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-- INVERSE PROBLEMS --
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@ Inverse Problems

Tomography

L\
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@ Overview

= Tomography
— Absorption / emission
— Fourier Slice Theorem and Filtered Back Projection
— Algebraic Reconstruction

— Applications
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@ Outline

= Computed Tomography (CT)
-~ Radon transform
— Filtered Back-Projection
—natural phenomena
—glass objects

4
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@ Computed Tomography (CT)
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@ Some History

» Radon transform (1917)
RA{f} (a,s) / focas(

— Radon: Inverse transform exists

If all (a,s) are covered
— First numerical application

Viktor Ambartsumian (1936, astrophysics)

ﬁ:

(cosa, sin o)

. Viktor Ambartsumian (1909-1996)

L _
t .




Sthrasbourg 2014

Godfrey Hounsfield (1919-2004)  Allan Cormack (1924-1998)

» 1979 Nobel prize in Physiology or Medicine
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@ The math

= X-rays are attenuated by body tissue and bones

— Attenuation is spatially variant (attenuation coeff. o,(z,y) )

I@) = Ip(a)e Jerelonis g
I(z) — o J.oa(zy)dy f‘rﬁ N
7 ) € | (*i'f‘B I
~ log 1 / oa(z,y)dy | U—LEU“L—*?
Io(z) c X
) 4
— I(x),Iy(x) are known, determine o4(z,y) S
— lll-posed for only one direction (x L/-f—/’*;

— Need all

1
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@ Well-Posed and IlI-Posed Problems

» Definition [Hadamard1902]

— a problem is well-posed if
1. a solution exists
2. the solution is unique
3. the solution continually depends on the data

— aproblem is ill-posed if it is not well-posed

Ilvo Ihrke - “Optimization Techniques in Computer Graphics” — Strasbourg, 07/04/2014



@ Inverse Problems

Tomography

-- Fourier-Based Techniques --

Ct
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Computed Tomography

Shrasbourg 2014 §

= tomography is the problem of computing
a function from its projections

= a projection is a set of line integrals over
function m along some ray c
0 = / m(c(s))ds
J C

= invert this equation (noise Is present) — g

o= [ mle(s))ds+n

o O

= if infinitely many projections are
available this is possible (Radon

transform) [Radon1917]
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Computed Tomography —
Frequency Space Approach

n

= Fourier Slice Theorem

* The Fourier transform of an orthogonal
projection Is a slice of the Fourier transform of
the function

rf
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@ Computed Tomography — FST

Fourler Slsce ﬂfﬁw‘"

A~
Wy '
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o{oma“n, | lonpg
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Computed Tomography —
Frequency Space Approach

Shrasbourg 2014 §

= for recovery of the 2D function we need several slices

several projections, spatial domain many more pq}ojections, frequency domain
F

= slices are usually interpolated onto a rectangular grid
* inverse Fourier transform
= gaps for high frequency components

—> artifacts
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Frequency Space Approach - Example

without noise !
original (Shepp-Logan head phantom) reconstruction from 18 directions

reconstruction from 36 directions reconstruction from 90 directions

Ivc >omputer Gra




@ Filtered Back-Projection

= Fourier transform iIs linear

— = we can sum the inverse transforms of the lines in
frequency space instead of performing the inverse
transform of the sum of the lines

4 projections 8 projections

backprojection:

2 2
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@ Filtered Back-Projection

= Why filtering ?

= discrete nature of measurements gives unequal
weights to samples

= compensate

would like to have have a bar shape compensate to have
wedge shape for one (discrete measurement) equal volume under filter
discrete measurement

frequency domain

high pass filter

(a) (b) (€

L4 Y. I
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@ Filtered Back-Projection (FBP)

* high pass filter 1D
projections in spatial domain

* back-project
* blurring is removed

— FBP can be implemented on
the GPU

— projective texture mapping

D T —————

(c) 64 projections {dj 512 projections

\\-

(
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Frequency Space based Methods

Shrasbourg 2014 §

= Advantages
— Fast processing

— Incremental processing (FBP)

» Disadvantages
— need orthogonal projections
— sensitive to noise because of high pass filtering
— Frequency-space artifacts, e.g. ringing

— Equal angular view spacing (or adaptive filtering)

f
v 4
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@ Inverse Problems

Tomography

-- Algebraic Techniques --
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Algebraic Reconstruction Techniques (ART)

» object described by @, a density
field of e.g. emissive soot particles

= pixel intensities are line integrals

along line of sight C.
Ip = /(l) ds o
C

1
|
1o

= Task: Given intensities, compute ® v

4
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@ ART

= Algebraic Reconstruction Technique (ART)
» Discretize unknown @ using a linear combination
of basis functions O

I —/ (Zaiq)i) ds
C i
» = |linear system p = Sa '

=L (/%qn ds) V
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@ ART

» Discretize unknown @ using a linear
combination of basis functions ®;

]p_/: (Zdj(l),') ds ﬁi"‘
¢ z ‘

I, :;ai (/Cp "y ds)

= Need several views
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@ ART — Matrix Structure

Ip:zi:ai (/Cp(bids) | = Sa

Basis functions

| —
% C¢1dS ¢2d5/¢3ds 0 ds| [ ods| —°
> 1 €1 C1 Cl Cq
a P | |
0 ds [ ¢,ds|| O.ds ([)4ds/q)5ds Invert LS In a
I C2 Co C2 Co Cy IeaSt Squares
o,ds [ods [,ds [ o,ds [ a5 sense:
C3 Cq C, c, c,
T 3T
: a=(S's)s

([
o r
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Frequency Space based Methods -
Disadvantages

Shrasbourg 2014 §

= Advantages
— Accomodates flexible acquisition setups
— Can be made robust to noise (next lecture)
— Arbitrary or adaptive discretization

— Can be implemented on GPU

» Disadvantages
- May be slow

- May be memory-consumptive

4
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@ Inverse Problems

Tomography

-- Applications --

Ct
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=3 CT Applications in measurement and
uality control

= Acquisition of difficult to scan objects

» Visualization of internal structures (e.g. cracks)

= NO refraction




@ Tomographic Imaging in Graphics

reconstruction of flames using a multi-camera setup

2D

e



@ Flame tomography

= Calibrated, synchronized camera setup
-8 cameras, 320 x 240 @ 15 fps

8 input views in
original camera orientation

[Ihrke’ 04]

Camera setup




@ Sparse View ART - Practice

= Large number of projections is needed
* In case of dynamic phenomena

= - many cameras

— expensive

— Inconvenient placement

= straight forward application of ART with
few cameras not satisfactory

[Ihrke

§
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Visual Hull Restricted Tomography

Y (EE
g

= Only a small number of
voxels contribute

= Remove voxels that do
not contribute from
linear system

= Complexity of inversion
IS significantly reduced

[lhrké

(
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=EF  Animated Flame Reconstruction

Shrasbourg 2014 (8

[lhrke’ 04]

frame 86

!

frame 194 animated reconstructed flames




Smoke Reconstructions

[lhrke’ 06]

Ilvo Ihrke - “Optimization Techniques in Computer Graphics” — Strasbourg, 07/04/2014



= 3D Reconstruction of Planetary Nebulae

= only one view available [Magnor04]
= exploit axial symmetry

» essentially a 2D problem

“f
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Optical flow

Tomography

-
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

o
(
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@ Schlieren Tomography - Acquisition

16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

p
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

' P
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@ Schlieren Tomography - Acquisition

16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

A
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Input Optical flow Mask

' P
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Schlieren CT — Background Pattern

High frequency detail everywhere
Decouple pattern resolution from sensor

Wavelet noise [Cook 05]

ol

£y

- Gaussian - & Wavelet
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Schlieren CT - Image Formation

Image formation in
continuously refracting
media

Reconstruction

volume
. . Refracted] Curved Rays

Described well by Ray
Equation of Geometric
Optics

Camera
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Reconstruction

- volume Continuous ray tracing,
. :__Refracted

e.g. [Stam 96, |hrke 07]
Set of 15t order ODE’s :

dx

n—=d
ds
Camera ﬂ — Vn
ds
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Schlieren CT - Ray equation

&
-
| .
| ]

Reconstruction

* volume .

Continuous ray tracing,
e.g. [Stam 96, |hrke 07]

. Refracted

Set of ODE’s :

Camera
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Schlieren CT - Ray equation

Integratin
Noise pattern & &
—=Vn
Reconstruction _ dS
volume
-
yields

dot =d" +jVnds

Ilvo Ihrke - “Optimization Techniques in Computer Graphics” — Strasbourg, 07/04/2014



dout

Reconstruction

* volume
/__Refracted

Basic equation for
Schlieren Tomography

Camera

. / &
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Based on measurements
of line integrals from

- different orientations

Reconstruction

* ;. volume
+__Refracteo

Z

. Cameras
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dout

, Reconstruction
» : volume
; s .__Refractec

. Cameras

Ray path must be known

BUT: unknown refractive
index

In practice, ray bending
negligible
[Venkatakrishnan’04]
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dout

, Reconstruction
» : volume
; s .__Refractec

. Cameras

Ray path must be known

BUT: unknown refractive
index

Affects integration path
only, equation still holds
approximately!
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Measure difference
vector

dout

Reconstruction

; volume a_'_::.
< __Refractec

Z

. Cameras
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Measure difference
vector

Component parallel
Reconstruction o to optical axis is lost

. ; volume .

vector

- Cameras
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@ Schlieren Tomography —Linear System

Vector-valued tomographic problem
Discretize gradient

Radially symmetric basis functions .

%:Zni¢i

Linear system In

G Y ngds=>n;|¢ds y
| | y
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Schlieren Tomography - Integration

Shrasbourg 2014 §

Given Vn from tomography

Compute N from definition of Laplacian

V-Vn=An

Solve Poisson equation to get refractive index

— Inconsistent gradient field due to noise and other
measurement error

— Anisotropic diffusion

f
v 4
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@ Schlieren Tomography - Results
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Camera A Camera B Camera C
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@ Schlieren Tomography - Results
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E 3D Scanning of Glass Objects
=® [Trifonov06]

= visible light tomography of glass objects

— needs straight ray pathes

= compensate for refraction I'EH@
— Immerse glass object in water

— add refractive index matching agent

-> “ray straightening”
= apply tomographic reconstruction

r A
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@

7= 3D Scanning of Glass Objects
. [TrifonovOG6]

= Tomographic
reconstruction results
INn volume densities

* use marching cubes
to extract object
surfaces
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Layered 3D: Multi-Layer Displays

Top Cover

Attenuation Layers

with Spacers 4[

Diffuser

light box
Layered 3D

[Wetzstein'11] ,
' .
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Tomographic Light Field Synthesis

i | T T -
virtual plane

W,
L7

/ |
| backlight ]

- .

2D Light Field ’

[Wetzstein'11] |
(
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- Tomographic Light Field Synthesis

\nnualﬁmne A N N N

attenuator

| backlight |

U

2D Light Field ’

[Wetzstein'11] |
(
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@ Tomographic Light Field Synthesis

\Anu Ipane

e

[ backhght ]

‘_

2D Light Field —_—

[Wetzstein’ 11]
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virtual plane

- /.

- /
| backlight |

2D Light Field

Tomographic Light Field Synthesis

Image formation model:

-c\)'r(r)dr
L(x,9)=1,e ¢
_ 6 .
L(x,q)= |n§%“' a3 Otr) dr
e I, 8 ¢
1=-Pa

Tomographic synthesis:

arg min HT+PaH2, fora3 0

[Wetzstein'11] |

Ilvo Ihrke - “Optimization Techniques in Computer Graphics” — Strasbourg, 07/04/2014




[T T T
virtual plane
E T
— attenuator
[ T W
| backlight |

2D Light Field

Tomographic Light Field Synthesis

Image formation model:

-c\)'r(r)dr
L(x,9)=1,e ¢
_ 6 .
L(x,q)= |n§%“' a3 Otr) dr
e I, 8 ¢
1=-Pa

Tomographic synthesis:

arg min HT+PaH2, fora3 0

[Wetzstein'11] |
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Multi-Layer Light Field Decomposition

& @& @& @

: 3 ; Reconstructed Views
Target 4D Light Fiel

. A o )
- 7 \ £ -3
\ A s
p ; ‘f » 5 .;Q: )) 3\’.\\757 '
» 5 V7 o -~
- B S \

Multi-Layer Decomposition

[Wetzstein'11]
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Prototype Layered 3D Display

Transparency stack with acrylic spacers Prototype in front of LCD (backlight source

[Wetzstein'11] |
(

?'
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Shrasbourg 2004 ||

[Wetzstein'11]
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@ Inverse Problems - Deconvolution

Deconvolution

Ct
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@ Outline

» Deconvolution Theory
—example 1D deconvolution
— Fourier method

— Algebraic method
— discretization
— matrix properties
— reqgularization

— solution methods

* Deconvolution Examples

4

f
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@ Inverse Problem - Definition

» forward problem

— given a mathematical model M and its parameters m,
compute (predict) observations o

o= M(m)

* inverse problem

— given observations o and a mathematical model M,
compute the model's parameters

m = M~ (o)

4
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Inverse Problems — Example
Deconvolution

» forward problem — convolution
—example blur filter

—given an image m and a filter kernel k,
compute the blurred image o

o=mQEk

Ilvo Ihrke - “Optimization Techniques in Computer Graphi



Inverse Problems — Example
Deconvolution

* inverse problem — deconvolution
—example blur filter

—given a blurred image o and a filter kernel k,
compute the sharp image

—need to Invert
o=mQk+n

—N IS noise

Ilvo Ihrke - “Optimization Techniques in Computer Graphi



@ Inverse Problems - Deconvolution

Deconvolution

--Fourier Solution--

Ct
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Deconvolution - Theory

= deconvolution in Fourier space

= convolution theorem ( F is the Fourier transform ):

o=m®®k, =3F{o}=F{m} Fl{k}

deconvolution: = F {m} = I {0}

T (k)

problems
— division by zero
— Gibbs phenomenon

(ringing artifacts)
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A One-Dimensional Example —
Deconvolution Spectral

i

* most common: F {k} isalow pass filter

1
. - gg{k} , the Inverse filter, is high pass

. - amplifies noise and numerical errors

4

f
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A One-Dimensional Example —
Deconvolution Spectral

* reconstruction Is noisy even if data is perfect !
— Reason: numerical errors In representatlon of function

sgr@d =g kerel

||||||||||
--------------------------

observation reconstructed signal

------



-
| =

| ]

A One-Dimensional Example —

Deconvolution S

» spectral view of signa

FFT of sighal

nectral
filter and inverse filter

eeeeeeeeee

s




A One-Dimensional Example —
Deconvolution Spectral

i

= solution: restrict frequency response of high pass
filter (clamping)

_1 if—1 <7y
7o = § TGy T

TF{ky] &°°
F{m} = UT{o}-TF{g}

4
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A One-Dimensional Example -
Deconvolution Spectral

= reconstruction with clamped inverse filter

||||||||
——————————————————————————

observation reconstructed signal

o0 = MW s n @ =
= -
L Lo
(E—
—
|

I
il
-------




-
(.

| ]

A One-Dimensional Example —
Deconvolution Spectral

» spectral view of signal, filter and inverse filter

FFT of igkid ~—— FFTofkernel




A One-Dimensional Example —
Deconvolution Spectral

i

= Automatic per-frequency tuning:
Wiener Deconvolution
- Alternative definition of inverse kernel
- Least squares optimal
- Per-frequency SNR must be known

L F{k} P (w)

T = o T 0 P ] | svreT |

4
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@ Inverse Problems - Deconvolution

Deconvolution

-- Algebraic Solution --

Ct
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A One-Dimensional Example-
Deconvolution Algebraic

i

» alternative: algebraic reconstruction

= convolution

o(z) = / T k(D

— O
= discretization: linear combination of basis
functions

m(t) = Z m;p;(t)
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A One-Dimensional Example —
Deconvolution Algebraic

| =
.

| ]

= discretization:

ofx) = {m®&k}(z)
- observations are linear _ / Ok — t)dt
combinations of e
convolved basis functions o N
. . = 0 () k(z — t)dt
— linear system with /_oo ;m Pl =)
unknowns 77 N -
- often over-determined, B ;mi /_OO bilt)k(x —t)dt
l.e. more observations o N
than degrees of freedom _ mi {¢; @ k) ()
(# basis functions ) ;

O = Mm inear system
{
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E A One-Dimensional Example —
Deconvolution Algebraic

| ]

= discretization:

ofx) = {m®k}(z)
— observations are linear B /OO Ok — t)dt
combinations of Y
convolved basis functions o N
. . = bi(t)k(x — t)dt
— linear system with /_oo ;m Pl =)
unknowns 77 N -
- often over-determined, - Zmi /_OO Gilt)k(z —t)di
l.e. more observations o unknown
than degrees of freedom _ Z@m

(# basis functions )

O = Mm inear system
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A One-Dimensional Example —
Deconvolution Algebraic

T

* normal equations
min ||[Ax — b|[5 = min(Ax — b)? (Ax — b) = min f(x)

X

vf=20"Ax—-20"b=0

> solve AYAx = ATb  to obtain solution in a
least squares sense

-> apply to deconvolution

solution is completely broken !

Ivo Ihrke - “Optimization Techniques in Computer Graphi




A One-Dimensional Example —
Deconvolution Algebraic

Shrasbourg 2014 §

= Why ?
= analyze distribution of eigenvalues

= Remember:

N
det A = H A; and detA =0 = Matrix is under-
=0 determined

= we will check the singular values
_ Ok, since AT A is SPD (symmetric, positive semi-definite)

-> non-negative eigenvalues

= Singular values are the square root of the

e|999,¢a|||ep 'f
v 4
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A One-Dimensional Example —
Deconvolution Algebraic

Shrasbourg 2014 §

« matrix M!M hasa very wide range of singular
values!

= more than half of the singular values are smaller than
machine epsilon (10~ 1¢) for double precision

107

Log-Plot! 1078

14
10
— 16 16
Rt
10
[u]
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A One-Dimensional Example —
Deconvolution Algebraic

= Why Is this bad ?

Singular Value Decomposition: U, V are orthonormal, D
IS diagonal

M = UDV’
_ 7\ —1
* |nverse of M: M = (UDV )
= v Iip~ly!
= vp'ut
» singular values are diagonal elements of D
= inversion: D! — diag (L)

Ivo Ihrke - “Optimization Techniques in Computer Grapﬁics” — étrasbourg, 07/04/2014
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A One-Dimensional Example —
Deconvolution Algebraic

Shrasbourg 2014 §

= computing model parameters from observations:
m=M'o=VD"1U0%0

» again: amplification of noise

= potential division by zero

1018

Log-Plot ! 108

10" )

Ilvo lhrke - “Optimization Techniques
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A One-Dimensional Example —
Deconvolution Algebraic

* Inverse problems are often ill-conditioned (have a

numerical null-space)

* inversion causes amplification of noise

107

-5
LI
—8 .
10 T
-0
10

14
m
— 16,
18
10
0

nu

ical null space
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@ Well-Posed and llI-Posed Problems

= Definition [Hadamard1902]

— aproblem is well-posed If
1.  a solution exists

2. the solution is unique
3. the solution continually depends on the data
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Well-Posed and llI-Posed Problems

= Definition [Hadamard1902]

—a problem is ill-posed If it iIs not well-posed
— most often condition (3) is violated

— if model has a (numerical) null space, parameter
choice influences the data in the null-space of the
data very slightly, if at all

— noise takes over and is amplified when inverting
the model

4

§
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@ Condition Number

measure of ill-conditionedness: condition number

measure of stability for numerical inversion
* ratio between largest and smallest singular value
g

p(A) = —, o9 >...>opn are the singular values of A

= smaller condition number - less problems when
Inverting linear system

» condition number close to one implies near orthogonal
matrix

4
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Truncated Singular Value Decomposition

= solution to stability problems: avoid dividing by values
close to zero

= Truncated Singular Value Decomposition (TSVD)

4+ - <f sz:le: 1f Di,i > €
0 else

DT = diag (d+)

Mt = vyDtuUl

= € |s called the regularization parameter
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@ Minimum Norm Solution

» Let K|[A] bethe null-space of Aand X € K

:>AXK = 0

— AXKJ_
= b

= Xxt js the minimum
norm solution

Ilvo lhrke - “Optimization Technique A

X is non - optimum
XKL cK(A)" is optimum (minimum norm)

X = }_.{KJ_ + Xy where S{K cK(A)



@ Regularization

= countering the effect of ill-conditioned problems is called
regularization

* an ill-conditioned problem behaves like a singular
(l.e. under-constrained) system

= family of solutions exist

—>Impose additional knowledge to pick a favorable solution

= TSVD results In minimum norm solution

rf
Ilvo Ihrke - “Optimization Techniques in Computer Graphics” — Strasbourg, 07/04/2014 L.'



@ Example — 1D Deconvolution

* back to our example — apply TSVD

= solution 1S much smoother than Fourier
deconvolution

unregularized solution TSVD regularized solution € = 10_6

nnnnn
£
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@ Large Scale Problems

= consider 2D deconvolution
» 512x512 image, 256x256 basis functions

9

least squares problem results in matrix that is 65536x65536 !

even worse in 3D (millions of unknowns)
problem: SVDis O (N3)

system size

012

1024

2048

4096

SVD time (in s)

0.27

1.75

12.54

96.28

Intel Xeon 2-core (E5503) @ 2GHz (introduced 2010)

today impractical to compute for systems larger than > 16384
(takes a couple of hours)

Question: How to compute reqgularized solutions for large

scale systems ?
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@ Explicit Regularization

= Answer: modify original problem to include additional
optimization goals (e.g. small norm solutions)

min, af|Ax —b|[3 + (1 — a)|[Rx[|3 =
min, o (Ax—b)" (Ax —b) + (1 — a)x’RTRx =
min, f(x)
= minimize modified quadratic form
vf(x) =2aATAx — 24Tb +2(1 — a)RTRx = 0

* regularized normal equations:

(eATAx + (1 — @)R'R)x = A"D
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@ Modified Normal Equations

* include data term, smoothness term and blending
parameter

data Prior information (popular: smoothness)

(aA'Ax + (1 — a)R'R)x = A'Db

N/

blending (regularization) parameter

f
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@ Tikhonov Regularization

1l -«

= setting R=1 and +=-—— we have a quadratic
optimization problem with data fitting and minimum norm
terms

data fitting minimum norm

min(Ax — b)) (Ax —b) + M\x'x
X
t
regularization parameter

= large A will result in smooth solution, small )\ fits the
data well

* find good trade-off

rf
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Tikhonov Regularization - Example

= reconstruction for different choices of )\
= small lambda, many oscillations

» |large lambda, smooth solution (in the limit constant)

f \ 'l IR At i "-‘.H‘ | |
R T | ‘LTN' |
\T\ Mgt ol | | d i | H iy

23 E - 0 1 2 3 4
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@ L-Curve criterion [Hansen98]

* need automatic way of determining
= want solution with small oscillations
» also want good data fit

* |og-log plot of norm of residual (data fitting error) vs.
norm of the solution (measure of oscillations in solution)

4
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@ L-Curve Criterion

» video shows reconstructions for different A\
= start with A\ = 10"

L-Curve regularized solution
lamhbda = 1.189207e-11
15 T T
10 -
10
Sk
5|
B+
° |
4 Ly
s f‘ )
2 J i
10 F N *“’f,"rﬂ':ﬁ-‘l“ { ;‘J \“‘Lliﬂy&hhﬁx ‘
olfl| *F?%““TL I TL' Ll |
: R | [t :"""*."‘w'u "
15 1 1 1 1 1 1 1 1 | || | A’E‘ul\“j:\:‘f‘:"i ) J Tm [?:»H o A
0.5 1 15 2 25 3 35 4 4.5 5 5 -4 -3 2 - 0 1 2 3 5
f
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L-Curve Criterion

= compute L-Curve by solving inverse problem with 9
choices of )\ over alarge range, e.g. A € [10 , 10 ]

= point of highest curvature on resulting curve
corresponds to optimal regularization parameter

= curvature computation

x/y// o y’a:”

(22 + yzz)%

= find maximum + and use corresponding A\ to
compute optimal solution

4
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L-Curve Criterion — Example
1D Deconvolution

n

= |-curve with automatically selected optimal point

= optimal regularization parameter is different for every
problem

A= 10-12

129

Iv(
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L-Curve Criterion —
Example 1D Deconvolution

» regularized solution (red) with optimal X = 0.0429
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@ Solving Large Linear Systems

= we can now regularize large ill-conditioned linear
systems

= How to solve them ?
- Gaussian elimination: O (N°)
~SVD: O (N¥)
» direct solution methods are too time-consuming

= Solution: approximate iterative solution

.9
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lterative Solution Methods for
Large Linear Systems

i

= stationary iterative methods [Barret94]

— Examples
— Jacobi
— Gauss-Seidel
— Successive Over-Relaxation (SOR)
— use fixed-point iteration
x!t =qaxt + ¢

— matrix G and vector c are constant throughout iteration

— generally slow convergence

— don't use for practical applications

4
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lterative Solution Methods for
Large Linear Systems

Shrasbourg 2014 §

* non-stationary iterative methods [Barret94]
— conjugate gradients (CG)
— symmetric, positive definite linear systems ( SPD )

— conjugate gradients for the normal equations
short CGLS or CGNR

— avoid explicit computation of AT A

- CG —type methods are good because
— fast convergence (depends on condition number)
— regularization built in !
— number of iterations = regularization parameter

— Dbehave similar to truncated SVD

4
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lterative Solution Methods for
Large Linear Systems

n

= |terative solution methods require only matrix-vector
multiplications

= most efficient if matrix A is sparse
= sparse matrix means lots of zero entries
* pack to our hypothetical 65536x65536 matrix

= memory consumption for full matrix:

216 % 216 % 8 bytes = 32 Gbyte

» sparse maitrices store only non-zero matrix entries

= Question: How do we get sparse matrices ?

f
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lterative Solution Methods for
Large Linear Systems

i

* answer: use a discretization with basis functions that
have local support, i.e. which are themselves zero over a
wide range

» for deconvolution the filter kernel should also be locally
supported

-2 -1.7 -1 -0.3 0.3 1 1.3 2

N
discretized model: 0 = Z m; {¢; ® k}
i=0

()
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lterative Solution Methods for
Large Linear Systems

n

* answer: use a discretization with basis functions that
have local support, i.e. which are themselves zero over a

wide range

» for deconvolution the filter kernel should also be locally
supported

-2 -1.7 -1 -0.3 0.3 1 1.3 2 0.3 1 1.3 Z2

will be zero

{ V4

N
: : over awide
discretized model: 0 = E m; Q@i & k} range of valu
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E 3 Iterative Solution Methods for
%® Large Linear Systems

sparse matrix structure for 1D deconvolution problem -

LY

Ivo lh



Inverse Problems — Wrap Up

* inverse problems are often ill-posed
= |f solution is unstable — check condition number
= if problemis small < 4000 use TSVD and Matlab

= otherwise use CG if problem is symmetric (positive definite),
otherwise CGLS

= if convergence is slow try Tikhonov regularization — it's
simple

— Improves condition number and thus convergence

= if problem gets large > 15000 make sure you have a
sparse linear system!

» |f system is sparse, avoid computing ATA explicitly — it is
usually dense

4
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