
Computational Aesthetics in Graphics, Visualization, and Imaging (2010)

O. Deussen and P. Jepp (Editors)

Suggestive Hatching

Mayank Singh and Scott Schaefer

Texas A&M University

Abstract

We present a method for drawing lines on an object that depict both the shape and shading of the object. To do

so, we construct a gradient field of the diffuse intensity of the surface to guide a set of adaptively spaced lines.

The shape of these lines reflect the lighting under which the object is being viewed and its shape. When the light

source is placed at the viewer’s location, these lines emanate from silhouettes and naturally extend Suggestive

Contours. By using a hierarchical proximity grid, we can also improve the quality of these lines as well as control

their density over the image. We also provide a method for detecting and removing ridge lines in the intensity field,

which lead to artifacts in the line drawings.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image

Generation—Line and curve generation

1. Introduction

The human visual system is adept at understanding the shape

of a three-dimensional object from its shaded representation

[Ram88]. Often artists depict this shading not only through

smooth color gradients, but by using line strokes (referred as

hatching [HZ00] or shading strokes [MKG∗97]).

There are two classes of lines that have been used to illus-

trate shape in Computer Graphics. The first class is a set of

sparse lines that are usually placed to highlight some natu-

ral discontinuity in the object or its appearance [CGL∗08].

Lines such as Suggestive Contours [DFRS03] or Apparent

Ridges [JDA07] fall into this category. These lines do not

represent the shading of the surface, yet they greatly aid in

conveying the shape of the object to the viewer.

The second class of lines are hatching lines that are not

designed to indicate natural discontinuities in the shape, but

serve a similar purpose. The density of these lines indicates

information about the intensity of light reflected from the

surface and the path the lines take provides clues as to the

shape of the surface and create the illusion of volume by

wrapping around the object. Figure 2 shows an example

drawing by Albrecht Dürer that demonstrate this effect.

Contributions

These two categories of lines have remained separate for

the most part. However, we aim to unify the construction of

curves from the first class (namely Suggestive Contours and

Figure 1: An example of illustrating shapes using adaptively

spaced shading strokes along with the silhouettes.

Suggestive/Principal Highlights) with hatching lines from

the second class. In particular, we present a method for draw-

ing lines on the surface to illustrate the intensity of shading

as well as the shape of the object. We show how to define

a vector field that naturally approximates Suggestive Con-

tours and Suggestive/Principal Highlights. We also describe

a hierarchical proximity grid for not only generating long,

aesthetically pleasing lines, but also for controlling the den-

sity of the lines on the surface to match the intensity of the

surface. Finally, we show how to detect ridges in the inten-

sity field, which cause artifacts in the resulting image, and

how to eliminate these lines using the proximity grid. Fig-

ure 1 shows an example of an abstract shape illustrated with

c© The Eurographics Association 2010.

DOI: 10.2312/COMPAESTH/COMPAESTH10/025-032

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH10/025-032

M. Singh & S. Schaefer / Suggestive Hatching

Figure 2: Example of a woodcut relief by Abrecht Dürer.

lines generated by our algorithm. The results closely resem-

ble wood engravings produced by Albrecht Dürer (Figure 2).

2. Background

There have been numerous methods developed for illustrat-

ing surfaces with sparse sets of lines and Rusinkiewicz et

al. [RCDF08] provides a comprehensive survey. One notable

member of this family is Suggestive Contours [DFRS03,

DFR04], which has been shown to account for a large per-

centage of the lines that artists draw [CGL∗08]. These lines

correspond to minimums of diffuse intensity in the direction

of the projected view vector when the light is co-located with

the viewer’s position. For some shapes, such as smooth con-

vex objects, these lines may fail to impart additional infor-

mation about the shape of the object [JDA07]. Our method

can illustrate the shape of these objects through our shading

strokes and we also approximate Suggestive Contours as a

subset of the total set of lines we generate.

The converse of Suggestive Contours are Sugges-

tive/Principal highlights [DR07]. As the authors note, these

curves only approximate intensity ridges. We provide a

method for detecting and removing these intensity ridges

from our line drawings using our proximity grid.

There have also been numerous methods developed to cre-

ate hatching lines on surfaces. Early work concentrated on

simply creating lines on surfaces. Winkenbach et al. [WS96]

uses parameter lines on parametric surfaces to create hatch

lines, but this technique is limited to parametric surfaces

and depends on the choice of parameterization. Deussen et

al. [DHR∗99] creates curves on surfaces by intersecting the

surface with a set of parallel planes. However, these lines

provide little information about the shape of the surface.

More recent work has concentrated on defining hatch

marks using the direction of Principal curvature [HZ00,

GIHL00, PHWF01, ZISS04]. These lines are solely depen-

dent on the surface geometry and independent of the viewing

direction and lighting under which an object is viewed. Since

robust curvature directions are difficult to compute and may

be noisy, Hertzmann and Zorin [HZ00] present a method for

optimizing the fairness of the curvature field. Though this

process is computationally expensive, the authors precom-

pute the result and generate hatch marks by integrating lines

over the surface using this fair vector field.

Praun et al. [PHWF01] describe a similar method to

Hertzmann and Zorin [HZ00] except the authors use lapped

textures [PFH00] to represent the surface parameterization.

The authors then precompute a nested set of hatch strokes,

which are stored in a matrix of textures. At runtime, based

upon lighting intensity, their method selects a subset of these

textures from the matrix and blends them together to create

a continuous level of intensity.

Zander et al. [ZISS04] present an algorithm for render-

ing high quality hatch lines. Like the previous techniques,

the authors also rely on precomputing an optimized vector

field for their model. Their method renders hatch lines by

evenly spacing the lines in model space with the width of

the lines modulated to avoid dark regions due to perspective

foreshortening. Depending on the size of the polygons, de-

tecting nearby shading strokes to avoid intersections in the

model space can be an expensive operation.

However, all of these hatching techniques generate lines

whose paths are independent of viewing direction or even

shading of the surface. None of these methods create hatch

marks that naturally correspond to any sparse line draw-

ing technique [CGL∗08]. Moreover, surface regions that are

flat or have constant curvature do not have unique principal

curvature directions and these curvature dependent hatching

methods may fail in these areas. In constrast, our method

does not have these ambiguities and extends line drawing

techniques [DFRS03,DR07] to draw a set of shading strokes

that contain many of these spares lines as a subset.

Our mechanism for generating shading strokes is in-

spired by techniques commonly used in scientific visualiza-

tion to visualize vector fields. Jobard and Lefer [JL97] pro-

pose a technique that produces aesthetically appealing, long

streamlines. Their method creates a set of streamlines that

flow up and down the vector field, emanating from a col-

lection of 2D seed points. The authors make the observation

that, in order to avoid creating many short streamlines, the

separating distance between the seed points and the existing

streamlines should be twice as much as the minimum dis-

tance between streamlines. Later, the same authors propose

an addition to their work by adding a nested property to these

streamlines [JL01]. Our hierarchical proximity grid extends

Jobard and Lefer’s method to create lines; though our goal

is not to create evenly spaced lines but lines whose density

modulates with the intensity of the surface lighting.

Mebarki et al. [MAD05] present an improvement upon

Jobard’s method in terms of the placement of streamlines.

Their method uses a greedy algorithm for placing succes-

sive streamlines in a 2D vector field. The authors construct

a constrained Delaunay triangulation of the currently drawn

streamlines and place new seeds at the circumcenter of the

triangle with the largest circumcircle. This method for seed-

ing points produces streamlines that are long, aesthetically

pleasing and farthest apart from each other.

Both the above mentioned techniques draw streamlines on

c© The Eurographics Association 2010.

26

M. Singh & S. Schaefer / Suggestive Hatching

a 2D vector field. Recently, Spencer et al. [SLZC09] pro-

posed a technique for tracing streamlines over 3D surfaces.

Their algorithm essentially projects the surface vector field

into the image plane and performs 2D vector tracing with

special attention to discontinuities in the z-buffer. Their al-

gorithm is similar to ours in that we too use an image based

approach to determine if lines are too close to one another

except we use a hierarchical proximity grid instead of a scan-

line sweep to order seed placement and adaptively control

the density of lines over the surface. Our shading strokes are

also built on the surface of the 3D model guided by a vector

field that resides upon the surface so we need not be con-

cerned with depth discontinuities in the image or perspective

foreshortening of the vector field.

3. Shading Strokes

To draw lines on the surface illustrating the shading of the

surface, we begin by defining a vector field over the surface.

We trace this field by drawing shading strokes that follow the

vector field starting from a seed point. We also control the

density of lines over the surface by using a proximity check

dependent upon the local intensity value of the surface.

3.1. Shading Vector Field

Our vector field is based upon computation of Lambertian

reflectance (i.e. diffuse shading) with the light co-located

with the viewer’s position and follows the gradient construc-

tion given by Yu et al. [YZX∗04]. Let V be the direction to

the viewer from a vertex on the surface. The diffuse light in-

tensity at a vertex on the surface is given by V ·Ni where Ni

is the unit normal at the ith vertex. We use Gouroud shading

to extend these intensities over the triangles of the surface.

Given a point x inside the jth triangle of the surface with ver-

tices p j,0, p j,1, p j,2 and vertex normals Nj,0,Nj,1,Nj,2 , the

intensity I(x) is given by

I(x) =
2

∑
k=0

(V ·Nj,k)
A(x, p j,k+1, p j,k+2)

A(p j,0, p j,1, p j,2)

where A(a,b,c) represents the signed area of the triangle

with vertices a,b,c. Now we define a vector field over the

surface by computing the gradient of the intensity as

∇I(x) =
2

∑
k=0

(V ·Nj,k)
∇A(x, p j,k+1, p j,k+2)

A(p j,0, p j,1, p j,2)
.

Since ∇A(x, p j,k+1, p j,k+2) = (p j,k+2− p j,k+1)×Fj , where

Fj is the unit normal of triangle j, we can rewrite the above

equation as

∇I(x) =
2

∑
k=0

V ·Nj,k

A(p j,0, p j,1, p j,2)
(p j,k+2 − p j,k+1)×Fj. (1)

This vector field is coplanar with each triangle and piecewise

constant over the surface. Note that unlike curvature this is

Binary Ternary
√

2 Midpoint

Figure 3: Comparison of various seeding techniques. Bi-

nary subdivision concentrates samples along the diagonal.

Ternary subdivision refines space too quickly.
√

2 and mid-

point subdivision produce evenly spaced seeds.

not a view-independent attribute of the surface and needs to

be computed for each frame.

3.2. Building Shading Strokes

Drawing shading strokes that follow the vector field de-

scribed in Section 3.1 is very similar to visualizing vector

fields that arise in physical simulations, and many techniques

discussed in Section 2 have been devised to do so. The basic

idea is to begin with a seed point somewhere in the domain

and follow the vector field in both the positive and negative

directions until we reach some predetermined threshold (in-

tensity in our case) or a local maximum/minimum. To do so,

we sample the vector field and move in discrete steps cor-

responding to the size of the triangle in the direction of the

vector field at that point. Since the vector field is piecewise

constant and lies in the tangent plane, numerical integration

of lines over the surface is a straightforward process. We do

so using a method similar to Dong et al. [DKG05].

3.3. Seeding and Spacing of Lines

To create shading strokes on the surface, we start with a seed

point on the surface and trace shading strokes according to

Section 3.2. However, the placement of these seed points

can greatly affect the quality and appearance of the result-

ing strokes. Ideally we should be able to control the density

of the shading strokes over a region of the image guarantee-

ing both that there are no large gaps in the shading strokes

and that their density is proportional to the intensity of the

light to provide an intensity gradient over the surface.

Notice that we do not control the density of shading

strokes in model space. Instead, we control the density in

image space. While evenly spaced shading strokes on the

surface would provide cues about depth due to foreshorten-

ing of the lines under perspective projection, the density of

the lines would give the impression that objects farther away

are actually darker. Hence we use an image-based algorithm

to place shading strokes on the surface.

In the context of 2D vector field visualization, Mebarki

et al. [MAD05] showed that seeding the shading strokes at

a point farthest away from the existing shading strokes pro-

duces longer, more aesthetically pleasing lines. Their solu-

tion uses a constrained Delaunay triangulation over the 2D

c© The Eurographics Association 2010.

27

M. Singh & S. Schaefer / Suggestive Hatching

0 1 2 3

4 5 6 7

Figure 4: For each line segment, we rasterize the segment

into each level of the proximity grid. Cells that are marked

will not generate further seed points.

image that is rebuilt after each line is drawn to estimate the

points furthest away from previously generated lines. Our

setting is more difficult as we have boundaries in our im-

age corresponding to the silhouettes of the object. Also, we

would like to adapt the density of the lines to the intensity of

the surface lighting.

Our solution is to use a hierarchical proximity grid to en-

code, in a multi-resolution fashion, information about where

shading strokes have been previously drawn. This proxim-

ity grid is simply a sequence of uniform grids of increas-

ingly smaller cells whose maximum depth is specified by

the user. The center of each cell in this grid corresponds to a

seed point, which we project onto the surface via a ray inter-

section and initiate a shading stroke from that point. When

generating seed points, we traverse this hierarchy from the

coarsest level to the finest level of the tree. For each level,

we generate seed points in scanline order for each cell that is

not marked. We also rasterize completed scanlines into each

level of the hierarchy and mark each cell that the lines cross.

This process also provides proximity information in a

multi-resolution fashion over the image. For each empty cell,

we know that a shading stroke is no closer than half the width

of that cell from its potential seed point. The cell width also

decreases by a constant scale factor at each level of the hier-

archy. Hence, this process tends to generate seed points as far

as possible from previously generated shading strokes. No-

tice that this process is not as exact as the method described

by Mebarki et al. [MAD05]. However, our method is faster

as a Delaunay triangulation does not have to be regenerated

over the image every time a shading stroke is drawn.

To build this hierarchy of grids, we consider several dif-

ferent types of quadrilateral refinement patterns that have

been explored before in the context of surface subdivision (

[PR97] and [LMB04]). Figure 3 shows four different refine-

ment patterns. Binary subdivision is perhaps the most ob-

vious refinement method. However, binary subdivision does

not produce a uniform seeding pattern and concentrates sam-

ples along diagonals. On the other hand, ternary subdivision

Figure 5: Example of a torus rendered with strokes with uni-

form maximum depth (left) and adaptive depth (right).

does create uniform sampling but refines the grid quickly,

which will limit our ability to finely control the density of

lines to provide a shading effect on the surface.

Ideally, we would like the size of the cells to refine as

slowly as possible to provide a better approximation to the

farthest shading stroke and provide finer control over the lo-

cal density of these strokes. Both
√

2 and midpoint subdi-

vision refine the cells slower than binary subdivision. How-

ever, we prefer midpoint refinement because, at every level

of the hierarchy, the grid corresponds to a voronoi diagram

of the previously generated seed points. Figure 4 shows an

example of how lines are written into the hierarchical prox-

imity grid using midpoint subdivision. Cells that are marked

will not generate future seed points.

We also use the proximity grid to control the density of

shading strokes in a particular region. As we are tracing the

shading strokes using the method in Section 3.2, we check

the proximity grid at a depth dependent on the value of I(x)
at each point along the line to see if the line has entered a

marked cell. If so, we truncate that stroke at that point.

To convey the shading of the surface, we would like the

density of lines in a cell to match the intensity of the surface

over that cell. We can approximate this effect by computing

the ratio of the width of a line (1 pixel) to the width of a

cell. Assuming we use midpoint subdivision for the proxim-

ity grid, the density of a single line compared to a cell is

1/

(

w
√

2
d

)

=

√
2

d

w

where w is the width of the image and d is the depth of the

grid cell. Since a line darkens the image, we set this equation

to 1− I(x) and solve for the depth.

d = 2log2(w(1− I(x))) (2)

Using this adaptive grid we can enable the lines to come

close to each other in darker regions, while increasing their

spacing in lighter regions of the surface. Notice that this

method produces discrete intensity levels corresponding to

each level of the grid. By using a grid that refines slowly

c© The Eurographics Association 2010.

28

M. Singh & S. Schaefer / Suggestive Hatching

Figure 6: Portion of drawing by Albrecht Dürer showing

strokes terminated near an intensity ridge.

we obtain more intensity levels and fewer banding artifacts

associated with these discrete levels.

Figure 5 shows an example of using a uniform maximum

depth (independent of I(x)) versus adapting the depth of the

proximity check for truncating lines to the intensity of the

surface. While the shading strokes are much shorter using

an adaptive grid, the vast majority of these shorter strokes

occur in darker regions of the surface and are necessary to

provide the illusion of variable intensity along the surface.

4. Ridges and Valleys

Since we trace the gradient field to form the shading strokes

on the surface, ridges and valleys in I(x) attract shading

strokes. The valleys of the intensity field approximate Sug-

gestive Contours [DFRS03] as Suggestive Contours are min-

imums of the intensity field with respect to the projected

view vector. Therefore, the shading strokes will naturally

emanate from and extend Suggestive Contours.

Ridges of I(x), like Suggestive Contours, attract shading

strokes as well. Unlike Suggestive Contours, these ridges do

not tend to correspond to feature lines that an artist would

draw since these ridges are high intensity regions of the sur-

face and lines darken the image. Therefore we consider these

ridges artifacts of our shading algorithm and would like re-

move them from the image. A similar effect can be observed

in drawings created by Albrecht Dürer (see figure 6). In the

pillow beneath the woman’s head, the lines are terminated as

soon as a ridge in the intensity function is encountered.

Figure 7 shows that we cannot remove these ridge artifacts

by simply lowering the intensity threshold at which we stop

tracing the lines. While lowering the intensity threshold can

remove the ridge artifacts, we also lose shading strokes over

large portions of the object, which leaves little visual cues as

to the shape of the object, as seen in the middle image. Re-

moving ridges allows us to create shading lines of the entire

surface while avoiding the artifacts caused by ridges.

To remove these ridge artifacts, we detect the intensity

ridges on the surface and rasterize them into the proximity

Figure 7: From top to bottom: no intensity threshold with-

out ridge removal, 0.65 intensity threshold without ridge re-

moval, and no intensity threshold with ridge removal. Right:

a zoomed portion to highlight the effect of intensity ridges.

grid from Section 3.3 at each level before drawing shading

strokes effectively stopping our lines from getting too close

to the ridge. Note that these ridges are similar to the lines

produced by Suggestive/Principal Highlights, which are lo-

cal maximums of intensity in the direction of the projected

viewing vector and its orthogonal counterpart in the tangent

plane. The union of both sets of lines approximates intensity

ridges well over most of the surface (when the ridge direc-

tion roughly aligns with the projected viewing vector or its

complement). However, Suggestive/Principal Highlights do

not always align with intensity ridges.

We can detect ridges in the intensity function I(x) by look-

ing for a set of points such that the first derivative in the di-

rection orthogonal to the ridge is zero (i.e. a maximum or

minimum) and the second derivative in the same direction is

negative [Ebe96]. Our solution is to find points on the edges

of the polygons that satisfy these tests

Since our underlying gradient function ∇I(x) is defined

as piecewise constant over the faces of the mesh, we detect

if an edge has a zero first derivative by estimating gradient

vectors at the end-points of each edge. This gradient vector

c© The Eurographics Association 2010.

29

M. Singh & S. Schaefer / Suggestive Hatching

Diffuse Shading Surface Ridges Surface Valleys Apparent Ridges

Suggestive Contours Suggestive Highlights Principal Highlights Intensity Ridges

Figure 8: Side-by-side comparison of ridges detected in the gradient field by our algorithm to other line drawing methods.

Gi can be estimated as

Gi =
∑

n
j=0 wi, j ∗∇I j

∑
n
j=0 wi, j

where this sum is over the n adjacent faces in 1-ring neigh-

borhood of the ith vertex, ∇I j is the gradient inside the jth

face and the weight wi, j for each face is based upon the angle

subtended by the face as suggested by Max [Max99]. How-

ever, this computation for the vertex gradient vector becomes

numerically unstable when the face gradients point in op-

posite directions. Such cases occur very frequently near the

ridges where the face gradient vectors in the local neighbor-

hood point in opposite directions. Since these cases are pre-

cisely those we wish to test, we need a more stable method

for computing these gradient vectors.

In order to robustly compute a stable gradient direction for

a given vertex, we compute the dominant eigenvector Ei of

the covariance matrix built using the face gradients weighted

by wi, j in 1-ring neighborhood of the vertex. These eigen-

vectors provide a stable, unoriented direction vector for the

vertex gradient. However, this vector does not yet have a di-

rection or a magnitude. Therefore, we compute the final ver-

tex gradient at the vertex pi by projecting Gi onto Ei.

∇I(pi) = (Gi ·Ei)Ei

Given an edge with end-points p1 and p2, we estimate a po-

tential ridge point pr as suggested by Ohtake et al. [OBS04]

pr =
|∇I(p2)|p1 + |∇I(p1)|p2

|∇I(p2)|+ |∇I(p1)|
.

If the angle between ∇I(p1) and ∇I(p2) is less than 20 de-

grees, we exclude this point as a weak ridge point since the

gradient vectors at the end-points are nearly in the same di-

rection. For all other points, we must verify that these points

are indeed part of a ridge by estimating the direction per-

pendicular to the ridge and computing the first and second

derivatives of I(x) in that direction.

Our solution is to check two different directions to see if

either direction satisfies the first and second derivative tests.

The first direction is given by the dominant eigenvector of

the covariance matrix constructed from ∇I(p1) and ∇I(p2).
The second direction is given by the dominant eigenvector

of the covariance matrix constructed from N1 ×∇I(p1) and

N2 ×∇I(p2). For each of these directions, we use a method

similar to that in Judd et al. [JDA07] to verify a ridge exists.

Given a direction vector, we project the vector into the

plane of each polygon containing the edge and intersect the

ray with the edges of the triangles. Let p f and pb be the

two intersected points. For each of these intersections, we

linearly interpolate the vertex gradients at the end-points

of the intersected edge to find the gradient at these points

∇I(p f) and ∇I(pb). We then numerically compute the sec-

ond derivative as

∇I(p f) · (p f − pr)−∇I(pb) · (pr − pb)

|p f − pr|+ |pr − pb|
.

If this quantity is negative, then we check whether a zero

crossing of the first derivative is possible in this direction by

verifying that
(

∇I(p f) · (p f − pr)
)

(∇I(pb) · (pr − pb)) <
0. If either of the two direction vectors satisfy these deriva-

tive tests, then pr is classified as a ridge point. We then draw

ridges by processing each triangle and connecting the ridge

points (if any) on the edges together with lines. Figure 8

shows an example of several types of lines commonly used

to illustrate the shape of an object. While none of the lines

match our intensity ridges, the union of Suggestive and Prin-

cipal highlights closely approximate these ridges.

c© The Eurographics Association 2010.

30

M. Singh & S. Schaefer / Suggestive Hatching

Figure 9: Comparison of Suggestive Contours (left), Appar-

ent Ridges (middle) and our shading strokes (right).

5. Results

For convex, abstract shapes such as those in Figure 9, line

drawing techniques such as Suggestive Contours [DFRS03]

or Apparent Ridges [JDA07] may not be sufficient for the

viewer to infer the shape of the object. Shading gives strong

clues as to the objects shape and our method, through the

adaptive placement of lines and orientation of those lines,

helps impart this information to the viewer. For example, in

Figure 10 (left), it is difficult to perceive which folds are

convex or concave. Our shading strokes extends Suggestive

Contours and illuminates the distinct folds in the cloth. Val-

leys of I(x) closely approximate Suggestive Contours and,

in the absence of a proximity check, our line drawing algo-

rithm naturally creates these lines and emanate from them as

shown in Figures 10. Figure 11 shows two additional exam-

ples of our method and also demonstrates that our technique

can handle planar regions of the surface where principal cur-

vature directions are not unique and may cause curvature-

based methods to fail.

When the light is not colocated with the viewer,

ridges/valleys of our gradient field no longer correspond to

any sparse line drawing techniques. Moreover, I(x) repre-

sents diffuse intensity and is typically clamped to zero when

negative, which produces a gradient field of zero in shadow

regions. We can modify our method to handle these situa-

tions by allowing I(x) to be negative to define a consistent

gradient field over the surface, even in shadow regions. For

the purposes of determining density of lines in Equation 2,

we simply set I(x) = 0. This modification allows us to move

the light to arbitrary positions, but our lines will have a con-

stant density in these shadow regions. This constant den-

sity may produce a noticeable banding effect and, hence, we

prefer to keep the light at the viewer’s position. Figure 12

demonstrates the effect of moving the light position.

Table 1 shows the timing of our method in seconds on an

Intel Core 2 6700 and an Nvidia 8800 GTX using various

models. Each of these examples were rendered on an 800×
800 image with a maximum proximity depth of 20. Updating

and truncating the lines using the proximity grid accounts for

Figure 10: Two examples of a draped table cloth (top) and a

frog (bottom) emphasizing how shading strokes tend to em-

anate from suggestive contours.

Model Faces Shading Strokes Shading

w/o ridge detection Strokes

Torus 4800 0.72 0.81

Cubehole 6491 0.80 0.82

Table Cloth 44636 0.74 0.88

Frog 82880 1.25 2.52

Brain 294012 1.04 2.53

Heptoroid 573440 1.67 2.44

Foot bone 735424 1.17 2.52

Table 1: Timings for Shading Strokes measured in seconds.

The seeding depth is limited to 18 and the proximity grid

depth is 20. Intensity threshold is set to 1.0

a very small fraction of the total time needed to draw these

shading strokes since line rasterization is fast.

6. Future Work

Temporal coherence is an issue with our method that we

have not addressed. Like Suggestive Contours, intensity

ridges and valleys are relatively coherent as the object moves

around. Our line drawing algorithm draws lines in a nested

fashion with longer lines appearing first and shorter lines

later to fill in darker regions of the object. We believe that by

tracking the seed points of these longer lines between frames

that we can maintain temporal coherence and would like to

explore this area in the future.

Also, the speed of our method does not produce inter-

active frame rates for large models. Rasterizing lines into

the proximity grid is fast. However, our ridge detection al-

gorithm is about twice as slow as detecting both Sugges-

tive/Principal Highlights and we may be able to modify the

method to increase its speed.

c© The Eurographics Association 2010.

31

M. Singh & S. Schaefer / Suggestive Hatching

Figure 11: Examples of models rendered with our method.

Acknowledgments

We would like to thank Ergun Akleman and Forrester Cole

for the models used in the paper. This work was supported

in part by NSF grant CCF-07024099.

References

[CGL∗08] COLE F., GOLOVINSKIY A., LIMPAECHER A.,
BARROS H. S., FINKELSTEIN A., FUNKHOUSER T.,
RUSINKIEWICZ S.: Where do people draw lines? ACM

Trans. Graph. 27, 3 (2008). 1, 2

[DFR04] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S.:
Interactive rendering of suggestive contours with temporal co-
herence. In Proceedings of NPAR (2004), pp. 15–145. 2

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S.,
SANTELLA A.: Suggestive contours for conveying shape. ACM

Trans. Graph. 22, 3 (July 2003), 848–855. 1, 2, 5, 7

[DHR∗99] DEUSSEN O., HAMEL J., RAAB A., SCHLECHTWEG

S., STROTHOTTE T.: An illustration technique using hardware-
based intersections and skeletons. In Proceedings Graphics in-

terface (1999), pp. 175–182. 2

[DKG05] DONG S., KIRCHER S., GARLAND M.: Harmonic
functions for quadrilateral remeshing of arbitrary manifolds.
Comput. Aided Geom. Des. 22, 5 (2005), 392–423. 3

[DR07] DECARLO D., RUSINKIEWICZ S.: Highlight lines for
conveying shape. In Proceedings of NPAR (2007), pp. 63–70. 2

[Ebe96] EBERLY D.: Ridges in Image and Data Analysis.
Springer, 1996. 5

[GIHL00] GIRSHICK A., INTERRANTE V., HAKER S.,
LEMOINE T.: Line direction matters: an argument for the
use of principal directions in 3d line drawings. In Proceedings

of NPAR (2000), pp. 43–52. 2

[HZ00] HERTZMANN A., ZORIN D.: Illustrating smooth sur-
faces. In Proceedings of SIGGRAPH (2000), pp. 517–526. 1,
2

[JDA07] JUDD T., DURAND F., ADELSON E. H.: Apparent
ridges for line drawing. ACM Trans. Graph. 26, 3 (2007), 19.
1, 2, 6, 7

[JL97] JOBARD B., LEFER W.: Creating Evenly-Spaced Stream-
lines of Arbitrary Density. In Proceedings of Eurographics Work-

shop on Vis. in Sci. Computing (1997), pp. 45–55. 2

Figure 12: Model rendered with the light colocated with the

viewer (top left) and in arbitrary position (bottom right).

[JL01] JOBARD B., LEFER W.: Multiresolution flow visualiza-
tion. In Proceedings of WSCG (2001), pp. 33–37. 2

[LMB04] LI G., MA W., BAO H.:
√

2 subdivision for quadrilat-
eral meshes. The Visual Computer 20, 4 (2004), 180–198. 4

[MAD05] MEBARKI A., ALLIEZ P., DEVILLERS O.: Farthest
point seeding for efficient placement of streamlines. Proceedings

of IEEE Vis. (Oct. 2005), 479–486. 2, 3, 4

[Max99] MAX N.: Weights for computing vertex normals from
facet normals. J. Graph. Tools 4, 2 (1999), 1–6. 6

[MKG∗97] MARKOSIAN L., KOWALSKI M. A., GOLDSTEIN

D., TRYCHIN S. J., HUGHES J. F., BOURDEV L. D.: Real-
time nonphotorealistic rendering. In Proceedings of SIGGRAPH

(1997), pp. 415–420. 1

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: Ridge-valley
lines on meshes via implicit surface fitting. ACM Trans. Graph.

23, 3 (2004), 609–612. 6

[PFH00] PRAUN E., FINKELSTEIN A., HOPPE H.: Lapped tex-
tures. In Proceedings SIGGRAPH (2000), pp. 465–470. 2

[PHWF01] PRAUN E., HOPPE H., WEBB M., FINKELSTEIN

A.: Real-time hatching. In Proceedings of SIGGRAPH (2001),
pp. 581–586. 2

[PR97] PETERS J., REIF U.: The simplest subdivision scheme
for smoothing polyhedra. ACM Trans. Graph. 16, 4 (1997), 420–
431. 4

[Ram88] RAMACHANDRAN V. S.: Perception of shape from
shading. Nature (1988), 163 – 166. 1

[RCDF08] RUSINKIEWICZ S., COLE F., DECARLO D.,
FINKELSTEIN A.: Line drawings from 3d models. In ACM

SIGGRAPH course notes (2008), pp. 1–356. 2

[SLZC09] SPENCER B., LARAMEE R., ZHANG E., CHEN G.:
Evenly-spaced streamlines for surfaces: An image-based ap-
proach. In Computer Graphics Forum (2009). 3

[WS96] WINKENBACH G., SALESIN D. H.: Rendering paramet-
ric surfaces in pen and ink. In Proceedings of SIGGRAPH (1996),
pp. 469–476. 2

[YZX∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B.,
SHUM H.-Y.: Mesh editing with poisson-based gradient field
manipulation. In ACM Trans. Graph. (2004), pp. 644–651. 3

[ZISS04] ZANDER J., ISENBERG T., SCHLECHTWEG S.,
STROTHOTTE T.: High quality hatching. In Computer Graphics

Forum (2004), vol. 23, pp. 421–430. 2

c© The Eurographics Association 2010.

32

