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Tomography

Inverse Problems
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 Tomography 

– Absorption / emission

– Fourier Slice Theorem and Filtered Back Projection 

– Algebraic Reconstruction 

– Applications

Overview
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Outline

 Computed Tomography (CT)

– Radon transform

– Filtered Back-Projection

– natural phenomena

– glass objects
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Computed Tomography (CT)

3D
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Some History

 Radon transform (1917)

– Radon: Inverse transform exists

if all           are covered  

– First numerical application 

Viktor Ambartsumian (1936, astrophysics)

Johann Radon (1887-1956)

Viktor Ambartsumian (1909-1996)
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Some History

 CT Scanning

Godfrey Hounsfield (1919-2004)

Sketch of the invention

Prototype scanner Hounsfield’s abdomen

Allan Cormack (1924-1998)

 1979 Nobel prize in Physiology or Medicine
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The math

 X-rays are attenuated by body tissue and bones

– Attenuation is spatially variant (attenuation coeff.               ) 

– are known, determine 

– Ill-posed for only one direction 

─ Need all
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Well-Posed and Ill-Posed Problems

 Definition [Hadamard1902]

– a problem is well-posed if 

1. a solution exists

2. the solution is unique

3. the solution continually depends on the data

– a problem is ill-posed if it is not well-posed
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Tomography

-- Fourier-Based Techniques --

Inverse Problems
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Computed Tomography

 tomography is the problem of computing 
a function from its projections

 a projection is a set of line integrals over 
function m along some ray c

 invert this equation (noise is present)

 if infinitely many projections are 
available this is possible (Radon 
transform) [Radon1917]
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Computed Tomography –
Frequency Space Approach

 Fourier Slice Theorem

 The Fourier transform of an orthogonal 
projection is a slice of the Fourier transform of 
the function
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Computed Tomography – FST
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Computed Tomography –
Frequency Space Approach

 for recovery of the 2D function we need several slices

 slices are usually interpolated onto a rectangular grid

 inverse Fourier transform 

 gaps for high frequency components

 artifacts

several projections, spatial domain many more projections, frequency domain
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Frequency Space Approach - Example

original (Shepp-Logan head phantom) reconstruction from 18 directions

reconstruction from 36 directions reconstruction from 90 directions

without noise !
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Filtered Back-Projection

 Fourier transform is linear 

–  we can sum the inverse transforms of the lines in 
frequency space instead of performing the inverse 
transform of the sum of the lines 

backprojection:
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Filtered Back-Projection

 Why filtering ?

 discrete nature of measurements gives unequal 
weights to samples

 compensate
would like to have

wedge shape for one

discrete measurement

have a bar shape

(discrete measurement)

compensate to have

equal volume under filter

frequency domain

high pass filter
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Filtered Back-Projection (FBP)

 high pass filter 1D 
projections in spatial domain

 back-project

 blurring is removed

– FBP can be implemented on 
the GPU

– projective texture mapping
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Frequency Space based Methods 

 Advantages

– Fast processing 

– Incremental processing (FBP)

 Disadvantages

– need orthogonal projections

– sensitive to noise because of high pass filtering

– Frequency-space artifacts, e.g. ringing 

– Equal angular view spacing (or adaptive filtering)
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Tomography

-- Algebraic Techniques --

Inverse Problems
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Algebraic Reconstruction Techniques (ART)

 object described by Φ, a density 
field of e.g. emissive soot particles 

 pixel intensities are line integrals 
along line of sight 

 Task: Given intensities, compute Φ 

Φ

cp

Ip
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ART

 Algebraic Reconstruction Technique (ART)
 Discretize unknown Φ using a linear combination  

of basis functions Φi

  linear system   p = Sa

Φi

cp

Ip

p
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ART

 Discretize unknown Φ using a linear 
combination  of basis functions Φi

 Need several views 

Φi

cp

Ipp
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ART – Matrix Structure

invert LS in a 

least squares 

sense:

i

p
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Frequency Space based Methods -
Disadvantages

 Advantages 

– Accomodates flexible acquisition setups

– Can be made robust to noise (next lecture)

– Arbitrary or adaptive discretization

– Can be implemented on GPU

 Disadvantages

– May be slow

– May be memory-consumptive
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Tomography

-- Applications --

Inverse Problems
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CT Applications in measurement and 
quality control

 Acquisition of difficult to scan objects

 Visualization of internal structures (e.g. cracks)

 No refraction
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3D

2D

2D

2D

Tomographic Imaging in Graphics

reconstruction of flames using a multi-camera setup
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Flame tomography

 Calibrated, synchronized camera setup

– 8 cameras, 320 x 240 @ 15 fps

8 input views in 

original camera orientation 

Camera setup
[Ihrke’ 04]
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Sparse View ART - Practice

 Large number of projections is needed

 In case of dynamic phenomena

  many cameras

– expensive

– inconvenient placement

 straight forward application of ART with 
few cameras not satisfactory

[Ihrke’ 04]
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Visual Hull Restricted Tomography

object

Zero coefficients

C

C

C

1

2

3

[Ihrke’ 04]
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Visual Hull Restricted Tomography

 Only a small number of 
voxels contribute

 Remove voxels that do 
not contribute from 
linear system

 Complexity of inversion 
is significantly reduced

[Ihrke’ 04]
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Animated Flame Reconstruction



frame 194

frame 86

animated reconstructed flames

[Ihrke’ 04]
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Smoke Reconstructions

[Ihrke’ 06]



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

3D Reconstruction of Planetary Nebulae

 only one view available

 exploit axial symmetry

 essentially a 2D problem

[Magnor04]
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Input

Optical flow

Tomography

Output

Schlieren Tomography

Optical flow
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

Schlieren Tomography - Acquisition
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

Schlieren Tomography - Acquisition



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

Schlieren Tomography - Acquisition
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

Schlieren Tomography - Acquisition
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Input Optical flow Mask

Schlieren CT – Image Processing
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High frequency detail everywhere

Decouple pattern resolution from sensor

Wavelet noise [Cook 05]

Gaussian Wavelet

Schlieren CT – Background Pattern
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Image formation in 
continuously refracting 
media

Curved Rays

Described well by Ray 
Equation of Geometric 
Optics

Schlieren CT - Image Formation
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Continuous ray tracing, 
e.g. [Stam 96, Ihrke 07]

n
ds

d

ds

d
n





d

d
x

Set of 1st order ODE’s :

Schlieren CT - Image Formation
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Continuous ray tracing, 
e.g. [Stam 96, Ihrke 07]

n
ds

d

ds

d
n





d

d
x

Set of ODE’s :

Schlieren CT - Ray equation 
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
c

inout
dsndd

n
ds

d


d

Integrating

yields

Schlieren CT - Ray equation 
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
c

inout
dsndd

Basic equation for
Schlieren Tomography

Schlieren Tomography
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Based on measurements 
of line integrals from 
different orientations


c

inout
dsndd

Schlieren Tomography



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

Ray path must be known

BUT: unknown refractive
index

In practice, ray bending 
negligible 

[Venkatakrishnan’04]


c

inout
dsndd

Schlieren Tomography
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Ray path must be known

BUT: unknown refractive
index

Affects integration path
only, equation still holds
approximately! 


c

inout
dsndd

Schlieren Tomography
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Measure difference 
vector


c

inout
dsndd

Schlieren Tomography - Measurements
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
c

inout
dsndd

Measure difference 
vector

Component parallel
to optical axis is lost

Schlieren Tomography - Measurements
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Vector-valued tomographic problem

Discretize gradient

Radially symmetric basis functions

Linear system in 


i

iin n

  
i c

ii

c i

ii

in
out

dsds  nndd

Schlieren Tomography –Linear System
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Given        from tomography

Compute     from definition of Laplacian

Solve Poisson equation to get refractive index

– Inconsistent gradient field due to noise and other 
measurement error

– Anisotropic diffusion

n

Schlieren Tomography - Integration
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Schlieren Tomography - Results
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Schlieren Tomography - Results
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Schlieren Tomography - Results
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 visible light tomography of glass objects

– needs straight ray pathes

 compensate for refraction

– immerse glass object in water

– add refractive index matching agent

 “ray straightening” 

 apply tomographic reconstruction

3D Scanning of Glass Objects 
[Trifonov06]
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3D Scanning of Glass Objects 
[Trifonov06]

 Tomographic 
reconstruction results 
in volume densities

 use marching cubes 
to extract object 
surfaces



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

Layered 3D: Multi-Layer Displays

mask 2

mask 3

mask K

light box

mask 1

…

Layered 3D

[Wetzstein’11]
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attenuator

x

q

2D Light Field

x

q

virtual plane

backlight

Tomographic Light Field Synthesis

[Wetzstein’11]
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x

q

2D Light Field

x

virtual plane

attenuator

backlight

Tomographic Light Field Synthesis

[Wetzstein’11]
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attenuator

x

q

2D Light Field

x

virtual plane

backlight

Tomographic Light Field Synthesis

[Wetzstein’11]
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attenuator

2D Light Field

virtual plane

L(x,q) = I0e
- m (r )dr

C

ò

L(x,q) = ln
L(x,q )

I0

æ

è
ç

ö

ø
÷ = - m(r)dr

C

ò

l = -Pabacklight

Image formation model:

arg min
a

 l +Pa
2

,  for a ³ 0

Tomographic synthesis:

Tomographic Light Field Synthesis

[Wetzstein’11]
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2D Light Field

virtual plane

backlight

attenuator

arg min
a

 l +Pa
2

,  for a ³ 0

Tomographic synthesis:

L(x,q) = I0e
- m (r )dr

C

ò

L(x,q) = ln
L(x,q )

I0

æ

è
ç

ö

ø
÷ = - m(r)dr

C

ò

l = -Pa

Image formation model:

Tomographic Light Field Synthesis

[Wetzstein’11]
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Multi-Layer Light Field Decomposition

Target 4D Light Field

Multi-Layer Decomposition

Reconstructed Views

[Wetzstein’11]
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Prototype Layered 3D Display

Transparency stack with acrylic spacers Prototype in front of LCD (backlight source)

[Wetzstein’11]
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[Wetzstein’11]
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Deconvolution

Inverse Problems - Deconvolution
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Outline

 Deconvolution Theory

– example 1D deconvolution

– Fourier method

– Algebraic method

─ discretization

─ matrix properties

─ regularization

─ solution methods

 Deconvolution Examples
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Applications - Astronomy

 BEFORE                                         AFTER 



Images courtesy of Robert Vanderbei
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Applications - Microscopy

Images courtesy Meyer Instruments
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Inverse Problem - Definition

 forward problem

– given a mathematical model M and its parameters m, 
compute (predict) observations o

 inverse problem

– given observations o and a mathematical model M, 
compute the model's parameters
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Inverse Problems – Example 
Deconvolution

 forward problem – convolution

– example blur filter

– given an image m and a filter kernel k, 
compute the blurred image o
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Inverse Problems – Example 
Deconvolution

 inverse problem – deconvolution

– example blur filter

– given a blurred image o and a filter kernel k, 
compute the sharp image

– need to invert 

– n is noise
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Deconvolution

--Fourier Solution--

Inverse Problems - Deconvolution
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Deconvolution - Theory

 deconvolution in Fourier space

 convolution theorem ( F is the Fourier transform ):

 deconvolution:

 problems

– division by zero

– Gibbs phenomenon

(ringing artifacts)
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A One-Dimensional Example –
Deconvolution Spectral

 most common:                   is a low pass filter

  , the inverse filter, is high pass

  amplifies noise and numerical errors
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A One-Dimensional Example –
Deconvolution Spectral

 reconstruction is noisy even if data is perfect !
– Reason: numerical errors in representation of function
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A One-Dimensional Example –
Deconvolution Spectral

 spectral view of signal, filter and inverse filter
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A One-Dimensional Example –
Deconvolution Spectral

 solution: restrict frequency response of high pass 
filter (clamping)
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A One-Dimensional Example -
Deconvolution Spectral

 reconstruction with clamped inverse filter
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A One-Dimensional Example –
Deconvolution Spectral

 spectral view of signal, filter and inverse filter
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A One-Dimensional Example –
Deconvolution Spectral

 Automatic per-frequency tuning: 
Wiener Deconvolution
- Alternative definition of inverse kernel

- Least squares optimal

- Per-frequency SNR must be known
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Deconvolution

-- Algebraic Solution --

Inverse Problems - Deconvolution
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A One-Dimensional Example-
Deconvolution Algebraic

 alternative: algebraic reconstruction

 convolution

 discretization: linear combination of basis 
functions
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A One-Dimensional Example –
Deconvolution Algebraic

 discretization:

– observations are linear 
combinations of 
convolved basis functions

– linear system with 
unknowns

– often over-determined, 
i.e. more observations o 
than degrees of freedom 
(# basis functions )

linear system
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A One-Dimensional Example –
Deconvolution Algebraic

 discretization:

– observations are linear 
combinations of 
convolved basis functions

– linear system with 
unknowns

– often over-determined, 
i.e. more observations o 
than degrees of freedom 
(# basis functions )

linear system

unknown
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A One-Dimensional Example –
Deconvolution Algebraic

 normal equations

 solve                              to obtain solution in a 
least squares sense

 apply to deconvolution

solution is completely broken !
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A One-Dimensional Example –
Deconvolution Algebraic

 Why ?

 analyze distribution of eigenvalues

 Remember:  

 we will check the singular values

– Ok, since           is SPD (symmetric, positive semi-definite)

 non-negative eigenvalues

 Singular values are the square root of the 
eigenvalues

and Matrix is under-

determined
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 matrix                  has a very wide range of singular 
values!

 more than half of the singular values are smaller than 
machine epsilon (            ) for double precision

A One-Dimensional Example –
Deconvolution Algebraic

Log-Plot !
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A One-Dimensional Example –
Deconvolution Algebraic

 Why is this bad ?

 Singular Value Decomposition: U, V are orthonormal, D 
is diagonal

 Inverse of M: 

 singular values are diagonal elements of D

 inversion: 
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A One-Dimensional Example –
Deconvolution Algebraic

 computing model parameters from observations:

 again: amplification of noise

 potential division by zero

Log-Plot !
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numerical null space

A One-Dimensional Example –
Deconvolution Algebraic

 inverse problems are often ill-conditioned (have a 
numerical null-space)

 inversion causes amplification of noise
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Well-Posed and Ill-Posed Problems

 Definition [Hadamard1902]

– a problem is well-posed if 

1. a solution exists

2. the solution is unique

3. the solution continually depends on the data
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Well-Posed and Ill-Posed Problems

 Definition [Hadamard1902]

– a problem is ill-posed if it is not well-posed

─ most often condition (3) is violated

─ if model has a (numerical) null space, parameter 
choice influences the data in the null-space of the 
data very slightly, if at all

─ noise takes over and is amplified when inverting 
the model
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Condition Number

 measure of ill-conditionedness:   condition number

 measure of stability for numerical inversion 

 ratio between largest and smallest singular value

 smaller condition number  less problems when 
inverting linear system

 condition number close to one implies near orthogonal 
matrix
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Truncated Singular Value Decomposition

 solution to stability problems: avoid dividing by values 
close to zero

 Truncated Singular Value Decomposition (TSVD)

 is called the regularization parameter
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Minimum Norm Solution

 Let             be the null-space of A and 

 is the minimum
norm solution
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Regularization

 countering the effect of ill-conditioned problems is called 
regularization

 an ill-conditioned problem behaves like a singular
(i.e. under-constrained) system

 family of solutions exist 

impose additional knowledge to pick a favorable solution

 TSVD results in minimum norm solution
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Example – 1D Deconvolution

 back to our example – apply TSVD

 solution is much smoother than Fourier 
deconvolution

unregularized solution TSVD regularized solution
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Large Scale Problems

 consider 2D deconvolution

 512x512 image, 256x256 basis functions

 least squares problem results in matrix that is 65536x65536 !

 even worse in 3D (millions of unknowns)

 problem: SVD is

 today impractical to compute for systems larger than                     
(takes a couple of hours)

 Question: How to compute regularized solutions for large 
scale systems ?

Intel Xeon 2-core (E5503) @ 2GHz (introduced 2010)
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Explicit Regularization

 Answer: modify original problem to include additional 
optimization goals (e.g. small norm solutions)

 minimize modified quadratic form

 regularized normal equations:
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Modified Normal Equations

 include data term, smoothness term and blending 
parameter

data Prior information (popular: smoothness)

blending (regularization) parameter
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 setting                  and                    we have a quadratic 
optimization problem with data fitting and minimum norm 
terms

 large      will result in smooth solution, small          fits the 
data well

 find good trade-off

Tikhonov Regularization

data fitting minimum norm

regularization parameter
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Tikhonov Regularization - Example

 reconstruction for different choices of

 small lambda, many oscillations

 large lambda, smooth solution (in the limit constant)
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Tikhonov Regularization - Example
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L-Curve criterion [Hansen98]

 need automatic way of determining

 want solution with small oscillations

 also want good data fit

 log-log plot of norm of residual (data fitting error) vs. 
norm of the solution (measure of oscillations in solution) 

¸
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L-Curve Criterion 

 video shows reconstructions for different 

 start with  

L-Curve regularized solution



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

L-Curve Criterion

 compute L-Curve by solving inverse problem with 
choices of        over a large range, e.g.

 point of highest curvature on resulting curve 
corresponds to optimal regularization parameter

 curvature computation

 find maximum         and use corresponding         to 
compute optimal solution
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L-Curve Criterion – Example 
1D Deconvolution

 L-curve with automatically selected optimal point

 optimal regularization parameter is different for every 
problem
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L-Curve Criterion –
Example 1D Deconvolution

 regularized solution (red) with optimal
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Solving Large Linear Systems

 we can now regularize large ill-conditioned linear 
systems

 How to solve them  ?

– Gaussian elimination: 

– SVD:

 direct solution methods are too time-consuming

 Solution: approximate iterative solution



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

Iterative Solution Methods for 
Large Linear Systems

 stationary iterative methods [Barret94]

– Examples

─ Jacobi

─ Gauss-Seidel

─ Successive Over-Relaxation (SOR)

– use fixed-point iteration

─ matrix G and vector c are constant throughout iteration

─ generally slow convergence

─ don't use for practical applications
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Iterative Solution Methods for 
Large Linear Systems

 non-stationary iterative methods [Barret94]

– conjugate gradients (CG)

─ symmetric, positive definite linear systems ( SPD )

– conjugate gradients for the normal equations

short CGLS or CGNR

─ avoid explicit computation of 

– CG – type methods are good because

─ fast convergence (depends on condition number)

─ regularization built in !

─ number of iterations = regularization parameter

─ behave similar to truncated SVD
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Iterative Solution Methods for 
Large Linear Systems

 iterative solution methods require only matrix-vector 
multiplications

 most efficient if matrix       is sparse

 sparse matrix means lots of zero entries

 back to our hypothetical 65536x65536 matrix

 memory consumption for full matrix: 

 sparse matrices store only non-zero matrix entries

 Question: How do we get sparse matrices ?

A
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Iterative Solution Methods for 
Large Linear Systems

 answer: use a discretization with basis functions that 
have local support, i.e. which are themselves zero over a 
wide range

 for deconvolution the filter kernel should also be locally 
supported

discretized model:
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Iterative Solution Methods for 
Large Linear Systems

 answer: use a discretization with basis functions that 
have local support, i.e. which are themselves zero over a 
wide range

 for deconvolution the filter kernel should also be locally 
supported

discretized model:

will be zero

over a wide 

range of values
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Iterative Solution Methods for 
Large Linear Systems

sparse matrix structure for 1D deconvolution problem
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Inverse Problems – Wrap Up

 inverse problems are often ill-posed

 if solution is unstable – check condition number

 if problem is small                   use TSVD and Matlab

 otherwise use CG if problem is symmetric (positive definite), 
otherwise CGLS

 if convergence is slow try Tikhonov regularization – it's 
simple 

– improves condition number and thus convergence

 if problem gets large                   make sure you have a 
sparse linear system! 

 if system is sparse, avoid computing             explicitly – it is 

usually dense


