.

In Chapter 3 we discussed some simplification methods
based on wavelets36; 70; 71, and in Chapter 5 we described an
application of wavelets to multiresolution modeling111.

Further references on wavelets are the following: tutorials
papers74; 100; 101; multiresolution representation of manifold
surfaces8; 42; applications to volume data77; 78; 79; 46; 107.

6.4. Image pyramids

In the computer vision literature, there have been many pro-
posals of multiresolution methods for image analysis, based
on hierarchical decompositions of the image space. The lit-
erature on this subject is often referred to asimage pyramids.

From the point of view of this tutorial, an image pyramid
is essentially a LOD model for images, where interference
links between consecutive levels are maintained. In the lit-
erature, many different pyramids have been proposed, from
the simple case of regular grids at different resolution, to ir-
regular tessellation based, e.g., on Voronoi diagrams.

An excellent reference for this subject is the book60.
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6.5. Range images

Range images, acquired with range sensors such as laser
scanners, or structured lights, have a structure similar to 2D
height fields, such as terrains. The difference, in this case,
is that a range image contains discontinuities (jumps) that
must be preserved by algorithms that attempt to reconstruct
the framed scene.

In the literature, there are some applications of refinement
techniques to reconstruct surfaces from range images. In9,
image discontinuities are detected first, which are imposed
as constraints to compute an initial triangulation of the image
plane; such a triangulation is further refined by inserting ver-
tices on-line until the approximation of data achieves a given
accuracy. The resulting triangular mesh is an approximation
of the scene; discontinuities are modeled by doubled edges.
In 81, an unconstrained refinement algorithm is applied first,
which produces an adaptive fragmentation of the scene; a re-
laxation algorithm is applied next that merges nearly copla-
nar triangles, thus eliminating false jumps and creases; the
result is a polygonal mesh reconstructing maximal planar
faces of objects, while preserving jumps and creases of the
surface. This method can be generalized to handle curved
objects by using higher polynomials instead of linear func-
tions at each facet of the subdivision.
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45. A. Guéziec. Surface simplification inside a tolerance
volume. Technical Report RC 20440, I.B.M. T.J. Wat-
son Research Center, 1996.

46. B. Guo. A multiscale model for structured-based vol-
ume rendering.IEEE Trans. on Visualization and Com-
puter Graphics, 1(4):291–301, December 1995.

47. M.J. De Haemer and M.J. Zyda. Simplification of ob-
jects rendered by polygonal approximations.Comput-
ers & Graphics, 15(2):175–184, 1991.

48. B. Hamann. A data reduction scheme for triangu-
lated surfaces. Computer Aided Geometric Design,
11(2):197–214, 1994.

49. B. Hamann and J.L. Chen. Data point selection for
piecewise trilinear approximation.Computer Aided Ge-
ometric Design, 11:477–489, 1994.

50. T. He, L. Hong, A. Kaufman, A. Varshney, and
S. Wang. Voxel-based object simplification. InIEEE
Visualization ’95 Proceedings, pages 296–303. IEEE
Comp. Soc. Press, 1995.

51. T. He, L. Hong, A. Varshney, and S. Wang. Controlled
topology simplification. IEEE Trans. on Visualization
& Computer Graphics, 2(2):171–183, 1996.

52. D.J. Hebert. Symbolic local refinement of tetrahedral
grids. Journal of Symbolic Computation, 17:457–472,
1994.

53. D.J. Hebert and H.-J. Kim. Image encoding with trian-
gulation wavelets.Proceedings SPIE, (2569(1)):381–
392, 1995.

54. P. Heckbert and M. Garland. Multiresolution Modeling
for Fast Rendering. InGraphics Interface ’94 Proceed-
ings, pages 43–50, 1994.

55. P. Heckbert and M. Garland. Survey of surface simpli-
fication algorithms. Technical report, Carnegie Mellon
University - Dept. of Computer Science, 1997. (to ap-
pear).

56. P. Hinker and C. Hansen. Geometric optimization. In
IEEE Visualization ’93 Proc., pages 189–195, October
1993.

57. H. Hoppe. Progressive meshes. InACM Computer
Graphics Proc., Annual Conference Series, (Siggraph
’96), pages 99–108, 1996.

58. Hugues Hoppe. View-dependent refinement of progres-
sive meshes. InACM Computer Graphics Proc., An-
nual Conference Series, (Siggraph ’97), 1997. (to ap-
pear).

59. Hugues Hoppe, Tony DeRose, Tom Duchamp, John
McDonald, and Werner Stuetzle. Mesh optimization.
In ACM Computer Graphics Proc., Annual Conference
Series, (Siggraph ’93), pages 19–26, 1993.

60. J.-M. Jolion and A. Rosenfeld.A Pyramid Frame-
work for Early Vision. Kluwer Academic, Dordrecht
(Netherlands), 1994.

61. A. D. Kalvin and R.H. Taylor. Superfaces: Polig-
onal mesh simplification with bounded error.IEEE
C.G.&A., 16(3):64–77, 1996.

62. A.D. Kalvin, C.B. Cutting, B. Haddad, and M.E. Noz.
Constructing topologically connected surfaces for the
comprehensive analysis of 3D medical structures.SPIE
Vol. 1445 Image Processing, pages 247–259, 1991.

63. R. Klein, G. Liebich, and W. Straßer. Mesh reduction
with error control. In R. Yagel and G. Nielson, editors,
Proceedings of Visualization ‘96, pages 311–318, 1996.

64. R. Klein and W. Straßer. Large mesh generation from
boundary models with parametric face representation.
In C. Hoffmann and J. Rossignac, editors,Proceedings
3rd ACM Symposium on Solid Modeling and Applica-
tions, pages 431–440, 1995.

65. R. Klein and W. Straßer. Generation of multireso-
lution models from cad data for real time rendering.
In R. Klein, W. Straßer, and R. Rau, editors,Theory
and Practice of Geometric Modeling (Blaubeuren II).
Spinger-Verlag, 1997. (to appear).

66. J. Lee. Analysis of visibility sites on topographic sur-
faces.International Journal of Geographic Information
Systems, 5(4):413–425, 1991.

67. P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges,
N. Faust, and G.A. Turner. Real-time, continuous level
of detail rendering of height fields. InComp. Graph.
Proc., Annual Conf. Series (Siggraph ’96), ACM Press,
pages 109–118, New Orleans, LA, USA, Aug. 6-8
1996.

68. W.E. Lorensen. Marching through the visible man. In
Visualization ’95, pages 368–373. IEEE, 1995.

69. William E. Lorensen and Harvey E. Cline. Marching
cubes: A high resolution 3D surface construction algo-
rithm. In Maureen C. Stone, editor,Computer Graphics
(SIGGRAPH ’87 Proceedings), volume 21, pages 163–
170, July 1987.

70. Michael Lounsbery.Multiresolution Analysis for Sur-
faces of Arbitrary Topological Type. PhD thesis, Dept.
of Computer Science and Engineering, U. of Washing-
ton, 1994.

c
 The Eurographics Association 1997



Puppo and Scopigno / Simplification, LOD and MultiresolutionPrinciples and Applications

71. Michael Lounsbery, Tony D. DeRose, and Joe War-
ren. Multiresolution analysis for surfaces of arbitrary
topological type. ACM Transactions on Graphics,
16(1):34–73, 1997.

72. K.L. Low and T.S Tan. Model simplification using ver-
tex clustering. In1997 ACM Symposium on Interactive
3D Graphics, page to appear, 1997.

73. D. Luebke and C. Erikson. View-dependent simplifi-
cation of arbitrary polygonal environments. InACM
Computer Graphics Proc., Annual Conference Series,
(Siggraph ’97), 1997. (to appear).

74. S. G. Mallat. A theory for multiresolution signal de-
composition: The wavelet representation.IEEE Trans.
on Patt. Anal. and Mach. Intel., 11(7):674–693, 1989.

75. D. Moore and J. Warren. Compact isocontours from
sampled data. In D. Kirk, editor,Graphics Gems III,
pages 23–28. Academic Press, 1992.

76. H. Muller and M. Stark. Adaptive generation of sur-
faces in volume data.The Visual Computer, 9(4):182–
199, 1993.

77. S. Muraki. Approximation and rendering of volume
data using wavelet transforms. InIEEE Visualization
’92 Proc., pages 21–28, October 19-23 1992.

78. S. Muraki. Volume data and wavelet transforms.IEEE
C. G.& A., 13(4):50–56, July 1993.

79. S. Muraki. Multiscale volume representation by a
dog wavelet. IEEE Trans. on Vis. and Comp. Graph.,
1(2):109–116, June 1995.

80. J. Popovic and H. Hoppe. Progressive simplicial com-
plexes. InACM Computer Graphics Proc., Annual
Conference Series, (Siggraph ’97), 1997. (to appear).

81. E. Puppo. Segmentation/reconstruction of range im-
ages based on piecewise-linear approximation. In
C. Braccini, L. De Floriani, and G. Vernazza, editors,
Image Analysis and Processing, number 974 in Lecture
Notes in Computer Science, pages 367–372. Springer-
Verlag, 1995.

82. E. Puppo. Variable resolution terrain surfaces. In
Proceedings Eight Canadian Conference on Computa-
tional Geometry, Ottawa, Canada, pages 202–210, Au-
gust 12-15 1996.

83. E. Puppo. Variable resolution triangulations. Techni-
cal Report 12/96, Institute for Applied Mathematics,
C.N.R., Genova (Italy), November 1996.

84. E. Puppo and G. Dettori. Towards a formal model
for multiresolution spatial maps. In Max J. Egen-
hofer and John R. Herring, editors,Advances in Spatial
Databases, number 951 in Lecture Notes in Computer
Science, pages 152–169. Springer-Verlag, 1995.

85. M. Reddy. A survey of level of detail support in cur-
rent virtual reality solutions.Virtual Reality: Research,
Development and Appl., 1(2):85–88, 1995.

86. M. Reddy. Scrooge: Perceptually-driven polygon re-
duction. Computer Graphics Forum, 15(4):191–203,
1996.

87. K.J. Renze and J.H. Oliver. Generalized unstructured
decimation.IEEE C.G.&A., 16(6):24–32, 1996.

88. R. Ronfard and J. Rossignac. Full-range approximation
of triangulated polyhedra.Computer Graphics Forum
(Eurographics’96 Proc.), 15(3):67–76, 1996.

89. J. Rossignac, editor.Geometric Simplification (ACM
SIGGRAPH Course Notes No.35). ACM Press, 1996.

90. J. Rossignac and P. Borrel. Multi-resolution 3D approx-
imation for rendering complex scenes. In B. Falcidieno
and T.L. Kunii, editors,Geometric Modeling in Com-
puter Graphics, pages 455–465. Springer Verlag, 1993.

91. H. Samet.Applications of Spatial Data Structures. Ad-
dison Wesley, Reading, MA, 1990.

92. H. Samet. The design and Analysis of Spatial Data
Structures. Addison Wesley, Reading, MA, 1990.

93. Lori Scarlatos and Theo Pavlidis. Hierarchical tri-
angulation using cartographics coherence.CVGIP:
Graphical Models and Image Processing, 54(2):147–
161, March 1992.

94. D. Schikore and C. Bajaj. Decimation of 2D scalar data
with error control. Technical Report CSD-TR-95-005,
CS Dept., Purdue University, 1995.

95. F. Schmitt, B.A. Barsky, and W.H. Du. An adap-
tive subdivision method for surface-fitting from sam-
pled data.Computer Graphics (SIGGRAPH ’86 Proc.),
20(4):179–188, 1986.

96. W. Schroeder. Polygon reduction techniques. In
ACM Comp. Graph. Proc., Annual Conf. Series (Sig-
graph’95), Course Notes n. 30 (Advanced Techniques
for Scientific Visualization), pages 1.1–1.14, Aug. 6-12
1995.

97. William J. Schroeder, Jonathan A. Zarge, and
William E. Lorensen. Decimation of triangle meshes.
In Edwin E. Catmull, editor,ACM Computer Graphics
(SIGGRAPH ’92 Proceedings), volume 26, pages 65–
70, July 1992.

98. Marc Soucy, Guy Godin, and Marc Rioux. A texture-
mappping approach for the compression of colored 3d
triangulations. The Visual Computer, (12):503–514,
1996.

99. Marc Soucy and Denis Laurendeau. Multiresolution
surface modeling based on hierarchical triangulation.
Computer Vision and Image Understanding, 63(1):1–
14, 1996.

c
 The Eurographics Association 1997



Puppo and Scopigno / Simplification, LOD and MultiresolutionPrinciples and Applications

100. E.J. Stollnitz, T.D. DeRose, and D.H. Salesin. Wavelets
for computer graphics: A primer, part 1.IEEE Com-
puter Graphics and Applications, pages 76–84, May
1996.

101. E.J. Stollnitz, T.D. DeRose, and D.H. Salesin. Wavelets
for computer graphics: A primer, part 2.IEEE Com-
puter Graphics and Applications, pages 75–85, July
1996.

102. G. Taubin. A signal processing approach to fair surface
design. InComp. Graph. Proc., Annual Conf. Series
(Siggraph ’95), ACM Press, pages 351–358, Aug. 6-12
1995.

103. Greg Turk. Re-tiling polygonal surfaces. In Edwin E.
Catmull, editor,ACM Computer Graphics (SIGGRAPH
’92 Proceedings), volume 26, pages 55–64, July 1992.

104. B. Von Herzen and A.H. Barr. Accurate triangulations
of deformed, intersecting surfaces.Computer Graphics
(Siggraph 87 Proc.), 21(4):103–110, 1987.

105.The Virtual Reality Modeling Language Specification -
Version 2.0, August 1996.

106. Josie Wernecke.The Inventor mentor: programming
Object-oriented 3D graphics with Open Inventor. Ad-
dison Wesley, 1994.

107. R. Westermann. A Multiresolution Framework for Vol-
ume Rendering. InProceedings of 1994 Symposium on
Volume Visualization, pages 51–58. ACM Press, Octo-
ber 17-18 1994.

108. J. Wilhelms and A. van Gelder. Multi-dimensional
Trees for Controlled Volume Rendering and Compres-
sion. In Proceedings of 1994 Symposium on Volume
Visualization, pages 27–34. ACM Press, October 17-18
1994.

109. P.L. Williams.Interactive Direct Volume Rendering of
Curvilinear and Unstructured Data. PhD thesis, Uni-
versity of Illinois at Urbana–Champaign, 1993.

110. J.C. Xia and A. Varshney. Dynamic view-dependent
simplification for polygonal models. In R. Yagel
and G. Nielson, editors,IEEE Visualization ‘96 Proc.,
pages 327–334, 1996.

111. D. Zorin, P. Schr¨oder, and W. Sweldens. Interactive
multiresolution mesh editing. InComp. Graph. Proc.,
Annual Conf. Series (Siggraph ’97), ACM Press, 1997.
(to appear).

c
 The Eurographics Association 1997


