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Abstract

Particle tracing methods are a fundamental class of techniques for vector field visualization. Specifically, interac-
tive particle advection allows the user to rapidly gain an intuitive understanding of flow structures. Yet, it poses
challenges in terms of computational cost and memory bandwidth. This is particularly true if the underlying data
is time-dependent and represented by a series of unstructured meshes. In this paper, we propose a novel approach
which maps the aforementioned computations to modern many-core compute devices in order to achieve parallel,
interactive particle advection. The problem of cell location on unstructured tetrahedral meshes is addressed by a
two-phase search scheme which is performed entirely on the compute device. In order to cope with limited device
memory, the use of data reduction techniques is proposed. A CUDA implementation of the proposed algorithm is
evaluated on the basis of one synthetic and two real-world data sets. This particularly includes an assessment of
the effects of data reduction on the advection process’ accuracy and its performance.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Hardware Architecture—
Graphics processors 1.6.6 [Computer Graphics]: Simulation and Modeling—Simulation Output Analysis J.2

[Computer Applications]: Physical Science and Engineering—Engineering

1. Introduction

Farticle tracing methods, i.e. the computation of the trajec-
tories of massless particles, form one of the major classes
of vector field visualization techniques. While the general
idea and the mathematical formulation of particle tracing
are straightforward, a realization on reasonably large, un-
structured, and time-varying data is rather challenging. On
the one hand, one can exploit the parallel nature of trajec-
tory computation for large populations of particles. On the
other hand, an efficient solution has to address the problems
of efficient cell location and limited data bandwidth. In this
paper, we describe a parallel, many-core approach to interac-
tive particle tracing on time-dependent, unstructured, tetra-
hedral meshes and investigate the impact of data reduction
on particle tracing computations.

When dealing with unstructured data, two main prob-
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lems arise. First, the connectivity information for unstruc-
tured grids has to be stored explicitly, driving up the over-
all memory consumption. In addition to this, cell location
— a frequent operation in particle advection — becomes a
major issue. Similar to others, we use a two-stage search
scheme, consisting of a global and local search. Global
search schemes based on hierarchical data structures, e.g.
kd-trees, are known to reach device limitations in terms of
data structures (stacks) and compute kernel complexity. In
this paper, we specifically address the impact — with respect
to accuracy and complexity — of the global search on the lo-
cal search task to construct lightweight compute kernels for
an efficient device occupation.

Second, the handling of time-varying data greatly in-
creases memory as well as bandwidth requirements. While
single time steps of a simulation may fit into a well-furnished
workstation’s memory, a series of 100 or more time steps
can easily congest even very high-end visualization systems.
Moreover, the data does not only need to be stored but also
has to be transferred between the different stages in the com-
putation process. If accelerator hardware is used to speed up
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the overall computation, this particularly impacts the inter-
face between host and device memory. To this end, we inves-
tigate the use of state-of-the-art data reduction techniques in
order to reduce overall data set size while maintaining rea-
sonable precision.

We summarize the contributions of this work as follows:

e After discussing the performance and precision impact of
several implementation choices, we identify an efficient
solution to the cell location problem which runs entirely
on the compute device.

e We investigate the effect of data reduction techniques for
particle tracing to address device memory limitations.

The remainder of this paper is structured as follows. We
briefly review related work in the next section. We will then
discuss the general algorithm for many-core particle tracing
in Section 3. In Section 4, we will present the data reduc-
tion technique that is used to reduce the amount of raw data.
In Section 5 we will present a comprehensive analysis with
regard to performance and precision. Finally, we will sum-
marize and discuss our results in Section 6.

2. Related Work

Particle advection is one of the fundamental classes of vector
field visualization methods [WEO4]. They provide the basis
for a variety of derived visualization techniques, all of which
rely on efficient particle tracing methods, e.g. stream and
streak surfaces [BFTWO09, GKT*08, KGJ09], dense vector
field visualization methods [LHD*04], and the computation
of the finite time Lyapunov exponent [FBTW10, GGTHO7].
While the general computation scheme is straightforward to
implement, the advection of large amounts of particles poses
several challenges, particularly with regard to the size of the
underlying data, bandwidth limitations, and computational
complexity. The need for interactive methods further aggra-
vates these issues.

Most contemporary particle advection techniques make
use of parallelization. Ellsworth et al. pre-compute a large,
dense population of particles on a parallel compute clus-
ter [EGMO04]. The resulting trajectories may subsequently be
explored in an interactive session. Pugmire et al. describe a
distributed-memory, parallel approach to streamline tracing
on massive data [PCG*09].

Due to its embarrassingly parallel nature, particle trac-
ing maps well to modern many-core compute devices. A
focus has been on the adaption of particle advection to
increasingly powerful programmable graphics hardware.
Kriiger et al. were among the first to introduce a GPU-based
particle tracing on Cartesian, steady-state data [KKKWO5].
Schirksi et al. later extended the general idea to unstruc-
tured grids and specifically addressed the problem of effi-
cient point location [SBKO06]. Biirger et al. in turn proposed a
particle tracing system which handles time-dependent Carte-
sian grids on the GPU [BSK*07]. As of this writing, we are

not aware of a method that copes with both, time-dependent,
as well as unstructured data.

Cell location is a major challenge that seriously impacts
the performance of particle tracing algorithms on unstruc-
tured grids. Many approaches use a spatial index structure,
e.g. akd-tree [LW77], in order to locate a mesh vertex close
to the desired position. This initial guess is then refined, typ-
ically by means of a walking scheme as introduced by Ken-
wright and Lane [KL96]. Langbein et al. describe a two-
stage scheme that follows this idea [LSTO3]. The location
algorithm used by Schirski et al. executes a global point
search on the host computer and moves the walking scheme
to the compute device [SBK06]. Marmitt and Slussallek use
an optimized ray-triangle intersection test based on Pliicker
coordinates in order to speed up the walking procedure for
direct volume rendering via ray tracing [MS06]. Andrysco
and Tricoche proposed Matrix Trees, a tree-based approach
to point location, in which the tree’s connectivity is effi-
ciently encoded using a matrix representation [AT10]. Garth
and Joy presented a data structure which is based on bound-
ing interval hierarchies in order to further improve on previ-
ous results [GJ10]. Wald et al. advocate the use of bounding
volume hierarchies which are adaptively refitted to consecu-
tive time steps, in order to speed up isosurface raytracing in
time-varying tetrahedral grids [WFKHO7].

Mesh decimation techniques help to reduce the overall
footprint of a data set. A variety of different decimation op-
erators have been developed. Most of them share the prop-
erty that an incremental operation, e.g. an edge collapse,
is iteratively applied to a number of mesh primitives. Ap-
proaches mostly differ in this operator and in the quality
metric based on which the next primitive is determined. Gar-
land and Heckbert originally proposed the use of quadric
error metrics for triangle mesh simplification [GH97]. Gar-
land and Zhou later generalized this approach to arbi-
trary dimensions [GZ05]. Hoppe [Hop09] and Cignoni et
al. [CCM™*00] use various error metrics based on mass
and density analogies. Regarding the simplification operator,
Renze and Oliver propose the deletion of individual points
along with a subsequent re-tessellation of the resulting area
or volume [RO96]. Both aforementioned algorithms by Gar-
land based on iterative edge collapses, as are the algorithms
by Gelder et al. [GVW99] and Hoppe [Hop09]. Chopra and
Meyer chose to collapse entire tetrahedra [CMO02].

3. Time-Dependent Particle Tracing on the GPU
3.1. Particle Tracing

Interactive particle tracing relies on the advection of mas-
sive amounts of particles to convey flow structures. Let x (7)
denote the particle position at time 7 and v (x (¢) ,7) the corre-
sponding flow field velocity. Particle tracing in time-varying
flow fields comprises the steps of

1. Specify initial particle position x (fg) = (x,y,z) at time #.
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Figure 1: Run time behaviour of the kd-tree implementa-
tions for the SP, RR and BT strategy. Note the logarithmic
scale on the Y axis.

2. Perform cell locations, e.g. for a linear interpolation in
time find the grid cells c¢;, c; that contain the particle po-
sition in step ¢ and ¢ + At.

3. Spatially interpolate the velocities in each cell ¢;,c; at
position x (7) to yield two interpolated velocities, v;,V;.

4. Perform a temporal interpolation between v;, v; to deter-
mine the local velocity at time 7.

5. Integrate along the local velocity field to determine the
next particle position at time ¢ + At as x (t + At) = x (¢) +
ftHAtV(x (s),s)ds. If integration schemes of higher or-
der are used the evaluation of the integral can involve ad-
ditional spatial and temporal interpolations, and in par-
ticular, additional cell locations if cell boundaries are
crossed.

3.2. Cell Location on Many Core Architectures

Kenwright and Lane [KL96] subdivided the cell location
into a global search to first find a cell nearby the query point
and a subsequent local search to find the cell that contains
the query. We refer to their local search scheme as fetra-
hedral walk. The physical coordinates of a query point are
transformed into the natural (barycentric) coordinate sys-
tem of a tetrahedral cell. If neither component of its nat-
ural coordinates is negative and their sum is less or equal
to one, the point lies inside the cell and the natural coordi-
nates can be used to compute the interpolated velocities. If
one or more of these conditions are invalid the query point
lies across cell boundaries. The violated conditions reveal
on which side of the cell the search should continue and a
new candidate can be chosen from the adjoint tetrahedra.
Schirski et al. [SBKO06] implemented the tetrahedral walk
on the Graphics Processing Unit (GPU) and used a kd-tree
search to come up with a starting cells near the query points.
They applied their method only to tetrahedral grids with a
fixed cell structure. Their tree search was implemented on
the CPU and was only executed once upon seeding new par-
ticles.

The implementation of hierarchical search algorithms is
known to be non-trivial on many-core compute platforms
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Figure 2: Average length of the tetrahedral walk after an
initial search with the SP, RR and BT variation of the kd-
tree traversal.

(GPUs) due to architectural limitations. In particular, algo-
rithms that rely on recursion or dynamic data structures (e.g.
stacks) require additional efforts to realize. Due to further
limitations on thread-level (e.g. number of registers, local
memory) lightweight compute kernels are essential for an
efficient device occupation.

Depending on the influence of the global search (kd-tree
traversal) on the local search (tetrahedral walk) implemen-
tation strategies may differ. We investigated how the length
of the tetrahedral walks is influenced by the choice of start-
ing cell from the global search. More specifically, are more
accurate (but more complex) tree traversals worth the imple-
mentation effort? We consider three different strategies for
kd-tree traversal with increasing accuracy and complexity:

The single pass (SP) method performs exactly one run
through the kd-tree and find a nearest cell vertex which is
not guaranteed to be the nearest cell vertex to the query
point. The advantages of this strategy are its light-weight im-
plementation and fixed run-time. In particular, no divergent
branching can occur.

In the random restart (RR) strategy [Pan08], the SP
method is executes N times, where each time a random off-
set is added to the query point and only the result with
the smaller distance to the query point is kept. Again, this
method is not guaranteed to find nearest grid node to query
point but performs well in practice. Like the SP divergent
branching can not occur and the fixed run-time is N times
that of SP.

The back tracking (BT) method [Ben90] traverses the kd-
tree with backtracking and is guaranteed to find the nearest
cell vertex to the query point. The backtracking is usually
implemented recursively or iteratively with stacks or queues.
Both data structures are not trivially to use on the GPU and
can significantly increase the memory consumption and reg-
ister use of compute kernels. Furthermore, varying run-time
behavior can lead to divergent branches in compute kernels
and is exponential in the worst-case [LW77].

For an evaluation, all three traversal algorithms were im-
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plemented on the CPU to avoid device limitations. For ref-
erence, we used an Intel Xeon CPU E5540 at 2.53 GHz with
12GB RAM. We varied the type of kd-tree implementation
(SP, RR, BT), measured run duration of the tree search and
observed the length of the subsequent tetrahedral walk. We
averaged the results over 100K random query points and re-
peated each test scenario four times. The number of random
restarts in the RR method was ten. We evaluated the different
strategies on the synthetic data set as described in Section 5.
The results are summarized in Figures 1 and 2, respectively.
As expected, we observed a fairly constant run time with
both SP and RR and an exponential increase with BT (cf.
Figure 1). To find the cell containing the query point the BT
method required the least number of tetrahedral walk steps
(approximately ten steps) whereas the SP method required
two more tetrahedral steps on average (cf. Figure 2). RR per-
formed slightly worse than BT but better than SP. Based on
these results, we decided to use the SP method for point lo-
cation on the many-core device for its light-weight kernel
and constant run-time (to avoid divergent branches).

3.3. Implementation

We implemented the tracing of particles through time-
varying tetrahedral grids completely within the CUDA
framework [KH10]. The movement of each particle can be
computed independently from one another which gives a
straightforward parallelization: each particle is assigned to
a thread and updated independently.

Particle data is stored in global device memory. Node po-
sition, attributes and cell neighborhood are streamed (syn-
chronously) into global memory (bound as texture units) de-
pending on memory availability and requirements. Beside
particle positions, at least three time steps of the data has
to fit into device memory. Whenever the adaptive DOPRIS
integration scheme is used, an additional block of global de-
vice memory is used to store the size of the last sub step for
each particle which is required for the next advection step.
Section 4 presents a decimation approach for data sets that
exceeds device capabilities.

We set the maximum number of particles beforehand
since dynamic memory allocation directly from within com-
pute kernels has only recently become available and may
reduce overall performance. Unused particle memory is
marked and is assigned when new particles are seeded inter-
actively. Memory of particles that have left the flow field or
have expired for other reasons is marked as unused again and
allows the filling of orphaned regions to maintain a dense
distribution of particle positions.

Since the flow field evaluation requires random read ac-
cess, we hold the node and cell data in texture memory to
benefit from its cached read access. Each tetrahedral cell
is assigned a unique ID such that neighborhood can be de-
scribed by an integer vector with four components which can

be accessed by a single texture fetch. We observed a signif-
icant increase in performance due to cache hits when, upon
seeding, particles are first sorted according to the memory
offset of the initial cell given by the global search step.

The tracing procedure is subdivided into three compute
kernels: kd-tree search, tetrahedral walk and flow field inte-
gration. The kd-tree is built off-line in a preprocessing step
that was neither implemented in parallel nor optimized for
performance. The additional memory requirements for the
search structure are detailed in Table 1. The kd-tree traver-
sal is implemented as a SP method, and hence requires no
recursive data structures. The implementation of the tetrahe-
dral walk draws heavily from the GPGPU version of Schirski
et al. [SBKO06]. For reference, we implemented commonly
used integration schemes like the Euler scheme, third order
Runge-Kutta (RK3) and the DOPRI5 [DP80] with adaptive
step size control.

4. Data Reduction

Data size is a critical problem in GPU-based particle tracing.
Large, time-varying data typically does not fit into device
memory. This makes it necessary to dynamically reload the
next time steps. As both memory size and bandwidth are
limited, we need a method to reduce overall data size. The
algorithm we use here is based on [GZ05]. The goal is to
reduce the data size down to a given size while preserving
the information content. In the following, we will shortly
outline the approach of Garland and Zhou, which preserves
both, the geometry and the data content as much as possible.

The algorithm is based on iterative edge collapses. It starts
by assigning an error value to each edge in the tetrahedral
grid. It then selects the edge with the lowest error value and
merge its two points. Cells adjacent to exactly one point are
updated, cells adjacent to both points degenerate to triangles
and are therefore deleted. The error values in the local envi-
ronment are updated. This process is repeated until the target
reduction is reached or no further edge can be collapsed.

The error metric used here is a special case of the gen-
eral quadric-based error metric proposed by Garland and
Zhou [GZ05]. We interpret our grid as a 3-dimensional com-
plex in a k-dimensional space. A grid node has 3 geometric
dimensions and k — 3 data dimensions. For a given node vec-
tor n = (ny,---,n;) and a given cell (n,m;,my,m3)), we
define the quadric On as

On(x) =X  Ax+2b" x+c
where
A= I—elelT —ezezT —e3e3T7 b=—-Ap, c¢= pTAp

and (ej,ep,e3) is an orthonormal basis of the subspace
spanned by m; —n, my —n and m3 —n.

To preserve the boundary, we use an additional boundary
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surface quadric. This is basically equal to the quadric defined
above except the value of A, which is defined as

A :I—elelT —e2e2T
with an orthonormal basis (e;,e;), spanning the two-
dimensional subspace containing the boundary triangle.

For every cell ¢ we compute the corresponding quadric
Qc. We assign to each point n the quadric On = Y. Qc, the
sum over the quadrics of the adjacent cells. If a point is on
the boundary, we also add the boundary surface quadric,
multiplied with a given penalty factor, which for our mea-
surement is set to 10'°. The error metric for a given edge
(ny,ny) and the corresponding new point Npey is thus de-
fined as:

err (Il] 7“27nnew) = On, (nnew) + On, (nnew)

We used two additions to the algorithm proposed by Gar-
land and Zhou: Calculation of the optimal and point and
flipping prevention. The optimal new point has to be a lin-
ear combination of n; and np, so we have Ny = nj +
c¢(ny —np). To compute ¢, we need to minimize the error
value defined above, which leads to

(plTA—Q-% (b1T+b2T>) (np —ny)

‘T (Ilzfn])TA(nzfn])

To avoid spikes in the output data, we limit ¢ to [0,1]. To
every edge (nj,n;), we assign the resulting error value:

err(ng,my) = QOn, (0 +c¢(mp —ny))+0On, (0] +c(my —ny))

At each step, we select the edge (nj,np) with the low-
est error value. For all cells adjacent to exactly one of
the endpoints the point information is updated. The cell
(ny,my, my,m3) will be transformed to (nyew, My, My, m3).
Cells adjacent to both endpoints will degenerate to a trian-
gle. These cells are deleted. We assign a new quadric Qn,,,,
to the new point, which is calculated as On,,, = On, + On,.
The costs are updated for all edges adjacent to the new point.

Edge collapsing comes at the risk of flipping cells,
i.e. changing their orientation. We use an explicit ori-
entation check to avoid cell flips. For every tetrahedron
(ny,ny,n3,n4) must hold, that the triangle (ny,ny,n3) is ori-
ented counter-clockwise if seen from ny4. If this constraint
would not be fulfilled for any tetrahedron any more after an
edge collapse, we ignore this collapse.

5. Results
5.1. Setup

Platform — All measurements have been carried out on a
visualization workstation equipped with a quad core Intel
XEON E5420 (host) rated at 2.53 GHz, 64 GB of RAM, and
an NVidia GForce GTX 480 (device) featuring 1.5 GB of

(© The Eurographics Association 2011.

Fixed vs. Time-Varying Grids

fixed —&—
300 - no streaming - —%-—
: streaming - <o -

run time [ms]

200

Figure 3: Run time of the synthetic data, as fixed time step,
as time-varying grid that is completely resident in device
memory, and as time-varying grid that is streamed into de-
vice memory on demand.
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Figure 4: Performance of streamed vs. non-streamed data
for the synthetic data set. Additionally, the scalability of our
implementation with respect to increasing size of the tetra-
hedral can be seen. No performance data for 1000K is avail-
able for the no streaming method due to limited device mem-

ory.

video memory. This particular graphics cards has 15 Multi-
processors, each with 32 cores, hence 480 cores in total at a
clock rate of 1.50 GHz. The measured average bandwidth for
paged memory from host to device was about 4000 MB/s.
The host memory was sufficiently large to keep all the data
sets in host memory, eliminating the need for online swap-
ping or reloading from disk.

Datasets — For our evaluation we used the following three
data sets. Table 1 contains a summary of relevant data set
statistics.

In the synthetic dataset nodes are randomly distributed
over a rectangular domain of (-0.5, -0.5, -1.0) x ( 0.5, 0.5,
1.0) The synthetic flow is described at each position (x,y,z)
as v(x,y,z) = (y,x,¢;) with time dependent parameters c;
that takes the value of two for the second, minus two for
the fourth and zero for all other time steps. This essentially
moves particles along a helix back and forth in the domain.
A tetrahedral grid is generated using a constraint Delaunay
algorithm [Si06]. We generated four instances of the data set
with varying resolution, i.e. we used 125K, 250K, 500K, and
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Synthetic Gyro DeBakey

125K 250K 500K M original 10% 20% 50% original 10% 20% 50%
time steps 5 5 5 5 101 101 101 101 200 200 200 200
vertices per step 125K 250K 500K 1000K 197K 179K 161K 107K 631K 571K 511K 335K
total vertices 0.6M 1.3M 2.5M 5.0M 19.90M 18.0M 16.2M 10.8M 126.1IM 114.1M 102.2M 67.1M
cells per step 0.8M 1.7M 3.4M 6.7M 1.IM 1.0M 0.9M 0.6M 3.7M 33M 3.0M 1.9M
total cells 4.2M 8.4M 16.9M 33.7M 115.0M 103.5M 92.0M 57.5M 742.9M 668.6M 594.3M 371.5M
memory per step [MB] 16.6 333 66.7 133.5 23.4 21.1 18.8 11.9 759 68.4 60.9 38.6
total memory [MB] 83 167 333 667 2,361 2,129 1,898 1,206 15,186 13,686 12,189 7,715
mem. overhead per step [MB] 14.7 29.6 59.3 118.8 21.1 193 17.5 10.5 714 65.6 53.1 35.6
total mem. overhead [MB] 74 148 297 594 2,131 1,949 1,768 1,061 14,280 13,120 10,620 7,120

===

Table 1: Summary of data set statistics.

1M vertices for mesh generation, respectively. Each data set
consisted of five discrete time steps.

The two real world data sets, which we used for further
evaluation, both resulted from numerical simulations of ven-
tricular assist devices. The GYRO is an example of a cen-
trifugal blood pump design. Here, the blood is transported by
an impeller mounted at the bottom of the device. The axis of
rotation is orthogonal to the main direction of flow. In con-
trast, the DeBakey pump resembles an axial design. Here, the
impeller’s axis of rotation is aligned with the main direction
of flow. As a side note, it should be mentioned that the two
simulations have been performed with respect to different
length and time units and therefore time steps and distances
are not directly comparable. A detailed assessment and dis-
cussion of the GYRO device has been published in [ABP06]
whereas [HTP*08] contains a discussion of blood damage
visualization techniques evaluated on the DeBakey device.

The impeller’s motion has been incorporated in the sim-
ulations by way of a moving tetrahedral grid, which dis-
cretizes the volume around the impeller’s surface geometry.
The solver internally stitches this grid to the static part of
the mesh for every simulation time step. This setup poses
a challenge for subsequent visualization, because it results
in an overall changing grid topology for every simulation
time step. Hence, the data for the entire mesh connectivity
including search data structures has to be updated in graph-
ics memory once for each time step.

As an additional challenge, particles need more than one
impeller revolution to pass the device. It will typically take
10 to 15 revolution for a particle to travel from inlet to outlet
for the GYRO. For the DeBakey it takes about 20 to 30 rev-
olutions. This further increases bandwidth demands because

each of the two data sets does not entirely fit into graphics
memory. Hence, the data has to be re-transmitted for every
revolution.

In order to investigate the effects of data reduction, we
applied the algorithm described in the previous section to
both data sets. The different resolutions are defined by their
respective reduction fraction, which is given in terms of a
fraction of the original number of tetrahedra. For example,
the 10% version of the GYRO consists of /0% less tetra-
hedra than the original data set. For the GYRO data set we
created decimated versions of 1%, 2%, 5%, 10%, 20%, and
50%. The levels below 10% have been created for valida-
tion purposes only and are thus not included in Table 1 for
brevity’s sake. For the DeBakey we investigated target re-
ductions of 1%, 2%, 5%, 10%, 20%, and 50%.

Integration Settings — For the synthetic data set, we
comparatively evaluated three different integration schemes,
namely standard forward Euler, a three step Runge-Kutta
method (RK3), and an adaptive Runge-Kutta method in-
troduced by Dormand and Prince (DOPRIS, [DP80]). All
tracing experiments used a step size of 0.02 for the Euler
and RK3 integration scheme. That of the adaptive DOPRIS
scheme was limited to the interval [0.02,0.2].Particles were
advected for a total of 200 time steps.

For both blood pumps, we only used the RK3 integration
scheme and set the step length to one fifth of the simulation
time step, resulting in a step size of 0.00006 and 0.0008.
We traced particles for 15 and 26 full impeller revolutions,
respectively.

Generally, all performance measurements were conducted
with a particle population of 1M particles. In case of the syn-
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Figure 5: Performance results for the two blood pump simulation data sets. Top row: Performance figures for the GYRO VAD.

Bottom row: DeBakey axial VAD.

thetic data set, these have been seeded in a box-shaped re-
gion centered in the data domain. For the two blood pumps,
we used a spherical seeder region at each device’s inlet.

5.2. Performance

Synthetic — We first analyzed how much performance gets
lost when switching from fixed tetrahedral grids towards
time-varying grids. In general, all cell locations have to per-
formed twice as often in the time-varying case whereas the
total number of cell location depend on the order of integra-
tion scheme. We distinguished between three conditions, (1)
one fixed time step, the first time step of the synthetic data
was initially copied to the device, (2) no streaming, all time
steps were initially uploaded to to the device with no further
memory transfer between host and device, and (3) stream-
ing, only two consecutive time steps were kept in device
memory, and data was synchronously transfered from host
to device whenever a new time step was encountered. For
the benchmark we used the synthetic data set as described
in Section 5.1 and averaged the results over all data sizes
(except 1000K since it did not fit completely into device
memory) and integration schemes to yield one performance
measure per test condition. The results are detailed in Fig-
ure 3. The run time of the fixed method gradually decreases
as more and more particle leave the domain. The average
run time of the fixed method is effectively doubled in the
non streaming case where minor peaks in performance are
probably due to cache misses upon new time steps. When
taking transfer times into account in the streaming case, the
average run time is slightly worse that of the non stream-
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ing method. Major peaks are visible when new data is syn-
chronously copied to the device.

The impact on the memory transfer between the streaming
and non streaming method with respect to the individual data
set sizes is detailed in Figure 4 as well the scalability of our
implementation with increasing data size.

Real-World Performance — The performance of our
method on the real-world data sets GYRO and DeBakey is
summarized in Figure 5. The figures on the left depict the
scaling with respect to various decimation levels of decreas-
ing data size and linear scaling for reference. The figures
on the right show how much computation time is distributed
among data transfer, integration and cell relocation search in
between successive time steps.

We observe an almost linear scaling with respect to data
size for the increasing decimation levels of the GYRO. When
comparing the results in detail we see that the transfer time
is responsible for that, since the integration time is more or
less constant. In the DeBakey data set, the linear scaling is no
longer present at 50% decimation. In both cases we notices
that the transfer time is the major performance bottleneck for
large data sizes and integration becomes dominant as soon as
data size is significantly reduced.

5.3. Precision

In order to assess the error that is introduced by data reduc-
tion, we performed the same tracing computations on the re-
duced data sets. Table 2 summarizes the error introduced to
the velocity field by the data reduction step. Figure 6 shows
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| GYRO DeBakey

1% 10% 20% 50% 1% 10% 20% 50%
RMSE velocity magnitude | 0.00044  0.00084  0.00137  0.00500 | 0.00013  0.00013  0.00014  0.00021
RMSE velocity direction 0.04988  0.22482  0.55205  2.02165 | 0.02097 0.07542  0.21763  1.51743

Table 2: Summary of the error introduced by data decimation, given as root mean square error (RMSE) per grid point. Lengths
are given in the respective length unit of the simulation, the direction errors are given in degrees.
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Figure 6: Impact of decimation of particles traces. We show the cumulative error between traces from the original grid and

each decimated level for GYRO (left) and DeBakey (right).

plots of the cumulative distance error for the GYRO and De-
Bakey data sets and the different reduction stages, respec-
tively. These results were obtained by a point-wise compar-
ison of every two traces starting at the same seed point and
being advected through the original and the reduced version
of the data respectively. The resulting error is added for all
previous point pairs up to the given point in time.

A surprising result is that already the 1% version intro-
duces decisive errors in the tracing computation for both
data sets. This is due to the fact that the underlying decima-
tion algorithm starts to eliminate big tetrahedra in the largely
homogeneous regions of the inlet first. While the local data
error introduced in these regions is relatively small, it leads
to a slight deviation in the vector magnitude. Hence, parti-
cles in the reduced version travel at a different speed than
their cousins on the original data. Eventually, these particles
reach the entry to the impeller at a different point in time
and consequently at a different rotation state. This leads to
a significant dispersion of the particle traces and therefore
results in the steep ascent in the error curves. The point in
time, i.e. after approximately 300 and 2,000 time steps for
the GYRO and the DeBakey respectively, matches with this
observation, i.e. this is the time where the majority of the
particles enter the impeller in the respective devices.

Beyond the 1% version, the error level increases only
lightly for the GYRO, when moving to the 10% and 20%
decimation levels. However, a big jump is evident when go-
ing to the 50% level. Meeting the 50% decimation require-
ment, i.e. effectively eliminating half of the tetrahedra, re-
quires reduction of previously untouched regions. This is ev-
ident from Figure 7, which gives an overview of the error in
the velocity magnitude. While the 20% version still shows

relatively little, isolated error regions, the 50% data exhibits
severe problems. These are concentrated in two main re-
gions: first, a significant lengthening of the original vectors
in the inlet region leads to the aforementioned problems; sec-
ond, major errors are evident in the region around the im-
peller’s mount, which is characterized by a large number of
very small tetrahedra that withstood decimation so far. These
observations directly follow the error metrics given in Ta-
ble 2. The underlying simulation grid, too, shows a signifi-
cant jump in average point-wise error for both, the velocity
direction and the velocity magnitude, between the 20% and
the 50% versions.

Decimation of the DeBakey data does not have as dras-
tic an effect on the particle traces as it had for the GYRO
simulation. Similarly to the GYRO case, the 1% decima-
tion already shows a significant error. However, the 10% and
20% versions are very close in terms of the cumulative in-
tegration error. Even the 50% decimation shows results that
are significantly closer to the 10 and 20% versions, albeit
the drastic increase in data error shown in Table 2. Figure 8
shows the length deviation for three different decimation lev-
els. While the 10 and 20% levels show only limited error, the
50% version shows significant deviations throughout the en-
tire domain. It can be seen that even in the lower first errors
are evident in the inflow region before the flow straightener.
Analogous to the GYRO device, these errors result from the
decimation of rather big tetrahedra with largely uniform ve-
locity distribution. These lead to a small error in the integra-
tion process early on. As explained above, this small devia-
tion has significant effects further downstream. However, the
50% decimation does not have the harsh effect on particle
tracing compared to the 50% version of the GYRO. The rea-
son for this is that the main source of error, namely the point
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Figure 7: Volumetric representation of vector length differences in the decimated Gyro dataset (left: 10%, mid: 20%, right:
50% decimation). Vectors in full red regions are at least one tenth of the diameter of the inlet longer than the original vector,

vectors in blue regions are one tenth of the diameter shorter.

Figure 8: Volumetric representation of vector length dif-
ferences in the decimated DeBakey dataset (top: 10%, mid:
20%, bottom: 50% decimation). Vectors in full red regions
are at least one tenth of the diameter longer than the original
vector, vectors in blue regions are one tenth of the diameter
shorter.

at which the traces enter the impeller, is also the only ma-
jor variation in this data set. In contrast, traces in the GYRO
also take paths at different radii around the impeller. Due to
the axial layout this is less critical in the DeBakey, because
traces will not diverge as quickly as in the centrifugal design.

In summary, the particle traces which are traced on the
decimated grids still reveal the significant flow structures,
i.e. they are suitable for an initial qualitative overview of the
data. Nonetheless, we have to conclude that the decimation
introduces significant errors for both data sets, which makes
the reduced data largely unusable for subsequent quantitative
analysis, e.g. hemolysis prediction [ABP06].

6. Summary and Future Work

In this paper we have presented a many-core algorithm for
particle advection on time-dependent, unstructured simula-
tion data. After outlining the general algorithm, we have dis-
cussed several options for the crucial problem of cell loca-
tion. A straightforward two phase search scheme which uses
a search tree for initial point location in combination with a
short tetrahedral walk was used for cell location. We found
the best trade-off between performance and implementation
effort by a single pass kd-tree traversal which avoids the use
of recursive data structures on the GPU. A major bottleneck
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when dealing with time varying data in general and time-
dependent unstructured grids in particular is device memory
and memory bandwidth. To this end, we have discussed the
use of data reduction techniques. We evaluated the overall
approach, both in terms of performance and precision. The
performance evaluation indicates that the data transfer time
is the major performance bottleneck for large data sizes and
integration becomes only dominant as soon as data size is
significantly reduced.

Regarding future work, we would like to investigate user-
driven data reduction techniques, i.e. decimation algorithms
which provide high detail in a user-defined region of inter-
est whereas the outside context zones are only approximated
with significantly less detail. The major challenge here will
be to provide an interactive algorithm which is able to handle
changing user input with short reaction times. In addition,
we would like to analyze the effects of temporal subsam-
pling for data reduction.
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