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Abstract

Inverse design problems in fabrication-aware shape optimization are typically solved on discrete
representations such as polygonal meshes. This thesis argues that there are benefits to treating
these problems in the same domain as human designers, namely, the parametric one. One
reason is that discretizing a parametric model usually removes the capability of making further
manual changes to the design, because the human intent is captured by the shape parameters.
Beyond this, knowledge about a design problem can sometimes reveal a structure that is
present in a smooth representation, but is fundamentally altered by discretizing. In this case,
working in the parametric domain may even simplify the optimization task. We present two
lines of research that explore both of these aspects of fabrication-aware shape optimization on
parametric representations.
The first project studies the design of plane elastic curves and Kirchhoff rods, which are
common mathematical models for describing the deformation of thin elastic rods such as
beams, ribbons, cables, and hair. Our main contribution is a characterization of all curved
shapes that can be attained by bending and twisting elastic rods having a stiffness that is
allowed to vary across the length. Elements like these can be manufactured using digital
fabrication devices such as 3d printers and digital cutters, and have applications in free-form
architecture and soft robotics.
We show that the family of curved shapes that can be produced this way admits geometric
description that is concise and computationally convenient. In the case of plane curves, the
geometric description is intuitive enough to allow a designer to determine whether a curved
shape is physically achievable by visual inspection alone. We also present shape optimization
algorithms that convert a user-defined curve in the plane or in three dimensions into the
geometry of an elastic rod that will naturally deform to follow this curve when its endpoints
are attached to a support structure. Implemented in an interactive software design tool, the
rod geometry is generated in real time as the user edits a curve and enables fast prototyping.
The second project tackles the problem of general-purpose shape optimization on CAD models
using a novel variant of the extended finite element method (XFEM). Our goal is the decoupling
between the simulation mesh and the CAD model, so no geometry-dependent meshing or
remeshing needs to be performed when the CAD parameters change during optimization.
This is achieved by discretizing the embedding space of the CAD model, and using a new
high-accuracy numerical integration method to enable XFEM on free-form elements bounded
by the parametric surface patches of the model. Our simulation is differentiable from the
CAD parameters to the simulation output, which enables us to use off-the-shelf gradient-based
optimization procedures. The result is a method that fits seamlessly into the CAD workflow
because it works on the same representation as the designer, enabling the alternation of manual
editing and fabrication-aware optimization at will.
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CHAPTER 1
Introduction

A recent survey about fabrication-aware design [BFR17] lists seven ways of representing
the boundaries of manifold geometry. Polygonal meshes, spectral representations, and level
sets of a scalar field on the embedding space are found to be the most commonly used
for inverse shape design, in applications ranging from the control of elastic behavior and
structural stability to shape approximation and support design. Algebraically defined boundaries,
height fields, and subdivision surfaces constitute decidedly less popular representations but
are found in applications such as toolpath planning and stably interlocking puzzle pieces.
But no representation is as unloved as the parametric one, about which the survey remarks
disdainfully,

“Parametric surfaces [...] lack usability for fabrication applications. For this reason,
parametric surfaces are seen in this survey only as input in architectural application,
and are almost immediately tessellated.”

In defense of parametric representations for fabrication-aware design, I have to mention at
least a work which, in the words of its authors, “employs parametric surfaces as surface
geometry representations at any stage of a computational process to compute self-supporting
surfaces” [MIB15], and a recent paper on the computational design of Weingarten surfaces,
which “found that fourth-order B-splines are well suited to formulate this optimization, since
they simplify the evaluation of higher-order derivatives required” [PKPP21]. I also want
to point out two general reasons for which it may be desirable to maintain a parametric
representation when faced with fabrication-aware optimization tasks.
The first reason is that there are shape optimization problems to which none of the other
representations listed above are suited very well. This is the case for problems in which
higher-than-second derivatives of a surface parametrization are relevant [PKPP21], or in which
differential constraints can be satisfied exactly using a specific parametric model, whereas
other representations will introduce unacceptable discretization errors [TBWP16].
We encounter a problem of the latter kind in Chapters 4 and 5, which are concerned with
exploring and understanding the design space of thin elastic rods. There, we discover that
collinearity of the inflection points of a plane curve plays a crucial role in interpreting this curve
as the equilibrium state of an elastic rod. A parametric curve, such as a spline curve, provides
sufficient control over the exact location of inflection points through its control points, while
it would be difficult to define—or optimize for—collinearity of inflections on a discrete curve.
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1. Introduction

The second reason for using parametric representations is that shape optimization is not the
last step in a digital fabrication pipeline—fabrication is. And between them, there is usually a
number of manual editing steps to integrate the isolated optimized shape with its environment,
such as adding interfaces to support structures, partitioning for additive manufacturing, or
ornamentation. These tasks are handled in a computer-aided design (CAD) environment, and
are significantly simplified if the shape representation is not changed for the sake of the shape
optimization phase. We conclude that developing fabrication-aware shape optimization tools
that keeps parametric models parametric is a useful goal in itself, even for problems in which
other shape representations would simplify the task.
This thesis makes a foray into general-purpose optimization of parametric geometry in Chapter 6,
where we develop a framework for discretizing partial differential equations (PDEs) on CAD
models in such a way that the solution depends differentiably on the CAD parameters. We
use the method to perform PDE-constrained shape optimization directly on these parameters,
which gives us the possibility to keep editing the CAD model after optimization in much the
same way as before, and thus fits seamlessly into a design-to-fabrication workflow.

The boundary between parametric and other representations is in some sense artificial, as all
shape representations depend on parameters. However, the term is often used to distinguish
representations in which a smaller number of parameters have an effect that is non-local or
difficult to predict by human intuition (such as control points and interpolation weights, or
coefficients of a PDE), or cause a qualitative change (such as the degree of a spline) from
those in which a large number of uniform parameters have a very direct effect (such as vertex
positions, or function values discretized on a grid).
To some degree, the choice of representation reflects how much is known about the solution
structure of a problem. If we know next to nothing, we are forced to pick a generic representation
with many parameters, because there is no basis for deciding on a specialized, more economic
parametrization. Unfortunately, many problems in scientific computing are of this type, such as
fluid dynamics, non-linear elasticity, topology optimization, and rendering, at least as far as we
know today. In these fields, the only way to approximate a solution quantitatively for arbitrary
input data is to solve a heavy computational problem. But even there, mathematical knowledge
sometimes translates into performance gains by providing insight into special subproblems, or
qualitative information such as regularity of solutions.
Recent examples are topology optimization algorithms that use knowledge about the general
solution structure [FMT95] to justify a de-homogenization approach [SOG+22]. For general
problems in elasticity, regularity knowledge can inform the choice of simulation method, for
example to describe the displacement field around a stress singularity with fewer parame-
ters, and knowledge of analytical solutions can be used in animation to avoid heavy-duty
simulations [DGJ18]. Sometimes, solutions in a problem class have so much structure that
they can be recognized or predicted by human intuition, once this structure is known. One
example is a work about designing auxetic structures that can be deployed via inflation or
gravity, in which the authors show that feasible shapes are exactly surfaces with positive
mean curvature [KLPCP18]. Finally, I want to point to a work about the optimization of
mass properties, such as the center of mass and the inertia tensor of an object, by adding
an appropriately shaped void to the interior of the object [BWBSH14]. The authors tackle
this problem with an approach inspired by voxel-based topology optimization, but the results
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suggest that the boundary between void and solid is formed by a circular double cone regardless
of the shape of the object. It seems probable that there is a structure to these solutions that
is yet to be understood.

It would be overly optimistic to conclude from this short list of examples that the majority of
problems in fabrication-aware shape optimization have a beautiful, yet undiscovered solution
that makes iterative optimization obsolete. Yet, there are reasons to believe that “inverse
problems” are sometimes easier than the computationally intensive “forward simulation”
problems with which they are associated, and admit solutions that can be characterized in
intuitive terms or computed with stronger guarantees of success.

An obvious argument in favor of this hypothesis is that non-linear PDEs are often linear in the
quantities that are assumed unknown in the inverse problem, such as material densities and
stiffnesses. However, even certain non-linearities, such as the ones discussed in Appendix A.5
may present no extra complications. Adding to the difficulty of inverse problems instead
is that the unknowns are usually subject to inequality constraints, such as the positivity of
scalar stiffnesses, as in Section 4.3, positive-definiteness of stiffness tensors, or more complex
constraints, such as the ones found in Section 5.4.

A major result of this thesis—which I hope will pleasantly surprise the reader, the way it
surprised me—is that the inverse design problems studied here admit solutions that are
computationally much simpler than one would suspect in the face of constraints such as these.
Another surprising finding is that the inverse problems we solve in Chapters 4 and 5, namely
to characterize the equilibrium states of plane elastic curves and Kirchhoff rods with variable
stiffness, prove to have close ties to projective line geometry.

I think that an experience shared between many academics at some point during their career is
a disappointment with their own work or even the research field that they have chosen. Many
of my peers during my doctoral studies happen to work either in analysis or computer graphics,
and I have—without any claim to universality—observed that we are disappointed by different
things: Analysts are glad that their work is beautiful, rigorous, and eternal, but disenchanted
with the suspicion that no real-world problem will ever satisfy the assumptions needed to apply
it. Researchers working in computer graphics are proud that “their stuff actually works”, but
cannot shake the feeling that their research is shallow when compared to sciences that pursue
universal truths directly.

A common ground between these groups is the fear that problems admit either solutions that
are beautiful, or solutions that are useful, but not both.

My own phase of disappointment began after the feeling of giddiness about the coolness of
graphics research had abated, and when I started to think that problems in fabrication-aware
optimization are too difficult and too close to real life to say anything beautiful about them.
It ended when I recognized that the dichotomy of beauty and utility is false, in part through
pursuing this thesis, and by reading some of the work cited here. I hope that this text can
contribute a small part to instilling the same sense in the reader.
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1. Introduction

1.1 Overview
This thesis is compiled of two lines of research that contribute to the field of fabrication-aware
inverse shape optimization. The first explores the design space of elastic curves in the plane,
and its three-dimensional generalization, Kirchhoff rods. It characterizes exactly the kinds
of deformed shapes that straight elastic rods may form at equilibrium, given that we can
freely choose their stiffness distribution. The second tackles the problem of solving PDEs on
CAD models in such a way that the solution depends differentiably on the CAD parameters.
This allows us to perform PDE-constrained shape optimization directly on CAD models while
sidestepping the need to convert it to a polygonal representation.

The Design Space of Elastic Rods. This line of work studies a specific inverse shape
design problem related to the deformation of thin elastic rods. This problem is inverse in
the mathematical sense [Kir11] to that of finding an equilibrium state of an elastic rod
whose undeformed geometry—given by its thickness, or more generally, its cross-sectional
distribution—and boundary conditions are known. In the problem we study, we assume that
we know the equilibrium state (and thus the boundary values), and infer the undeformed
geometry.

Chapter 4 is dedicated to the plane problem [HB21], in which the deformed state of an elastic
rod is represented by a plane curve, and the stiffness is captured by a single positive scalar at
each point of the curve. We show that a curve admits a solution to the inverse problem if
and only if there exists a line that intersects the curve exactly in its inflection points. Thus,
every non-inflectional curve admits a solution, but for curves having at least one inflection,
it depends on its global shape. The structure of all solutions, i.e., all stiffness distributions
that equilibrate a given curve, is also determined by the family of (projective) lines having
said property, and is isomorphic to it. To make this result useful for fabrication, we pose an
optimization problem for finding the stiffness distribution with the highest uniformity, and
show that it can be determined by solving a linear program.

To enable real-world applications on a larger scale, we extend this method computationally
in two ways. First, we model elastic rods in a gravitational field, and show that the same
optimization problem of finding the stiffness distribution with the highest uniformity is still
linear, and can be solved by a two-stage linear program. Second, we analyze the stability
of multi-inflectional equilibrium curves by using second-order variational methods, such as
the ones described in Section 3.3. Unstable equilibria do not maintain their shape under
perturbations, so they are unsuited to most applications. Thus, we formulate the problem to
find a similar equilibrium curve which is stable, and present an algorithm to solve it based on
applying the adjoint method to isoperimetric conjugate points of the unstable solution.

Chapter 5 analyzes the inverse problem associated with the deformation of thin elastic rods
in three-dimensional space, based on the Kirchhoff rod model [HB22]. To account for both
bending and twisting, a deformed state is represented by a framed curve, in which the twist
of the moving frame mirrors the physical twist of the rod. There is significantly more design
freedom in this problem, because we could potentially pick a differently shaped cross section
at every point of the rod in order to match a prescribed equilibrium state. However, one of
our results shows that rods composed entirely of elliptical cross sections solve every inverse
problem that admits a solution, and therefore it is not necessary to consider more exotic
shapes.
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1.1. Overview

We proceed to characterize the inverse problems that have a solution, i.e., the (framed) curves
that can be interpreted as equilibria of Kirchhoff rods by picking a suitable distribution of
cross sections. While our result is less intuitive than the one in the plane case, it can be stated
concisely using objects from projective line geometry, and results in a condition that can be
verified and optimized for with a linear program.
The shape optimization algorithms developed in both chapters are implemented in an interactive
design system that allows the user to modify curves by dragging spline control points, defining
curves analytically, or creating a number of curves by intersecting a surface with a family
of planes. The application automatically checks if a curve admits a solution to the inverse
problem, and generates the geometry of an elastic rod that realizes this curve as an equilibrium
state if possible. All computations involved take only a fraction of a second, so the results can
be inspected in real time during user edits.
We used this system to design bending-active models, consisting of parts that can be fabricated
in a flat state, and attached to a support structure to take their curved shape at equilibrium.
To showcase results of the plane theory, we used paper, cardboard, polyacetal sheets, and
thin laminated timber plates as base materials and built models on a scale up of up to 90 cm
in length. Results of the three-dimensional theory are manufactured by silicone casting and
include a free-form light sculpture and a soft gripper actuated by torsion.

X-CAD. The earlier work [HSK+19], which is presented in Chapter 6, tackles the problem of
general-purpose gradient-based optimization of CAD models. CAD design proceeds by building
up a three-dimensional model, such as a volume or surface, from parameters and constraints
by a linear sequence of operations such the generation of primitive shapes; path extrusion,
revolution, and sweeping; adding fillets and chamfers to existing shapes. On a technical level,
the result is a boundary representation of the model, consisting of parametric surfaces that
are created by the CAD application, but this representation is usually hidden from the user. In
order to analyze a CAD model, such as computing its mass properties, analyzing its response
to forces, or solving CFD (computational fluid dynamics), the model is usually discretized as a
polygonal or volumetric mesh in order to interface with simulation software.
This presents a technical challenge when we attempt to modify the CAD model based on
the analysis result in an automated manner. Adjoint methods, as described in Section 3.4,
enable us to compute the derivative of the analysis result with respect to input data, such as
the vertices of a volumetric mesh, and one could further relate these vertices to the original
CAD parameters—albeit with some difficulty, because this functionality is not provided by the
commercial CAD kernels currently in use. An insurmountable challenge arises in this workflow
once we try to embed it in a gradient-based optimization algorithm such as steepest descent,
as described in Section 3.5. For an algorithm such as this one to make progress, the objective
function needs to be differentiable at least, but the discretization step is not even continuous
because the combinatorics of the mesh may change after modifying the CAD model.
In Chapter 6, we present a solution to this conundrum by not discretizing the CAD model
itself, but discretizing a portion of the embedding space that contains the model instead.
This discretization is not directly dependent on the geometry of the CAD model, and thus
circumvents the issue. However, we are facing new difficulties rooted in the fact that our
simulation domain—the interior of the CAD model—retains its curved boundary, which is
described by parametric surfaces. In order to apply a finite-element type procedure, we
need to intersect this simulation domain with the discretization of the embedding space,
which forms elements that are bounded by pieces of these parametric surfaces. Our core
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contribution to enable simulation methods in this setting is a way of performing high-accuracy
numerical integration on domains bounded by parametric surfaces. The integration result
is differentiable in the surface parameters, so it preserves the regularity needed to apply
gradient-based optimization.
We demonstrate the efficacy and robustness of the algorithm by performing shape optimization
on a range of CAD models with hundreds of parametric surface patches each, and for a variety
of objectives. Among them are the optimization of integral quantities such as the center
of mass, and performance indicators derived from a linearly elastic simulation such as total
compliance and maximal stress. We also perform shape matching between the displacement
field resulting from a non-linearly elastic simulation and a target surface, as well as a form of
topology optimization, in which CAD parameters are used to emulate topology changes by
shrinking and expanding holes in an object.
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CHAPTER 2
Related Work

2.1 Fabrication-Aware Shape Optimization
A relatively recent subfield of computer graphics, fabrication-aware shape optimization started
to emerge around 2010, fueled by the additive-manufacturing revolution that makes it possible
to fabricate objects with high geometric complexity at low cost. Pioneering works from this
period tackle the design of elastic 3d-printable materials [BBO+10], the design of 3d-printable
interlocking puzzles [LFL09], and paneling problems found in free-form architecture [EKS+10].

The field has since branched in many directions [BFR17], such as designing appearance [ESZ+17]
and stylization [DLL+15] of fabricable artifacts; optimizing different aspects of elastic objects
such as structural strength [ZPZ13], controlling the deformation under external loads [STC+13],
and designing microstructures [PZM+15] with controllable behavior; designing objects for
different functionalities, such as spinning tops [BWBSH14], paper planes [UKSI14], and
sound filters [LLMZ16]; architecturally-inspired applications such as pop-up models [LJGH11],
self-supporting surfaces [VHWP12], flat-to-curved manufacturing [KCD+16] and many more.
Much research has also been conducted to optimize the fabrication process itself, by minimizing
the material used [WWY+13], optimizing tool paths [ZGH+16], partitioning objects to fit
individual parts on the build plate of a 3d-printer [SDW+16], or optimizing support structures
for single-material printers [DHL14].

To contain the scope of this chapter, we will focus on applications that target the optimization
of elastic objects, especially sheets, rods, and grids. There are a number of articles that the
reader can consult for a broader overview, such as a survey of methods and representations used
in fabrication-aware design [BFR17], and three more specialized surveys about computational
design of rigid-part assemblies [WSP21], on stylized fabrication [BCMP18], and on fabrication-
assisted data visualization [DSMA+21].

2.1.1 Elastic Volumes and Sheets
The inverse design of free-form objects from elastic materials has received wide attention in
the past ten years and covers a range of applications, such as inverse shape design under
gravity [STBG12, CZXZ14], design of objects with prescribed natural frequencies [BLT+15],
and design of curved surfaces with elastic membranes [POT17, GMB17], for example by
combining a pre-stretched sheet with rods arranged in tiled star patterns [JSVB20]. Guseinov
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et al. [GMP+20] propose an inverse design tool to encode spatial and temporal morphing
of initially flat, self-actuating shells by controlling the softening rate through mesostructure
geometry. Zheng et al. [ZFF+19] optimize for the flat initial configuration of a target structure
composed of elastic ribbons using a combination of finite element analysis and a genetic
algorithm.
Other strategies for surface fabrication include modeling the deformation of wire mesh with
Chebyshev nets [SFCBCV19], approximation with Origami folding [DVTM16], inflation of
air channel networks [PIC+21], curved developable surfaces [IRHSH20, SGC18], auxetic
shells [KLPCP18], wire meshes mapped to Chebyshev nets [GSFD+14], or packable spirals that
can be pulled apart [WPGSH18]. Another line of research focuses on optimizing the strength-
to-weight ratio of printed parts [SVB+12, ZKWG16], or on a general-purpose parametrization
for optimizing different properties [MAB+15, MHR+16].

2.1.2 Rods and Rod Networks
Solutions to design problems are often based on forward simulation methods, which have
been studied extensively. The earliest rod simulation method in graphics literature treats the
static clamped-free case [Pai02], while the first dynamic rod simulation method is based on a
piecewise-helical discretization [BAC+06]. The popular discrete elastic rod model supports
arbitrary boundary conditions, constraints, and anisotropic cross sections [BWR+08, BAV+10].
Rod simulation is frequently used to compute the dynamics of hair in computer animation.
Modeling hair styles that look lifelike under gravity is among the earliest inverse design
problems studied in computer graphics [Had06], with later works taking into account collisions
and frictional contact [DJBDDT13]. In computational fabrication, rod models have been
employed to predict the elastic response of wires for instance. Applications include the design
of structurally stable wire sculptures [MLB16] and cable-actuated wire characters with multiple
target poses [XKCB19], as well as optimizing the motor trajectories of robotic wire characters
to minimize mechanical oscillations [HXK+19]. Introducing an interactive design system, He et
al. [HPL+19] transform static shapes into deformable objects by customizing the deformation
behavior of helical springs. These methods either rely on plastic wire bending or 3d printing
for fabrication. Recently, Duenser et al. [DPTC20] used a rod model to robotically control a
hot-wire foam cutter with a flexible elastic cutting wire.
Rods and ribbons also play a significant role in self-formation processes, in which mechanical
properties are controlled and exploited to realize a design. Examples are spatially-varying
thermal properties to induce controlled curvature in rods with a straight initial state [WTC+19]
and ribbons whose natural curvature is modified to control their buckled shape [ZFF+19].
Recently, Liu et al. [LDV20] proposed a method for designing elastic planar sheets that can
be bent into axisymmetric 3d structures without gaps. Their approach relies on elastic strips
whose thickness and width are tapered. This model is tailored for a specific class of shapes,
namely surfaces of revolution with at most one inflection point on the meridian curve.
Grids of elastic rods have been used in an architectural context for the economical construction
of curved façades and pavilions. One successful concept is that of a gridshell, an elastic
lattice that is assembled in a planar configuration and curved during deployment [LAGK13].
Gridshells have been built based on asymptotic nets [SHSP18], special geodesic nets and
sliding joints [PLBM20, PM21], and using deployment simulation with inverse design optimiza-
tion [PKLI+19]. Another approach for constructing curved surfaces from flat elements at scale
is the use of spiraling microstructures [MPI+19]. In addition to geometric and simulation-based
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approaches, also experimental, hybrid analogue and digital processes [Sym15], or dedicated
data-driven models that map knowledge derived from physical form-finding experiments to
shapes [FM11] have been explored.
Outside of architecture, rod networks have also been used to approximate deformable surfaces
with multiple target poses at a low fabrication cost [PTC+15] and to cover a surface in a
structurally sound, decorative network of user-defined patterns [ZCT16]. A recent application
of ribbon networks concerns the design of tri-axially woven free-form surfaces, based on
near-geodesic families of curves [VZF+19] or using naturally curved ribbons [RPC+21].

2.1.3 Design Spaces
Some works go beyond solving inverse design problems numerically and also provide formal
conditions for the feasibility of design problems. Pioneering this type of contribution in graphics
literature, Derouet-Jourdan et al. [DJBDT10] study the problem of determining the natural
curvature of an isotropic clamped-free elastic rod in the plane whose deformed shape under
gravity is known. In addition to providing a numerical inversion algorithm, the authors give
a sufficient stability condition on the stiffness and density of the rod. Bertails-Descoubes et
al. [BDJRL18] study the same inversion problem for Kirchhoff rods in three dimensions and
show that the natural configuration is uniquely determined by the equilibrium curve up to
framing.
Beyond the design of elastic rods, Konaković Luković et al. [KLPCP18] study pneumatically-
actuated deployment of auxetic structures and show that this design space is described
exactly by surfaces with positive mean curvature almost everywhere. Finally, Wang and
Solomon [WS21] represent skinning weights on meshes as solutions to a parametrized family
of elliptic partial differential equations, which are shown to possess the same properties as
high-quality weights. We use a similar characterization, based on solutions to a parametrized
differential equation, to describe twist-free equilibria of elastic rods.

2.2 Euler Elastica
The inverse design problem we study in Chapter 4 is based on the so-called elastica problem,
first posed precisely by James Bernoulli in 1691. This problem asks for the shape of a thin,
uniform elastic rod of negligible weight attached to the ground at one end, and loaded with a
weight on the free end. Partial solutions were found by James and Daniel Bernoulli, but Euler
was the first to completely characterize all solutions to the problem and its generalizations for
different boundary conditions and loadings [Lev08].
Of mathematical interest to the present day are questions of buckling and stability of elastic
curves given different boundary conditions, number of inflections, and stiffness distributions.
Most work treats the stability of constant-stiffness elastic curves, such as an early proof
that all non-inflectional curves with kinematic boundary conditions are stable [Bor06, p.
17], and work on a critical load that causes out-of-plane buckling [Kov69]. The most
comprehensive study notes that, for the constant-stiffness case “it can readily be shown
that the higher modes are all unstable. [...] The case of variable stiffness is not so easily
treated, and we reach no conclusions.” [Mad81, p. 52]. Recent work examines inflectional
curves with different combinations of boundary conditions [SL10, Bat15], and the stability
of a doubly-clamped elastica constrained by a curved surface [CH14]. Only a small number
of works treat elastic curves with variable stiffness, for specific load cases and stiffness
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profiles [Coş10, LL18]. The main technical tools for analyzing stability are eigenvalue analysis
and the Jacobi criterion [GF63, MRM98].

2.3 CAD
Computer-aided design is a modern workflow for creating two-dimensional sketches or three-
dimensional geometry, used widely by engineers and designers. The basis for this method is
the construction of sketches from basic operations such as the creation of primitives, and
defining their positions and relationships by dimensioning and adding constraints. Anticipated
by the computer program “Sketchpad” [Sut63], CAD programs on personal computers became
available with the release of AutoCAD and the predecessor of PTC Creo in the 80s [Hof05].
The feature paradigm, used by modern CAD software like OnShape, is based on work by
Roller [Rol91] and Shah [Sha91], as noted by a recent study on CAD design strategies [CCC16].

CAD software ultimately produces models that are bounded by a network of parametric
surfaces and curves, such as ones based on B-splines and NURBS [PT96]. Being a smooth
representation, this is convenient for differential-geometric analysis, such as the computation
of curvatures. Performing structural analysis or solving other simulation tasks is less straight-
forward on a parametric model, and usually entails a change of representation.

2.3.1 Analysis of CAD Models
The predominant approach for analyzing CAD models is to first volumetrically mesh the
enclosed domain, then discretize PDEs over finite elements [SHD+18, HZG+18]. However,
whenever a CAD model parameter is adjusted, the conforming representation has to be refined
and remeshed. In addition to computational overhead, changes in the discretization can also
lead to popping artifacts and non-smooth objective functions during shape optimization. In the
last decade, the field of IsoGeometric Analysis (IGA) has arisen. IGA attempts to unify design
and analysis by augmenting the 2D surface NURBS with 3D solid NURBS elements. This tight
integration between CAD and analysis offers tremendous advantages in shape optimization,
but it comes with the challenge of identifying a parametrization of the volumetric domain from
its boundary, currently an active area of research [HWH+15, DP17]. Mesh-free simulation
methods [NTV92, MKN+04, MKB+10] generate approximations of the deformation field
from only a set of points, but these methods face the challenge that accurately representing
complex features requires an adequate sampling of a model’s boundary. Similar to traditional
mesh-based approaches, this raises sampling and segmentation issues [FGBP11]. Trying to
maintain the advantages of mesh-free methods while addressing these shortcomings, the
enrichment concept of the XFEM enables the introduction of additional degrees of freedom
(DOFs) for elements cut by the boundary. This enables reduction of the complexity of the
geometric meshing domain [FB10]. The method was initially developed by Belytschko and
Black [BB99] for modeling crack growth. In graphics, the method has received attention for
simulating the cutting of shells and solids [JK09, KMB+09, KBT17].

In Chapter 6, our strategy is to build on the XFEM method in order to avoid complex meshing
and remeshing operations. In doing so, we face the technical challenge of accurately integrating
on domains delimited by NURBS surfaces. Safardi et al. [SNSG15, SNSG16] suggest to utilize
NURBS to augment the finite element approximation space and minimize geometric errors
associated with the discretization of a complex domain in combination with the generalized
finite element method. Haasemann et al. [HKPU11] developed a quadratic finite element
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formulation based on the XFEM and NURBS, which was later extended to higher order
approximations [Leg13]. In these works, it is required that the boundary of a model cuts
an element edge of the nonconforming mesh at most once, and elements are cut into at
most two parts. To fulfill these requirements, elements are recursively subdivided, resulting in
discontinuous changes of element domains during shape optimization. A conceptually similar
strategy, which also faces similar challenges, is to simplify the integration domain by subdividing
elements that are cut by boundaries into curved quadrilaterals and triangles [KZB+15]. However,
so far this method has been demonstrated for 2D domains only, and a robust extension to 3D
is challenging because of non-trivial configurations emerging from boundaries with complex
subelement detail. Alternatively, Müller et al. [MKO13, MKEKO17] showed how to integrate
over volumes and surfaces defined by implicitly-given level sets, but their integration strategy
may fail when surface features smaller than a simulation element are present. In this thesis,
we propose quadrature rules that solve this problem.

2.3.2 Optimization of CAD Models
As topology optimization methods do not impose restrictions on attainable shapes [BS99,
LHZ+18], the resulting shapes often cannot be directly fabricated and need to be reinterpreted
as CAD models. In contrast, shape optimization introduces a limited set of design variables,
and the design problem is formulated directly on the parameterized CAD representation. In
practice, shape optimization of CAD models is known to be fragile and delicate to use because
of different representations in design and analysis. An extensive review of parametric shape
optimization techniques can be found in [DP17].
The potential of using XFEM for shape optimization has already been highlighted by Duysinx
et al. [DMJF06], combining simple parametric features such as circles, ellipses, and squares
with a level set topology optimization using XFEM. Zehnder et al. [ZKBT17] use a similar
approach to optimize a set of spherical inclusions. However, these techniques rely on the
assumption that boundaries can be well-approximated by functions which are linear on elements.
Therefore, they cannot capture features that are common in CAD models.
Recently, Najafi et al. [NSTG17] introduced an optimization scheme built on NURBS-based
interface-enriched generalized FEM (IGFEM), illustrating the application for materials with
inclusions. While conceptually we share a similar vision, our method differs in several ways:
Firstly, the NURBS-enhanced IGFEM handles problems with weak discontinuities, such as
different material interfaces; our method can handle strong discontinuities, such as cuts.
Secondly, their method is described and was implemented and validated only for 2D shape
optimization problems. Finally, an extension of their integration strategy to 3D would require
a tessellation of the volume with 3D NURBS elements, resulting in similar challenges as faced
by other IGA methods. We demonstrate the applicability of our method to complex 3D CAD
models.
Notably, taking a data-driven approach, Schulz et al. [SXZ+17] proposed an interactive design
exploration for CAD models in which an analysis is precomputed for parameter samples on an
adaptive grid and then interpolated during run-time. Although this approach is promising for
shapes with just a few design parameters, the combinatorial complexity becomes prohibitive
for higher-dimensional problems.
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CHAPTER 3
Technical Preliminaries

3.1 Differential Geometry of Curves
We use parametrized curves from differential geometry as a mathematical model to capture
elastic deformations of slender objects such as beams and rods. It can be shown that, under
moderate loads, the deformation of objects such as these are well approximated under the
simplifying assumptions that the centerline is in a state of pure bending, and the cross sections
only transform isometrically. This is the force regime that we are interested in, because it
allows the creation of interesting curved shapes while precluding material failure, which would
be the result of forces large enough to cause significant levels of tensile strain. Therefore, it
suffices to prescribe only the deformed centerline and cross-sectional orientation in order to
reconstruct the full state of deformation, and compute quantities such as the elastic energy.
This makes plane curves, for in-plane bending, and framed curves in R3, for rods that undergo
bending and twisting, the standard models for capturing these types of deformations.
In this section, we introduce relevant concepts from the differential geometry of plane curves
and framed curves embedded in R3, which will be used as models for plane elastic curves in
Chapter 4 and elastic rods undergoing bending and torsion in Chapter 5, respectively. While
we explore these concepts, we keep in mind the analogy to elastic rods, and point out how
differential-geometric quantities relate to elasticity theory.
The presentation in this section largely follows lecture notes by Hertrich-Jeromin [HJ19].
For readers familiar with the classical theory of Frenet curves, but not with that of general
moving frames, Bishop [Bis75] provides a concise introduction. More details are given by
O’Neill [O’N66, Ch. 2].

3.1.1 Plane Curves
A continuously differentiable map γ : I → R2, with I = (t0, t1) ⊂ R an interval, is called a
regular parametrized curve if ∀s ∈ I : γ′(s) ̸= 0. If we regard the parameters s ∈ I as the
material points on the centerline of an elastic body, we can interpret γ as a deformation of
the centerline, which moves a point s to γ(s).
The regularity of γ tells us something about the types of deformations that are allowed in our
model. Continuity of γ guarantees that the deformation does not disconnect (fracture) the
centerline. The derivative γ′(s) encodes the direction of the centerline at s, as well the the
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factor by which the centerline is stretched or compressed, given by ∥γ′(s)∥. By assuming that
γ′ is continuous and γ′ ̸= 0, we exclude the possibility that the stretch factor approaches zero
at any point, or even contracts a finite segment of the centerline to a point.

Arc-Length Parametrization. Any map γ̃ = γ ◦ f : Ĩ → R2 with f : Ĩ → I surjective,
continuously differentiable, and f ′ > 0 is called an orientation-preserving reparametrization
of γ, and is also regular. Among all reparametrizations of γ, there exists a unique choice
γ̄ : (0, ℓ)→ R2 that satisfies ∥γ̄′∥ ≡ 1. It holds that ℓ =

∫︁
I ∥γ′∥, which is called the length of

the curve1. To show existence, we define

g : I → (0, ℓ) : t ↦→
∫︂ t

t0
∥γ′∥,

and set f = g−1, which exists because g′ = ∥γ′∥ > 0. Then, we compute

∥γ̄′(s)∥ = ∥γ′(g−1(s)) · 1
g′(g−1(s))∥ = ∥γ′(g−1(s))∥ · 1

∥γ′(g−1(s))∥ = 1.

We call γ̄ the arc-length reparametrization of γ.
As discussed in the introductory part of this section, we are ultimately interested in describing
deformations in which the centerline undergoes bending but does not stretch. This assumption
translates directly into the arc-length condition ∥γ′∥ ≡ 1. Working directly with arc-length
parametrized curves is convenient mathematically, because it simplifies many formulas. However,
the arc-length reparametrization of most curves—exceptions being lines and circles—cannot
be expressed in closed form and is therefore computationally unwieldy.
A useful compromise is to view arc-length parametrized curves as the equivalence classes of
the reparametrization operator on the set of all regular parametrized curves. This way, we
view any regular curve as a representative of the arc-length parametrized curve to which it
can be reparametrized. This allows one to argue about arc-length parametrized curves but use
a representative with a closed-form parametrization for computational purposes. From now
on, we will assume that γ is arc-length parametrized to simplify the exposition. Whenever it is
relevant to a computer implementation of the algorithms discusses in this work, we will also
note which formula needs to be used when an arc-length parametrization is not available.

Turning Angle. Assuming ∥γ′∥ ≡ 1, there exists α : (0, ℓ) → R such that γ′ =
(cosα, sinα)t, where (·)t denotes matrix (or vector) transposition. Because γ′ is contin-
uous, we can also choose α to be continuous. If, in addition, we choose α(0) ∈ [0, 2π), this
uniquely defines the turning angle α. After choosing a starting point γ(0), the reverse mapping
from α to γ is also unique: γ(s) = γ(0) +

∫︁ s
0 (cosα, sinα)t.

Curvature. The quantities introduced so far, namely γ, γ′, and α, change if a curve is
subjected to a rigid transformation, i.e., rotated and translated in the plane as a whole.
Naturally, rigid transformations of an elastic object do not change its elastic energy, and thus
it is easiest to describe the elastic energy in terms of quantities that are invariant under these
transformations—so-called geometric invariants.

1The integral of a function f : I → R will usually be denoted by
∫︁

I
f following Lieb and Loss [LL01,

Ch. 1.1], without introducing the variable of integration or the integration measure explicitly—the latter will
always be the Lebesgue measure. In case the variable of integration needs to be named, for example to
compute the first moment of a function, we employ the usual notation

∫︁
I

xf(x) dx.
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For plane curves, the most fundamental geometric invariant is the (signed) curvature κ =
α′ : (0, ℓ)→ R, whose definition requires γ to be twice-differentiable. For practical purposes,
we will even require γ to be twice continuously-differentiable, so κ is a continuous function.
The reverse mapping from κ to α is unique once we fix α(0), via α(s) = α(0) +

∫︁ s
0 κ. The

mapping from κ to γ is unique after fixing both γ(0) and α(0), and all curves with the same
signed curvature are exactly all possible rigid transformations of each other.
To express κ directly in terms of γ, we compute γ′′ = (−α′ sinα, α′ cosα)t = J γ′κ, where
J = ( 0 −1

1 0 ) represents the counter-clockwise rotation by 90◦ in the plane. This shows that
⟨γ′, γ′′⟩ = κ⟨γ′,J γ′⟩ ≡ 0, and

det(γ′, γ′′) = det(γ′,J γ′κ) = κ⟨J γ′,J γ′⟩ = κ,

where we used the identity det(v, w) = ⟨J v, w⟩, which holds for any v, w ∈ R2. To compute
κ directly from a representative γ̃ = γ ◦ f which is not arc-length parametrized, we first
compute

γ̃′(t) = γ′(s) · f ′(t), γ̃′′(t) = γ′′(s) · [f ′(t)]2 + γ′(s) · f ′′(t),

where we have abbreviated s = f(t). Next we investigate what happens if we apply the
determinant formula to γ̃ instead of γ and find

det(γ̃′, γ̃′′) = ⟨J γ̃′, γ̃′′⟩ = ⟨J γ′f ′,J γ′κ(f ′)2 + γ′f ′′⟩ = κ(f ′)3,

so we have to correct this formula through division by (f ′)3 = ∥γ̃′∥3 > 0, yielding

κ = det(γ̃′, γ̃′′)
∥γ̃′∥3 .

The curvature at a point s is a measure of how strongly the curve bends, and in which direction
it bends, encoded by the magnitude and sign of κ(s), respectively. The curves for which κ
vanishes identically are exactly the line segments, and the curves for which κ ≡ c ̸= 0 are
exactly the circle arcs, in which case 1/c = ±r, with r the radius of the circle.
In Chapter 4, the points at which κ vanishes will play an important role. These are called the
inflection points of γ, and they indicate the points at which the direction of bending changes
from clockwise to counter-clockwise, or vice versa.

Elastic Energy. An elastic potential energy U(γ) is a measure of how much work is necessary
to induce a certain deformation γ, so it is usually easiest to express in terms of κ for its
geometric invariance. If κ is identically zero, γ is undeformed, so its elastic potential vanishes,
and it increases with the magnitude of κ. Assuming that there exists an energy density
W which measures the local contribution to U at each s, i.e., U =

∫︁ ℓ
0 W (s, κ(s)) ds, we

have W (s, 0) = 0 for all s ∈ (0, ℓ). This expresses that straight segments of a curve do
not carry an elastic potential. Furthermore, one usually has W (s, κ) = W (s,−κ), which
indicates that bending a slender object clockwise takes the same amount of work as bending
it counter-clockwise.
The simplest and most common elastic energy density of this type is given by W (s, κ(s)) =
1
2K(s)κ2(s) where K : (0, ℓ) → R>0 is called the stiffness function. Regions of the curve
for which the stiffness is high contribute more strongly to the elastic energy than regions for
which the stiffness is low. This is used to model, for example, non-uniform beams, which
may be wider or thicker in certain regions than in others. Another common assumption is
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to strengthen the condition K > 0, and to require that there exists a constant c > 0 such
that K(s) ≥ c for all s ∈ (0, ℓ). Such stiffness functions are called coercive, and they simplify
the analysis of curves which minimize the elastic energy—a subject we will come back to in
Section 3.3.

3.1.2 Framed Curves in R3

The concept of a parametrized plane curve can be generalized to an ambient space with a higher
dimension as γ : (0, ℓ)→ Rd continuously differentiable with d ≥ 2. Some definitions carry
over directly from the plane case: γ is called regular if ∥γ′(t)∥ > 0 for all t, and parametrized
by arc length if ∥γ′∥ ≡ 1. The orientation-preserving arc-length reparametrization of a curve
is also unique for arbitrary d.
The analogy with elastic rods still makes sense for d = 3, which is the case that we will
consider here. Similar to the plane case, we can view γ as a deformation of the centerline
of a rod, which moves a point s ∈ (0, ℓ) to γ(s). Then ∥γ′(s)∥ is a measure of the local
stretching or compression of the centerline. But since we are only interested in the force
regime that leaves the centerline unstretched, we will again view a curve as a representative of
its arc-length reparametrization.
The definition of signed curvature does not carry over directly from d = 2 to d = 3. For plane
curves, the sign encodes whether the curve winds clockwise or counterclockwise—but this
property changes depending on whether we view the curve from the front or from the back.
For a curve embedded in R3, there is no canonical viewing direction, so only the magnitude of
the curvature carries meaningful information. In analogy to the determinant formula in R2, we
define the (geometric) curvature κ = ∥γ′× γ′′∥, which coincides in magnitude with the signed
curvature of the plane curve obtained by orthogonally projecting γ onto its best-approximating
plane at a point.
A concept that cannot be represented by a parametrized curve in R3 alone is the twist of an
elastic rod, or the rotation of cross sections around the centerline. To represent twist, we
need to add more information to a parametrized curve, and this is usually done with a moving
frame.

Moving Frame. A pair (γ, F ) : (0, ℓ)→ Rd × SO(d) with γ′ = F · ed and F continuously
differentiable is called a framed curve, and F a moving frame adapted to γ. Here, ei denotes
the i-th standard basis vector of Rd. For d = 2, γ uniquely defines F , so the moving frame
carries no additional information. For d = 3, the manifold of all moving frames adapted to a
fixed curve is diffeomorphic to the space of differentiable functions from (0, ℓ) to S1, so we
can choose a rotation angle around the centerline at each point.
To see this, write the columns of F as (n1, n2, γ

′), where n1 and n2 are called material normals,
and we have n2 = γ′ × n1. Given a second moving frame F̄ adapted to γ′, we write its
columns as (n̄1, n̄2, γ

′), with n̄2 = γ′ × n̄1. Because ⟨n1, γ
′⟩ ≡ 0 ≡ ⟨n̄1, γ

′⟩, there is a unique
β : (0, ℓ)→ S1 such that

F̄ = (n̄1, n̄2, γ
′) = (n1, n2, γ

′)

⎛⎜⎝cos β − sin β 0
sin β cos β 0

0 0 1

⎞⎟⎠ = FQβ.

This shows that F encodes a planar rotation, i.e., a rotation in the normal plane spanned by
n1 and n2, at each point of the curve.

16



3.1. Differential Geometry of Curves

A moving frame can be used to encode the twist of an elastic rod by viewing n1 and n2 as
coordinate axes of a cross section, emanating from the intersection point of the centerline and
a cross-sectional plane. This way, if a cross section rotates around the centerline as a result of
twist, this can be captured by applying the same rotation to n1 and n2.

Material Curvatures and Twist. A moving frame and its derivatives are not geometrically
invariant because they change when the framed curve undergoes a rigid transformation. To find
a geometric invariant related to F , we make use of its orthogonal structure and differentiate
the equation FF t ≡ id, which yields F ′F t + F (F ′)t ≡ 0. We can rewrite this equation as
F ′F t = −(F ′F t)t, which shows that F ′F t is a skew-symmetric matrix. Skew-symmetric
3-by-3 matrices have the property that their action equals that of a cross product, i.e., we can
find ω ∈ R3, such that F ′F t · v = ω × v for all v ∈ R3. To express this relationship, we also
write [ω]× = F ′F t. The map ω : (0, ℓ)→ R3 is called the Darboux vector of F .
The Darboux vector itself is not geometrically invariant, but its coordinates k with respect
to F are. These coordinates, given by k = F tω, are called the curvature vector of F . To
show this invariance, we make use of a short lemma: Let Q ∈ SO(3) and v ∈ R3. Then,
Q[v]×Qt = [Qv]×. To see that this holds, verify that

Q[v]×Qtw = Q(v × (Qtw)) = (Qv)× w = [Qv]×w

for any w ∈ R3. Given a rotated copy of the framed curve, (γ̄, F̄ ) = (Qγ,QF ), we compute
[Qω]× = Q[ω]×Qt = QF ′F tQt = F̄

′
F̄

t, so its Darboux vector is given by ω̄ = Qω. Then we
see that its curvature vector is k̄ = F̄

t
ω̄ = F tQtQω = F tω = k.

To interpret the curvature vector geometrically, it is instructive to write it purely in terms of
F . We do this by computing [k]× = [F tω]× = F t[ω]×F = F tF ′F tF = F tF ′, or F ′ = F [k]×.
This equation is called the structure equation of a framed curve, and it can be expanded as⎛⎜⎝ | | |

n′
1 n′

2 γ′′

| | |

⎞⎟⎠ =

⎛⎜⎝ | | |
n1 n2 γ′

| | |

⎞⎟⎠ ·
⎛⎜⎝ 0 −τ κ2

τ 0 −κ1
−κ2 κ1 0

⎞⎟⎠ . (3.1)

This shows that the components of k give the velocities of the columns of F in terms of the
columns of F themselves. The components k = (κ1, κ2, τ)t can be extracted to give

κ1 = ⟨n′
2, γ

′⟩ = −⟨γ′′, n2⟩,
κ2 = ⟨γ′′, n1⟩ = −⟨n′

1, γ
′⟩,

τ = ⟨n′
1, n2⟩ = −⟨n′

2, n1⟩.

The twist τ measures how fast n1 and n2 rotate around the tangent, and thus coincides with
our intuitive notion of twisting a cable. The material curvatures κ1 and κ2 measure, up to
sign, how fast the tangent vector γ′ rotates in directions n1 and n2, or in other words, how
much the curve bends as we walk along it.
The material curvatures are related to, but contain more information than the geometric
curvature κ of γ. They encode how much of the curvature is due to rotation around n1 and
n2 each, which becomes important if the cross section of an elastic rod is anisotropic. In this
case, the resistance to bending may differ depending on the direction: Imagine trying to bend
a paper ribbon in such a way that the surface of the ribbon stays in-plane. One would be met
with enough resistance to rip the paper, while bending it in the “natural” way needs very little
force. This phenomenon makes it important to keep track of κ1 and κ2 separately.
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Frame Invariants. Even though k and ω depend on the choice of frame, certain dependent
quantities are the same across all frames adapted to a fixed curve. These are called frame
invariants, and they can be computed by relating k and ω to quantities that depend only on γ.
To establish a frame invariant involving κ1 and κ2, we first compute

γ′ × γ′′ = γ′ × (κ2n1 − κ1n2) = κ2n2 + κ1n1, (3.2)

which makes use of Eq. 3.1 and the orthogonal structure of F . Then, we see that

κ2 = ∥γ′ × γ′′∥2 = ∥κ2n2 + κ1n1∥2 = κ2
1 + κ2

2,

so the Euclidean norm of (κ1, κ2)t equals κ and thus only depends on γ, but not on F . Using
Eq. 3.2 once more, we also find

γ′ × γ′′ = κ1n1 + κ2n2 = Fk − τγ′ = Fk − ⟨Fk, γ′⟩γ′ = ω − ⟨ω, γ′⟩γ′.

This shows that γ′ × γ′′ equals the orthogonal projection of the Darboux vector onto the
normal plane. Thus, this projection also depends on γ only, and not on F .

Transformations between Frames. We saw at the beginning of this section that any
two frames F and F̄ adapted to the same curve are related by a rotation β : (0, ℓ)→ R in
the normal plane, so F̄ = FQβ. Knowing β, we can compute how the curvature vector and
Darboux vector differ between these two frames. To establish these results, we first note that

Q′
β = β′ ·

⎛⎜⎝− sin β − cos β 0
cos β − sin β 0

0 0 0

⎞⎟⎠ = β′ ·

⎛⎜⎝0 −1 0
1 0 0
0 0 0

⎞⎟⎠
⎛⎜⎝cos β − sin β 0

sin β cos β 0
0 0 1

⎞⎟⎠ = β′[e3]×Qβ.

We use this identity to compute the Darboux vector ω̄ of F̄ by evaluating

[ω̄]× = F̄
′
F̄

t = (F ′Qβ + β′F [e3]×Qβ)Qt
βF

t

= F ′F t + β′F [e3]×F t = [ω + β′Fe3]× = [ω + β′γ′]×,

which makes use of the linearity of the [·]× operator. As a consequence, we have ω̄ = ω+β′γ′,
which confirms our result that the Darboux vectors of different frames adapted to the same
curve only differ by their tangential component.
A similar computation establishes the connection between the curvature vectors:

[k̄]× = F̄
t
F̄

′ = Qt
βF

t(F ′Qβ + β′F [e3]×Qβ) = Qt
β(F tF ′ + β′[e3]×)Qβ

= Qt
β[k + β′e3]×Qβ = [Qt

βk + β′Qt
βe3]× = [Qt

βk + β′e3]×,

so k̄ = Qt
βk + β′e3, or written in components,(︄

κ̄1
κ̄2

)︄
=
(︄

cos β − sin β
sin β cos β

)︄(︄
κ1
κ2

)︄
, τ̄ = τ + β′.

The formula for the material curvatures expresses that the normal components of ω and ω̄
are equal, but that their coordinates k and k̄ are computed once with respect to F and once
with respect to F̄ . Thus (κ̄1, κ̄2)t is related to (κ1, κ2)t by a coordinate change in the normal
plane furnished through a rotation by β. On the other hand, the twist depends not on the
absolute rotation β but on its rate of change. Intuitively, this corresponds to holding a cable
between two hands and rotating only hand to introduce twist—rotating both hands would
rotate the cable as a whole, but not twist it.
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3.2. The Implicit Function Theorem

3.2 The Implicit Function Theorem
Introduction. If two variables x ∈ Rn and p ∈ Rm are related by an explicit functional
relationship g : Rm → Rn : p ↦→ x, with g differentiable, then the Jacobian matrix Jg :
Rm → Rn×m is the best local linear approximation of g around a fixed point p0 ∈ Rm. This is
expressed by

x = g(p) = g(p0) + Jg(p0) · (p− p0) + r(p− p0),
where the first two summands comprise an affine function approximating g around p0, and
r : Rm → Rn is a residual error function such that r(h) goes to zero faster than linearly as
h → 0. This is formally captured by the condition limh→0 ∥r(h)∥/∥h∥ = 0. The entries of
the Jacobian can be shown to equal the partial derivatives

Jg(p) =

⎛⎜⎜⎝
∂g1
∂p1

(p) · · · ∂g1
∂pm

(p)
... . . . ...

∂gn

∂p1
(p) · · · ∂gn

∂pm
(p)

⎞⎟⎟⎠ ,
where p = (p1, . . . , pm)t and g(p) = (g1(p), . . . , gn(p))t. Being able to numerically compute
a local linear approximation around an arbitrary point p0 is indispensable for implementing
root-finding algorithms such as Newton’s method, or local optimization algorithms such as
the method of gradient descent.
Sometimes, there exists a functional relationship g(p) = x in a mathematical sense, but it
is not available in closed form. Instead, we may have access to an implicit relationship of
the form f(p, x) = 0, where f : Rm × Rn → Rn. As an example, consider n = 1 = m and
f(p, x) = xex− p. For p > 0, there is a unique x > 0 such that xex− p = 0, so there exists a
function g : R>0 → R>0 such that f(p, g(p)) = 0 for all p > 0. However, one can show that
g cannot be expressed in closed form, so we need to resort to numerical methods to compute
g(p0) for a given p0 > 0 by finding a root of x ↦→ f(p0, x) instead.
Going back to the general case, we have x ∈ Rn and f(p, x) ∈ Rn. If we fix p0 ∈ Rm, the
map h : x ↦→ f(p0, x) : Rn → Rn has the chance of being invertible because its codomain
and domain have the same dimension. If it really is invertible, then h−1(0) = x0 such that
f(p0, x0) = 0. Via this construction, we can assign to every p0 ∈ Rm exactly one x0 ∈ Rn

such that f(p0, x0) = 0 is satisfied—meaning that we have mathematically constructed an
explicit relationship g : Rm → Rn : p ↦→ x from an implicit one, but it may fail to have a
closed-form expression in general.

The implicit function theorem. This abstract construction of g only works if h is indeed
invertible for all p0 ∈ Rm. The implicit function theorem provides a set of sufficient conditions
on f that guarantee that this is the case. What makes this theorem very useful in practice
is that the Jacobian of g is shown to possess a closed-form expression even when g does
not. This lets us use an implicit functional relationship for root-finding and local optimization
algorithms in much the same way as an explicit one.
We can write the Jacobian matrix of f in block form as Jf (p, x) =

(︂
Jf,p(p, x) Jf,x(p, x)

)︂
, or

Jf (p, x) =

⎛⎜⎜⎜⎜⎜⎝
∂f1
∂p1

(p, x) · · · ∂f1
∂pm

(p, x)
... . . . ...

∂fn

∂p1
(p, x) · · · ∂fn

∂pm
(p, x)⏞ ⏟⏟ ⏞

Jf,p(p,x)

∂f1
∂x1

(p, x) · · · ∂f1
∂xn

(p, x)
... . . . ...

∂fn

∂x1
(p, x) · · · ∂fn

∂xn
(p, x)⏞ ⏟⏟ ⏞

Jf,x(p,x)

⎞⎟⎟⎟⎟⎟⎠ ,
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where the n-by-m block on the left contains the Jacobian matrix with respect to p, and
the n-by-n block on the right, the Jacobian matrix with respect to x. The implicit function
theorem states that g : N (p0)→ Rn with f(p, g(p)) = 0 exists for some neighborhood N (p0)
of p0 ∈ Rm if Jf,x(p, x), the n-by-n block on the right, is invertible for all (p, x) in some
neighborhood of (p0, x0), where f(p0, x0) = 0. Instead of a rigorous proof, we will give a
heuristic argument that this is true, and that we can compute the Jacobian of g in closed
form.
For a fixed p0 ∈ Rm, the block Jf,x(p0, x) is also the Jacobian of h : x ↦→ f(p0, x) : Rn → Rn.
If this matrix is invertible around some x0 ∈ Rn with f(p0, x0) = 0, then h is also invertible
at x0 because the linear approximation of h at x0, given by x ↦→ Jf,x(p0, x0) · (x − x0) is
invertible. This lets us define g(p0) := h−1(0) uniquely.
Without proving the differentiability of g rigorously—this is done by Marsden et al. [MRA88,
2.5]—we can formally compute its Jacobian. Knowing f(p, g(p)) = 0, we differentiate with
respect to p, which yields

Jf,p(p, g(p)) + Jf,x(p, g(p)) · Jg(p) = 0

by using the chain rule from multivariable calculus. Under the assumption that Jf,x is invertible,
we can compute Jg as

Jg(p) = −[Jf,x(p, g(p))]−1 · Jf,p(p, g(p)). (3.3)

Going back to the example f(p, x) = xex − p, this lets us compute g′(p)—which is often
written as dx

dp
to emphasize that we are computing the linearization of x as a function of p. In

this example, Jf,x and Jf,p are scalars given by Jf,x(p, x) = (x + 1)ex and Jf,p(p, x) = −1.
Using Eq. 3.3 yields dx

dp
(p) = 1

(x+1)ex , where x on the right-hand side is such that p = xex.
Note that for this one-dimensional example, we could have gotten the same result by defining
the function p(x) = xex, and computing the derivative of the inverse using the inverse
function rule (p−1)′(y) = 1

p′(p−1(y)) . But for n > 1, the implicit function theorem becomes an
indispensable tool, as illustrated in a concluding example.

Example. We work out an application of the implicit function theorem, a variation of which
is used in Section 6.5.3. Assume we are given two parametrized surfaces σ1, σ2 : R2 → R3

that intersect along a curve C in R3. In addition, we are given a family of planes P (d) =
{x ∈ R3 : ⟨n, x⟩ − d = 0} with fixed normal vector n ∈ S2 such that each plane P (d) for
d ∈ R intersects C in a single point q(d) ∈ R3. Generally, C will not possess a closed-form
parametrization, and q(d) cannot be computed in closed form either. However, after we
find q(d) using numerical methods, we can evaluate q′(d)—the direction and speed at which
the intersection point moves when we change d—analytically thanks to the implicit function
theorem.
To do this, we formalize the implicit relationship between the two surfaces and the plane. The
distance d takes the place of the variable p from the exposition, because it is the variable with
respect to which we want to differentiate. To express that the parametrized surfaces meet the
plane in a single point, we introduce surface parameters u1, u2 ∈ R2, and set x = ( u1

u2 ) ∈ R4.
The implicit relationship is then encoded by

f(d, x) =
(︄
σ1(u1)− σ2(u2)
⟨n, σ1(u1)⟩ − d

)︄
= 04×1
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We can evaluate the blocks of the Jacobian of f from

Jf,d =
(︄

03×1
−1

)︄
, Jf,x(x) =

(︄
Jσ1(u1) −Jσ2(u2)
ntJσ1(u1) 01×2

)︄
∈ R4×4,

where Jσ1 , Jσ2 ∈ R3×2 and ntJσ1 ∈ R1×2. Then we can compute(︄
du1
dd

du2
dd

)︄
= dx

dd = −[Jf,x(x)]−1Jf,d.

The derivative of q(d) = σ1(u1) can then be computed using the chain rule, from

q′(d) = Jσ1(u1) ·
du1

dd .

We will use this theorem at several points throughout this work, for example in Section 4.5 to
compute the gradient of an inflection point s0 ∈ I of a spline curve γ : I → R2, in terms of
the control points p1, . . . , pn ∈ R2 of the curve. Here, an inflection point is defined implicitly
via det(γ′, γ′′)|s0;p1,...,pn = 0. Another example is found in Chapter 6, where the theorem is
used to compute the derivative of intersection points between curves and surfaces, in terms of
the parameters defining these curves and surfaces.

3.3 Variational Problems
Variational calculus is a mathematical tool to analyze the stationary points of smooth func-
tionals, i.e., maps from a function space to the reals. There are many classical problems that
can be solved with this technique, and what they have in common is that the unknown of the
problem is infinite-dimensional, such as a differentiable function y : (0, ℓ)→ R.

One of the oldest examples of a variational problem is the brachistochrone problem, posed
by John Bernoulli in 1696 [Gol80]. This problem asks for the shape of a slide connecting
two fixed points (0, h) ∈ R2 and (w, 0) ∈ R2 that will take a frictionless ball the least time
to roll down under gravity. We can model the shape of the slide as the graph of a function
y : (0, w) → R such that y(0) = h and y(w) = 0. If the ball is modeled as a particle in a
gravitational field that starts at rest from (0, h) before rolling down, one can show that the
time it takes to reach (w, 0) is

F (y) = 1√
2g

∫︂ w

0

⌜⃓⃓⎷1 + [y′(x)]2
h− y(x) dx,

where g > 0 is the gravitational acceleration. Note that F is a function that maps from a
function space to the reals; one calls such functions functionals. The goal in this problem is to
find, among all differentiable functions satisfying the endpoint boundary conditions, the one
that renders F minimal.

The brachistochrone problem is an example of a simplest variational problem, called so at least
since Bolza [Bol04]. Problems of this type are characterized by the existence of a function
f : R× R× R→ R such that F can be written as F (y) =

∫︁ w
0 f(x, y(x), y′(x)) dx.2 Many

2For the brachistochrone, we have f(x, y, z) = 1√
2g

√︂
1+z2

h−y .
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classical variational problems, such as the Snell’s law, geodesic, and minimal surface problems,
are of this type and can be studied using the same theory. Note that this problem is called
“simplest” because dropping the dependence of f on y′(x) would trivialize the problem, as we
could find the optimal y(x) for every fixed x ∈ (0, w) separately by choosing the minimizer of
y ↦→ f(x, y). Problems in which f also depends on y′(x), which couples the different values y
obtains, is the simplest interesting variational problem that has been studied extensively.
The calculus of variations is a set of techniques for systematically analyzing F in order to
find properties of its stationary points, such as extrema or saddle points. In general, these
properties take the form of differential equations that y has to satisfy in order to be a candidate
extremum. For problems involving mechanical equilibria, variational calculus forms the link
between Lagrangian mechanics and Newtonian mechanics, by letting us derive differential
equations that a configuration has to satisfy in order to render a given energy potential
stationary.
Apart from a general increase in simplicity, an advantage of working with Lagrangian mechanics
is that it makes it easier to distinguish between stable and unstable equilibria, because they
correspond to minima and saddle points of the energy potential, respectively. In Chapter 4,
we will investigate a variational problem that is a version of the so-called “simplest problem”
of the calculus of variations, with added isoperimetric constraints, to be introduced below.
Finally, we review a set of sufficient conditions for a solution to be stable, based on the second
variation.
An excellent introduction to this subject is given by Kot [Kot14]. The isoperimetric theory is dis-
cussed by Bolza [Bol02, Bol04], and its extension to multiple constraints by Manning [MRM98].
For an extensive modern introduction, see Hestenes [Hes66]. It bears mentioning that, as noted
by Manning [MRM98], classical literature on the sufficiency of the strengthened Legendre and
isoperimetric Jacobi conditions for more than one constraint is very sparse. Indeed, the only
classical proof [Bol02] does not directly generalize to the case of multiple constraints.

3.3.1 The Simplest Problem
The “simplest problem” is to determine a function y : (0, ℓ)→ R with y(0) = y0 and y(ℓ) = yℓ

such that
F (y) =

∫︂ ℓ

0
f(t, y(t), y′(t)) dt

is locally minimal, for a given function f of sufficient regularity. Similar to finite-dimensional
optimization problems, we say that y locally minimizes F if there exists ε > 0 such that for
all ỹ : (0, ℓ)→ R with ỹ(0) = y0 and ỹ(ℓ) = yℓ and ∥ỹ − y∥ < ε, we have F (y) ≤ F (ỹ).
An important difference to optimization problems over finite-dimensional normed vector spaces
is that this definition depends on the choice of ∥ · ∥. For problems similar to the “simplest”
one, the most common choices are the uniform norm ∥y∥∞ = sup |y| and the C1-norm
∥y∥w = sup |y|+ sup |y′|, which are referred to as the strong and weak norm, respectively,
in the context of variational calculus. Likewise, one calls y a weak or strong minimizer.
Strong minimizers are always weak minimizers, but the converse is not the case, as one can
demonstrate even on examples of “simplest” type, in which f is a polynomial.
This is not an issue for necessary conditions, such as the Euler–Lagrange equation derived
below, because necessary conditions for a weak minimizer are also necessary conditions for a
strong minimizer. Sufficient conditions, however, do not carry over automatically. We will
discuss sufficient conditions for weak minimizers in Section 3.3.3.
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The Euler–Lagrange Equation. To derive a necessary condition that a local minimizer
has to satisfy, assume that y : (0, ℓ) → R was such a minimizer. Then, for arbitrary
η : (0, ℓ)→ R with η(0) = 0 = η(ℓ) and ∥η∥w <∞, there is ε0 > 0 small enough such that
F (y) ≤ F (y + εη) for all ε ∈ (−ε0, ε0). In other words, the function ε ↦→ F (y + εη) has
a minimum at zero. If this function is differentiable, then a necessary condition for this to
be the case is d

dε
F (y + εη)|ε=0 = 0. For F to have a local minimum at y, this needs to be

satisfied for every η. Evaluating this expression for F as defined above gives

0 = d
dεF (y + εη)

⃓⃓⃓⃓
⃓
ε=0

= d
dε

∫︂ ℓ

0
f(t, y(t) + εη(t), y′(t) + εη′(t)) dt

⃓⃓⃓⃓
⃓
ε=0

=
∫︂ ℓ

0

(︄
∂f

∂y
(t, y(t), y′(t)) · η(t) + ∂f

∂y′ (t, y(t), y′(t)) · η′(t)
)︄

dt

=
∫︂ ℓ

0

(︄
∂f

∂y
(t, y(t), y′(t))− d

dt
∂f

∂y′ (t, y(t), y′(t))
)︄
η(t) dt.

The boundary term from using integration by parts in the last equality vanishes because
η(0) = 0 = η(ℓ). Setting U := ∂f

∂y
− d

dt
∂f
∂y′ , we arrive at the necessary condition 0 =∫︁ ℓ

0 U(t, y(t), y′(t)) · η(t) dt for all η satisfying η(0) = 0 = η(ℓ), referred to as the weak form
of the variational problem. The fundamental lemma of the calculus of variations says that this
implies U ≡ 0, or

∂f

∂y
(t, y(t), y′(t))− d

dt
∂f

∂y′ (t, y(t), y′(t)) = 0

for all t ∈ (0, ℓ), known as the Euler–Lagrange equation, or strong form of the problem. If
y satisfies the Euler–Lagrange equation, it is called a stationary point of F , regardless of
whether it is a minimizer.
An immediate simplification can be made if f does not depend on y(t), but only on t and
y′(t), i.e. f = f(t, y′(t)). In this case, the first term in the Euler–Lagrange equation vanishes,
and we are left with d

dt
∂f
∂y′ = 0, which is equivalent to ∂f

∂y′ = c for some c ∈ R. Then, the
necessary condition for y to be a local minimum is that there exists c ∈ R such that

∂f

∂y′ (t, y
′(t)) = c,

for all t ∈ (0, ℓ).

3.3.2 Isoperimetric Constraints
Isoperimetric constraints, also called integral constraints, are constraints on y of the form

G(y) =
∫︂ ℓ

0
g(t, y(t)) dt = k

for some fixed k ∈ R and a given function g. The constrained variational problem is to find
a function y with y(0) = y0 and y(ℓ) = yℓ that minimizes F locally among all functions
that satisfy G(y) = k. As with the simplest problem, we will try to reduce this problem to a
finite-dimensional one, so we can apply knowledge about constrained minimizers of problems
on finite-dimensional spaces.
To derive a necessary condition, assume that y is a constrained minimizer, and that y is not
a stationary point of G—this is a technical assumption which is required for the necessary
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condition to hold. It follows that T = ∂g
∂y

does not identically vanish. Choose η1 and η2

arbitrarily, but such that ηi(0) = 0 = ηi(ℓ) for i = 1, 2, and ∫︁ ℓ
0 T · η2 ̸= 0. This is possible

because T does not identically vanish. Then, define

ỹ(ε1, ε2) = y + ε1η1 + ε2η2, F̃ (ε1, ε2) = F (ỹ(ε1, ε2)), and G̃(ε1, ε2) = G(ỹ(ε1, ε2)).

By the same argument as for the simplest problem, F̃ has a constrained minimum at (0, 0)
subject to G̃ = k. A computation similar to the derivation of the Euler–Lagrange equation
shows that

∂G̃

∂εi

⃓⃓⃓⃓
⃓
ε1,ε2=0

=
∫︂ ℓ

0

∂g

∂y
ηi =

∫︂ ℓ

0
T · ηi,

so ∂G̃/∂ε2 ̸= 0, and therefore ∇G̃ ̸= 0. Under this condition, the theorem of Lagrange
multipliers states that there exists λ ∈ R such that (ε1, ε2) ↦→ F̃ (ε1, ε2) + λG̃(ε1, ε2) has a
stationary point at (0, 0). The first component of this condition yields

0 =
∫︂ ℓ

0

(︄
∂(f + λg)

∂y
− d

dt
∂(f + λg)

∂y′

)︄
η1,

for arbitrary η1 : (0, ℓ)→ R with η1(0) = 0 = η1(ℓ).
This shows that a necessary condition for F to have a constrained minimum at y subject to
G(y) = k is that there exists λ ∈ R such that, for all t ∈ (0, ℓ),

∂(f + λg)
∂y

(t, y(t), y′(t))− d
dt
∂(f + λg)

∂y′ (t, y(t), y′(t)) = 0.

To handle G(y) ∈ Rd, we can introduce a Lagrange multiplier λ ∈ Rd, and substitute λg in
the constrained Euler–Lagrange equation with ⟨λ, g⟩.

3.3.3 Stability of Solutions
So far, we have extracted information about candidate minimizers of a functional F using
d
dε

(F + εη)|ε=0, which is called the first variation of F , in analogy to the first directional
derivative in multi-variable calculus. The necessary condition described by the Euler–Lagrange
equation is all the first variation has to give, and we have to rely on higher derivatives in order
to distinguish actual local minimizers from other stationary points.
In finite-dimensional optimization problems, looking at the second derivatives of a function
f : Rn → R often yields enough information to let us pin down local minima. If f ′(x)
vanishes, it suffices to check whether all directional second derivatives at x are positive, i.e.,
d2

dε2f(x+ εd)|ε=0 > 0 for all d ̸= 0. Because the directional second derivatives in direction d
can be computed from the Hessian Hf of f via ⟨d,Hf (x) · d⟩, an equivalent criterion is that
Hf be positive-definite at x. This reduces the problem of checking positivity for all directions
to checking a finite number of inequalities. On the other hand, if Hf is not even positive
semi-definite at x, this shows that x cannot be a local minimizer. This leaves only the case in
which Hf is positive semi-definite but not positive definite. Then the second derivative does
not contain enough information to determine the type of a stationary point.
In broad strokes, second-order necessary and sufficient conditions follow the same rules in
variational problems. For problems of “simplest” type, a rigorous proof of the necessary and
sufficient conditions can be given in fairly concise terms, and we will describe them here. The
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proofs do not carry over directly to variational problems with isoperimetric constraints, but
the proof of the necessary condition is short, so we will present it as well. For the proof
of the sufficient condition, there is a somewhat lengthy classical proof for the case of one
constraint [Bol02], but proofs for multiple constraints rely on modern theory which we do not
cover here [Hes66].
There are two stability conditions, named after Legendre and Jacobi, that play a role in proving
or disproving that a solution to the Euler–Lagrange equations is a minimizer to a variational
problem. Each condition has a necessary and a sufficient version, loosely resembling the semi-
positive definiteness and strict positive definiteness of the Hessian in the finite-dimensional
case. The Legendre condition is the same for “simplest” and isoperimetric problems, but the
Jacobi condition is more complex for the latter. The following table provides an overview of
the conditions, whether they are necessary or sufficient, and whether we give a proof in the
remainder of this section. We also cite references to self-contained proofs if available.

Name Abbr Condition Type Proof

Legendre condition L R ≥ 0 necessary yes; see [Kot14]
Strengthened Legendre
condition

L+ R > 0 - -

Jacobi condition J σ ≥ ℓ necessary yes; see [Kot14, Mie15]
Strengthened Jacobi
condition

J+ σ > ℓ sufficient with L+ yes; see [Kot14]

Isoperimetric Jacobi
condition

Jiso σiso ≥ ℓ necessary yes; a for 1 constraint see
[Kne02, Bol03]

Strengthened isoperi-
metric Jacobi condition

J+
iso σiso > ℓ sufficient with L+ no; for 1 constraint see

[Bol02]

aThere is no classical published proof for the necessary isoperimetric Jacobi condition for more than one
constraint. The proof presented here is original work, but requires one additional technical assumption, which
is not generally required. This is similar to the first proof of the condition for one constraint by Kneser [Kne02],
which left a special case open to be solved by Bolza [Bol03].

The Second Variation. Going back to the simplest problem, we want to check if a stationary
point y is a weak local minimizer of F . A sufficient condition is that ε ↦→ F (y+εη) is minimal
at ε = 0 for all choices of η with η(0) = 0 = η(ℓ). Expanding F as a Taylor series in ε yields

F (y + εη)− F (y) = ε2 · 12
d2

dε2F (y + εη)
⃓⃓⃓⃓
⃓
ε=0

+O(ε3) > 0,

because the linear term vanishes at y. Thus, an equivalent condition for a minimum at ε = 0
is that d2

dε2F (y + εη)|ε=0 > 0. A short computation reveals

d2

dε2F (y + εη)
⃓⃓⃓⃓
⃓
ε=0

=
∫︂ ℓ

0

(︂
Pη2 + 2Qηη′ +Rη′2

)︂
,

with P = ∂2f

∂y2 , Q = ∂2f

∂y∂y′ , R = ∂2f

∂y′2 .

(3.4)

The Legendre Condition (L). A necessary condition which is sharper than the Euler–
Lagrange equation alone is given by R ≥ 0 on (0, ℓ). This was discovered first by Legendre in
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1786 [Gol80]. We can show that the converse, namely R(T ) < 0 for some T ∈ (0, ℓ), lets us
construct η such that the second variation is negative.
To do this, we make a transformation to Eq. 3.4: Note that for any arbitrary differentiable
function w : (0, ℓ)→ R, it holds that∫︂ ℓ

0
(w′η2 + 2wηη′) =

∫︂ ℓ

0
(wη2)′ = wη2|ℓ0 = 0,

because η vanishes at 0 and ℓ. Therefore, we can rewrite

d2

dε2F (y + εη)
⃓⃓⃓⃓
⃓
ε=0

=
∫︂ ℓ

0

[︂
(P + w′)η2 + 2(Q+ w)ηη′ +Rη′2

]︂
. (3.5)

From continuity of R (which follows from F twice continuously differentiable), there exists an
interval (t0, t1) around T such that R is negative on all of (t0, t1). Choose as η a bump on
this interval. This lets us shrink the integration interval to (t0, t1) and complete the square
suggested by the last two terms in Eq. 3.5, which gives

d2

dε2F (y + εη)
⃓⃓⃓⃓
⃓
ε=0

=
∫︂ t1

t0

{︄[︄
(P + w′)− (Q+ w)2

R

]︄
η2 +R

(︃
η′ + Q+ w

R
η
)︃2}︄

.

If we choose w such that the term multiplying η2 vanishes, we have almost completed the
proof, as the remaining term is a product between a negative function and a square. Thus, we
will attempt to solve

P + w′ − (Q+ w)2

R
= 0. (3.6)

The Peano existence theorem guarantees that a solution w exists at least in a neighborhood
around T . Should this neighborhood be smaller than (t0, t1), we can shrink (t0, t1) to be
contained in the neighborhood, and adjust η accordingly. Finally, we arrive at

d2

dε2F (y + εη)
⃓⃓⃓⃓
⃓
ε=0

=
∫︂ t1

t0
R
(︃
η′ + Q+ w

R
η
)︃2
,

which is non-positive, and only vanishes if η′ + Q+w
R
η vanishes identically. However, this may

only happen if η itself vanishes identically on (t0, t1), which is excluded by construction. This
way, we have shown that R(T ) < 0 contradicts the assumption that y is a minimizer, so
R ≥ 0 is a necessary condition.
One may be tempted to surmise that R > 0 is sufficient to claim a minimum. Then one would
be in Legendre’s good company, but mistaken nevertheless. It was only in 1836—50 years
later—that Jacobi showed that R > 0 is only one of two inequalities that together comprise a
sufficient condition.

The Strengthened Jacobi Condition (J+). To arrive at a condition that lets us switch out
“≥” for “>” to turn a necessary into a sufficient condition—similar to the Hessian condition
for finite-dimensional optimization problems—we have to append Legendre’s condition with a
second condition. The proof strategy for the necessity of the Legendre condition suggests that
we would have had a sufficient condition if R > 0, and Eq. 3.6 had a solution w that was
defined on all of (0, ℓ). Because then, we can make the transformation

d2

dε2F (y + εη)
⃓⃓⃓⃓
⃓
ε=0

=
∫︂ ℓ

0
R
(︃
η′ + Q+ w

R
η
)︃2
,
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for arbitrary η, and see that the integral is strictly positive whenever the square term does not
vanish identically. But this may only happen if η ≡ 0, because this is the unique solution of
η′ + Q+w

R
η = 0 with the boundary conditions η(0) = 0 = η(ℓ).

A solution to Eq. 3.6, called a Ricatti equation, can be found by transforming the solution to
a simpler linear equation, called the Jacobi equation,

Su := (Ru′)′ + (Q′ − P )u = 0. (3.7)

Should this equation have a solution u with u(t) ̸= 0 for all t ∈ [0, ℓ], we define

w(t) = −Q(t)−R(t)u
′(t)
u(t) ,

and verify3 that it solves Eq. 3.6. It remains to check whether Eq. 3.7 has a solution that
never changes sign. A sufficient condition can be formulated in terms of the particular solution
with boundary conditions u(0) = 0 and u′(0) = 1. If this solution has no zeros on (0, ℓ], then
we can perturb the initial condition u(0) = ε > 0 without introducing additional zeros on this
interval, because solutions to the Jacobi equation are continuous in the initial conditions. This
yields a solution with no zeros on [0, ℓ].
To summarize: A solution y of the Euler–Lagrange equation is a local minimizer of F if R > 0
on all of (0, ℓ), and if the particular solution to Su = 0 satisfying u(0) = 0 and u′(0) = 1
does not cross zero on (0, ℓ].
A point σ ∈ (0, ℓ] such that u(σ) = 0 is called a conjugate point. Thus, the strengthened
Jacobi condition is often written as σ > ℓ, to indicate that there is no conjugate point in the
problem domain.

The Jacobi Condition (J). By weakening this condition to σ ≥ ℓ, we arrive at a necessary
condition for a minimizer. Equivalently, if a conjugate point satisfies σ < ℓ, then it can be
shown that y is not a local minimizer. The case σ = ℓ is the one in which the second variation
alone does not contain enough information to distinguish between different types of stationary
points.
The proof of the necessity of this condition proceeds in two steps. In the first step, we show
that σ ≤ ℓ implies that there is a direction η in which the second variation d2

dε2f(y + εη)|ε=0
vanishes. This tells us that y is in the very least not an unconditionally stable minimum, and
has at most marginal stability—analogous to a Hessian which is at most positive semi-definite
but not positive definite in a finite-dimensional optimization problem. In the second step, we
show that σ < ℓ lets us perturb this direction to even make the second variation negative,
which shows that y is not a minimizer.
For the first step, we go back to the original form of the second variation, Eq. 3.5, and show
that it is closely connected to Eq. 3.7. This step uses the identity ∫︁ ℓ

0 2Qηη′ =
∫︁ ℓ

0 −Q′η2, which
follows from applying integration by parts,∫︂ ℓ

0
2Qηη′ =

∫︂ ℓ

0

(︂
−2Q′η2 − 2Qηη′

)︂
,

3First, compute w′ = −Q′ − 1
u (Ru′)′ + R u′2

u2 , and (Q + w)2 = R2 u′2

u2 . Then, we see that

P + w′ − (Q + w)2

R
= P −Q′ − 1

u
(Ru′)′ = − 1

u
[(Q′ − P )u + (Ru′)′] = − 1

u
Su = 0.
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and moving the Qηη′ terms to the same side. Using the shorthand W := P −Q′, this lets us
transform

d2

dε2F (y + εη)
⃓⃓⃓⃓
⃓
ε=0

=
∫︂ ℓ

0

(︂
Pη2 + 2Qηη′ +Rη′2

)︂
=
∫︂ ℓ

0

(︂
Wη2 +Rη′2

)︂
=
∫︂ ℓ

0

(︂
Wη2 − (Rη′)′η

)︂
= −

∫︂ ℓ

0
η ((Rη′)′ −Wη) = −

∫︂ ℓ

0
η Sη,

(3.8)

which uses integration by parts again, between the first and second line.

To complete this step, we define η in such a way that the integrand η Sη vanishes identically,
causing the second variation to vanish. We do this by setting η(t) = u(t) for t ∈ [0, σ], and
η(t) = 0 for t ∈ (σ, ℓ]. Note that η satisfies η(0) = 0 = η(ℓ) and is continuous because
u(0) = 0 = u(σ). The integrand η Sη vanishes identically because Sη = Su vanishes on
[0, σ], and η vanishes on [σ, ℓ].

In the second step, we perturb this choice of η by adding a positive smooth function that
vanishes at the endpoints, for example h(t) = t(ℓ− t), multiplied by a small positive factor
ι > 0. Then, we show that the second variation is negative in direction η + ιh for ι small
enough [Mie15, Thm. 3.2.8]. This step is more tedious than the first and is mostly included for
completion’s sake. No important insights will be missed upon skipping ahead to “Isoperimetric
Constraints”.

The proof consists mostly of a series of manipulations and applications of integration by parts
to the quantity d2

dε2F (y + ε(η + ιh))|ε=0, to show that it is negative for ι small enough. Two
of the steps rely on results that we discuss separately. The first is the identity − ∫︁ σ

0 uSh =
R(σ)u′(σ)h(σ), which can be shown using elementary calculus.4 The second is the strict
inequality u′(σ) < 0: Because σ is the first root of u, and u is positive on (0, σ), we must
have u′(σ) ≤ 0. But if u′(σ) = 0, it follows from u(σ) = 0 that u ≡ 0 solves Eq. 3.7. Since
this equation has a unique solution, this is the only solution, which contradicts the initial
condition u′(0) = 1. Therefore we have u′(σ) < 0.

Now we are ready to show that the second variation is negative in direction ξ := η + ιh for ι
small enough. Written in full, this direction is defined by

ξ(t) =

⎧⎨⎩u(t) + ιh(t) if t ∈ (0, σ],
ιh(t) otherwise.

We see that ξ is continuous because u(σ) = 0 but not differentiable at σ. However, it has a
left derivative ξ′

−(σ) = u′(σ) + ιh′(σ) and a right derivative ξ′
+(σ) = ιh′(σ). To start with,

we split the integral defining the second variation in direction ξ into contributions from (0, σ)
and (σ, ℓ). Then, we apply the same transformation as in Eq. 3.8 to both integrals, but this

4To show the identity, compute

−
∫︂ σ

0
uSh =

∫︂ σ

0
(Wuh− u(Rh′)′) (1)=

∫︂ σ

0
(Wuh + Ru′h′) =

∫︂ σ

0
(Wuh + (Ru′h)′ − (Ru′)′h)

=
∫︂ σ

0
((Ru′h)′ − hSu) (2)= Ru′h|σ0

(3)= (Ru′h)(σ).

(1) uses integration by parts, and u(0) = 0 = u(σ). (2) uses that Su vanishes identically and the fundamental
theorem of calculus. (3) uses that h(0) = 0.

28



3.3. Variational Problems

time, boundary terms remain because Rξ′ξ does not vanish at σ:

d2

dε2F (y + εξ)
⃓⃓⃓⃓
⃓
ε=0

=
∫︂ σ

0

(︂
Wξ2 +Rξ′2

)︂
+
∫︂ ℓ

σ

(︂
Wξ2 +Rξ′2

)︂
= −

∫︂ σ

0
ξ Sξ + (Rξ′

−ξ)(σ)−
∫︂ ℓ

σ
ξ Sξ − (Rξ′

+ξ)(σ) = (∗)
(3.9)

Next, we insert the definition of ξ, cancel terms, and consolidate by using linearity of S:

(∗) = −
∫︂ σ

0
(u+ ιh)S(u+ ιh) + [R(u′ + ιh′)ιh](σ)− ι2

∫︂ ℓ

σ
hSh− ι2(Rh′h)(σ)

= −ι
∫︂ σ

0
(u+ ιh)Sh+ ι(Ru′h)(σ)− ι2

∫︂ ℓ

σ
hSh

= ι

(︄
(Ru′h)(σ)−

∫︂ σ

0
uSh− ι

∫︂ ℓ

0
hSh

)︄
= (∗),

(3.10)

which, using our identity for ∫︁ σ
0 uSh, becomes

(∗) = ι

(︄
2(Ru′h)(σ)− ι

∫︂ ℓ

0
hSh

)︄
.

Because R, h > 0 and u′(σ) < 0, the term 2(Ru′h)(σ) is strictly negative. By choosing ι
small enough, it can be ensured that this term dominates and the entire expression is negative.

Isoperimetric Constraints. The first step in establishing second-order conditions on mini-
mizers subject to isoperimetric constraints is to find the analogue of the unconstrained condition
that the second variation be non-negative. Similar to the way we derived the constrained
Euler–Lagrange equation, this can be done by reducing the problem to a finite-dimensional
one by choosing η and introducing a parameter ε. The second-order necessary conditions for
a constrained minimizer x ∈ Rn of f : Rn → R subject to g(x) = 0 with g : Rn → Rd are
given by

⟨d,Hf+⟨λ,g⟩(x) · d⟩ ≥ 0 for all d ∈ Rn with Jg · d = 0,
where λ is the Lagrange multiplier associated with the stationary point x, and Jg is the
Jacobian matrix of g. In other words, the second directional derivative of f + λg has to be
non-negative in all directions orthogonal to the constraint tangents. A sufficient condition is
obtained by replacing “≥” with “>”.
For isoperimetric variational problems, this condition can be translated directly from the
finite-dimensional one, by replacing the second directional derivative with the second variation,
and Jg with ∂g/∂y,

d2

dε2F
∗(y + εη)

⃓⃓⃓⃓
⃓
ε=0
≥ 0 for all η : (0, ℓ)→ R with η(0) = 0 = η(ℓ) and

∫︂ ℓ

0

∂g

∂y
η = 0,

where we have abbreviated F ∗ = F + ⟨λ,G⟩. Similar to the unconstrained problem, we define
P , Q, and R by replacing f with f ∗ = f + ⟨λ, g⟩, so we reproduce the formula

d2

dε2F
∗(y + εη)

⃓⃓⃓⃓
⃓
ε=0

=
∫︂ ℓ

0

(︂
Pη2 + 2Qηη′ +Rη′2

)︂
= −

∫︂ ℓ

0
η Sη,

with P = ∂2f ∗

∂y2 , Q = ∂2f ∗

∂y∂y′ , R = ∂2f ∗

∂y′2 .
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The necessity proof of the Legendre condition R = ∂2f∗

∂y′2 ≥ 0 follows the unconstrained case line
by line, except that η must be chosen on (t0, t1) to satisfy the constraint tangent orthogonality
condition ∫︁ t1

t0
∂g
∂y
η = 0.

The isoperimetric Jacobi condition is more complicated than the one in the unconstrained
setting, and we will introduce a few derived quantities before stating it in full. Assume
that y is a constrained minimizer of F subject to G = k. Define the constraint tangents
Ti = ⟨ei,

∂g
∂y
⟩ : (0, ℓ)→ R for i = 1, . . . , d, and let

Su = 0 with u(0) = 0, u′(0) = 1,
Svi = Ti with vi(0) = 0, v′

i(0) = 1.

the solutions to the homogeneous and inhomogeneous Jacobi equations with the constraint
tangents as right-hand sides. Furthermore, set Mi(t) =

∫︁ t
0 Tiu and Nij(t) =

∫︁ t
0 Tivj for all

i, j = 1, . . . , d. Define the constrained stability matrix Z : (0, ℓ)→ R(d+1)×(d+1) by

Z =

⎛⎜⎜⎜⎜⎝
u v1 · · · vd

M1 N11 · · · N1d
... ... . . . ...
Md Nd1 · · · Ndd

⎞⎟⎟⎟⎟⎠ =
(︄
u vt

M N

)︄
.

A point σiso such that detZ(σiso) = 0 is called an isoperimetric conjugate point.

The Isoperimetric Jacobi Condition (Jiso). A necessary condition for y to be a constrained
minimum is σiso ≥ ℓ, i.e., there be no isoperimetric conjugate point in the open interval
(0, ℓ). There is also a technical assumption required for an elementary proof to work, which
we mention below. Like in the unconstrained setting, the proof proceeds in two steps: The
first establishes a direction in which the second variation vanishes, and the second makes a
perturbation that causes it to become strictly negative.
For the first step, we define the direction η by the following construction: Let Z̄(t) =(︂

u(t) v(t)t

M(σiso) N(σiso)

)︂
, and define η(t) = det Z̄(t) for t ∈ [0, σ] and η(t) = 0 otherwise. Because

η(σiso) = det Z̄(σiso) = detZ(σiso) = 0, we have continuity of η. We need to show that η is
an admissible variation, in the sense that it satisfies ∫︁ l

0 Tkη = 0 for all k = 1, . . . , d. To see
this, compute ∫︂ ℓ

0
Tkη =

∫︂ σiso

0
det

(︄
Tk(t)u(t) Tk(t)v(t)t

M(σiso) N(σiso)

)︄
dt

= det
(︄
Mk(σiso) Nk1(σiso) · · ·Nkd(σiso)
M(σiso) N(σiso)

)︄
= 0,

where the last equality follows from the fact that the first and (1 + k)-th row of the matrix are
equal. The next step is to represent Sη as a linear combination of the constraint tangents,

Sη = det
(︄
Su Sv1 · · · Svd

M(σiso) N(σiso)

)︄
= det

(︄
0 T1 · · ·Td

M(σiso) N(σiso)

)︄
=

d∑︂
i=1

µiTi,

for suitable µ1, . . . , µd ∈ R. Then it immediately follows that

d2

dε2F
∗(y + εη)

⃓⃓⃓⃓
⃓
ε=0

= −
∫︂ ℓ

0
η Sη = −

∫︂ ℓ

0
η

(︄
Sη −

d∑︂
i=1

µiTi

)︄
= 0.
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This shows that y is not an unconditionally stable constrained minimum.

The second step proceeds the same way as in the unconstrained setting, with a few more
calculations in order to eliminate terms arising from det Z̄(σiso). As before, we perturb η in
order to produce a new direction ξ(t) = η(t) + ιh(t), with h(0) = 0 = h(ℓ). To maintain the
property ∫︁ ℓ

0 Tkξ = 0 for all k = 1, . . . , d, the function h has to be chosen to satisfy ∫︁ ℓ
0 Tkh = 0

as well. Some steps of the calculation require us to place further constraints on h, such as
h′(σiso) = 0 and ∫︁ σiso

0 Tkh = 0. However, such a function h is still guaranteed to exist because
it is chosen from an infinite-dimensional function space arising as the orthogonal complement
to the finite-dimensional subspace defined by these constraints.

The same transformations as in Eqs. 3.9 and 3.10 lead to

d2

dε2F
∗(y + εξ)

⃓⃓⃓⃓
⃓
ε=0

= −
∫︂ ℓ

0
ξ Sξ + ι(Rη′

−h)(σ)

= −ι2
∫︂ ℓ

0
hSh− ι

∫︂ σ

0
(hSη + η Sh) + ι(Rη′

−h)(σ),

where we have omitted the subscript “iso”. The middle term can be transformed as follows,

−
∫︂ σ

0
(hSη + η Sh) = −

∫︂ σ

0

[︄
h det

(︄
0 T t

M(σ) N(σ)

)︄
+ det

(︄
u vt

M(σ) N(σ)

)︄
Sh
]︄

= det
(︄
−
∫︁ σ

0 uSh −
∫︁ σ

0 (hT t + Sh vt)
M(σ) N(σ)

)︄
= (∗)

We know from footnote 4 that the top-left entry in this last matrix simplifies to − ∫︁ σ
0 uSh =

(Ru′h)(σ). The expressions ∫︁ σ
0 Tih vanish by construction of h. This leaves − ∫︁ σ

0 vi Sh, which
can be transformed in exactly the same way as in footnote 4 to yield (Rv′

ih)(σ). This gives

(∗) = det
(︄

(Ru′h)(σ) (R(v′)th)(σ)
M(σ) N(σ)

)︄

= R(σ)h(σ) det
(︄
u′(σ) (v′)t(σ)
M(σ) N(σ)

)︄
= (R(det Z̄)′h)(σ) = (Rη′

−h)(σ).

Thus, we find that the second variation can again be represented as

d2

dε2F
∗(y + εξ)

⃓⃓⃓⃓
⃓
ε=0

= ι

(︄
2(Rη′

−h)(σiso)− ι
∫︂ ℓ

0
hSh

)︄
,

which gives the desired result under the assumption η′
−(σiso) = (det Z̄)′(σiso) ̸= 0.

The Strengthened Isoperimetric Jacobi Condition (J+
iso). Finally, a sufficient condition is

given by strengthening the isoperimetric Jacobi condition to σiso > ℓ to exclude the coincidence
of the first conjugate point with the right endpoint, together with the strengthened Legendre
condition R > 0. As noted in the introduction, there is no published classical proof for this
condition that generalizes to more than one isoperimetric constraint. This case is discussed
at length by Manning [MRM98], who cites Bolza [Bol02] as the only classical source giving
a proof for a single constraint. A proof with more than one constraint can be found in
Hestenes [Hes66], but it uses a formalism that is too far removed from the one used in this
thesis to be included here.
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3.4 The Adjoint Method
Broadly speaking, the adjoint method (or adjoint state method) is a way of calculating the
derivative of the objective function in constrained optimization problems, more efficiently
than by repeated application of the chain rule [Bra19, CLPS03]. Typically, this method is
applied to optimization problems constrained by differential equations, but the main idea can
be illustrated via a standard nonlinear optimization problem with nonlinear constraints,

min
x∈Rn,p∈Rm

f(x) s.t. g(p, x) = 0, (3.11)

with f : Rn → R and g : Rm × Rn → Rn, supposing that Jg,x(p, x) is invertible for all (p, x)
such that g(p, x) = 0. The constraints are of the form discussed in Section 3.2, so given
(p0, x0) with g(p0, x0) = 0, we are guaranteed the existence of a function x(p) such that
x(p0) = x0 and g(p, x(p)) = 0 for all (p, x) sufficiently close to (p0, x0). Furthermore, we can
compute Jx(p) = − (Jg,x(p, x))−1 Jg,p(p, x).

We see that choosing p0 ∈ Rm uniquely defines x0 ∈ Rm (at least locally) such that
g(p0, x0) = 0. Therefore, a common way of solving Eq. 3.11 is to interpret p as the control
variable and x as the dependent variable, and run an iterative gradient-based unconstrained
optimization algorithm on the problem “minp∈Rm(f ◦ x)(p)”. Using what we know, we can
compute the gradient of f ◦ x with the chain rule from

Jf◦x(p) = Jf,x(x(p)) · Jx(p) = −Jf,x(x(p))
[︂
Jg,x(p, x(p))−1Jg,p(p, x(p))

]︂
.

For many applications, m and n may be very large, for example if x and p are discretizations of
functions on Rd. Often, however, Jg,p and Jg,x will have a number of non-zeros which is linear
in m or n, so they can be represented efficiently as sparse matrices. The same will usually not
hold for Jx, which is a dense n-by-m matrix, so it would be best to avoid computing it. For
this problem, it is easy to see that this can be achieved by rewriting the equation as

Jf◦x(p) = −
[︂
Jf,x(x(p)) · Jg,x(p, x(p))−1

]︂
Jg,p(p, x(p)),

so, by solving the linear system J t
g,x(p, x(p)) · λ = J t

f,x(x(p)) and then computing Jf◦x(p) =
−⟨λ, Jg,p(p, x(p))⟩. This is surely more efficient, because we solve a linear system with a
single right-hand side instead of m right-hand sides, and avoid storing the n-by-m solution.

The same idea can be applied to more complicated optimization problems and variational
problems, with constraints given by PDEs, ODEs, or of isoperimetric type. The resulting
adjoint equations—which, in the example above, is the linear system for computing λ—can
then be solved to yield the gradient of the objective function with respect to the control
parameters. Unlike the original equations, the adjoint equations are always linear, and may
take the form of finite-dimensional linear systems or differential equations, depending on the
original problem.

3.4.1 Céa’s Method
The adjoint equations can be derived for a given optimization problem using Céa’s method
[Sha18, Cea86], a general strategy for doing the right kinds of substitutions and transformations
in order to achieve the goal. It is easiest to first illustrate the method on a concrete example,
before explaining how it works more generally.

32



3.5. Numerical Optimization

Let us consider the constrained optimization problem

min
g,u:(0,1)→R

∫︂ 1

0
u2 s.t. u′′ = g, u(0) = 0, u′(1) = 1.

Since u is uniquely determined by g, we can view g as the control parameter, and consider
the objective as a functional F (g) =

∫︁ 1
0 u

2. To perform gradient-based optimization, we want
to identify δF [g; δg]. The goal of the adjoint method is to avoid computing intermediate
quantities such as δu in the process.
Céa’s method achieves this by rewriting F as

F =
∫︂ 1

0
u2 +

∫︂ 1

0
ū(u′′ − g),

in which we can choose the function ū arbitrarily without changing F , because u′′ = g. If we
apply the δ-operator to F , this will result in the appearance of terms involving δu at first. But,
as we will see shortly, ū can be chosen to cancel out δu, which simplifies the computation of
δF .
The variation of F is given by

δF =
∫︂ 1

0
(2u δu+ ū(δu′′ − δg))

= (ū δu′ − ū′δu)|10 +
∫︂ 1

0
((2u+ ū′′) δu− ū δg)

= −ū′(1) δu(1)− ū(0) δu′(0) +
∫︂ 1

0
((2u+ ū′′) δu− ū δg) ,

where he have first used integration by parts twice, and then the boundary conditions δu(0) = 0
and δu′(1) = 0. We can see that choosing ū as the solution to the adjoint equation

ū′′ = −2u, s.t. ū(0) = 0, ū′(1) = 0,

simplifies δF = −
∫︁ 1

0 ū δg, and δu no longer appears. This means that we can compute δF by
first solving the adjoint equation for ū, and then integrating it against δg. Equivalently, −ū is
the L2-gradient of F , because δF = ⟨−ū, δg⟩L2 .
The general recipe of Céa’s method is to append to the objective function F a sum of inner
products between quantities known to be zero (expressions involving differential operators,
constraints, etc.) and adjoint variables, which we denote by overbars. For differential equations,
such as u′′ = g, adjoint variables take the form of functions, and the L2-inner product is used.
For integral constraints, adjoint variables are scalars, and we use the standard Euclidean inner
product. Then, we manipulate δF in order to isolate the adjoint equations, which we can
solve in order to simplify δF .

3.5 Numerical Optimization
At various points of this thesis, we will be confronted with minimization problems of the type

min
x∈Rn

f(x) s.t. x ∈ A ⊂ Rn

with f : D → R at least once, but usually twice, continuously differentiable, where A ⊂
D ⊂ Rn. Often, we will have A = Rn = D, or A large enough to cover all x we are likely
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to explore, in which case the minimization problem is called unconstrained. At other times,
A will be given implicitly by A = {x ∈ Rn : a(x) = 0} with a : Rn → Rd such that A is
an (n − d)-dimensional submanifold of Rn. In this case, it makes a practical difference for
numerical optimization whether D = A, or D contains at least a neighborhood of A. These
types of optimization problems are called equality-constrained.
Algorithms for numerical optimization can be categorized into those that only employ eval-
uations of f and Jf , called first-order, and those that also evaluate the Hessian Hf , called
second-order. However, some strategies such as line-search algorithms can be adapted to either
category. As a general rule, we use second-order algorithms for most small-scale problems with
few variables, and for mid-scale problems if the Hessian is sparse and can be computed easily.
The fields of unconstrained and constrained gradient-based optimization are so vast that we
do not attempt to give a complete overview here. Instead, we discuss only the methods that
are used for the work presented in this thesis, and point out the most important convergence
results if available [NW06]. We use most of these algorithms in one of their established variants,
except for projected gradient descent, which we modify to suit our problem as described below.

3.5.1 Line-Search Methods
This collection of methods, primarily for unconstrained optimization, produces a sequence of
iterates x0, x1, . . . by first determining, at every k = 0, 1, . . ., a search direction pk ∈ Rn, then
a step size αk > 0, and finally setting xk+1 = xk + αkpk. To guarantee the existence of a
step size such that f(xk+1) < f(xk), we require Jf(xk) · pk < 0. The simplest such choice
is pk = −J t

f(xk), the negative of the gradient, and gives rise to the algorithm of steepest
descent.
To determine αk, there is a wealth of options, the simplest one being the backtracking line search
algorithm. Here, one chooses a problem-specific ᾱ > 0 that represents the maximal step size,
a contraction factor ρ ∈ (0, 1), and a sufficient decrease constant c ∈ (0, 1), usually c ≈ 10−3.
Then, compute for i = 0, 1, . . . the decrease in function value βi

k = f(xk)− f(xk + ρiᾱpk),
and pick αk = ρiᾱ where i is the smallest index such that βi

k > −c · Jf(xk) · ρiᾱpk. This
inequality guarantees that the decrease is at least within a factor of c of what can be expected
based on the gradient at xk. Backtracking line search always terminates after a finite number
of steps, because this inequality is satisfied for all large enough i.
For line-search methods, convergence results can be obtained under very mild conditions that
are independent from the way in which the descent direction and step size are computed.
Assume only that the angle between the gradient and the descent direction is bounded away
from a right angle by a constant δ > 0 which is independent of k, i.e.,

−Jf (xk) · pk

∥J t
f (xk)∥∥pk∥

> δ,

and that the step size is small enough to represent a sufficient decrease in function value
compared to what can be expected from gradient information, but large enough so the sequence
of iterates does not get stuck. One way of formalizing this is

f(xk) + (1− c)gk ≤ f(xk + αkpk) ≤ f(xk) + cgk, with gk = Jf (xk) · αkpk,

for some c ∈ (0, 1/2), called the Goldstein conditions. This alone suffices to conclude
limk→∞ ∥J t

f (xk)∥ = 0, due to a result of Zoutendijk [Zou70]. There is no general guarantee
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that xk will converge to a local minimum, rather than a saddle point. However, only local
minima are attracting for line-search methods, so convergence to a saddle point occurs with
zero probability.
The rate of convergence, which is a good indication of how many steps will be needed to
approach a local minimum to high precision, depends strongly on the choice of search direction.
Under the same mild conditions as in Zoutendijk’s result, we can only expect linear convergence,

f(xk+1)− f(x∗) ≤ r · (f(xk)− f(x∗)),

for a problem-dependent r ∈ (0, 1), and for large enough k. Unfortunately, r is extremely
sensitive to the conditioning and scaling of the problem, and tends to be very close to 1 for
higher-dimensional problems.

3.5.2 Newton and Quasi-Newton Methods
Two ways of improving the convergence rate is to either use second-order information directly,
or to approximate second-order information from first-order information at multiple iterates.
Newton methods are based on choosing the iteration pk = −H−1

f (xk) · J t
f(xk) with αk = 1

whenever possible. This is because the sequence xk based on this choice of search direction
and step size converges quadratically to a local minimum,

∥xk+1 − x∗∥ ≤ r · ∥xk − x∗∥2,

albeit under very strict conditions, among them that x0 be close enough to x∗. Whether x0 is
indeed close enough to x∗ is usually difficult to determine a priori, because it is related to the
Lipschitz constant of Hf in a neighborhood of x∗.
A compromise is to use the Newton method embedded in a line-search method, but this comes
with a new challenge: the search direction pk = −H−1

f (xk) · J t
f (xk) is only guaranteed to be

a descent direction if Hf (xk) is positive definite, which need not be the case far away from a
local minimum. In this case, the search direction needs to be modified, and this is often done
by first modifying the Hessian Ĥf(xk) ≈ Hf(xk) to be positive definite, and using it in the
computation of pk instead of Hf (xk).
If the exact Hessian is not available or too expensive to compute, one often employs a quasi-
Newton method. In this class of methods, an approximation Bk of the Hessian is maintained
from iterate to iterate, and updated to reflect new information that is gathered from evaluations
of the gradient. The most popular method, named BFGS for its discoverers [NW06, p. 136],
updates Bk in such a way that the quadratic model

f̂k,Bk
(x) = f(xk) + Jf (xk) · (x− xk) + 1

2⟨x− xk, Bk · (x− xk)⟩

retains a good gradient approximation at the previous and the current iterate, i.e.,

Jf̂k,Bk

(xk−1) = Jf (xk−1) and Jf̂k,Bk

(xk) = Jf (xk).

The second condition is automatic, from the definition of f̂k, but the first needs to be enforced
via the update from Bk−1 to Bk. This alone does not make Bk unique, but uniqueness is
enforced via the auxiliary minimization problem

Bk = arg min
B
∥B−1 − B−1

k−1∥F subject to B = Bt and Jf̂k,B
(xk−1) = Jf (xk−1).
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This way of defining Bk is popular because there is a closed-form solution for computing B−1
k

from B−1
k−1. Thus it suffices to keep track of only these inverses, making the computation of

pk = −B−1
k · J t

f(xk) very cheap. While quasi-Newton methods do not generally reach the
quadratic convergence of Newton methods, they can be proven to converge super-linearly
close to a local minimizer,

∥xk+1 − x∗∥ ≤ r · ∥xk − x∗∥1+α,

for some problem-dependent α > 0, and k large enough.

3.5.3 Projected Gradient Descent
The standard projected gradient method attempts to solve the general constrained minimization
problem

min
x∈Rn

f(x) s.t. x ∈ A ⊂ Rn,

and is applicable even when f : A → R, i.e., when f cannot be evaluated outside of the
feasible region. Every iteration in projected gradient descent consists of two steps to compute
xk+1 from xk,

yk = xk − αk · J t
f (xk),

xk+1 = arg min
x∈A
∥yk − x∥,

a standard line-search step and a step that orthogonally projects the resulting point back onto
A if necessary. Convergence results for projected gradient descent variants are less broad than
those for unconstrained line-search methods, and rely on specific ways of computing the step
size, on convexity of A, and on convexity (or at least quasi-convexity) of f [BL10].
If the feasible set is given implicitly as A = {x ∈ Rn : a(x) = 0} for some a : Rn → Rd, and
yk /∈ A, then xk+1 satisfies

a(xk+1) = 0, xk+1 − yk = Ja(xk+1) · λ

for some λ ∈ Rd. If a has no special structure, such as being linear, this is a system of n+ d
non-linear equations, and can often be solved efficiently using Newton’s method. This is
because yk is obtained by stepping away from xk ∈ A, so at least for small step sizes, yk

will be close enough to A for Newton’s method to succeed. Applying Newton’s method here
implies computing the Jacobian of the function xk+1 ↦→ Ja(xk+1) · λ, which will involve the
Hessian of a.
In Section 4.6.2, we use a local–global optimization algorithm that relies on a version of
projected gradient descent in its local step. To avoid computing the Hessian of a in the
projection step, we make two changes to the algorithm. First, instead of using the search
direction −J t

f(xk) directly, we modify it by orthogonally projecting it onto the null space of
Ja(xk), or equivalently, onto the tangent space of A at xk. As a result, the shortest distance
between A and yk becomes quadratic in the step size instead of linear, generally keeping yk

closer to A. If xk is close to a constrained minimizer, and thus J t
f (xk) is almost orthogonal to

the tangent space, then the search vector almost vanishes after this projection.
Second, instead of computing the exact orthogonal projection from yk onto A, we compute an
approximation via the following algorithm. Let z0

k = yk and compute zi+1
k as the orthogonal

projection of zi
k onto the zero-level set of the first-order approximation of a at zi

k,

zi+1
k = arg min

x
∥x− zi

k∥ s.t. 0 = a(zi
k) + Ja(zi

k) · (x− zi
k),
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which can be computed by solving a linear d-by-d system. The sequence z0
k, z

1
k, . . . constitutes

the application of the underdetermined variant of Newton’s method to find a point on A,
with yk as a starting point. If a is linear, then this method reproduces the exact orthogonal
projection of yk onto A, and otherwise, an approximation of it, which proved good enough for
the projected gradient descent algorithm to make progress in our problem.
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CHAPTER 4
The Design Space of Plane Elastic

Curves

4.1 Introduction
Slender beams in active bending allow the realization of intriguing structures, with innovative
uses in the construction of frames and facades, furniture and product design, and even machine
engineering, as seen in Fig. 4.2. Despite a firm grounding in history, such as its centuries-old
role in the construction of Turkmen tents, the aesthetic of curves that emerge from pure
bending still fascinates designers, architects, and mathematicians today [LAGK13].

The primary allure of bending as part of the formation process is its economic advantage:
Curved members can be cut from flat, inexpensive sheets of elastic material such as plywood,
which allows for easy transportation, and assembly on-site. This has the promise of reducing
the need for an individual mold per unique structural member. Active bending also brings
with it a singular design and form-finding challenge: The design space of shapes that can be
physically realized is dictated by the underlying mechanics of slender beams. Insights about
the geometric structure of this design space are therefore of practical value, because they can
guide the intuition of the designer towards feasible designs. As we will show, they also open

Figure 4.1: Pavilion and Carpet. Left: Photograph of a physical pavilion model, constructed
by bending inexpensive strips of plane cardboard. The flat outline of all strips is determined
computationally within 0.3 seconds, in order to exactly match the design under their own
weight. Right: Rendering of active-bending design for a free-form structure. The beam
stiffness profiles adapt to design edits in real time, and a form-finding algorithm improves
manufacturability.
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Figure 4.2: Examples of Active Bending. Left to right, top to bottom: ICD/ITKE Research
Pavilion 2010 [FM11]. TR11 lamp by Tom Rossau. PS1 Loop, Boston, by Höweler + Yoon
Architecture. Bentwood type "yourte" (CC BY 2.0 Jean-Pierre Dalbéra). Morphing rotor
blade controlled by a servomotor (CC BY 3.0 DLR). Arc lamp [CMM18].

the door to extremely efficient optimization algorithms that further support the form-finding
process.

The design space of slender beams in plane bending is related to the Elastica problem, a
classical question in mechanics: Given a straight, slender structural element with constant
stiffness, enumerate all its static equilibria in the plane. Originally posed by Bernoulli, a full
enumeration as a one-parameter family was given by Saalschütz in terms of elliptic functions
in 1880. This result has historically influenced the use of mechanical splines in design, but
the assumption of constant stiffness limits the space of equilibrium curves attained within the
Elastica framework.

Digital fabrication methods simplify the manufacture of structural elements with spatially
varying cross-sectional profiles, and thus variable stiffness. Yet, we are unaware of any work that
enumerates or classifies all shapes that can be attained as equilibrium states of variable-stiffness
elastic curves. This suggests two questions: Is it possible to characterize all plane curves that
can be attained as static equilibria of slender beams? And how can we construct the geometry
of a beam that realizes a given equilibrium curve?

In this work, we give positive answers to both questions. This results in a geometric character-
ization of all variable-stiffness elastic plane curves that is both intuitive and mathematically
sharp. We also show a method to compute the stiffness profile required to realize a given
elastic curve, which is globally optimal with respect to a convenient fabricability objective.
These computations only take a fraction of a second, which makes them ideal for interactive
design, where they provide immediate feedback about the practicality of a structure. At the
same time, they can be integrated in iterative form-finding algorithms that suggest design
trade-offs to the user at interactive speeds. We explore both use cases in this work.

For many real-world applications, the dead load and stability of a member play an important
role in the design process. This is because a beam may deform considerably under its own
weight, and an unstable element will even change its shape completely by snapping into a
different equilibrium. These effects are not part of the classical Elastica model, but we show
that the dead load can be incorporated into our construction method with virtually no penalty
to computation time. The stability problem is more difficult and, in our experience, beyond
the grasp of human intuition alone: It is often impossible to tell by visual inspection whether
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a given curve is stable, or even whether there could be a similar curve that is stable. We
show that our geometric characterization of elastic curves is the key ingredient in designing
an algorithm that can modify an unstable curve to yield a similar—and sometimes visually
indistinguishable—stable curve.
Our contributions impact design with active bending in three ways. First, the geometric
characterization of elastic curves informs a designer about the kinds of shapes that are
physically possible within active-bending structures. This prevents infeasible designs even in
the first phase of conception. Second, our gravity-aware construction method for stiffness
profiles gives instant feedback about the practicality of a design. Namely, it tells us whether it
can be realized with a given material and fabrication method. Third, we enable optimization
routines that automatically improve the fabricability of a design with small changes to form—a
process that takes under one second per beam in all of our examples.

4.2 Overview
We begin our considerations with the variable-stiffness version of the classical Elastica problem:
Which plane curves can be obtained as equilibria of slender beams? In Section 4.3, we show
that the main geometric condition is the existence of a line that intersects a curve in its
inflection points, and nowhere else. Building on this, we describe a construction process for a
stiffness profile that realizes a given equilibrium curve, and which is optimal—in a well-defined
sense—for fabrication. Section 4.4 proposes a modification that lets us incorporate the dead
load of a member into this construction process. In Section 4.5, we turn to the stability of
elastic curves and devise an algorithm that turns an unstable curve into a stable one, sometimes
by imperceptibly small modifications. We will see that our solution to the variable-stiffness
Elastica problem provides the key insight to enable this application. Section 4.6 gives details
about the discretization and implementation of the concepts discussed thus far. In Section 4.7,
we describe and validate the fabrication process behind the physical active-bending models
that we present in Section 4.8, along with rendered examples and quantitative data.
In particular, we consider these our main technical contributions:

• A geometric characterization of all plane elastic curves (Sections 4.3.2, 4.3.3, Ap-
pendix A.1);

• A fast and fabrication-friendly construction algorithm for stiffness profiles of elastic
curves (Section 4.3.4);

• An extension of this algorithm that accounts for the dead load of the structural member
(Sections 4.4.1–4.4.3);

• A derivation of the adjoint equations for the Jacobi stability criterion, and their use in
stability optimization of elastic curves (Sections 4.5.2–4.5.4, Appendix A.3);

• Fabrication methods for realizing stiffness profiles as elastic strips (Section 4.7.1).

4.3 Equilibrium Curves
This section treats the most straight-forward adaptation of the Elastica problem to our setting:
Characterize the set of plane curves that occur as static equilibria of straight elastic rods. The

41



4. The Design Space of Plane Elastic Curves

crucial difference to the original Elastica problem is that we explicitly allow the stiffness of a
rod to vary across its length.

We show that this set of equilibrium curves is characterized by an intuitive geometric property
having to do with collinearity of inflection points. In addition, the characterization is compu-
tationally convenient and gives rise to an algorithm that finds the “best”—in a well-defined
sense—geometry of a rod that matches the desired equilibrium curve.

We first introduce the mathematical model for kinematic elastic rods and arrive at an equilibrium
equation. Then, we characterize the set of all curves satisfying this equation with a suitable
constitutive law. Finally, we present a linear program that finds the optimal stiffness profile for
a desired equilibrium shape, with respect to a manufacturability objective.

4.3.1 Mathematical Model
Preliminaries The deformed state of an inextensible elastic rod in the plane is modeled as a
curve γ : [0, l]→ R2, passing through the centerline of the rod. For notational convenience,
we assume an arc-length parametrization, i.e., ∥γ′∥ ≡ 1. But for a computer implementation
of algorithms presented in this paper, any regular parametrization will suffice. We only assume
γ ∈ C2, so the signed curvature κ = det(γ′, γ′′) is continuous. In addition, denote by α ∈ C1

the turning angle of γ, so γ′ = (cosα, sinα)t and α′ = κ. The notation used throughout this
section is summarized in Fig. 4.3.

The resistance of a rod to bending is given by a stiffness function K : [0, l] → R>0, which
determines the ratio between curvature and moment of force at any point. E.g., if a linearly
elastic rod has a rectangular cross section with width w and thickness h at s ∈ [0, l], its
stiffness will be K(s) = 1

12Ewh
3, where E is the Young’s modulus of the material. Most

examples presented in this paper will have constant thickness h, so the width w scales linearly
with K. Real materials cannot exhibit stiffnesses that are arbitrarily low or high, which
motivates:

Definition 1. Let K : [0, l]→ R>0 such that there exist c, C ∈ R with 0 < c ≤ K(s) ≤ C
for all s ∈ [0, l]. Then K is called admissible.

We will study the design space offered by admissible stiffness functions, because they correspond
to elastic rods that we can manufacture in the real world. Note that the existence of a positive
lower bound c is a strictly stronger requirement than K > 0 and ensures that the ratio between
supK and inf K is finite.

Equilibrium Equation Equilibrium configurations of an elastic rod are characterized by
extremals of the bending energy ∫︁ 1

2Kκ
2, subject to boundary conditions and constraints that

reflect how the ends of the rod are fixed. We will assume kinematic rods, i.e., rods in which
α(0), γ(0) and α(l), γ(l) are all constrained. This leads to a variational problem with Dirichlet
boundary conditions and two integral constraints, and we are looking for extremals of

W [α] =
∫︂ l

0

1
2K(α′)2 s.t.

α(0) = α0,

α(l) = αl,
and

∫︂ l

0

(︄
cosα
sinα

)︄
= γl. (4.1)

The endpoint γ(0) is assumed to coincide with the origin, and the endpoint γ(l) =
∫︁ l

0γ
′ =∫︁ l

0( cos α
sin α ) is constrained to lie at γl.
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γ(s)
γ′(s)

α(s)
γ(0) = (0, 0)

s

γ(l) = γl

L

t

nκ = α′ = det(γ′, γ′′)

Figure 4.3: Curve Description. Plane curve γ with arc-length parameter s, turning angle α,
signed curvature κ, and length l. The endpoints are the origin and γl. The pair (t, n) forms a
right-handed coordinate system adapted to γ at an inflection point, and L is a line incident to
all inflection points.

The constrained Euler–Lagrange equation of this problem is
−(Kκ)′ + ⟨λ,Rγ′⟩ = 0, (4.2)

where R = ( 0 −1
1 0 ), and the Lagrange multiplier λ ∈ R2 needs to be chosen to satisfy the

integral constraints. Next, we rename λ = Rb, which simplifies ⟨λ,Rγ′⟩ = ⟨b, γ′⟩, and
integrate the equation through. This adds an integration constant a ∈ R and yields the
moment equilibrium equation

Kκ = a+ ⟨b, γ⟩. (4.3)
We characterize curves that satisfy this equation by:
Definition 2. Let γ ∈ C2([0, l];R2) be an arc-length parametrized plane curve with signed
curvature κ. If there exist a ∈ R, b ∈ R2, and an admissible stiffness function K such that
Kκ = a+ ⟨b, γ⟩, then γ is called an equilibrium curve.

This definition is chosen so a curve γ is an equilibrium curve if and only if it is possible to
manufacture a straight elastic rod that has γ as an equilibrium shape when kinematic boundary
conditions are applied. In the next section, we show how the set of all equilibrium curves
can be characterized geometrically. This results in a description of the design space of plane
kinematic rods that is both intuitive and mathematically sharp.

4.3.2 Characterization of Equilibrium Curves
If γ is a line segment, the rod is undeformed, and Eq. 4.3 is trivially solved by a = 0, b = 0, and
K arbitrary. The theorem below treats the more interesting case, in which the rod undergoes
bending.
It shows that the main geometric condition for γ to be an equilibrium
curve is the existence of a line that intersects γ exactly in its inflection
points (see inset). The only technical assumption we make, apart from
γ ∈ C2, is that the number of inflection points be finite, which is a
natural expectation in the context of design.
Before we state the theorem, we introduce one more definition:
Definition 3. A function f : R→ R with f(x0) = 0 is called secant-bounded at x0 if there
exist ε > 0 and m,M ∈ R with either m,M > 0 or m,M < 0 such that, for all h ∈ (−ε, ε),

min{mh,Mh} ≤ f(x0 + h) ≤ max{mh,Mh}.
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(0, 0) h

mh

Mh

f(x0+h)

(0, 0)
h

mh
Mh

f(x0+h)

Figure 4.4: Secant-boundedness. Top: A function f : R → R with f(x0) = 0 is secant-
bounded at x0 if its graph, restricted to some interval (x0− ε, x0 + ε), is contained in a double
cone that is bounded by two linear functions mh and Mh, where either m,M > 0 (left) or
m,M < 0 (right). Bottom: Examples of functions that fail to be secant-bounded at the
origin.

Fig. 4.4 illustrates secant-boundedness and gives examples of functions that do not have
this property.1 Now we are ready to state our main theoretical result, which is proved in
Appendix A.1:

Theorem 1. Let γ ∈ C2([0, l];R2) be an arc-length parametrized plane curve with signed
curvature κ = det(γ′, γ′′), and the set of zero-curvature parameters S0 := {s ∈ [0, l] : κ(s) =
0} finite. Then, γ is an equilibrium curve if and only if

1. there exists a line L that intersects γ exactly in its zero-curvature points, and that is
not tangent to γ in any of these intersections;

2. κ is secant-bounded at every s0 ∈ S0.

Remark 1. The secant-boundedness of κ on S0 implies that κ actually changes sign at every
root; but it is even stronger, as seen in Fig. 4.4 (bottom). In case κ ∈ C1, the condition
reduces to κ′(s0) ̸= 0.
Remark 2. In the context of design, condition (2) may seem overly technical to be of practical
relevance. However, in Section 4.5, we will see that this condition is computationally significant
because it causes an algorithm to fail unless explicitly enforced.

4.3.3 Properties of Equilibrium Curves
The geometric characterization given above is intuitive enough that we can usually tell by
inspection whether a curve is an equilibrium curve. The main condition is that all inflection
points lie on a line which does not cross the curve in non-inflectional points. In particular, this
means that every curve without inflections is an equilibrium curve. For curves with at least one

1Note that secant-boundedness is weaker than being locally bi-Lipschitz at x0, which is defined as follows:
there exist ε, L > 0 such that for all x, y ∈ (x0−ε, x0 +ε), it holds that |x−y|/L ≤ |f(x)−f(y)| ≤ L|x−y|.
In particular, locally bi-Lipschitz functions are locally injective—secant-bounded functions need not be.
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Figure 4.5: (Non-)Equilibrium Curves. Top: Four equilibrium curves, from a non-inflectional
curve (left) to a curve with three inflections (right). Bottom: Four curves that are not
equilibrium curves because (from left to right) every line through the inflection intersects the
curve in further points; the unique inflection line intersects the curve in a non-inflectional
point; the inflection line is tangent to the curve; the inflection points are not collinear.

inflection, it depends on the global shape whether it has the equilibrium property, as shown by
example in Fig. 4.5. We can infer some more properties that are useful in a design context:

Locality. Every curve that satisfies the technical requirements of Theorem 1 is locally an
equilibrium curve, i.e., it can be split into a finite number of equilibrium curves. Thus, every
curve can be realized with an elastic rod if we introduce additional fixed points.

Projective invariance. The class of equilibrium curves is closed under projective transfor-
mations. This holds because collinearity of inflection points is a projective invariant. It is
thus possible to create new equilibrium curves by editing an existing curve with projective
transformation tools.

Smoothness of K. The smoothness of the stiffness function will affect the visual appearance
of a manufactured rod, and may thus be of interest. If γ ∈ Cr, we infer from K = a+⟨b,γ⟩

κ

that K is at least Cr−2 away from inflection points, and at least Cr−3 at inflection points.
E.g., to ensure that K is continuous in a design with inflections, one may use quartic splines,
so γ ∈ C3. Without inflections, cubic splines suffice.

The applicability of Theorem 1 can be expanded by considering the following variants, which
can be proved in the same way as the original statement:

Boundary conditions. Theorem 1 assumes kinematic boundary conditions to maximize the
design space, but we can account for the effect of removing positional or angle constraints by
imposing additional requirements on γ and L. If the endpoint constraint on x (y) is removed,
this constrains L to be vertical (horizontal). If both are removed, γ must not have inflections.
If the angle constraint at either endpoint is removed, the curvature of γ needs to vanish at
this endpoint, which in turn requires L to intersect it.

Fixed natural curvature. By substituting every occurrence of “κ” in Theorem 1 with
“κ − κ0”, we can also characterize the equilibrium curves of plane rods with fixed natural
curvature κ0.
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Figure 4.6: Stiffness Profiles. Top left: An elliptical arc γ and three lines representing viable
choices of a, b. Top right: Stiffness profiles induced by the lines; K3 was computed using
Eq. 4.4 and minimizes R globally. Bottom left: Outlines of elastic strips realizing the stiffness
profiles. Bottom right: Deformed rods with boundary conditions applied, yielding identical
shapes.

4.3.4 Computation of Stiffness Profiles

To synthesize the geometry of a rod, it suffices to prescribe its stiffness at every s ∈ [0, l].
The stiffness can then be transformed into a cross section, e.g., a rectangular cross section
with width w and thickness h, such that K is proportional to wh3 everywhere.

The stiffness function of an equilibrium curve is not generally unique, because it depends on
the choice of a ∈ R and b ∈ R2 via K = a+⟨b,γ⟩

κ
. For curves with two or more inflections, L

is unique and thus defines a and b up to scalar multiples. But for curves with zero or one
inflection, additional degrees of freedom remain. This raises the question of what the “best”
stiffness function is, and how it can be computed. In a fabrication setting, one is typically
limited by the range of stiffnesses that can be reliably achieved within a single structural
element. Thus, in our view, the best stiffness function is the one that minimizes the max-to-min
stiffness ratio R[K] := sup K

inf K
.

To find the global minimizer of R, note that R is naturally scale-invariant: If K is an admissible
stiffness for γ, so is θK for any θ > 0. Likewise, if K is a minimizer of R, so is θK. This
means that we can eliminate scalar multiples without losing any solutions, for example by
imposing the affine constraint inf K = 1. In the affine subspace defined by this constraint,
the objective simplifies to R[K] = supK, which shows that the problem of minimizing R is
in fact linear, and can be discretized using a linear program.

To do this, let S0 =
{︂
sinfl

1 , . . . , sinfl
m

}︂
, and 0 = s1, . . . , sn = l a sampling of [0, l] that does

not include any of the inflection points in S0. The sampling should be dense enough so
max{K(s1), . . . , K(sn)} approximates supK well. Then, solve the following linear program
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Figure 4.7: Spiral under Gravity. Top: Target curve (green) and predicted shape if gravity
is neglected in the linear program (purple); physical models, computed with Eq. 4.4 (center),
and with Eq. 4.6 (right). Bottom: Shapes of the elastic strips cut from cardboard.

in the variables a,R ∈ R and b ∈ R2:

minimize R,

subject to 1 ≤ a+ ⟨b, γ(si)⟩
κ(si)

≤ R, i = 1, . . . , n, (4.4)

0 = a+ ⟨b, γ(sinfl
i )⟩, i = 1, . . . ,m.

The fraction appearing in the linear program equals K(si), and mini K(si) = 1 is implicitly
enforced by the inequality constraints 1 ≤ K(si). The equality constraints ensure that L
intersects all inflection points of the curve. Furthermore, it is guaranteed that L does not
intersect the curve in non-inflectional points, because this would result in a negative stiffness
value at a sample adjacent to the intersection. With only four variables and 2n+m constraints,
this linear program is very small and can be solved almost instantaneously for arbitrary curves.
Fig. 4.6 shows how the stiffness profile for a curve varies with the choice of a and b. An
arbitrary choice may result in unwieldy rod geometries such as K1 and K2. The profile K3,
which is the global minimizer of R[K], was found by solving the linear program.

4.4 Equilibrium Curves Under Gravity
The theory presented in the previous section suffices to create designs on a scale where the
effect of gravity is negligible. For applications in which the dead load of a beam significantly
affects the equilibrium shape, like the one shown in Fig. 4.7, we need to model gravity explicitly.
Although we cannot use Theorem 1 to determine feasibility in this case, we show that it is
possible to adapt the computation of stiffness profiles to account for gravity exactly.
The main finding is that the problem of determining feasibility and finding the “best” stiffness
profile under gravity remains linear if the thickness of the material is known a priori. Furthermore,
the complexity of the linear program used to solve it only increases marginally, and solutions
can still be found near instantaneously.

4.4.1 Mathematical Model
The gravity potential of a body V ⊂ R3 with density ρ in the earth’s gravitational field
is given by U =

∫︁
V ρ(x)⟨x, g⟩dx, with g the gravitational acceleration vector. For an
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4. The Design Space of Plane Elastic Curves

elastic strip with constant thickness h and variable width w, we can write this integral as
U =

∫︁ l
0 ρhw(s)⟨γ(s), g⟩ds. We can also express the stiffness in terms of these quantities,

which yields K = 1
12Ewh

3, with E the Young’s modulus of the material. Substituting w for
K and summing gravity potential and bending energy gives the functional

W [α] =
∫︂ l

0
K
(︃1

2κ
2 + ⟨γ, e⟩

)︃
with e = 1

βl3
· g

∥g∥
, β = Eh2

12ρ∥g∥l3 ,

where β is the standard gravito-bending parameter [AP10, 4.1.2]. We estimate this parameter
by cutting a rectangular strip of a material, and measuring the displacement in a cantilever
experiment. Then, we fit the parameter so the minimizer of W matches the observed
displacement. For 200 gsm cardboard, we found βl3 = 8.86 · 10−4m3, which we use for all
examples.
The appearance of γ(s) =

∫︁ s
0 ( cos α

sin α ) in the energy means that W depends on α via a double
integral. To find the Euler–Lagrange equation of a functional like this, we compute the
variational derivative with respect to α, and then test against a delta-distribution centered at
s, as detailed in Appendix A.2. This gives

−(Kκ)′(s) + ⟨b, γ′(s)⟩+ ⟨Rte, γ′(s)⟩
∫︂ l

s
K(t) dt = 0,

where R = ( 0 −1
1 0 ). This equation can be integrated to yield the moment equilibrium equation

−K(s)κ(s) + ⟨b, γ(s)⟩+ ⟨Rte, γ(s)⟩
∫︂ l

s
K(t) dt

−
∫︂ l

s
⟨Rte, γ(t)⟩K(t) dt+ a = 0.

(4.5)

A comparison with Eq. 4.3 shows that two new summands involving integrals have appeared
due to the effect of gravity. Below, we show how to account for them in the computation of
stiffness profiles.

4.4.2 Computation of Stiffness Profiles
In Eq. 4.5, the stiffness K appears in three different forms: evaluated at s, integrated from s
to l, and once more integrated against ⟨Rte, γ⟩. All three appearances are linear in K, so we
can still cast this as a linear program.
To do this, let 0 = s1, . . . , sn = l be a dense sampling of [0, l]. Associate with the samples a
set of weights w1, . . . , wn based on the Voronoi lengths of the samples along the curve, so∫︁ sn

sk
f ≈ ∑︁n

i=k wif(si). In addition to a,R ∈ R and b ∈ R2, the linear program has auxiliary
variables for K, and for the two types of integrals that appear in Eq. 4.5, call them F and G.
Then, the program is given by

minimize R,
subject to 1 ≤ Ki ≤ R, i = 1, . . . , n,

0 = −Kiκ(si) + ⟨b, γ(si)⟩
+ ⟨Rte, γ(si)⟩Fi −Gi + a, i = 1, . . . , n,

Fi = Fi+1 + wiKi, i = 1, . . . , n,
Gi = Gi+1 + wi⟨Rte, γ(si)⟩Ki, i = 1, . . . , n,

(4.6)
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Figure 4.8: Inflectional Curves under Gravity. Stiffness functions after solving Eq. 4.6
(light green) and after solving the modified linear program (dark green) for curves taken from
the flower pot example, see Fig. 4.19.

where we set Fn+1 = 0 = Gn+1. The last two lines constrain Fi ≈
∫︁ l

si
K and Gi ≈

∫︁ l
si
⟨Rte, γ⟩K.

In total, the program has 3n+4 variables, 2n inequality constraints, and 3n equality constraints.
It is possible to eliminate the variables Fi, Gi and their defining equality constraints by
substitution. But even in its stated form, the program can be solved to optimality within a
few milliseconds for any curve.

Fig. 4.7 shows a challenging example, in which precise estimation of the gravity parameter
e is paramount. The influence on the stiffness profile is subtle, but shape reproduction is
significantly improved: Neglecting gravity yields a model that sags under gravity and collides
with the support structure; taking gravity into account explicitly results in a uniform spiral
that is only supported at the endpoints.

4.4.3 Inflectional Curves
If admissible stiffness profiles exist for a given curve, Eq. 4.6 always finds the one that minimizes
R. However, this minimizer is sometimes surprisingly noisy near inflection points, which is a
byproduct of curve discretization. In particular, K tends to have spikes like the ones shown in
Fig. 4.8 (light green), which allow for a small decrease in R compared to a more preferable,
smooth solution.2 To remove these spikes, and still retain a solution to Eq. 4.5, we solve a
second linear program that is obtained from Eq. 4.6 by two modifications:

• Replace the objective function by a discretization of V(K ′) =
∫︁ l

0|K ′′|, the total variation
of K ′.

• Add the constraint R ≤ R1 · (1+ε), where R1 is the optimal value obtained from solving
Eq. 4.6. We always set ε = 0.01.

The new objective function favors solutions without noise, and the original optimum is retained
up to a margin of ε. This new linear program is feasible whenever the original problem is
feasible, because the optimal point of Eq. 4.6 is feasible in the new program. We have used
this two-phase optimization in every example that treats inflectional curves under gravity, and
it has yielded completely noise-free results in every case, like the examples in Fig. 4.8.

2Note that this only happens when gravity is taken into account. In contrast, solutions to Eq. 4.4 are
always noise-free, regardless of inflections, because the inflection line is sufficiently constrained by the equation
0 = a + ⟨b, γ(sinfl

i )⟩.
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4. The Design Space of Plane Elastic Curves

4.5 Stability of Equilibrium Curves
A solution to a variational problem is said to be stable if it is a local minimum of the energy
functional. Unstable solutions are saddle points, which means that there is a perturbation of
the solution, compatible with boundary conditions and constraints, that attains lower energy.
For a physical system, this means that force equilibrium holds at a saddle point, but any
disturbance will cause it to become dynamic, rendering it useless for most applications.

Overview From visual inspection alone, it is far from obvious whether a specific equilibrium
curve will be stable, or even whether there could be a similar equilibrium curve that is stable.
The remainder of this section describes an optimization algorithm that, given an unstable
equilibrium curve, finds a similar equilibrium curve which is stable. We believe this is the first
algorithm of this type.

Our method is based on the theory of isoperimetric conjugate points, which we review below.
Then, we present our idea for stability recovery, based on applying the adjoint method to the
isoperimetric Jacobi equations. Before discussing our final algorithm, we outline why a simpler
and more obvious version of the algorithm fails. Theorem 1 plays a crucial role in formulating
the method, so it is currently limited to applications in which gravity is negligible.

4.5.1 Stability Criteria
There are two essential procedures for analyzing the stability of a solution to an optimization
problem: the eigenvalue test and the Jacobi test. The eigenvalue test is used more frequently
in practice, but we will argue that the Jacobi test is better suited to the problem at hand and
leads to an elegant optimization algorithm at a low computational cost.

The Eigenvalue Condition A sufficient criterion for stability is the positivity of all eigenval-
ues of the energy Hessian. For constrained problems, there exists a similar criterion involving
eigenvalues of directions constrained to the orthogonal subspace of constraint tangents. This
method is very general, but it does not take advantage of the structure inherited from
continuous variational problems.

There are two obstacles to using the eigenvalue method for optimizing stability of kinematic
elastic curves. First, such optimizations are iterative, and require solving a constrained
eigenvalue problem at every step. These computations are very costly because standard
numerical packages such as LAPACK do not support solution procedures that preserve sparsity
for this case. Second, unlike the unconstrained case [VdAMM07], we have found no reference
on computing derivatives for constrained eigenvalue problems.

The Jacobi Condition A different stability criterion can be derived directly from the
continuous variational problem, and then discretized. This condition, named after Jacobi, can
be checked by integrating simple initial-value problems on [0, l]. The result regarding stability
is equivalent to that of the eigenvalue test, despite a significantly lower computational cost,
and a complexity that is only linear in the number of samples. In addition, the criterion we use
for establishing stability is differentiable via the adjoint method, and not subject to singularities
that might be present in the eigenvalue structure. Below, we review a version of the Jacobi
condition that allows for multiple equality constraints [MRM98].
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4.5. Stability of Equilibrium Curves

4.5.2 Isoperimetric Conjugate Points
General Theory In this section, we summarize the sufficient stability criterion for constrained
variational problems based on conjugate points, omitting derivations. We start with a
sufficiently regular functional J [u] =

∫︁ l
0 f(x, u(x), u′(x)) dx subject to Dirichlet b.c., and

integral constraints ∫︁ l
0 gi(u(x)) dx = ci, for i = 1, . . . , p. Then, the Lagrangian of the problem

is given by L[u] =
∫︁ l

0 f
∗(x, u, u′) dx, where f ∗ = f + ∑︁

i λigi. The Lagrangian can be
developed into a second-order Taylor series as

L[u+h] = L[u] +
∫︂ l

0

(︄
f ∗

u−
d
dxf

∗
u′

)︄
h+ 1

2

∫︂ l

0

(︂
Ph′2+Qh2

)︂
+ o(∥h∥2

w),

with P = f ∗
u′u′ , Q = f ∗

uu −
d
dxf

∗
uu′ , ∥h∥2

w = ∥h∥2
L2 + ∥h′∥2

L2 .

In analogy to minimization problems with finite dimension, J has a constrained minimum at u
if the first-order term in the expansion of L vanishes, and the second-order term is positive-
definite within the orthogonal subspace of constraint tangents. The first-order condition is
exactly the constrained Euler–Lagrange equation. Positive-definiteness of the second-order
term is guaranteed if the so-called Legendre and Jacobi conditions are satisfied. The Legendre
condition is met if P > 0 everywhere.
For the Jacobi condition, we need the concept of isoperimetric conjugate points. First, let ζ
be the solution to the Jacobi equation,

−(Pζ ′)′ +Qζ = 0 s.t. ζ(0) = 0, ζ ′(0) = 1,

and let ηi, for i = 1, . . . , p, be the solutions to

−(Pη′
i)

′ +Qηi = Ti s.t. ηi(0) = 0, η′
i(0) = 1,

where Ti := dgi/du are the constraint tangents. Next, we define the running integrals

Mi(x) =
∫︂ x

0
Tiζ and Nij(x) =

∫︂ x

0
Tiηj for i, j = 1, . . . , p.

This gives the entries of the constrained stability matrix,

Z(x) =

⎛⎜⎜⎜⎜⎝
ζ(x) η1(x) · · · ηp(x)
M1(x) N11(x) · · · N1p(x)

... ... . . . ...
Mp(x) Np1(x) · · · Npp(x)

⎞⎟⎟⎟⎟⎠ .

Finally, let Z(x) := detZ(x). A point σ ∈ R with Z(σ) = 0 is called an (isoperimetric)
conjugate point. The Jacobi condition is satisfied if there is no conjugate point in (0, l].
In summary: If, at u, the Euler–Lagrange equation is satisfied, and P (x) > 0 for all x ∈ [0, l],
and there is no conjugate point in (0, l], then u is a minimizer.

Elastic Rods Now, we apply this theory to kinematic elastic rods, to determine whether an
equilibrium curve γ is stable. Stability is mostly an issue for curves with at least two inflection
points, so K and λ (see Eq. 4.2) are uniquely determined by γ up to positive multiples. Using
the variable names from above, we have

g1(α) = cosα, g2(α) = sinα, T1(α) = − sinα, T2(α) = cosα,
P = K, Q = −λ1 cosα− λ2 sinα = −⟨λ, γ′⟩,
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Figure 4.9: Stability and Conjugate Points. Left: Unstable equilibrium (dashed), two
stable equilibria (green, purple), and in-between non-equilibrium states of the same rod. Right:
Stability determinant Z(s) for unstable and stable equilibria, with σ marked (orange).

so the Legendre condition P = K > 0 is always satisfied. The Jacobi equation reads

−(Kζ ′)′ − ⟨λ, γ′⟩ζ = 0 s.t. ζ(0) = 0, ζ ′(0) = 1, (4.7)

and is readily solved by integrating it from s = 0 to l. The functions η1 and η2 are determined
by solving with the right-hand sides T1 and T2, respectively. Finally, M1, M2, N11, N12,
N21, and N22 are obtained by integrating the solutions against the constraint tangents. This
gives all entries in the 3-by-3 stability matrix Z, whose determinant Z can be checked for
zero-crossings on (0, l]. If the sign of Z remains constant on this interval, then γ is a stable
equilibrium curve, and otherwise it is unstable. Fig. 4.9 shows how Z differs between an
unstable and a stable equilibrium of the same elastic rod.
If an equilibrium curve is unstable, the location of the first isoperimetric conjugate point
σ ∈ (0, l] indicates how close the curve is to being stable—if σ is close to l, then the curve is
“almost” stable. (This is analogous to the magnitude of the lowest negative eigenvalue.) Our
goal is to make a curve stable by pushing σ towards l, and finally out of the interval (0, l],
while modifying the curve as little as possible.

Adjoint Method The function Z(s) depends on K via the Euler–Lagrange and Jacobi
equations, so we write it as Z(s,K). A conjugate point is implicitly defined via Z(σ,K) = 0.
We can apply the implicit function theorem to find

−∂Z/∂s|(σ,K) · dσ/dK = ∂Z/∂K|(σ,K).

If we can numerically compute dσ/dK, this gives us a way to apply gradient-based optimization
on K in order to push σ towards l. But the equation shows that dσ/dK coincides with
∂Z/∂K|(σ,K) up to a scaling factor −∂Z/∂s|(σ,K), which can be shown to always be positive.
Because Z depends on K via a series of differential equations and integrals, we need to derive
its adjoint equations in order to compute ∂Z/∂K|(σ,K) analytically. A full overview of these
equations with derivations can be found in Appendix A.3.
The result of solving the adjoint equations is a differential that lets us evaluate the first-order
change to a conjugate point σ implied by changing K, up to a proportionality factor:

σ[K + δK] ≈ σ[K] + δσ[δK] = σ[K] + δF [δK]/(−∂Z/∂s|(σ,K)).

This differential, which we call δF , can be used to compute a search direction to increase σ in
an optimization algorithm.
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4.5.3 A Failed Attempt at Stability Recovery
The most obvious way of using δF is to parametrize K by densely sampling it, and assigning
one parameter Ki per sample. With this finite parametrization, δF gives the gradient ∇F
with respect to Ki, which can be used for “steepest ascent” on σ. The data flow of this
algorithm is

K ↦→ (γ, λ) ↦→ (Z, σ) ↦→ F.

Algorithm 4.1, which outlines this idea, makes initial progress in moving σ closer to l,
but necessarily fails to cross the stability threshold. The reason is the bifurcation that
occurs between unstable and stable equilibria at σ = l. At this point, the curve becomes
“uncontrollable” through K, meaning that small changes to K may induce arbitrarily large
changes to γ, and γ may not even be (locally) uniquely defined by K. The consequence is
that Newton-type methods that compute γ from K diverge, and even if they are stabilized,
any similarity of γ to the original curve is lost in the process.
Theorem 1 offers the tools to tackle the stability optimization problem with a more successful
approach: It describes the exact requirements on γ under which the inverse map γ ↦→ K
exists. This map is well-behaved even through bifurcations, and we will use it to construct a
working algorithm for stability recovery below.

4.5.4 The Stability Recovery Algorithm
The key to repairing the stability recovery algorithm is to avoid the “forward simulation”
step, in which γ is computed from K. To do this, we exchange the primary variables of the
optimization problem, and parametrize γ instead of K. We opt for a B-Spline representation
of at least quartic order, and use the control point coordinates q ∈ R2m as parameters to
optimize, with m the number of control points. The data flow of the new algorithm is

q ↦→ γ
!↦→ (K,λ) ↦→ (Z, σ) ↦→ F.

The step marked by “!” is only well-defined if γ is an equilibrium curve, because otherwise, an
admissible stiffness function K does not exist. This shows the significance of Theorem 1—it
gives necessary and sufficient conditions that we can enforce computationally in order to retain
the equilibrium property of γ.
In practice, this means enforcing conditions (1) and (2) of Theorem 1 throughout optimization.
The collinearity of inflection points can be formulated as a non-linear equality constraint on q,

Algorithm 4.1: Failed Attempt at Stability Recovery
Input : equilibrium curve γ0, stiffness K0, Lagrange multipliers λ0, step size h
Output : a stable equilibrium curve γn

1 n← 0;
2 while γn unstable do
3 Compute Z, σ;
4 Compute ∇F via adjoint method;
5 Kn+1 ← Kn + h · ∇F ;
6 Compute γn+1, λn+1 based on Kn+1, with γn, λn as initial guess;
7 n← n+ 1;
8 end
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Figure 4.10: Stability Optimization. Iterations of stability optimization, from initial unstable
state (light green) to stable state (dark green). Changes to γ (top left) are almost imperceptible,
but its curvature (bottom left) changes visibly around inflection points (arrows). This causes
stronger stiffness variations (bottom right) and pushes the conjugate point (orange) out of
(0, l] (top right). Iterations 0, 8, 15, 23, 30 shown.

and is enforced via an underdetermined Newton procedure after every update q ← q + ∆q.
This step is also used to enforce other constraints, such as keeping endpoints and tangents
fixed, and fixing the arc length of the curve. We describe this procedure in Appendix A.4.

−0.04
−0.02

0
0.02
0.04 κ

s

At this stage, the algorithm converges for some examples, but fails for
others. The reason for failure is that the optimization often drives γ
towards a state in which the secant-boundedness of κ is violated, i.e.,
with κ′(s0) ≈ 0 at an inflection point s0, as seen in the inset. The
easiest way to remedy this, and safeguard against other violations
of (1) and (2), is to add a constraint that bounds R[K] = sup K

inf K

from above. The upper bound Rmax can be chosen to reflect the
limitations of the fabrication method, or other requirements on the
geometry of the rod. This is a single non-linear inequality constraint, and it can be enforced
by linearizing the constraint in q and projecting ∆q onto the tangent space of the constraint
boundary, if it violates the constraint to first order. We have found that it is not necessary
to iteratively project q back onto the (non-linear) constraint boundary, because violations of
R ≤ Rmax due to the linearization are typically small and temporary if the step size is kept
small enough. Algorithm 4.2 summarizes all steps of computation.

Example Fig. 4.10 shows iterations of optimizing the stability of a quartic spline curve
with three inflections, where Rmax = 3. Remarkably, the curve itself changes very little
during optimization, but the stiffness profile implied by the curve changes drastically. This is
possible because curvature changes close to inflection points are amplified by the computation
K = a+⟨b,γ⟩

κ
.

The first two photos in Fig. 4.11 show a physical model of the unstable elastic curve, which
can be kept in unstable equilibrium with a small amount of force, but otherwise snaps into
one of the stable equilibria. The last two photos show a model of the stabilized curve, whose
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4.5. Stability of Equilibrium Curves

Figure 4.11: Stabilized S-curve. From left to right: Initial curve is kept in its unstable
equilibrium state by a little friction; initial curve snaps into stable equilibrium once friction is
removed; optimized curve is stable in S-shape; side view of stable S-shape.

equilibrium shape is almost identical to the unstable one. Note that the model does not touch
the ground, so no frictional force is provided.

Remarks There are two technical details that we have brushed over so far. First, instead
of using R[K] = sup K

inf K
directly, we replace it by the differentiable approximation R[K] ≈

∥K∥p · ∥1/K∥p, with ∥f∥p = (
∫︁
|f |p)1/p and p large; p > 20 worked well in our examples.

Second, we did not carefully discuss differentiability of γ ↦→ (K,λ). This map is only defined
on the manifold M ⊂ R2m corresponding to control point coordinates q such that γ has
collinear inflections. Thus, the domain of the differential is the tangent space TqM, and not
all of R2m. In our implementation, we account for this by computing an explicit basis of TqM
after enforcing constraints, and performing all subsequent calculations within this subspace.
A current limitation of the stabilization algorithm is that it neglects gravity because it uses
Theorem 1 to formulate constraints. Heuristically, we can account for gravity by enforcing
Eq. 4.5 after stabilization while changing K minimally, but this gives no formal stability
guarantee.

Algorithm 4.2: Stability Recovery
Input : equilibrium curve γ0, step size h, stiffness ratio bound Rmax
Output : a stable equilibrium curve γn

1 n← 0;
2 while γn unstable do
3 Compute a ∈ R, b ∈ R2 from inflection line;
4 K ← a+⟨b,γn⟩

κ
; R← sup K

inf K
;

5 Compute Z, σ;
6 Compute δF/δK via adjoint method;
7 Compute dK/dq and dR/dK via chain rule;
8 ∇F ← δF/δK · dK/dq; ∇R← dR/dK · dK/dq;
9 ∆q ← h · ∇F ;

// Project ∆q so R ≤ Rmax is satisfied to first order
10 ∆qeff ← ProjectStep(q,∆q, R,∇R,Rmax);
11 q ← q + ∆qeff;
12 q ← EnforceConstraints(q); // Make inflections collinear, enforce b.c.
13 γn+1 ← BSpline(q); n← n+ 1;
14 end
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Figure 4.12: Discretization. Quantities used in the discretization of the bending energy: edge
and boundary angles (green), edge weights (orange), nodal stiffnesses (gray), nodal weights
(purple).

4.6 Implementation
Here, we give details about the discretization and form-finding algorithm that are part of our
design system.

4.6.1 Discretization
Our discretization of plane elastic rods is similar to that of Bergou et al. [BWR+08], and we
distinguish between nodal quantities and edge quantities. This discretization is not needed for
implementing the results from Sections 4.3 and 4.4, but we use it to discretize the stability
criterion and its adjoint (Section 4.5), as well as for numerical testing with forward simulation.
A curve is represented as a polygonal chain (Fig. 4.12) with edge lengths li, which function as
weights for edge quantities. Nodal quantities have as weights the Voronoi area wi of a node,
i.e., half the sum of incident edge lengths. The bending energy and endpoint constraints of a
rod are discretized as

W = 1
2

n∑︂
i=0

Ki
(αi+1 − αi)2

wi

and
n∑︂

i=1
li

(︄
cosαi

sinαi

)︄
= γl,

where K0, . . . , Kn are nodal stiffnesses; α1, . . . , αn are edge angles; and α0 and αn+1 are
angle boundary values. The solution ζ to Eq. 4.7 is an edge quantity, with one fictitious edge
added on either side of the curve. This gives samples ζ0, . . . , ζn+1, with ζ0 = 0 and ζ1 = w0
by the initial conditions, and

−1
li

(︄
Ki
ζi+1 − ζi

wi

−Ki−1
ζi − ζi−1

wi−1

)︄
− ⟨λ, γ′

i⟩ζi = 0,

with γ′
i = (cosαi, sinαi), which can be solved for ζi+1. The same edge discretization is used

for ηi. Finally, Mi and Nij are nodal quantities, which are computed by summing over edges
in the same manner as for the endpoint constraints. The adjoint quantities can be discretized
in the same way as the primal quantities. To compute δF [δK], the derivatives α′, ᾱ′, ζ ′, ζ̄

′,
etc. are computed as nodal quantities, and initial values like ζ ′

0 = 1 can be recovered exactly
from the fictitious border edges that were added earlier.

4.6.2 Implementation of the Design System
The algorithms for computing a stiffness profile with or without gravity can be implemented
by sampling an input curve and setting up the corresponding linear programs from Eqs. 4.4
and 4.6. We solve these programs to optimality using the Gurobi library.
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Our design system offers different modes of user interaction. On the one hand, the user
can directly edit a design by manipulating the control points of spline curves or surfaces,
and modifying planes that are intersected with input surfaces to yield curves. The program
generates a preview of the beam geometry necessary to realize these curves in a split second
(see Fig. 4.16), which allows for a fast and interactive workflow.

The user can also give more control to the application by running a fabricability optimization
routine that improves the design automatically. This is especially useful if the optimal stiffness
ratio R = sup K

inf K
of a curve is too high for the chosen fabrication method, and the user cannot

decrease it further with manual edits. At the core of this optimization method is a local/global
approach.

The local step computes the derivative of R with respect to coordinates of the spline control
points, and modifies them using gradient descent with line search. The parameters a and b
are modified as little as possible in the process. E.g., if there is a single inflection point, only b
is modified so L still intersects the inflection point after the control points have been updated.
These minimal changes to a and b are accounted for when computing the gradient.

The global step solves the linear program in Eq. 4.4 to regain the global optima for a and
b, while keeping the control points fixed. This step is only necessary if there are fewer than
two inflection points, because otherwise a and b are defined up to positive multiples by the
inflection line.

Neither step can increase R, given a small enough step size. For inflectional curves, we call
EnforceConstraints after the local step. Optimization stops once a user-defined target
stiffness ratio has been reached, or after a fixed number of iterations. We account for gravity
in a post-process, by solving for K once more with the linear program from Eq. 4.6 after the
local/global algorithm terminates.

Naturally, the user can mix these modes of interaction freely, in order to converge to the best
possible design. Once a design is finalized, the system outputs CAD files that include the
outlines of all beams in their flat configuration, and the placement and orientation of fixtures
for all beam endpoints.

4.7 Fabrication & Validation
Next, we present ways of manufacturing elastic strips that exhibit the stiffness profiles we
have computed in previous sections. We show two methods that let us control the stiffness
and width of a strip independently, by using either perforation or layering. To quantify the
accuracy of deformed shapes, we 3d scanned physical models and compared them with the
intended design. We also present numerical tests to assess the robustness of fabrication using
elastic strips. Extensions that allow the use of nonlinearly elastic materials and account for
mild plasticity effects are discussed in Appendix A.5.

4.7.1 Fabrication
The most straight-forward way of producing an elastic strip is to cut it from a sheet with
constant thickness h, such that the width w(s) of the strip is directly proportional to the
stiffness K(s). This achieves the desired behavior because K ∼ wh3 for elastic rods with a
rectangular cross section.
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Σ K w1

w2

h1
h2

Figure 4.13: Perforated and Composite Strips. Top: Examples of perforated (left) and
composite (right) strip with section lines. Bottom: Cross sections.
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Figure 4.14: 3d Scans. Scans of physical models (gray) superimposed with simulated
equilibrium shape (green). Arrows show maximal displacement error. Left: Cardboard model
of arch with two inflections (max err. 1.7 mm). Right: Five interlocking arches of pavilion
example (max err. 2.5 mm).

The disadvantage of this method is that we relinquish direct control over the appearance of the
strip, because all degrees of freedom go into realizing the stiffness. In particular, this makes it
impossible to close gaps between adjacent strips in a model, because we cannot control the
width independently of the stiffness. We found two ways to circumvent this limitation, shown
in Fig. 4.13.

Perforated Strips To prescribe the width and stiffness independently, we can remove
material from a strip with width w(s) by adding holes in order to achieve an effective stiffness
K(s). Our design removes diamond-shaped regions of material to reveal a network of smaller-
scale strips, such that the total width integrated over a cross section is proportional to K, see
Fig. 4.13 (left). We chose this type of perforation so the smaller-scale strips are approximately
aligned with the direction of the main strip, in order to ensure uniform bending.

Composite Strips Another way of decoupling w and K is to use a composite of two strips
that are rigidly glued, see Fig. 4.13 (right). We use a broader strip (purple) with thickness h1
and width w1(s) to determine the outer shape of the strip, and a narrower strip (lilac) with
thickness h2 and width w2(s) to add stiffness control. The stiffness of the composite strip can
be approximated by3

cK = w2(h1 + h2)3 + (w1 − w2)h3
1 = P1w1 + P2w2,

with P1 = h3
1, P2 = (h1 + h2)3 − h3

1, and c a scaling constant. We want to prescribe K and
w1, and compute w2 subject to 0 ≤ w2 ≤ w1 to satisfy this equation with some c > 0. The

3In this formula, we neglect the small offset between the overhang of the broad strip and the neutral line
of the cross section. Instead, we assume that all mass is symmetrically distributed around the neutral line.
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bounds on w2 lead to constraints on c,

cmin(s) := P1w2(s)
K(s) ≤ c ≤ (P1 + P2)w2(s)

K(s) =: cmax(s),

for all s ∈ [0, l]. These constraints can be satisfied simultaneously if and only if max cmin ≤
min cmax. If this is the case, we use c := min cmax, which makes the narrow strip as wide as
possible without protruding beyond the broad strip, as shown in Fig. 4.13 (right). Should
the problem be infeasible, one can either change the design or reduce the thickness of the
broad strip relative to that of the narrow strip. This works because the problem always
becomes feasible as h1/h2 → 0. All of our results that use composite strips were realized with
h1/h2 = 1/2.4

4.7.2 Validation
3d Scans. To better quantify the predictive capabilities of our model, we used a dual-camera
light scanner to capture the geometry of two physical models in their deformed state. The
scanned models were then registered to the 3d models that served as input for computing the
stiffness profiles. Fig. 4.14 shows a superimposition of the scanned and input models.
The first scan is of an arch with two inflections and a total length of 25 cm, yielding a
maximum displacement error of 1.7 mm; this is about 1% of the model diagonal. The second
scan shows a section of the pavilion example, composed of five interlocking elastic strips, each
approximately 34 cm in length. Here, the maximum displacement error is 2.5 mm, also about
1% of the model diagonal.

Numerical Testing. In addition to conducting 3d scans, we performed a series of numerical
tests that simulate the effects of material parameter uncertainty and fabrication error. This
helps analyze the robustness of the fabrication process with elastic strips. Fig. 4.15 shows a
few representative equilibrium curves, taken from the examples we show in Section 4.8. They
include curves with zero to three inflection points, and one curve with a high turning number.
In particular, we show the consequences of the following defects (rows 3–6):

• The ratio between minimal and maximal stiffness is lower (higher) than assumed.

• The gravity parameter ρ
Eh2 is lower (higher) than assumed.

• The enforced boundary angles are defective.

• The highest-curvature regions deform plastically.

The exact impact of these errors will depend on the equilibrium curve in question, but we
found curves with high total variation of turning angle, V(α) =

∫︁ l
0|κ|, to be affected the most.

On the other hand, inflection points close to the endpoints of a curve (e.g., column 4) seem
to have a stabilizing effect.

4.8 Results
We combine the design methods from Sections 4.3–4.6 and the fabrication techniques from
Section 4.7 to manufacture physical models that demonstrate applications in architecture,

4The gravity potential of a composite strip is linear in the unknown, w2, so the model from Section 4.4
can easily be adapted to solve for w2 of a composite strip with w1 given.
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Figure 4.15: Robustness Study. We show the effect of fabrication errors and parameter
uncertainties on elastic curves on five representative examples. Rows 3–6 : original curve
(dashed) and curve affected by errors. Top to bottom: Curve and curvature normals; stiffness
profile; stiffness range smaller (light green) or larger (dark green) than intended by 50%;
gravity parameter underestimated (light) or overestimated (dark) by 50%; boundary angles off
by 10◦; plasticity affecting top 25% (light) or top 50% (dark) of curvature.

60



4.8. Results

Ta
bl

e
4.

1:
Li

st
of

R
es

ul
ts

.
Su

m
m

ar
y

of
all

m
od

els
.D

es
ign

:C
ur

ve
sb

as
ed

on
3d

m
od

els
,o

n
an

aly
tic

al
ex

pr
es

sio
n,

or
m

od
ele

d
di

re
ct

ly
by

ha
nd

.
#

St
rip

s:
To

ta
l(

In
di

vid
ua

lly
op

tim
ize

d)
.#

Sp
C:

Nu
m

be
ro

fs
am

pl
es

pe
rc

ur
ve

.S
ize

:l
en

gt
h

x
wi

dt
h

x
he

igh
t.

Ti
m

in
gs

fo
rs

tiff
ne

ss
co

m
pu

ta
tio

n,
fa

br
ica

bi
lit

y
op

tim
iza

tio
n,

ge
om

et
ry

pr
oc

es
sin

g,
an

d
su

m
of

all
th

re
e.

N
am

e
M

at
er

ia
l

D
es

ig
n

G
rv

ty
.

Fa
br

ic
at

io
n

#
St

rip
s

#
Sp

C
Si

ze
[c

m
]

St
fn

s.
Fb

rc
bl

ty
.

G
m

tr
y.

To
ta

l
Sh

ell
Ca

rd
bo

ar
d

M
od

el
No

Pe
rfo

ra
te

d
60

(1
0)

20
0

50
x4

9x
10

0.
05

s
1.

39
s

0.
57

s
2.

01
s

Fl
ow

er
Po

t
Ca

rd
bo

ar
d

M
od

el
Ye

s
Co

m
po

sit
e

16
(1

6)
50

0
30

x2
7x

17
1.

26
s

13
.3

s
1.

46
s

16
.0

s
Ho

rse
Ca

rd
bo

ar
d

M
od

el
No

Co
m

po
sit

e
40

(4
0)

20
0

56
x1

4x
39

0.
15

s
2.

84
s

11
.6

s
14

.6
s

Pa
vil

ion
Ca

rd
bo

ar
d

An
aly

tic
al

Ye
s

Em
er

ge
nt

31
(3

1)
20

0
91

x2
3x

14
0.

30
s

-
3.

93
s

4.
23

s
La

nt
er

n
PO

M
Di

re
ct

No
Em

er
ge

nt
20

(2
)

24
0

28
x2

8x
26

0.
00

3
s

0.
47

s
-

0.
47

s
La

m
p

Pl
yw

oo
d

M
od

el
No

Pe
rfo

ra
te

d
32

(3
2)

20
0

93
x6

6x
17

0.
11

s
14

.0
s

0.
12

s
14

.2
s

Va
se

Ca
rd

bo
ar

d
An

aly
tic

al
No

Em
er

ge
nt

20
(1

)
1.

3k
26

x2
6x

14
-

-
-

0.
01

s
Ca

rp
et

-
M

od
el

Ye
s

-
15

(1
5)

40
0

46
x2

9x
12

0.
89

s
2.

47
s

1.
76

s
5.

12
s

Fa
ça

de
-

Di
re

ct
No

-
8

(8
)

30
0

55
x1

2x
43

0.
17

s
7.

36
s

1.
33

s
8.

86
s

61



4. The Design Space of Plane Elastic Curves

Figure 4.16: Lantern Design Session. Top: B-Spline curve modeled by the user (left) and
optimal stiffness profile computed by Eq. 4.4 (right). Bottom: Result of automatic fabricability
optimization to guarantee R ≤ 3.

model building, and interior design. Our stiffness construction algorithm reacts to user edits
within a fraction of a second, which allows for fast iteration on the design of these models, and
a quick evaluation of ideas. We also use the fabricability optimization routine of our design
system (see Section 4.6.2) in order to suggest trade-offs between the original concept and
ease of fabrication. For a detailed summary of all results, along with material, size, complexity,
and computation times, consult Table 4.1.

We showcase a variety of materials such as cardboard, paper, polyacetal, and plywood, as
well as different design processes such as approximation of existing 3d models, and direct
specification using mathematical expressions. Some models use perforated or composite strips
for maximal control, while others benefit from the naturally emergent shapes dictated by the
stiffness distribution. Many of the models are between 50 and 100 cm in length, which would
make it cost-prohibitive to 3d print all beams in their curved state, or to manufacture molds
for all of them. Photographs of the physical models are shown in Figs. 4.1 (left) and 4.24,
and renderings of two additional examples in Figs. 4.1 (right) and 4.23.

4.8.1 Emergent Strip Designs
We designed two objects that take their elastic strip geometry directly from the stiffness
profiles computed with linear programming.

Lantern The first is a lantern encased by twenty strips lasercut from a POM sheet with
a thickness of 0.5 mm. The shape of the elastic strips was drafted in our software design
tool using B-Spline curves, as seen in Fig. 4.16. The tool gives immediate visual feedback
about the geometry of the strip resulting from the current design. The user can then either
manually adapt the design to achieve better fabricability and appearance, or use the automatic
optimization routine to decrease the max-to-min stiffness ratio of the strip. For this example,
the optimization terminates under 1 second, giving real-time feedback and enabling an iterative
design loop.
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Figure 4.17: Pavilion. Top left: Three arches from the pavilion model (dark); poor shape
reproduction if gravity is neglected during optimization (light). Top right: Stiffness profiles
computed with gravity (dark) and without gravity (light). Bottom: Final strip geometry with
cuts for interlocking.

Pavilion The second object is a pavilion composed of 31 interlocking cardboard strips that
form an archway about one meter long, and 15 cm high. Every strip is designed as a segment
of an ellipse, rotated around its center point, which gives the model a corkscrew-shaped
appearance. The design uses 200 gsm cardboard, which is flexible enough for gravity to play a
significant role, so we used the model from Section 4.4 to compute the width profile of every
strip. Fig. 4.17 shows the effect of gravity, along with the resulting stiffness and width profiles.

The strips are spaced closely enough so neighboring strips intersect by a few millimeters each.
These intersections are found computationally and show up as slotted cuts in the final model,
to allow the strips to interlock. Note that little to no force is transmitted through these cuts,
because every strip is in equilibrium even without neighboring strips as support. Fig. 4.14
validates the physical shape by 3d scanning.

4.8.2 Composite Strip Designs
If the goal is to cover a closed 3d model with elastic strips, it is useful to have explicit control
over the width profile of every strip, so gaps between strips can be minimized. We can achieve
this by using composite strips, as discussed in Section 4.7, and demonstrate the technique on
two 3d models.

Horse This object is based on a pre-existing 3d model of a horse5 that was not modified by
the authors in any way prior to approximating it with equilibrium curves. To design the strip
model, we specify a family of twenty planes spanning the body, neck, and head of the model,
and compute the intersection curves, as shown in Fig 4.18. All remaining steps are automatic,
except for choosing parameters such as spline curve degree and step sizes.

Each intersection curve is split at the spine, yielding a total of fourty sampled curves, which
are then smoothed to remove high frequencies and approximated by quartic spline curves.
Curves that do not have the equilibrium curve property initially are post-processed by removing
spurious inflection points. Then, we run the auxiliary routine to optimize fabricability (see
Section 4.6.2) until a value of R ≤ 2 is reached for each curve. As Fig. 4.18 shows by example,

5https://free3d.com/3d-model/palomino-horse-walking-v1–643031.html
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Figure 4.18: Horse. Left: 3d model with planes and intersection curves. Right: A selection
of input curves (light green) and optimized equilibrium curves satisfying R ≤ 2 (dark green);
composite strips realizing these curves (purple).

R
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101

102

Figure 4.19: Flower Pot. Left: NURBS model with input curves (light green) and optimized
curves (dark green). Center: Stiffness ratio objective R of all curves before optimization (light)
and after optimization (dark). Right: Three composite strips used in the physical model.

Figure 4.20: Shell. Left: 3d model partitioned into ten sections. Center: Coverage of each
elastic strip after fabricability optimization, using composite or perforated strips. Right: Sparse
coverage if width is proportional to stiffness.

most curves only change slightly as a result. The final step is to solve for w2 of the composite
strip as described in Section 4.7.1.
The physical model consists of 3d printed parts for the legs and tail of the horse, as well as a
slender frame structure to hold the elastic strips. The composite strips are cut from 200 gsm
cardboard and 100 gsm paper using a Cricut cutting machine, and then glued in their flat
state. After insertion in the frame, they form the body, neck, and head of the horse. Some
strips are tilted relative to the direction of gravity. This causes out-of-plane forces, but their
effect is negligible on this scale, so planarity of deformations is retained.

Flower Pot We designed this model by intersecting an asymmetric NURBS surface with
radially arranged planes, which gives a total of 16 curves that we want to approximate as
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Figure 4.21: Lamp Optimization. Left: Evolution of equilibrium curve (green) and its
control polyline (purple) during fabricability optimization, from initial state (light) to final
state (dark). Right: Evolution of stiffness profile K, normalized to minK = 1.

closely as possible with elastic strips (see Fig. 4.19). All curves initially satisfy the conditions
of Theorem 1, but the optimal values of R lie between 30 and 110, making it impractical for
fabrication.
We opt to run automatic fabricability optimization to guarantee R ≤ 3.5 for all 16 strips,
which takes 13 s in total. The curves change slightly in the process, as shown in Fig. 4.19, but
the overall shape of the object is preserved. Finally, we use the technique from Section 4.4.3
to arrive at a smooth stiffness profile, and compute the shapes of composite strips as discussed
in Section 4.7.1.

4.8.3 Perforated Strip Designs
Another way of decoupling stiffness and strip width is to use perforation, which gives the
physical object a more stylized appearance. We demonstrate this technique by manufacturing
a miniature of an architectural shell from cardboard, and a large ceiling lamp made from
plywood.

Shell This model is based on a curved shell with three-fold mirror symmetry, initially given
as a quad mesh. Fig. 4.20 (left) shows one sixth of the shell, along with a partition into ten
slender sections. Each section grows wider towards the far end, which would cause large gaps
between strips if the stiffness profile was used to directly determine strip width. To achieve
better coverage (center), and an even distribution of material across the shell, we use the
perforation technique described in Section 4.7.1.
The physical model shown in Fig. 4.24 (row 2) has a uniform texture with no large gaps and
contains regions of both negative and positive apparent curvature. In total, sixty strips of 200
gsm cardboard with diamond-shaped cutouts are used to form the curved surface.

Lamp Our largest model, with a footprint of 93 x 66 cm and a height of 17 cm, uses a 3d
printed base with a thickness of 7 mm, and 32 elastic strips that have been lasercut from 0.8
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Figure 4.22: Surfaces of Revolution. Examples of surfaces of revolution that can be
tessellated without gaps. Lines mark kinematic boundary conditions.

mm plywood. Furthermore, the base is clad in a plywood veneer, so the lamp appears to be
entirely done in woodwork. Without the use of active bending, a model like this would be
extremely costly to make, requiring individual molds for all curved elements.
The design takes an existing shell model [GGP+20], which was not modified by the present
authors, and approximates planar sections with equilibrium curves. As shown in Fig. 4.21,
the stiffness profiles of these curves can be significantly improved by tiny changes near the
endpoints. Our optimization algorithm does this automatically, in less than 0.5 s per curve.

4.8.4 Surfaces of Revolution
Elastic strips with constant thickness can be used to tessellate a family of surfaces of revolution
without gaps. We can characterize this family with a small modification to Eq. 4.3. Note that
the tessellation constraint requires the width w(s) of each strip to be directly proportional to
the distance from the axis of revolution (cf. Fig. 4.22). If we identify the axis of revolution
with e2, and a direction orthogonal to it with e1, this constraint reads ⟨e1, γ(s)⟩ ∼ w(s),
where w is proportional to K. Plugging this into Eq. 4.3 yields

⟨e1, γ⟩κ = a+ ⟨b, γ⟩,

where the proportionality constants have been absorbed into the right-hand side. We can use
this equation to generate all surfaces of revolution with the tessellation property by picking a,
b, and initial conditions γ(0) and α(0). Then, we integrate through the equation to solve for
a meridian of the surface.
This application was inspired by Liu et al. [LDV20], who show a construction for surfaces of
revolution with at most one inflection point. As the examples in Fig. 4.22 and our physical
model in Fig. 4.24 show, our construction also supports more than one inflection, assuming
kinematic boundary conditions. The subfamily with symmetric b.c. on one end is described by
restricting b to multiples of e2.

4.8.5 Applications in Lighting Design
Figs. 4.1 (right) and 4.23 show two more applications of active bending in the form of
renderings. The first is a flowing pavilion design (“Carpet”) realized with 15 inflectional curves
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Figure 4.23: Renderings of Carpet and Façade. Top: Carpet viewed from the front, and
from the inside out. Bottom: Façade closed, partly open, and fully open.

whose lowest points hover just above ground. The gap in-between allows indirect light to
enter through the back and flood the space underneath the structure.
We further explore the role of active bending in lighting design with a kinetic façade inspired
by the work of Knippers et al. [KSOJ12]. Elastic beams are placed vertically to form a façade
that can be actuated by compression, in order to control the amount of indirect light entering
through. We used our design system to determine the deformed shape of the beams, to allow
more light to enter through the top of the mechanism, as seen in Fig. 4.23 (bottom center).

4.9 Discussion
In this work, we characterized the design space of plane elastic curves. Different spatial
arrangements of these curves give rise to a variety of appealing forms, but we have yet to
explore the possibilities offered by connecting elastic strips with joints, allowing them to undergo
torsion, and accounting for the effect of creep over time. Understanding the complex design
space offered by these mechanisms in geometric terms may offer new ways to support designers
and enable flexible workflows with quick feedback loops. We believe that our approach to
characterizing plane elastic curves geometrically can be generalized to the case of several
jointed curves and non-planar deformations by considering appropriate variational problems
and constraints.
Another useful extension would be to integrate standard beams, bending-active beams, and
external forces in a single system. Possibly, our geometric characterization of bending-active
beams can be combined with graphical statics to promote an intuitive understanding of these
mixed constructions. Furthermore, the present work does not consider the assembly process
of bending-active structures. Deployment with light-weight mechanisms that respect stress
bounds is an active area of research, and an essential part in the scaling up of designs.
In terms of application, we have only scratched the surface of kinetic structure design, in
which actuation is used to alternate between different shapes. This idea offers an interesting
challenge, because it is necessary to optimize structural elements for several deformed shapes
at once, and to preserve the functionality of a design. A related problem is that of designing
multi-stable elastic structures, which need only be actuated during a shape switch, but stay in
each target shape without external force. We hope that our idea for stability optimization can
contribute to this area of research.
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Figure 4.24: Photographs of Physical Models. Top to bottom, left to right: Pavilion,
Horse, Shell, Vase, Lantern, Flower Pot, Lamp.
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CHAPTER 5
The Design Space of Kirchhoff Rods

5.1 Introduction
Rod-like elements are ubiquitous in natural and human-made environments, and form the
building blocks of the world around us: from beams used in the construction of buildings,
machines, and tools, to electrical cables, clothing fibers, tree branches, human hair, muscle
tissue, and DNA strands. This omnipresence has led to a long and rich scientific history
concerned with developing the tools to predict how an elastic rod of a given length and shape
will bend and twist under different loads and constraints.
The history of investigating the inverse problem—to determine the initial shape of a rod
whose equilibrium state is known—is considerably younger but no less ambitious: It lays
the theoretical foundation for designing rods with a programmable deformed shape that is
hard-coded into its geometry.

Motivation Most rods, beams, and ribbons used in construction and design are straight
in their undeformed state and acquire curvature only through the process of bending and
twisting. Straight rods are preferred because they can be manufactured more cheaply and
with less material waste, and packed more easily for transport. To enable the inverse design

Figure 5.1: Photographs of Physical Prototypes. Our computational design algorithm
takes as input a curve in R3 and computes the geometry of a straight elastic rod that will
deform to match the input curve once installed in a support structure. Left: Six silicone
rods that match six input curves subject to elastic forces and gravity. Right: Free-form light
sculpture made from three straight silicone rods and electroluminescent wire, attached to a
3d-printed fixture.
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+ =

Figure 5.2: Algorithm Overview. Left: The input to our computational design algorithm is
a curve in R3, which we want to convert to a deformed elastic rod. Center-left: We show that
this problem has a solution if and only if there exists a helical motion (green) that is nowhere
orthogonal to the binormal lines (yellow) of the curve. Center-right: Based on the parameters
of the helical motion, we compute a moving frame along the curve and the geometry of a rod
that solve the Kirchhoff rod equilibrium equation. Right: Photograph of a silicone rod that
deforms according to the computed solution in the real world.

of straight rods with a programmable curved equilibrium shape, it is useful to know exactly
which equilibrium shapes are physically realizable in the first place.

We solved this problem for the special case of planar deformations in Chapter 4, leading to a
concise description of all plane curves that appear as static equilibria of straight elastic rods
with spatially-varying thickness. This result also gave rise to a computational design algorithm,
which solves for the thickness distribution necessary to achieve a given curved shape, and has
applications in architecture and design.

A limitation of this approach is the restriction to planar shapes, and the inability to reproduce
shapes that are curved in three dimensions. In this chapter, we show that a geometric
characterization can also be attained for the case of fully three-dimensional bending and twisting
of straight elastic rods with spatially-varying cross sections. This allows the computational
design of structures such as the ones shown in Fig. 5.1, in which the curvature of the rods is
induced purely by the elastic response of the material and the cross sections computed by our
algorithm.

Problem Statement We study the design problem associated with rods of vanishing natural
curvature from a geometric and from an algorithmic perspective. To formalize this problem,
we use the large-displacement small-strain model developed by Kirchhoff and Clebsch, called
the Kirchhoff rod model for short.

The deformed state of a Kirchhoff rod can be described as a framed curve in R3, so a natural
question to ask is which framed curves occur as deformed equilibrium states of rods—supposing
we can freely choose the cross-sectional profile at every point. We study three flavors of this
question, which differ by how much of the deformed state is prescribed, i.e., whether the twist
of the rod is constrained to vanish, constrained to be a prescribed function, or not constrained
at all.

Contributions Our main theoretical contribution is to show that there is a close connection
between these sets of equilibrium curves and classical projective line geometry. This connection
leads to a characterization of these curves that is both concise and computationally convenient.
Furthermore, it directly translates into an algorithm that checks whether a given curve has the
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equilibrium property, and lets us construct the geometry of a rod that will realize this curve as
one of its equilibrium states.

This algorithm takes as input a design, consisting of a number of curves in three-dimensional
space, which we would like to turn into a physical model where elastic rods take the place
of these curves. For each curve, the algorithm outputs the geometry of a straight rod with
a spatially-varying cross-sectional profile. This rod will adopt the shape of the input curve
at static equilibrium once its endpoints are mounted in a support structure at the correct
locations, orientations, and twist, as illustrated in Fig. 5.2.

The basic version of our algorithm, which applies when the gravitational effect on the deformed
shape is negligible, comes with the rigorous guarantee that it terminates successfully if and
only if the input is feasible. The feasibility test and geometry generation take about 10 ms, so
they are fast enough to be part of an interactive design pipeline, allowing the user to receive
immediate feedback upon editing a curve, for example using a spline representation.

In preparation of our main results, we formulate and show two interesting properties of the
design space of Kirchhoff rods. First, we prove convexity of the set of stiffness matrices that
describe the resistance to bending and twisting at a point of the rod. This indicates that
many design problems involving Kirchhoff rods can be posed as convex optimization problems.
Second, we investigate how using cross sections with different shapes affects the equilibrium
curves that can be achieved. We prove that elliptical cross sections suffice to reach every
possible deformed state, and other cross sections do not add any more design freedom.

Finally, we show how external forces and the dead load of a rod can be modeled as part of the
inverse problem, thereby opening up applications in design on a larger scale. To take these
forces into account, we present an iterative algorithm that post-processes the result obtained
with the basic, load-free algorithm. Convergence of this algorithm is at least linear on all of
our examples, as we show by empirical means.

We apply our design algorithm to several fields of application, such as fixture design, interior
design, and soft robotics. In this context, we discuss our fabrication pipeline for producing
physical copies of rods using 3d-printed molds and silicone casting. The efficacy of our
approach is validated by comparing photographs of our manufactured examples to renderings
of the target designs.

5.2 Overview
The technical sections of this paper are organized in three parts. Our contributions are presented
in Sections 5.4 and 5.6-5.8, while Sections 5.3 and 5.5 serve as technical introductions.

1. Kirchhoff Rods We summarize the classical Kirchhoff rod model, with an emphasis on
how to compute the stiffness matrix for a given cross section, and give a condensed derivation
of the equilibrium equation for clamped-clamped boundary conditions (Section 5.3).

These tools are used to characterize the set of all stiffness matrices achievable within Kirchhoff
rod theory and to show that this set is convex. Furthermore, we prove that a much smaller set
of stiffness matrices, namely, that induced by elliptical cross sections, suffices to reach every
possible equilibrium state (Section 5.4).
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2. Equilibrium Curves We give a summary of Plücker coordinates and linear line complexes
(Section 5.5), our main tools to study the design space of Kirchhoff rods. Then, we present a
geometric characterization of twist-free equilibrium states, which directly generalizes the result
in the plane setting, presented in Theorem 1. We explore interactive design of these curves,
and discuss how to heuristically avoid stability issues (Section 5.6).

Next, we drop the twist-free constraint and present a geometric characterization of all Frénet
curves that appear as deformed centerlines of Kirchhoff rods at equilibrium. This leads to
a computational design algorithm that decides for a given (framed) curve whether it has
the equilibrium property, and, in case it does, computes the geometry of the corresponding
Kirchhoff rod (Section 5.7).

3. Design under Load We discuss a generic load model that supports point loads and
line loads, such as the dead load of a rod, and the resulting modification to the equilibrium
equation. The problem of finding solutions to this equation is then posed as a fixed-point
problem, which can be solved via iteration (Section 5.8).

Finally, in Section 5.9, we show several physical examples that have been designed with our
approach and manufactured using silicone casting, before we draw conclusions in Section 5.10.

All algorithms presented in this paper rely only on linear programs and initial value problems,
both of which can be solved numerically within a few milliseconds. The result is a set of
techniques fast enough to produce results within a fraction of a second, so they can be used
to give immediate feedback during an interactive editing session, or as part of more complex,
iterative algorithms.

5.3 Kirchhoff Rods: Technical Preliminaries
The goal of this section is to introduce the mathematical tools to describe a popular model
for the deformation of thin elastic rods, developed by Kirchhoff and Clebsch. Readers familiar
with this subject may skip ahead to Eq. 5.6 and consult the cheat sheet in Appendix B.5 for
an overview of our notation.

A rod is a slender three-dimensional body whose extent in one direction is much greater than
that in the orthogonal directions, such as beams, cables, yarn, and hair. It can be shown that
deformations of a rod under moderate loads admit a number of kinematic simplifications, such
as near-inextensibility of the centerline, and cross sections remaining nearly planar in bending.
These assumptions lead to a reduction of the full three-dimensional displacement field to a
one-dimensional description via curvatures and twist, which is captured mathematically by the
concept of framed curves.

5.3.1 Framed Curves
We will focus our investigation on rods with a center line that is straight in the initial state.
To keep track of bending and twisting modes, we rigidly attach a standard orthonormal frame
(e1, e2, e3) to every point of the center line, assuming that the direction of the rod coincides
with e3, as shown in Fig. 5.3 (left).

Once forces are applied to the rod, the center line deforms isometrically into an arc-length
parametrized curve γ : (0, ℓ) → R3, with ℓ the length of the rod. Likewise, the frames
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e1

e2 e3

γ
n1

n2

Figure 5.3: Kirchhoff Rod. Left: Initial, undeformed state. Right: Deformed state with
bending and twist. The cross sections (gray) are anisotropic, and vary across the length. Their
centroids form the centerline γ (black), to which the material normals n1 and n2 (black) are
attached. The purple-green stripe pattern on the surface visualizes the twist in the deformed
state.

rotate such that e1 and e2 map onto the material normals n1 and n2, and e3 onto the
curve tangent γ′. These three orthonormal vectors form the columns of the moving frame
F = (n1, n2, γ

′) : (0, ℓ)→ SO(3). The pair (γ, F ) is called a framed curve. Fig. 5.3 shows
an anisotropic Kirchhoff rod in its undeformed and deformed state. In the remainder of this
subsection, we recap the relevant formulas from Section 3.1.2, where they are presented in
more detail.

Darboux Vector and Curvature The derivative of F wrt the arc-length parameter s is
described geometrically by the Darboux vector ω : (0, ℓ)→ R3, which satisfies F ′ = [ω]×F .
Here, [ω]× denotes the skew-symmetric matrix such that [ω]×v = ω × v for all v ∈ R3. The
coordinates of ω with respect to F are called the curvature vector k : (0, ℓ)→ R3, so ω = Fk.
The components k = (κ1, κ2, τ)t are known as the material curvatures κi, for i = 1, 2, and
the twist τ .

The normal component of ω, denoted by ωn, is the same for all frames adapted to γ, and can
be computed as

ω − ⟨ω, γ′⟩γ′ = ωn = γ′ × γ′′.

Likewise, the (geometric) curvature κ =
√︂
κ2

1 + κ2
2 ≥ 0 is determined by γ alone, and can be

computed as κ = ∥γ′′∥ = ∥ωn∥. Analogous to ωn, we also introduce notation for the first two
columns of F and the first two entries of k:

Fn := (n1, n2) = FS, kn := (κ1, κ2)t = Stk, with S =
(︂ 1 0

0 1
0 0

)︂
.

This lets us write ωn = Fnkn for any frame.

It will be useful to express k purely in terms of F . To do this, we can use the following
identity: for any Q ∈ SO(3) and v ∈ R3, it holds that Q[v]×Qt = [Qv]×.1 Then, we compute
F ′F t = [ω]× = [Fk]× = F [k]×F t, which implies that [k]× = F tF ′.

Special Frames A frame with τ ≡ 0 is called parallel and describes a rod deformation
without twist. For any given curve, a parallel frame F is uniquely determined by the image
under F of a single point, for example F (0). Two parallel frames differ only by a constant

1Proof: Let w ∈ R3. Then, Q[v]×Qtw = Q(v × (Qtw)) = (Qv)× w = [Qv]×w.
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Parallel Frame
Serret–Frénet Frame
Rotation β

Figure 5.4: Rotation Between a Parallel and the Serret–Frénet Frame. Any two frames
adapted to the same curve are related through a rotation with some angle β : (0, ℓ) → R
around the curve tangent. In this example, β relates a parallel frame (purple) and the Frénet
frame (green) of the curve.

rotation in the normal plane. The Darboux vector of a parallel frame is contained in the
normal plane, so ω = ωn.
Away from inflection points, a curve has a unique Serret–Frénet frame defined by the principal
normal n1 = γ′′/∥γ′′∥ and characterized by κ1 ≡ 0. The curve binormal n2 = (γ′× γ′′)/∥γ′′∥
is parallel to ωn. A curve that has a Serret–Frénet frame everywhere is called a Frénet curve
and is characterized by κ > 0.

Relating Adapted Frames Two frames F and Fβ adapted to the same curve γ share the
same third basis vector at every point, i.e., Fe3 = γ′ = Fβe3. Thus, they are related through
a rotation around the third basis vector by an angle β : (0, ℓ)→ R that may vary as a function
of s. Likewise, we can relate their curvature vectors:

Fβ,n = FnQβ, with Qβ =
(︂

cos β − sin β
sin β cos β

)︂
,

kβ,n = Qt
βkn, τβ = τ + β′.

(5.1)

Fig. 5.4 shows a curve with a parallel frame and its Serret–Frénet frame, as well the rotation
between the two frames.

5.3.2 Elastic Energy
The elastic energy of a deformed Kirchhoff rod is defined based on the assumption that bending
and twisting modes of deformation can be decoupled and contribute separately to the energy.
The contribution of each mode is derived by assuming a state of uniform bending or twisting,
and computing the respective energy from three-dimensional elasticity. We will only discuss
aspects of the resulting formulation that are relevant to subsequent sections—for a detailed
derivation, see Audoly and Pomeau [AP10, 3.3–3.5].
The elastic energy of a Kirchhoff rod is defined as

W = 1
2

∫︂ ℓ

0
⟨k,Kk⟩, with K =

⎛⎜⎝ EI
0
0

0 0 µJ

⎞⎟⎠ , I =
(︄
Ixx Ixy

Ixy Iyy

)︄
. (5.2)
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Figure 5.5: Deformation Modes. Left: Undeformed rod with cross sections and coordinate
planes drawn. Center: Uniform bending. Right: Uniform twist.

The Young’s modulus E > 0 and shear modulus µ > 0 only depend on the base material of
the rod, and are assumed to be constant across the length. The stiffness matrix K(s) contains
the bending stiffness EI(s) and twisting stiffness µJ(s), with I(s) and J(s) dependent on
the cross section of the rod at s ∈ (0, ℓ).

In particular, the bending rigidity I is the area moment of inertia tensor, whose coordinates
are given by

I(s) =
∫︂

D(s)

(︄
y2 −xy
−xy x2

)︄
dA(x, y). (5.3)

Here, D(s) ⊂ R2 is the cross section of the rod at s, with the centerline passing through
its centroid. The integrand can be written as the outer product of (−y, x)t with itself, so
I(s) ∈ S2

++, i.e., I(s) is symmetric positive-definite whenever D(s) has positive area measure.
The bending energy is given by 1

2E⟨kn, Ikn⟩ and is due to normal stresses away from the
centerline, as seen in Fig. 5.5 (center).

If D(s) is simply connected, the torsional rigidity J is given by the Dirichlet energy of the
solution χ to a Poisson equation:

J(s) = 4
∫︂

D(s)
∥∇χ∥2, with

∆χ = −1 in D(s),
χ = 0 on ∂D(s).

(5.4)

The physical interpretation of χ is a potential for the out-of-plane shear strains that appear
as a result of twist. In general, neither I nor J have closed-form solutions, but they do for
special cases such as circular and elliptical disks. The twisting energy is given by 1

2µJτ
2 and

is due to shear stresses away from the centerline. Twisting causes cross sections to warp out
of plane to reach the minimum-energy state, as shown in Fig. 5.5 (right).

5.3.3 Equilibrium Equations
We assume kinematic, or double-clamped, boundary conditions: both γ and F are fixed at
s = 0 and s = ℓ. These boundary conditions are often encountered in architectural and interior
design applications, and they make for the richest design space of equilibrium states.

To set up the variational problem, we choose F as the primary variable, so fixing F at both
ends imposes Dirichlet boundary conditions. Assuming that γ(0) coincides with the origin, we
can express γ as a function of F via γ(s) =

∫︁ s
0 γ

′ =
∫︁ s

0 Fe3. Thus, the endpoint constraint
γ(ℓ) = γℓ takes the form of an integral constraint ∫︁ ℓ

0 Fe3 = γℓ. Constrained extremals of the
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Kirchhoff energy are characterized by extremals of the Lagrangian

L =
∫︂ ℓ

0

(︃1
2⟨k,Kk⟩ − ⟨c, Fe3⟩

)︃
, (5.5)

with Lagrange multiplier c ∈ R3.

To derive the Euler–Lagrange equations, we first discuss admissible variations of F . Any
one-parametric family of variations takes the form F̃ (s, ε), such that F̃ (s, 0) = F (s), and
F̃ (s, ε) ∈ SO(3) for all s ∈ (0, ℓ) and ε ∈ (−ε0, ε0). To characterize the variation δF (s) :=
(∂/∂ε)F̃ (s, ε)|ε=0, we differentiate the equation F̃ F̃ t = id with respect to ε. This shows that
δF F t is skew-symmetric, so there exists some η : (0, ℓ)→ R3 such that δF = [η]×F .

Next, we discuss variations δk induced by η. From differentiating δF with respect to s, we
get δF ′ = [η′]×F + [η]×F ′, and, from skew-symmetry of [η]×, we arrive at δF t = −F t[η]×.
Then, we take the variation of [k]× = F tF ′:

[δk]× = −F t[η]×F ′ + F t([η′]×F + [η]×F ′) = F t[η′]×F = [F tη′]×.

This implies δk = F tη′.

Now, we can compute the variation of the Lagrangian:

δL =
∫︂ ℓ

0
(⟨F tη′, Kk⟩ − ⟨c, [η]×Fe3⟩) =

∫︂ ℓ

0
(⟨FKk, η′⟩+ ⟨c× γ′, η⟩).

According to the fundamental lemma of variational calculus, we have δL = 0 for all test
functions η if and and only if (FKk)′ = c× γ′. We can integrate this equation to arrive at
the equilibrium equation

FKk = c× γ + c̄, (5.6)

with integration constant c̄ ∈ R3. This shows that (γ, F ) represents a static equilibrium of a
Kirchhoff rod with stiffness K and kinematic boundary conditions if and only if Eq. 5.6 holds
for some c, c̄ ∈ R3.

Our main contribution is to give geometric characterizations of (framed) curves having this
property at three levels of generality, which are captured by the following definitions:

Definition 4. Let (γ, F ) be an arc-length parametrized framed curve of length ℓ with curvature
vector k. Assume there exist c, c̄ ∈ R3 and domains D(s) ⊂ R2 centered at the origin for all
s ∈ (0, ℓ) such that FKk = c× γ + c̄ holds, where K denotes the stiffness matrix induced by
D. Then, (γ, F ) is called a framed equilibrium curve.

Definition 5. Let γ be an arc-length parametrized curve. If there exists a frame F : (0, ℓ)→
SO(3) adapted to γ such that (γ, F ) is a framed equilibrium curve, then γ is called an
equilibrium curve. If, additionally, F can be chosen to be a parallel frame, then γ is called a
parallel equilibrium curve.

Our geometric characterizations of parallel equilibrium curves, equilibrium curves, and framed
equilibrium curves are given in Sections 5.6.1, 5.7.1, and 5.7.5, respectively.
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J ≈ 1.56 J ≈ 0.67 J ≈ 0.17
Figure 5.6: J has no positive lower bound. The green gradient shows the solution χ to
Eq. 5.4 for circular disks with an increasing number and length of cuts. Progressively adding
cuts makes J arbitrarily small while maintaining I. Greatest incircles, as used in Appendix B.1,
are drawn in yellow.

5.4 Kirchhoff Rods: The Constitutive Relation
To uniquely define the geometry of a straight elastic rod, we have to choose a cross section
D(s) ⊂ R2 at every s ∈ (0, ℓ), such that the center line passes through the centroid of
D(s). This choice determines K(s) and thus the mechanical behavior of the rod at this point.
Ultimately, we want to study the set of equilibrium states, but to do this, we first have to
characterize the set of all stiffness matrices K that are induced by admissible cross sections.
We carry out this characterization in Section 5.4.1, and then infer two results that are relevant
in the context of design. First, we show in Section 5.4.2 that the set of admissible stiffness
matrices is convex, thus allowing design problems with convex objectives to be cast as convex
optimization problems. Second, we prove in Section 5.4.3 that the subset of admissible stiffness
matrices corresponding to elliptical cross sections is sufficient to span the entire design space
of framed equilibrium curves. Thus, we do not lose any design freedom upon neglecting exotic
cross sections that would be hard to fabricate or fail to satisfy the Kirchhoff assumptions.

5.4.1 Admissible Stiffness Matrices
We have already seen in Eqs. 5.2–5.4 that every stiffness matrix K consists of a 2-by-2 block
EI ∈ S2

++, the bending stiffness, and µJ > 0, the torsional stiffness. But is every matrix that
obeys these constraints induced by an admissible cross section?

φ

a
b

n1

n2
Regarding the bending stiffness, it is easy to see that every I ∈ S2

++
can be attained, for example using elliptical cross sections. In particular,
we can choose the radii a, b of an ellipse to determine the eigenvalues
of I and the orientation φ to determine the eigenvectors, as shown
in the inset. The resulting area moment matrix is

I = π

4Q
(︄
ab3 0
0 a3b

)︄
Qt, with Q =

(︄
cosφ − sinφ
sinφ cosφ

)︄
. (5.7)

For the torsional stiffness, we see from Eq. 5.4 that any J > 0 can be attained in principle,
for example by circular disks of different radii. However, if we restrict our attention to cross
sections with fixed I, the range of attainable J is limited by

J ≤ 4ψ(I), with ψ : S2
++ → R : X ↦→ detX

trX , (5.8)
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as shown by Diaz and Weinstein [DW48, p. 5]. This upper bound on J is tight, and the unique
maximizer for any given I is an ellipse. We can see from Eq. 5.7 that in this case, J = πa3b3

a2+b2 .

On the other hand, we show that there is no positive lower bound:

Proposition 2. Given I ∈ S2
++ and J > 0, there is a bounded domain D ⊂ R2 with bending

rigidity I and torsional rigidity J if and only if (I, J) is an element of

K = {(I, J) ∈ S2
++ × R : 0 < J ≤ 4ψ(I)}. (5.9)

Proof. See Appendix B.1 for a rigorous proof of the tightness of the lower bound on J for
any fixed I.

A heuristic argument that we can decrease J without changing I is illustrated in Fig. 5.6: We
start with a cross section realizing I, and progressively add cuts from the boundary to the
interior of the domain. This does not change I, because we only remove zero-measure sets
from D. However, J can be made arbitrarily small as the boundary points of the domain move
closer and closer together.

We assume E and µ to be fixed, so a pair (I, J) ∈ K uniquely defines a stiffness matrix
K = diag(EI, µJ), and vice versa. For convenience, we will sometimes write K = (I, J) and
K ∈ K by abuse of notation.

5.4.2 Convexity of K
Designing a Kirchhoff rod with a prescribed equilibrium state (γ, F ) amounts to finding
c, c̄ ∈ R3 and K : (0, ℓ)→ K that solve Eq. 5.6. Because Eq. 5.6 is linear in c, c̄, and K, we
need only convexity of K to show that this is a convex problem for arbitrary convex objectives.
Our proof is based on:

Lemma 3. The function ψ : X ↦→ det X
tr X

is concave on S2
++.

Proof. Let X, Y ∈ S2
++ and t ∈ (0, 1). We need to show that (1 − t)ψ(X) + tψ(Y ) ≤

ψ((1− t)X + tY ), which expands to

(1− t) trY detX + t trX detY
trX trY ≤ det((1− t)X + tY )

(1− t) trX + t trY .

We multiply through by the product of the denominators, which is strictly positive, expand
det((1− t)X + tY ) in terms of the components of X and Y , and divide by t(1− t), which is
also positive. Most terms cancel, and we arrive at the equivalent statement

(trX)2 detY + (trY )2 detX ≤ trX trY (X11Y22 − 2X12Y12 +X22Y11),

which can be factorized to give

0 ≤ (X11Y22 −X22Y11)2 + (Y12 trX −X12 trY )2.

This shows that ψ is concave.

Proposition 4. The set K is convex.
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Figure 5.7: Elliptification. Left: Rod with cross-shaped cross sections (light blue), and rod
with elliptical cross sections (yellow) having the same equilibrium state. Right: Comparison
between cross-shaped and elliptical cross sections at marked locations, with kn visualized as
arrow.

Proof. Let (I0, J0), (I1, J1) ∈ K, and t ∈ (0, 1). Because I0, I1 ∈ S2
++, and S2

++ is convex,
we have (1− t)I0 + tI1 ∈ S2

++. From concavity of ψ, it follows that

0 < (1− t)J0 + tJ1 ≤ 4((1− t)ψ(I0) + tψ(I1)) ≤ 4ψ((1− t)I0 + tI1),

which shows that ((1− t)I0 + tI1, (1− t)J0 + tJ1) ∈ K.

This result guarantees that we can numerically find the global optimizer of optimization
problems over K constrained by Eq. 5.6, as long as the objective function is convex. In
particular, we can solve the constraint satisfaction problem (CSP) of determining whether a
given framed curve is a framed equilibrium curve. In Section 5.7, we improve this result and
show that the CSP can even be solved by a linear program.

5.4.3 Elliptical Cross Sections
While K is convenient for numerical optimization, it contains stiffness matrices that are only
induced by cross sections like the one in Fig. 5.6 (right), which are impractical to manufacture.
Moreover, cross sections like this will buckle even under moderate loads, and thus break the
assumptions of Kirchhoff rods. Therefore, it would be best to avoid using cross sections with
J ≪ 4ψ(I) in design.
This raises two questions: How is the design space of Kirchhoff rods reduced if we restrict
ourselves to a proper subset of K that has impractical cross sections removed? And what is a
good subset to use? Surprisingly, a very restrictive choice is still optimal:

K∗ := ∂K ∩ K = {(I, J) ∈ S2
++ × R : J = 4ψ(I)}, (5.10)

which contains exactly the stiffness matrices induced by elliptical cross sections, is enough to
realize all framed equilibrium curves, with no reduction of the design space, as we show here:

Proposition 5. Let (γ, F ) be a framed equilibrium curve such that FKk = c × γ + c̄
holds with c, c̄ ∈ R3 and K : (0, ℓ) → K. Then, there exists K∗ : (0, ℓ) → K∗ such that
FK∗k = c× γ + c̄.
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Proof. We rewrite the equilibrium equation by splitting it up into its normal and tangential
components, which gives

EIkn = F t
n(c× γ + c̄), µJτ = ⟨γ′, c× γ + c̄⟩. (5.11)

To show the statement, we compute I∗ ∈ S2
++ for each s ∈ (0, ℓ) such that (I∗, J) ∈ K∗ and

I∗kn = Ikn.
Let Q ∈ SO(2) such that Qkn = κe1, and define Ĩ = QIQt. Let

Ĩ
∗ =

(︄
Ĩxx Ĩxy

Ĩxy Ĩ
∗
yy

)︄
, with Ĩ

∗
yy =

JĨxx + 4Ĩ2
xy

4Ĩxx − J
,

which only has its bottom-right entry different from Ĩ. Then, I∗ = QtĨ
∗
Q satisfies all

requirements, as we will now show.
The equilibrium equation is satisfied because

I∗kn = QtĨ
∗
Qkn = κQtĨ

∗
e1 = κQtĨe1 = QtĨQkn = Ikn.

To verify that I∗ ∈ S2
++, it suffices to show that Ĩ∗ ∈ S2

++. We have Ĩxx > 0 because I and
thus Ĩ is in S2

++. Furthermore, det Ĩ∗ = J(Ĩ2
xx+Ĩ

2
xy)

4Ĩxx−J
> 0 if J < 4Ĩxx. But this always holds

because

J ≤ 4ψ(I) = 4ψ(Ĩ) =
4(ĨxxĨyy − Ĩ

2
xy)

Ĩxx + Ĩyy

≤ 4Ĩxx
Ĩyy

Ĩxx + Ĩyy

< 4Ĩxx,

where we have used that ψ only depends on the tensor invariants of its argument. Finally,
J = 4ψ(I∗) = 4ψ(Ĩ∗), and thus (I∗, J) ∈ K∗ is shown by direct computation, from the
definition of Ĩ∗.

This result shows that any Kirchhoff rod equilibrium state is also attainable by a Kirchhoff rod
consisting exclusively of elliptical cross sections. Fig. 5.7 shows an example in which a rod
with spatially-varying cross-shaped cross sections is converted to a rod with elliptical cross
sections. Even though the resulting elliptical cross sections do not have the same bending
rigidity, it is guaranteed that the equilibrium state is maintained.
Using K in optimization and in proofs, and K∗ for design and fabrication gives us the best of
both worlds: The convexity of K gives optimality guarantees in optimization and simplifies
mathematical analysis. Meanwhile, any solution obtained using K can be converted to a
solution in K∗, which avoids cross-sectional buckling issues, and is guaranteed to yield moldable
geometries because elliptical cross sections are convex.

5.5 Equilibrium Curves: Technical Preliminaries
Our next goal is to give a thorough analysis of the types of equilibrium curves introduced
in Definitions 4 and 5. In particular, we provide characterizations that relate the shape of
these curves to existing concepts from projective line geometry, and that pave the way to
very efficient computational design algorithms. We will show that some fundamental inverse
design problems related to Kirchhoff rods can be solved exactly, in the sense that we can
decide computationally whether there is a solution for a given input, and find a solution
near-instantaneously if it exists.
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λ(c, c̄)

c̄

Figure 5.8: Singular Linear Complexes. Left: A Euclidean singular linear complex (c ≠ 0)
contains all lines (black) incident to a fixed Euclidean line (purple) with Plücker coordinates
(c, c̄). Right: An ideal singular linear complex (c = 0) contains all lines (black) orthogonal to
a fixed direction c̄ (purple).

Looking back at the previous section, we found that choosing domains D(s) ⊂ R2 in
Definition 4 is equivalent to choosing a stiffness function K : (0, ℓ) → K. Proposition 5
further guarantees that we can restrict K to K∗, thus using only elliptical cross sections,
without changing the design space of Kirchhoff rod equilibrium states. To characterize this
space, we ask: For which (framed) curves is it possible to choose c, c̄ ∈ R3 and a stiffness
function so Eq. 5.6 is satisfied? Our answers, which we give in Sections 5.6 and 5.7, rely on
concepts from the geometry of lines in R3, and in particular on linear line complexes, which
we introduce below. For a more extensive treatment, we point the reader to Pottmann and
Wallner [PW01, Ch. 2.1, 3.1].

5.5.1 Line Geometry

L

o
x

v

Let L be a line in R3, with direction v ∈ R3 and passing through
a point x ∈ R3. We call (l, l̄) := (v, x × v) ∈ R6 the Plücker
coordinates of L, and write L = λ(l, l̄) to denote the line defined
by (l, l̄) as a subset of R3. Plücker coordinates satisfy ⟨l, l̄⟩ = 0 and
are homogeneous, i.e., every non-zero scalar multiple refers to the same line. The projective
extension of this set is known as the Klein quadric

Λkl := {(l, l̄) ∈ P5 : ⟨l, l̄⟩ = 0}.

Plücker coordinates of the form (0, l̄) represent an ideal line, which contains exactly the ideal
points (“points at infinity”) with directions orthogonal to l̄. One useful application of Plücker
coordinates is the computation of intersections: two lines λ(l, l̄) and λ(c, c̄) intersect if and
only if ⟨l, c̄⟩+ ⟨l̄, c⟩ = 0.
The set of all lines whose Plücker coordinates satisfy a homogeneous linear equation with
(fixed) coefficients c, c̄ ∈ R3,

C := {(l, l̄) ∈ Λkl : ⟨l, c̄⟩+ ⟨l̄, c⟩ = 0},

is known as a linear line complex. If (c, c̄) ∈ Λkl, i.e., if (c, c̄) are themselves Plücker coordinates
of a line, the complex is said to be singular and consists of all lines intersecting λ(c, c̄), as
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Figure 5.9: Regular Linear Complexes. Left: A helical motion is a family of helices (green)
with fixed axis (purple) and fixed pitch. Right: For every helix (green) in the helical motion
and its axis (purple), take the pencil of normal lines (black) at every point. The union of all
such line pencils forms a regular linear complex.

shown in Fig. 5.8 (left). In case (c, c̄) is ideal, so c = 0, the complex C consists of all lines
with directions orthogonal to c̄, see Fig. 5.8 (right).

We can also interpret a linear complex geometrically if (c, c̄) /∈ Λkl, in which case C is called
regular. To do this, consider the vector field h : x ↦→ c× x+ c̄ in R3. A vector field of this
form is called helical, because every field line, i.e., every curve tangent to h in every point, is
a helix. The family of all field lines of h is called a helical motion and consists of all helices
with a fixed axis and a fixed pitch, see Fig. 5.9 (left). Next, we consider at every x ∈ R3 the
pencil of lines through x that are normal to the helix passing through this point, see Fig. 5.9
(right). The union of all such line pencils gives exactly the lines contained in C. In summary:
A regular linear complex is the set of path normals of a helical motion.

5.6 Parallel Equilibrium Curves
Our first application of linear line complexes is a geometric characterization of parallel
equilibrium curves—curves that appear as twist-free equilibria of Kirchhoff rods. This is a
natural starting point, because the result directly generalizes the characterization of plane
elastic curves, which we summarize here for convenience:

Theorem 6. Let γ : (0, ℓ)→ R2 with signed curvature κ and a finite number of inflection
points, and let a ∈ R2, b ∈ R not all zero. Then, there exists K : (0, ℓ) → R with
0 < inf K ≤ supK <∞ such that Kκ = ⟨a, γ⟩+ b if and only if

1. the line L = {x ∈ R2 : ⟨a, x⟩+ b = 0} intersects γ exactly in its inflection points, with
all intersections non-tangential;

2. κ′(s0) ̸= 0 at all inflection points s0 ∈ (0, ℓ).

In Proposition 7 below, this theorem corresponds exactly to the special case in which the
constants from the right-hand side of the equilibrium equation FKk = c × γ + c̄ define a
singular complex (c, c̄). Then, the line λ(c, c̄) plays the role of L in Theorem 6. In contrast,
regular complexes (c, c̄) correspond exactly to parallel equilibrium curves that are not plane.
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γ

λ(γ′, γ × γ′)

γ

λ(ωn, γ × ωn)

Figure 5.10: Tangent and Binormal Lines. Left: Curve (green) and its family of tangent
lines (black). Right: Curve (green) and its family of osculating planes (green) and binormal
lines (black).

Before stating the characterization theorem, we outline the remainder of this section: The class
of parallel equilibrium curves proves to be rigid in the sense that only one curvature can be
chosen independently at every point, unlike general curves in R3, which have two independent
curvatures. In consequence, parallel equilibrium curves cannot be represented as splines, which
makes conventional curve drawing tools ill-suited for their design. As an alternative, we derive
a second characterization in Section 5.6.2, as solutions to a family of ordinary differential
equations, which allows user control by directly modifying the geometric curvature of the
curve. In this context, we also show that all parallel equilibrium curves are essentially warped
double helices, which gives an intuitive understanding of the shapes achievable within this class.
Finally, we discuss how to avoid unstable solutions by judiciously choosing cross sections.

5.6.1 Geometric Characterization
The central objects in the characterization are the tangent lines and binormal lines of a curve,
i.e., the lines passing through γ(s) in directions γ′(s) and ωn(s) = γ′(s)× γ′′(s) respectively,
as shown in Fig. 5.10. Binormal lines are not defined at inflection points, and this is reflected
in the fact that non-plane parallel equilibrium curves are always Frénet curves, as we will show.
In this sense, planar solutions are exceptional: They are the only parallel equilibrium curves
that may contain inflections.

Proposition 7. Let γ be an arc-length parametrized curve in R3 with a finite number of
inflection points. Then, γ is a parallel equilibrium curve if and only if one of the following
holds:

1. The curve γ is not plane, and there is a linear complex C that contains all tangent lines
of γ, but none of its binormal lines.

2. The curve γ is plane and satisfies the assumptions of Theorem 6.

Solutions of type (1) and (2) correspond to regular and singular values of (c, c̄) in Eq. 5.6,
respectively. Solutions of type (1) are Frénet curves.

Proof. We can rewrite Eq. 5.6 as EFnIkn + µJτγ′ = c× γ + c̄.
“⇒”: By assumption, there exist a parallel frame F adapted to γ, constants c, c̄ ∈ R3, and
I : (0, ℓ)→ S2

++ such that EFnIkn = c× γ + c̄, because τ ≡ 0. Taking the inner product
with γ′ implies

0 = ⟨γ′, c× γ + c̄⟩ = ⟨γ′, c̄⟩+ ⟨γ × γ′, c⟩,
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so the linear complex C associated with (c, c̄) contains all tangent lines of γ, with Plücker
coordinates (γ′, γ×γ′). The normal part of the equilibrium equation gives EIkn = F t

n(c×γ+c̄),
so

0 ≤ ⟨kn, F
t
n(c× γ + c̄)⟩ = ⟨Fnkn, FnF

t
n(c× γ + c̄)⟩

= ⟨ωn, c× γ + c̄⟩ = ⟨ωn, c̄⟩+ ⟨γ × ωn, c⟩,
(5.12)

where the inequality follows from I ∈ S2
++. Because I has full rank, we have kn = 0 exactly

where F t
n(c× γ + c̄) = 0, which is equivalent to c× γ + c̄ = 0 because c× γ + c̄ is in the

column space of Fn.
(1) Assume C is regular, so ⟨c, c̄⟩ ̸= 0. The column space of [c]× is exactly the orthogonal
complement of c, so there are no curve points satisfying c× γ + c̄ = 0, and in consequence
no points with kn = 0. Thus, γ is a Frénet curve. This also shows 0 < ⟨ωn, c̄⟩+ ⟨γ × ωn, c⟩,
so no binormal line is contained in C.
For the sake of contradiction, assume that γ was plane. Then all tangent lines of γ are
coplanar, and we can choose three that are not concurrent in a point. However, no such set
of three lines is contained in a regular linear complex, so γ must not be plane.
(2) Assume C is singular, so ⟨c, c̄⟩ = 0. If c = 0, then all tangent lines of γ are orthogonal to
c̄, and γ must be plane. From c× γ + c̄ = c̄ ̸= 0, we see that kn ≠ 0, so γ has no inflection
points. The case c ̸= 0 reduces exactly to Theorem 6, and we show this in Appendix B.2.
“⇐”: Assume either (1) or (2) holds, and let F be a parallel frame adapted to γ. For (2),
there is nothing to prove because the result follows directly from Theorem 6. If (1) holds for
some linear complex defined by c, c̄ ∈ R3, then we have 0 = ⟨γ′, c × γ + c̄⟩. We also have
0 < ⟨ωn, c×γ+ c̄⟩, after possibly replacing (c, c̄) with (−c,−c̄), because ωn(s) and c×γ(s)+ c̄
are continuous. This implies 0 < ⟨kn, F

t
n(c× γ + c̄)⟩, so we can find I : (0, ℓ)→ S2

++ such
that EIkn = F t

n(c× γ + c̄). This implies EFnIkn = c× γ + c̄.

As we have seen in the proof, the geometric conditions on tangent and binormal lines are
equivalent to

⟨γ′, c× γ + c̄⟩ = 0, (5.13a)
⟨γ′ × γ′′, c× γ + c̄⟩ > 0, (5.13b)

for some c, c̄ ∈ R3. The parallel frame F does not appear in these conditions, so we need not
explicitly compute it to check if they are satisfied. Furthermore, the conditions are linear in
the unknowns c and c̄, so they can be checked with a linear program in principle.
However, Eq. 5.13a is a pointwise equality constraint on γ, which means that the number of
independent curvatures of γ is reduced from two to one. Thus, a manually designed curve has
almost no chance of being a parallel equilibrium curve unless Eq. 5.13a is computationally
enforced during the design process. In particular, non-plane curves satisfying this equation
have no spline-based representation, which rules out most curve-drawing tools. Below, we
propose a different way of exploring the design space of parallel equilibrium curves, but we will
find another use for Eq. 5.13a in Section 5.7.2 for the design of equilibrium curves that need
not be parallel.

5.6.2 ODE Characterization
We can derive two more characterizations of non-plane parallel equilibrium curves from Eq. 5.13:
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α

Figure 5.11: Constant-Curvature Parallel Equilibrium Curves. The one-parametric family
of solutions to Eqs. 5.14 and 5.15 for r = 1

2 = p and κ ≡ 1, obtained by sweeping α ∈ (0, 2π].
The family interpolates smoothly between double helices and a special single-helix solution at
α = π/2.

Proposition 8. Let γ be an arc-length parametrized curve in R3. Then the following are
equivalent:

1. There exist c, c̄ ∈ R3 such that γ satisfies Eq. 5.13.

2. There exist c, c̄ ∈ R3 such that the ordered set {γ′, γ′′, c × γ + c̄} is a right-handed
orthogonal basis at every point.

3. There exist c, c̄ ∈ R3 and m : (0, ℓ)→ R>0 such that

γ′′(s) = m(s) · (c× γ(s) + c̄)× γ′(s) (5.14)

and ⟨γ′(0), c× γ(0) + c̄⟩ = 0. It holds that κ = m · ∥c× γ + c̄∥.

Proof. (1) ⇒ (2): By differentiating ⟨γ′, γ′⟩ = 1, we get ⟨γ′, γ′′⟩ = 0, and by differentiating
Eq. 5.13a,

0 = ⟨γ′′, c× γ + c̄⟩+ ⟨γ′, c× γ′⟩ = ⟨γ′′, c× γ + c̄⟩.

Eq. 5.13a and these two new equations give the three orthogonality conditions. Eq. 5.13b
shows right-handedness.

(2) ⇒ (3): Eq. 5.14 with m > 0 and the initial condition are immediately implied by the
right-handed orthogonal basis assumption. Using ⟨γ′, c× γ + c̄⟩ = 0, we compute

κ = ∥γ′ × γ′′∥ = m · ∥γ′ × ((c× γ + c̄)× γ′)∥ = m · ∥c× γ + c̄∥.

(3) ⇒ (1): To show that ⟨γ′, c× γ + c̄⟩ remains constant, compute

⟨γ′, c× γ + c̄⟩′ = ⟨γ′′, c× γ + c̄⟩ = m · ⟨(c× γ + c̄)× γ′, c× γ + c̄⟩ = 0,

so Eq. 5.13a follows from the initial condition. Eqs. 5.13a and 5.14 imply Eq. 5.13b because
γ′ and c× γ + c̄ are both non-zero.
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Eq. 5.14 is well-suited for the interactive exploration of parallel equilibrium curves because
the user can directly modify κ, which results in a predictable change of the curve shape. A
useful way of thinking about the space of feasible designs is that parallel equilibrium curves
are warped double helices : Constant-curvature solutions of Eq. 5.14 constitute a family of
double helices (with an exact discrete helical symmetry, as discussed in Appendix B.3) and
contain regular helices as a special case, as shown in Fig. 5.11. Circles and lines are obtained
in the limit as ⟨c, c̄⟩ → 0 and κ→ 0. By modifying κ to be non-constant, the user can warp
portions of the double helix to explore the shape space.
Apart from κ, we can also choose c, c̄, and initial conditions γ(0) and γ′(0) satisfying
⟨γ′(0), c × γ(0) + c̄⟩ = 0. After eliminating rigid motions, these reduce to three scalars
p, r, α ∈ R such that

c = e3, c̄ = pe3, γ(0) = re1, γ′(0) = Qαe1, (5.15)

where Qα ∈ SO(3) is the rotation by angle α around the axis in direction re2 +pe3. Modifying
these scalars controls the ratio between the outer and inner radius of the double helix, as well
as the tightness of the windings.

5.6.3 Cross Sections & Stability
The last step in turning a parallel equilibrium curve into fabricable geometry is to choose cross
sections satisfying the equilibrium equation. Because τ ≡ 0, the torsional rigidity J drops out of
the equation, so we need only choose I ∈ S2

++ at every point to satisfy EIkn = F t
n(c× γ+ c̄).

We can then convert I into a cross section D ⊂ R2, for example an elliptical one. Naturally,
we can scale all cross sections uniformly along the rod to control the overall thickness. This
is because a rescaled cross section tD has bending rigidity t4I, which solves the equilibrium
equation with (t4c, t4c̄).
To characterize all I ∈ S2

++ that solve EIkn = F t
n(c× γ + c̄), note that kn and F t

n(c× γ + c̄)
are parallel: From Proposition 8(2), we have that ωn = γ′ × γ′′ is parallel to c × γ + c̄,
and we know that kn = F t

nωn. The factor of proportionality is given by m, as seen from
∥kn∥ = κ = m · ∥c × γ + c̄∥. Thus, we can parametrize all admissible I by the spectral
decomposition

I = λ1 v1 ⊗ v1 + λ2 v2 ⊗ v2, with
λ1 = 1/(Eq), v1 = kn/κ, v2 = (−κ2, κ1)t/κ,

and free parameter λ2 > 0. If we consider an elliptical cross section in the coordinate system
spanned by n1 and n2, the eigenvectors v1 and v2 give the semiaxes of the ellipse. The bending
axis has direction kn and coincides with v1.
Even though all choices for λ2 > 0 will give an equilibrium state, they differ greatly in their
stability properties. This is because a rod will bend easily around its weak axis, but trying
to bend it around its strong axis will usually result in loss of stability by buckling. It is thus
essential to pick cross sections in such a way that v1 coincides with the major semiaxis of the
ellipse, as shown in Fig. 5.12. This is achieved by choosing a > b with the notation of Eq. 5.7,
which is equivalent to λ2 > λ1. Violating this rule will almost surely result in an unstable
equilibrium state.
We expose the ratio u = a/b to the user, and restrict its domain to u ≥ 1. In computation,
the ratio is achieved by setting λ2 = u2λ1. Even though this rule excludes a common source
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λ2 > λ1 λ1 > λ2

Figure 5.12: Cross Sections & Stability. From left to right: undeformed rod; stable
equilibrium attained by aligning the major axis of the cross section with the bending axis;
unstable equilibrium attained by doing the opposite; and the resulting buckled solution.

of buckling, it is a heuristic and not a formal stability guarantee. Indeed, for curves with many
helical windings, a stable choice of I will likely not exist. If it is not intuitively clear whether a
design is stable or not, it may be necessary to check for stability issues numerically prior to
fabrication, or to verify the formal stability conditions for the solution [MRM98].

5.7 General Equilibrium Curves

To take advantage of the full design space offered by Kirchhoff rods, we need to bring twist
into the equation. This goal requires a fundamental design decision: Does the burden to
specify the twist fall on the designer, or is it done computationally? Both choices have a
drawback: The designer may have a good idea of the curve shape they want, but may lack
the intuition to know what twist will work to realize it. However, relying on a computational
solution makes it more difficult to ensure that the twist falls into physically plausible bounds,
as we will see.

For most of this section, we explore the latter choice, in which the designer only prescribes the
deformed center line of the rod, and leaves the computation of twist and cross sections to the
computer. This leads to the characterization of general equilibrium curves—curves in R3 that
can be framed to yield a solution to Eq. 5.6, the equilibrium equation for Kirchhoff rods. Like
in the parallel case, the characterization yields conditions that are linear in the unknowns and
can thus be checked with a linear program. However, general equilibrium curves prove to be
free of pointwise equality constraints, so the linear program is a useful tool for computational
design and will work on manually drawn input curves, for example splines.

The challenge with this workflow is to find a solution that not only satisfies the equilibrium
equation, but is also practical for fabrication. Two relevant criteria are that cross sections
should not vary too much in size across the length, and that the twist should stay within
reasonable bounds. We will show how these goals can be achieved without jeopardizing
linearity.

At the end of this section, we also present a theoretical result about framed equilibrium curves,
in which the curve and the moving frame are both prescribed. While we do not use this result
for design applications, it provides a general insight into the structure of equilibrium states
attainable within the theory of Kirchhoff rods.
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5.7.1 Geometric Characterization
As a proper superset of parallel equilibrium curves, the conditions for general equilibrium
curves must be strictly weaker than those in Proposition 7. Indeed, for Frénet curves, the
characterization emerges simply by removing the tangent line condition, so only the binormal
line condition remains.
We can view curves with continuous geometric curvature as elements of C2((0, 1);R3) by
relaxing the requirement of an arc-length parametrization. With the standard C2-norm, Frénet
curves are dense within the set of all regular curves. This implies that inflection points of
curves in R3 are non-essential features that can be removed by a perturbation of arbitrarily
small magnitude—this is in contrast to plane curves, where inflections are not removable.
We opt to prove the characterization only for Frénet curves, because the resulting theory
suffices for the application explored in this work: to turn user-drawn spline curves into Kirchhoff
rod equilibrium states.

Proposition 9. Let γ : (0, ℓ)→ R3 be an arc-length parametrized Frénet curve. Then, γ is
an equilibrium curve if and only if there is a linear complex that contains none of the binormal
lines of γ.

Proof. “⇒”: Assume there exist c, c̄ ∈ R3 and K : (0, ℓ)→ K such that FKk = c× γ + c̄.
We can write the normal component of this equation as EIkn = F t

n(c×γ+ c̄). From I ∈ S2
++

and the Frénet assumption κ = ∥kn∥ > 0, it follows that

0 < ⟨kn, F
t
n(c× γ + c̄)⟩ = ⟨ωn, c̄⟩+ ⟨γ × ωn, c⟩ (5.16)

by the same computation as in Eq. 5.12. This shows that (c, c̄) is a linear complex that does
not contain any of the binormal lines, which have Plücker coordinates (ωn, γ × ωn).
“⇐”: Assume there exists a linear complex c, c̄ ∈ R3 that contains no binormal line of γ. By
continuity, we have 0 < ⟨ωn, c× γ + c̄⟩, possibly after flipping the signs of c and c̄. Choosing
a parallel frame F adapted to γ yields 0 < ⟨kn, F

t
n(c× γ + c̄)⟩, with k the curvature vector of

F . Thus, there exists I ∈ S2
++ such that EIkn = F t

n(c× γ + c̄).
Next, choose J such that 0 < J ≤ 4ψ(I), and define

τβ = 1
µJ
⟨γ′, c× γ + c̄⟩, and β(s) =

∫︂ s

0
τβ. (5.17)

Then, the frame Fβ defined by Eq. 5.1 has material curvatures kβ,n = Qt
βkn and twist τβ.

Assembling the tangential and normal parts of c× γ + c̄ gives

EFβ,nQ
t
βIQβkβ,n + µJτβγ

′ = c× γ + c̄,

so Fβ solves the equilibrium equation with (Qt
βIQβ, J) ∈ K.

In summary, every choice of c, c̄ ∈ R3 that satisfies

⟨γ′ × γ′′, c× γ + c̄⟩ > 0 (5.18)

enables us to pick cross sections that solve the equilibrium equation. Even if we limit the
choice of (I, J) to elliptical cross sections, we have a one-dimensional family of ellipses to
choose from at every point. This choice will influence both the twist and the ratio between
the ellipse radii a and b. In the next section, we discuss how to compute c and c̄ in a way that
favors low twist and a reasonably small gap between a and b.
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t > t∗

t = t∗

t < t∗
t > t∗

t = t∗

t < t∗

t > t∗
t = t∗

t < t∗

Figure 5.13: Elliptical Families. Family of elliptical cross sections that solve the equilibrium
equation for fixed kn (black) and F t

n(c× γ + c̄) (gray). The angle between the two vectors
increases from left to right. The most circular ellipse in each family (t = t∗) is marked purple.

5.7.2 Linear Program
To choose c and c̄, we recall a result from Section 5.6 about parallel equilibrium curves: A
non-plane Frénet curve has a parallel equilibrium frame if and only if we can find c and c̄ that,
in addition to Eq. 5.18, also satisfy ⟨γ′, c× γ + c̄⟩ = 0. As discussed in Section 5.6.3, this
implies that kn and F t

n(c× γ + c̄) are parallel at every point, with m = κ/∥c× γ + c̄∥ the
factor of proportionality. Thus, one solution to EIkn = F t

n(c×γ+ c̄) is given by I = I2/(Eq),
with I2 the 2-by-2 identity matrix. This solution corresponds to a circular cross section, so
a = b. This shows that parallel equilibrium curves satisfy both criteria for fabricability to
perfection: they have zero twist, and allow us to choose a/b as close to unity as we like.
Unfortunately, the pointwise constraint ⟨γ′, c× γ + c̄⟩ = 0 cannot be satisfied exactly for most
curves, but we can attempt to satisfy it approximately. In order to keep the problem linear, a
natural choice is to minimize sup |⟨γ′, c× γ + c̄⟩|. Using Eq. 5.17 (left), we can also interpret
this objective mechanically as the minimization of the twist couple µJτβ. Next, we recall from
Proposition 8 that parallel equilibrium curves also satisfy ⟨γ′′, c× γ + c̄⟩ = 0. Likewise, we
can interpret this expression mechanically by computing

⟨γ′′, c× γ + c̄⟩ = ⟨γ′, c× γ + c̄⟩′ = µ(Jτβ)′,

so low values of |⟨γ′′, c× γ + c̄⟩| correspond to a twist couple function with high C1-regularity.
We combine both objectives by minimizing sup |Bt(c × γ + c̄)|∗, with B = (γ′, γ′′/κ) the
orthonormal matrix having the tangent and principal normal as its columns, and

|(x, y)t|∗ = max{|x|, wreg|y|},

where wreg ≥ 0 is a user-controlled regularization weight. Finally, our linear program for
determining c and c̄ reads

minimize R,
subject to 1 ≤ ⟨γ′ × γ′′, c× γ + c̄⟩,

−R ≤ ⟨γ′, c× γ + c̄⟩ ≤ R, (5.19a)
−R ≤ wreg⟨γ′′/κ, c× γ + c̄⟩ ≤ R, (5.19b)

where the constraints are enforced at a dense set of samples along the curve. This linear program
in the variables (R, c, c̄) can be solved near-instantaneously, so the user can interactively browse
the family of solutions generated by varying the only parameter, wreg.

5.7.3 Geometry Generation
Given c and c̄, the next step is to choose a matrix I ∈ S2

++ at every point that solves
EIkn = F t

n(c× γ + c̄), where kn and F t
n(c× γ + c̄) are not necessarily parallel. The equation

89



5. The Design Space of Kirchhoff Rods

τ

−5
0

5
s

τ

−10

0

10
s

Figure 5.14: Hook Curve. Result of the geometry generation algorithm for general equilibrium
curves used on a spline curve (top center) without (left) and with regularization (right). Top:
Deformed configuration. Center: Twist as a function of arc length. Bottom: Undeformed
configuration.

constrains two out of three independent entries of S2
++, which leaves a one-parametric family

of solutions. We can compute an explicit representation of the form I = I1 + tI2, where I1
and I2 are symmetric positive semi-definite rank-1 matrices, and t > 0 is the free parameter.
Fig. 5.13 shows the family of solutions for different angles between kn and F t

n(c× γ + c̄). A
canonical choice that exists in every family and benefits fabricability is the “most circular”
ellipse, for which the ratio a/b is closest to unity. A symbolic computation shows that this
solution can be found easily by choosing t as t∗ = tr I1/ tr I2.
For t→ 0, the ellipse elongates orthogonally to F t

n(c× γ + c̄), while for t→∞, it elongates
along kn. The latter property is useful for curves that are similar to parallel equilibrium curves,
so the family of solutions looks like the one in Fig. 5.13 (left) at most points of the curve.
Then, choosing t > t∗ instead of t = t∗ avoids stability issues for the reasons discussed in
Section 5.6.3. After choosing I, we compute J = 4ψ(I), τβ and β via Eq. 5.17. Finally, we
can compute Qt

βIQβ at every point, which gives the elliptical cross section with the correct
rotation.

5.7.4 Interactive Design
Fig. 5.14 shows the resulting geometry for a horseshoe-shaped input curve that bends out of
plane. Even though it is not intuitively obvious what geometry and forcing mechanism will
result in a curve like this, our algorithm finds a solution in which the out-of-plane deformation
is induced by torque applied to the endpoints. The user interface provides control over wreg in
order to explore the trade-off between the objective in Eq. 5.19a and the regularization term
in Eq. 5.19b. Prioritizing the former yields the solution on the left, with smaller overall twist,
while increasing the regularization weight reduces the total variation, shown on the right.
To validate the solution, we perform a forward simulation of the Kirchhoff rod with the cross
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Figure 5.15: Hook Curve Validation. Forward simulation of a Kirchhoff rod generated by
the computational design algorithm, to verify that the equilibrium state can be reached. The
boundary conditions are applied gradually by twisting the endpoints.

sections computed by the computational design algorithm. The boundary conditions are
applied by first bending the rod, and then twisting its endpoints to cause the out-of-plane
deformation. Fig. 5.15 shows frames from the resulting animation, verifying that the desired
equilibrium state can indeed by reached by continuous deployment.

5.7.5 Framed Equilibrium Curves
We conclude this section with a characterization of the set of all framed equilibrium curves.
Here we consider the moving frame as part of the “input” instead of deriving it from the input
curve. This results in a description of all equilibrium states that can be attained within the
theory of Kirchhoff rods with zero natural curvature.
Looking back at Propositions 7 and 9, we find that the non-linear upper bound J ≤ 4ψ(I)
present in the constitutive relation was not actually used in their proofs, so these statements
hold independently of the existence of an upper bound. This is different in the following
result, in which the upper bound imposes another inequality constraint on the design space.
Surprisingly, the characterization remains linear in the unknowns c and c̄ nevertheless and can
thus be checked by a linear program.
Unlike zeros of the geometric curvature κ, zeros of τ are not removable by perturbations and
need to be allowed to arrive at a useful characterization. To simplify the proof, we add the
technical assumption that the zeros of τ are isolated, which is similar to assuming a finite
number of inflection points in Theorem 6. Furthermore, we explicitly enforce coercivity and
boundedness of the constitutive relation as a way of controlling possible singularities of 1/τ .

Proposition 10. Let γ ∈ C2((0, ℓ);R3) be an arc-length parametrized Frénet curve and
F : (0, ℓ)→ SO(3) a moving frame adapted to γ such that all zeros of τ are isolated. Formally
define

v1 = γ′

τ
, v2 = 4ωn

Eκ2 −
γ′

µτ
.

Then, the following are equivalent:

1. The framed curve (γ, F ) is an equilibrium curve with a constitutive relation (I, J) :
(0, ℓ)→ K that is coercive and bounded.2

2There exist c, C > 0 such that for all s ∈ (0, ℓ), it holds that c ≤ J(s) ≤ C and c ≤ λ1(s), λ2(s) ≤ C
with λ1 ≤ λ2 the eigenvalues of I.
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2. There exist c, c̄ ∈ R3 such that ⟨vi, c × γ + c̄⟩ > 0 for i = 1, 2 in the sense that the
inequalities hold away from the zeros of τ , and the upper and lower limits are finite and
positive as τ → 0.

The proof of this characterization consists mostly of computations similar to the ones in
Proposition 5 and arguments about the equivalence of the coercivity in (1) and the limits in
(2). We carry out this proof in Appendix B.4.

5.8 Kirchhoff Rods under Load
The geometric characterizations in the preceding sections are subject to the limitation that we
consider only the elastic energy of Kirchhoff rods, and neglect other factors such as the dead
load and external loads. However, our computational design algorithms can be adapted to
scenarios in which external loads have a small to moderate effect on the equilibrium state.
We will preface this section with the caveat that our proposed algorithm is, in contrast to
the ones presented previously, a heuristic and comes without a formal guarantee for finding
solutions to all feasible inputs. However, it terminates successfully for all reasonable inputs we
have tried, including the examples shown in Section 5.9. We include the algorithm here it for
its practical relevance, and as a starting point for future work on this subject.

5.8.1 Load Model
To model line loads (such as the dead load) and point loads (such as a weight hanging from
a specific point) together, we use a load distribution q(s) = p(s) +∑︁n

i=1δ(s − si)fi. Here,
p : (0, ℓ)→ R3 models line loads (force per length) applied to γ, and fi ∈ R3, i = 1, . . . , n,
are concentrated forces applied at γ(si), which are modeled as delta distributions. Integrating
q on an interval I ⊂ (0, ℓ) gives the accumulated force applied to the rod on this interval.
The effect of this load distribution is captured by adding the potential − ∫︁ ℓ

0 ⟨q, γ⟩ to the
Lagrangian from Eq. 5.5. This modification leads to the equilibrium equation

(FKk)(s) = (c+Q(s))× γ(s) + (c̄+M(s)), (5.20)

where Q(s) :=
∫︁ s

0 q is the accumulated force, and M(s) :=
∫︁ s

0 γ × q the accumulated moment.

5.8.2 Design Algorithm
The feasibility condition from Eq. 5.18 can easily adapted to a given load case by substituting
c and c̄ with the expressions appearing in Eq. 5.20, which yields

⟨γ′ × γ′′, (c+Q)× γ + (c̄+M)⟩ > 0.

If the load is thought to be fixed, we can check for the existence of c, c̄ ∈ R3 satisfying this
condition using a linear program as usual.
However, if we consider the dead load of a rod, the rod geometry and the load are coupled,
because the cross sections determine the weight per unit arc-length. More precisely, the choice
of (c, c̄) determines the cross sections, which in turn determine the load, and thus M and Q,
which appear in the equilibrium equation. This dependence of M and Q on (c, c̄) is non-linear,
so we can no longer check for feasibility with a linear program.
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Geometry and Dead Load In preparation of our computational design algorithm under
dead load, we discuss the relationship between rod geometry and dead load in more detail. The
geometry is encoded in the bending stiffness I(s) via Eq. 5.7, and the dead load is encoded as
a line load p(s) = A(s)ρg, where A(s) is the cross-sectional area at s ∈ (0, ℓ), ρ > 0 is the
material density, and g ∈ R3 is the gravitational acceleration.
Next, we define two maps: one from I onto p, and one from p onto I. The first map, p(I),
computes the dead load for a (fixed) geometry via p(s) = 2

√
π(det I(s))1/4ρg. This holds

because A(s) = 2
√
π(det I(s))1/4 = πa(s)b(s) is the area of an ellipse with radii a(s), b(s).

The second map, I(p), computes the geometry that equilibrates a (fixed) load p. This map is
defined by the steps in Section 5.7.3, with the difference that c is replaced by c+Q, and c̄ by
c̄+M .
Note that the maps p(I) and I(p) are not generally inverses of each other: We only have
p∗ = p(I(p∗)) for some p∗ : (0, ℓ)→ R3 if γ is an equilibrium curve for the geometry I(p∗)
under its own dead load. Thus, solving the inverse design problem under dead load is equivalent
to finding a fixed point of p ◦ I.

Algorithm We propose to first fix (c, c̄) heuristically (Step 1), and then apply a fixed-point
iteration procedure (Step 2):
Step 1. We compute the load-free solution to Eq. 5.19, which yields constants c0 and
c̄0 and a first guess of the rod geometry, encoded by the bending stiffness I0(s). We
compute the corresponding dead load p0 = p(I0), and the accumulated force Q0 and moment
M0. Our heuristic choice for the constants is c := c0 − 1

2(inf Q0 + supQ0) and c̄ :=
c̄0 − 1

2(inf M0 + supM0). The rationale behind this is that the functions c + M0(s) and
c̄+Q0(s)—which replace c0 and c̄0—will be as close as possible to c0 and c̄0, in the uniform
norm.
Step 2. To find a fixed point of p ◦ I, we iterate pi+1 = p(I(pi)), until sup |pi+1 − pi| < ε,
where we set ε = 10−10 in our examples. We cannot offer a formal proof of convergence, but
see experimentally that convergence is at least linear, and our examples terminate after less
than ten iterations, which we show in Section 5.9.2.

5.9 Results
We implemented the computational design algorithms for parallel equilibrium curves (Sec-
tion 5.6) and general equilibrium curves (Section 5.7) in a software tool that allows users to
interactively design Kirchhoff rods. Edits made by the user trigger the computational design
algorithms to re-run, and display the resulting geometry near-instantaneously to enable fast
prototyping.
Once a design has been finalized, the resulting geometry can be exported for fabrication
as parametric CAD geometry. This allows our tool to be integrated seamlessly into a CAD
workflow, for example to create molds for fabrication, or design a support structure on which
the Kirchhoff rods can be mounted.
Below we show objects designed with our algorithms and fabricated by casting silicone in
3d-printed two-part molds. The first example demonstrates the fabrication method and the
design space of parallel equilibrium curves; subsequent examples use the algorithm for general
equilibrium curves (with and without dead load and external loads), and show applications in
soft robotics and design with active bending.
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Figure 5.16: Parallel Curve Design. Top: In-app preview of the deformed rod geometry.
Bottom: Editable geometric curvature. From left to right: Starting from a constant-curvature
rod, the user adds more samples to the curvature graph to locally straighten or tighten the
windings of the double helix. The curves from the helical motion (gray) serve as a visual guide.

5.9.1 Parallel Equilibrium Curve & Fabrication
Rod Design To design a Kirchhoff rod within the constrained space of parallel equilibrium
curves (Section 5.6), the user is given control over the geometric curvature function κ and
the three scalar parameters discussed in Section 5.6.2. Together, these quantities uniquely
determine a parallel equilibrium curve up to rigid motion.
Initially, κ is set to be constant, which generates a segment of a double helix, but the user
can modify κ by adding and dragging sample points in order to bend or straighten the curve
in certain locations. Fig. 5.16 shows three snapshots from a design session, in which the user
progressively edits a parallel equilibrium curve. The preview of the rod geometry that realizes
this curve is updated in real-time as the control points are being dragged.

Mold Design Once a design is finished, it can be exported as a FeatureScript for the CAD
system Onshape to generate solid parts of the undeformed and deformed rod geometries. The
undeformed rod serves as a starting point for designing a 3d-printable mold, which is used for
silicone casting during fabrication. To simplify this, our app also exports a parting surface
that splits the mold into two parts, each guaranteed to be a height field.
The deformed rod is used to design a support structure, with sockets that enforce the kinematic
boundary conditions at both endpoints of the rod. The automatically generated CAD geometry
as well as the manually designed mold and support structure are shown in Fig. 5.17.

Fabrication We 3d-print the two-part mold from PLA on an Ultimaker S5, close it, and seal
the seams with gaffer tape. For casting, the mold is placed vertically, which is important to
prevent the formation of air bubbles. Next, we use a syringe to inject liquid silicone (SmoothSil
945) through the injection hole located near the bottom of the mold. The silicone rises through
the cavity until it reaches the air vent at the top, at which point we seal the injection hole
with a rubber plug.
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injection hole

air vent

Figure 5.17: Parallel Curve Mold. Top and bottom right: Undeformed rod geometry (green)
with parting surface (purple) and two-part mold (gray). Bottom left: Rendering of deformed
rod (green) with support structure (gray).

(1) (2) (3) (4) (5) (6)

Figure 5.18: Loop Array Deformed. Front view (top) and side view (bottom) of rods from
the loop array example. The final result, taking into account gravity for inverse design, is
shown in green; the result of neglecting gravity during design, but forward-simulating with
gravity, in purple.

After a 16-hour curing period, the rod is ready to be unmolded and mounted in the 3d-printed
support structure, as shown in the photograph in Fig. 5.22. The helical windings, small
thickness of the rod, and material chosen for this example all contribute to a low overall
stiffness, which makes the rod sag visibly under gravity, compared to the target design. This
illustrates the relevance of accounting for gravity in inverse design even on this scale—which
we do in the following examples.

5.9.2 Loop Array
The addition of twist opens up the design space of Kirchhoff rods and gives more creative
freedom to the designer by enabling direct control via spline editing tools or specifying curves
analytically. These curves serve as input to the general equilibrium curve algorithm discussed
in Section 5.7, and can be post-processed by the algorithm in Section 5.8 to account for the
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(1)

(3)

(6)

Figure 5.19: Loop Array Undeformed. Undeformed geometry of rods from the loop array,
before (purple) and after (green) applying the dead load fixed-point iteration.

dead load.

In this example, we design and fabricate an array of six curves from a smooth family, shown in
Fig. 5.18. The rods in purple are the result of solving the linear program in Eq. 5.19, which
neglects gravity, and then forward-simulating the geometry with gravity. This makes the rods
sag noticeably under their own weight, and prevents a faithful reproduction of the input curve.

100

10−5

10−10

0 2 4 6 8
i

errDead Load To improve reproduction of the input curve
under gravity, we apply the dead load optimization algorithm
from Section 5.8.2. The inset shows the fixed-point error
sup |pi+1− pi| as a function of the iteration count i on a log
scale, which provides numerical evidence that convergence is
at least linear. Every graph in green corresponds to a rod from
this example, while the ones in yellow and purple correspond
to the rods from Sections 5.9.3 and 5.9.5, respectively.

The rods shown in green in Fig. 5.18 are the result of our optimization and reproduce the
input curves perfectly (up to numerical error). The undeformed rod geometries before and
after dead load optimization, as shown in Fig. 5.19, are visually very similar. This is because
the geometry shown in purple serves as the initial value for the fixed-point iteration, which
naturally converges to an attractive fixed point (green) close to it. Nevertheless, this small
change suffices to counteract the effect of gravity. Renderings and photographs of the result
are shown in Figs. 5.1 and 5.22 for direct comparison.

Performance Solving the linear program from Eq. 5.19 for one of the input curves (with 400
sample points) takes about 5 ms, and computing the rod geometry according to Section 5.7.3
an additional 6 ms. The dead load fixed-point iteration takes between 6 and 8 iterations to
converge, and each iteration takes about 6 ms. Therefore, the total computation time per
curve is about 60 ms, fast enough to show geometry changes due to user edits in real time.

5.9.3 Fixture Design
A popular application of bending-active materials is the design of structures that take their
final shape only under the effect of a weight, such as a lampshade hanging from it, or a person
sitting on it. Our system supports the design of objects like this by using the load distribution
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Figure 5.20: Load Optimization. Top: Deformed geometry before (left) and after (right)
accounting for external load and dead load. Bottom: Vertical component of the dead load
before and after fixed-point iteration.

described in Section 5.8, which models external line loads and point loads in addition to the
dead load.

We demonstrate this feature by designing a fixture that is in equilibrium under its own
weight plus a weight hanging from a specific point. The input curve is designed manually by
manipulating the control points of a quartic B-spline curve. As usual, the user sees immediately
after each edit how the geometry of the rod and the twist of the equilibrium state were affected
by the change.

Load Optimization The external weight hanging from the rod is modeled as a point load
f1 ∈ R3 at a curve point γ(s1) as described in Section 5.8.1. During the fixed-point procedure,
the load distribution q(s) = p(s) + δ(s− s1)f1 takes into account both the dead load, which
is updated in every iteration, and the external weight, which remains constant.

Fig. 5.20 shows the evolution of the dead load i during the fixed-point
procedure. After a single iteration, the solution is converged enough
for the graph of p to remain visually unchanged afterwards, and after
seven iterations, the pointwise change is below ε = 10−10. As seen in
the top-right part of Fig. 5.20, the algorithm adds twist near the bottom
endpoint. This extra twist has the effect of lifting up the hook enough to
counter the force introduced by the external weight. The inset shows the
final geometry, forward-simulated without the external weight (purple),
in which case there is a large deviation from the target curve, and with the external weight
(green), in which case the target curve is matched precisely. Fig. 4.24 offers a side-by-side
comparison between photographs of the physical model and renderings of the target shape,
showing a good agreement.
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Figure 5.21: Light Sculpture Design. Top: Predicted deformed configuration of light sculp-
ture if gravity is neglected (left) or accounted for (right). Center: Undeformed configuration
of all segments. Bottom: Iterations of the dead-load optimization for all three segments.

5.9.4 Soft Robotics

Elastomers like silicone are used in soft-robotics applications for the design of soft grippers
or tools for minimally invasive surgery. Most of the soft-robotic mechanisms currently in use
are actuated pneumatically or by cables [RDM19]. Both actuation systems add considerable
complexity to the compliant part of the mechanism, through a sequence of air chambers or a
network of cables around or inside the part.

With our algorithm, we can design simple compliant mechanisms that are actuated by twisting
the endpoints of a rod. This does not add any complexity to the compliant part itself, because
one only needs to add twisting joints to the fixture. The actuation itself can be performed
by motors in the fixture, to follow a prespecified trajectory, or manually, if human fine-motor
skills are required. Either way, this shifts the complexity away from the compliant part of the
mechanism to an outside controller.

Lifting Tool We show a macro-scale version of a tool that can be used to lift objects out
of an inaccessible location. The deformed configuration of the tool is given by the geometry
shown in Fig. 5.14 (right), where the out-of-plane deformation of the horse shoe is caused by
twist applied to the endpoints. We 3d-print a mechanical fixture that connects the endpoints
to rigid bars that a human user can turn to change the twisting angle from a distance, and to
control the amount of out-of-plane bending.

The sequence of photographs in Fig. 5.22 shows a usage scenario, in which the tool is inserted
into a tunnel with a sudden drop at the end. Using the twisting actuation, the flexible part
of the tool bends downwards in order to grab a box and slide it up along the wall of the
protrusion, so it can be pulled back through the tunnel.
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5.9.5 Free-form Light Sculpture
We show an application to interior design, inspired by the Freeform Light Sculpture series of
New York artist John Procario3. Our design mimics the organic wooden shapes of the original
sculptures with black rubber beams that are made to follow a three-dimensional curved target
shape by taking advantage of elastic and gravitational forces.

For this example, we forgo spline curves in favor of specifying the target design with a
mathematical expression for a closed curve

γ(t) =

⎛⎜⎝r1 cos t+ r2 cos(t/2 + p)
r1 sin t+ r2 sin(t/2 + p)

a cos(3t/2)

⎞⎟⎠ ,
with t ∈ (0, 4π), and r1 = 1, r2 = 1/4, p = 9/20, and a = 2/5. We split the curve into three
segments (0, 4π/3), (4π/3, 8π/3), (8π/3, 4π), and compute separately for each the geometry
of a Kirchhoff rod, taking into account the dead load as per Section 5.8.

Fig. 5.21 illustrates that gravity takes a central role in shaping the final deformed shape of
this model. If we forward-simulate the undeformed geometry without gravity (top-left), the
resulting shape is very far from the target, while we have perfect agreement if gravity is
accounted for (top-right). The figure also shows the iterations of the dead-load optimization
for each segment: After two iterations, the solutions are converged almost completely.

We manufactured the model using SmoothSil 960 silicone, with black pigments added for
coloring. The design features a small indentation running along the inside of the rod, in which
we place an electroluminescent wire. Figs. 5.1 and 5.22 show a rendering of the target design,
and photos of the physical model with and without external lighting from a similar perspective,
to allow for a visual comparison.

5.10 Discussion
In this work, we characterize the design space of Kirchhoff rods with spatially-varying cross
sections and vanishing natural curvature. This geometric characterization gives rise to
computational design algorithms that translate a curve in three-dimensional space to a
Kirchhoff rod that attains this curve at equilibrium, given appropriate boundary conditions.
We also discuss an extension that takes into account the effect of gravity, in order to enable
applications on a larger scale.

A current limitation of our algorithm is that stability of the target equilibrium state is only
enforced heuristically, and verified after the design stage through numerical means. However,
stability cannot be rigorously guaranteed by our computational design algorithm. One could
approach this issue by combining the adjoint method for stability optimization from Section 4.5
with the constrained Jacobi equation for Kirchhoff rods [MRM98]. Related to this problem is
stability during deployment, such as the twisting actuation of our lifting tool: We can verify
numerically that the trajectory of the Kirchhoff rod during actuation is stable, but we cannot
automatically find a stable trajectory, or optimize the rod to make a certain trajectory stable.

Allowing arbitrary elliptical cross sections for rods has the disadvantage that one needs to use
molding or 3-axis CNC milling for fabrication. It would therefore be of practical relevance

3http://www.johnprocario.com/
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Figure 5.22: Results. Renderings (R) and photographs (P) of our models. Cf. renderings of
loop array and light sculpture with photos in Fig. 5.1.
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to study the design space of rods that can be produced with simpler means, e.g., laser
cutting or water jetting rods from a sheet material. While this is unlikely to yield a geometric
characterization as simple as the one studied in this paper, it may enable computational design
algorithms with a wider range of applications.
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CHAPTER 6
X-CAD: Optimizing CAD Models with

Extended Finite Elements

6.1 Introduction
Ever since Ivan Sutherland laid the foundation of modern Computer-Aided Design (CAD)
with his revolutionary computer program Sketchpad [Sut63], CAD systems have become a
core pillar of innovation. In combination with simulation, they have empowered us to design
architectural masterpieces like the Sidney Opera House, or fuel-efficient airplanes like the
Airbus A350 XWB or the Boeing 787-9 Dreamliner. Yet, it remains onerous to treat CAD
model parameters as design variables in optimizations.

In modern CAD systems, a boundary representation (B-rep), predominantly composed of
Non-Uniform Rational Basis Spline (NURBS) patches, is used to describe solid models. The
success of B-rep is attributed to the many desirable properties of NURBS, enabling the precise
representation of analytical and free-form shapes, and modeling operations such as extrusion,
chamfering, or blending. While advantageous for manual design, strength-to-weight or rest
shape optimization require the solution of a Partial Differential Equation (PDE) on the enclosed
volume.

Simulation of airplane frame, directly on CAD representation. 

Inverse shape design under gravity: let there be light!

…unstable spin

…spins stably

Asymmetric wheel…

Optimized wheel…

Figure 6.1: We present a differentiable deformable solid simulation (left) that enables shape
optimization on CAD representations (middle, right) while preserving a model’s manufactura-
bility, function, and appearance. We demonstrate our optimization on a range of objectives
including co-optimization of strength-to-weight ratio and mass distribution (middle), and rest
shape optimization (right).
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Although progress has been made in isogeometric analysis, where PDEs are solved on volumetric
NURBS representations, the generation of volumetric NURBS for general B-rep input is highly
challenging [CHB09]. Hence, it is still the de facto standard to solve PDEs on a volumetric
mesh representation. However, because shape optimization requires a differentiable simulator,
and even moderate changes to design variables demand repeated conversion and remeshing,
the use of CAD in combination with optimization is limited.

In this paper, we propose a novel differentiable deformable solid simulation that enables generic
shape optimization directly on CAD models. To dodge remeshing discontinuities and avoid a
dependence of shape derivatives on the simulation mesh, we intersect the CAD model with a
regular hexahedral grid that we keep constant throughout optimizations. While the resulting
simulation mesh is not conformal, we enrich elements that are cut by the B-rep, representing
the solid-void boundary explicitly. To accurately integrate over the subvolumes of the resulting
extended finite elements, we adopt and extend a recent quadrature scheme [MKO13].

CAD models are often tailored for fabrication using a particular manufacturing technology.
For example, if we target casting or injection molding, a model has to be undercut-free and
observe a minimal draft angle constraint. To preserve a model’s manufacturability, function,
and appearance during optimization, we therefore analyze properties of neighboring NURBS
patches, and provide the user with the option of defining constraints on the mapping of
high-level shape to low-level patch parameters.

We demonstrate the efficacy, generality, and utility of our technique by minimizing common
strength-to-weight, rest shape, and mass distribution objectives on a set of complex CAD
models with a plethora of thin and sharp features. With a set of validation experiments, we
further show that our XFEM simulation results are in excellent agreement with simulations
performed on a conformal mesh with standard FEM, for both linear elasticity and hyperelasticity
problems.

Succinctly, we propose and contribute

• a differentiable simulator that enables generic shape optimization on CAD models.

• an extension of a hierarchical quadrature scheme [MKO13] to accurately and reliably
integrate subelement detail of varying shape and size.

• a change of basis for enriched elements, making it straightforward to turn a standard
FEM into an efficient XFEM implementation.

• a differentiable projection of shape parameters onto a set of shape, function, and manu-
facturability constraints, and efficient shape derivatives of our hierarchical quadrature.

6.2 Overview
Before we delve into our technical contributions, we provide a high-level overview of how we
simulate the elastic response of a CAD model, and optimize shape parameters with respect to
objectives that depend on this response.

104



6.2. Overview

Input Parameterization Mesh Generation Simulation Optimization Output

Figure 6.2: Shape Optimization on CAD Given a CAD model (Input), a user first selects
shape parameters for optimization (Parameterization). Intersecting the model with a regular
hexahedral mesh (Mesh Generation), we combine a novel integration scheme with XFEM to
integrate finite element quantities with subelement precision (Simulation). Analytical shape
derivatives of model-grid intersections, our integration scheme, and XFEM simulations (Opti-
mization), enable function-, manufacturability-, and appearance-preserving shape optimization
of CAD models (Output).

6.2.1 CAD Model Representation
The most general form of a CAD model that we consider is a closed NURBS mesh, i.e., a set
of NURBS patches that form a C0 surface. We assume that the modeler applied appropriate
engineering judgment during initial design, so that the input fulfills geometric requirements
for manufacturing (see Fig. 6.2, Input).

We rely on projective coordinates to represent NURBS patches, where points [x, y, z]T in
Euclidean coordinates are represented with points [wx,wy, wz, w]T in projective space P3. We
therefore assume a NURBS patch with control points qi,j ∈ P3 and polynomial basis functions
Bi,j : R2 → R to be a parametric mapping

σ : R2 → P3 u ↦→
∑︂
i,j

Bi,j(u) qi,j (6.1)

from uv-coordinates u = [u, v]T to a point σ(u) in projective coordinates. In contrast to the
rational form σ̂ : R2 → R3 in Euclidean space, this form is more convenient for simulation
and optimization because σ is polynomial. We use this definition everywhere, and recover
Euclidean coordinates by perspective division where necessary.

During optimizations, we seek to ensure that a model remains manufacturable, and that
changes to shape parameters do not negatively impact its function or characteristic appearance.
For instance, in CAD, it is commonplace to round off sharp edges and corners of models by
introducing fillets. If we moved control points of patches in an uncontrolled manner, we could
easily reintroduce sharp features between neighboring patches.

To prevent undesirable changes to the model, we put users in control, letting them define an
implicit mapping from high-level shape parameters p to the set of m control points q ∈ R4m

of the NURBS mesh
cpara(p,q(p)) = 0. (6.2)

During optimizations, we then enforce these constraints cpara, keeping the number and topology
of patches fixed. We defer a detailed discussion of our parameterization until Section 6.5.

A key benefit of our technique is that structural or related objectives are directly minimized
on a CAD representation, and the optimized output (Fig. 6.2, Output) can be loaded into a
modeling tool for further refinement, or to design the mold for manufacturing by casting or
modeling.
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Figure 6.3: Hexahedral Meshing If we embed a CAD model in a regular hexahedral simulation
mesh, the NURBS representation is cut into arbitrarily complex subvolumes near the boundary.

6.2.2 Deformable Solid Simulation on CAD
We target shape optimization of CAD representations where objectives depend on the elastic
response of the material delimited by the boundary representation. To achieve this goal,
our simulation has to be sufficiently smooth and differentiable. A standard conformal Finite
Element (FE) discretization is ill-suited here because, if the shape of a model undergoes
significant changes, remeshing is unavoidable. These uncontrolled topological changes lead to
discontinuities, and therefore to a non-differentiable simulation.
To mitigate this problem, we propose to embed the CAD model in a regular hexahedral
simulation mesh (Fig. 6.2, Mesh Generation). This mesh remains constant during optimization.
To compute the elastic response x ∈ R3n of a CAD model (Fig. 6.2, Simulation), we seek to
minimize the standard potential energy

E(x) = Eint(x)− Eext(x) with Eint(x) =
∫︂

V
Ψ(x,X) dV, (6.3)

where we integrate the material-dependent strain energy density Ψ [SB12] over points X ∈ R3

in the undeformed volume V . The result of this minimization is a static equilibrium Ex = 0
(Ex abbreviates the partial derivative ∂E

∂x ) where the internal or elastic forces Eint,x are in
balance with external forces Eext,x. However, in contrast to standard FEM, the volume V
enclosed in the CAD model is the intersection of the B-rep with a regular hexahedral mesh,
and elements on the boundary are cut into arbitrarily complex subvolumes as we illustrate in
Fig. 6.3.
To represent the solid-void boundary in cut elements, implicit descriptions where signed
distances to the boundary are discretized at mesh nodes, are common (see, e.g., [SZB18]).
However, they fail to resolve subelement detail.
To loosen the coupling between mesh resolution and simulation precision, we therefore represent
cuts in elements explicitly with an enrichment, and devise a quadrature scheme that integrates
quantities such as the elastic energy Eint over complex subvolumes reliably and accurately.
Although Koschier et al. [KBT17] recently addressed a related problem for simulations of
detailed cuts by building on the quadrature scheme by Müller et al. [MKO13], a direct
extension of their technique to our setting is not possible because integration over detailed
curved domains with features smaller than a simulation element lead to large numerical errors
as we epitomize in Fig. 6.4 bottom.
Based on this observation, we propose
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10 -10 10 -8 10 -6 10 -4 10 -2 10 0 10 2
0

500

1000

1500
relative error

relative error

10 -10 10 -8 10 -6 10 -4 10 -2 10 0 10 2
0

500

1000

1500

Figure 6.4: Quadrature For detailed subvolumes resulting from intersections of CAD models
with regular simulation meshes, Müller et al.’s quadrature [MKO13, MKEKO17] (bottom)
introduces large numerical errors while ours (top) is accurate. To generate the histograms on
the right, we integrated the polynomial basis that is used for rule construction. To compute
the relative error, we divided the absolute value of the difference of the exact and numerical
integrals over the subvolume, by the absolute value of the exact integral over the element
volume.

1. a modified set of quadrature rules that accurately handle integration over curved domains
of varying shape and size, delimited by NURBS and planar patches (see Fig. 6.4 top).

2. a refinement of rule construction to significantly reduce the cost of evaluations of shape
derivatives and updates to rules when shape parameters change.

3. a change of basis for enriched shape functions that makes it straightforward to turn
standard FEM into efficient XFEM implementations.

We discuss our integration scheme in Section 6.3, and our XFEM formulation in Section 6.4.

6.2.3 Optimizing CAD Models
A first generic type of objective we seek to optimize integrates a function g that depends on
the elastic response of the model over the volume enclosed by the B-rep

f(q(p),x(p)) =
∫︂

V (q)
g(x,X) dV. (6.4)

Because the control points of the B-rep define the volume V , and changes to shape parameters
translate to changes in control points, the rest shape of the model, hence also its elastic
response, implicitly depend on the shape parameters p.
Recent examples where this type of objective is used are traditional compliance optimization
(see, e.g., [LHZ+18]) or the minimization of the potential of failure of structures [SZB18]. For
compliance optimization, the strain energy density Ψ for linear elasticity is integrated over
the rest volume, and for the minimization of the potential failure, a metric that measures the
exponentiated distance of the Cauchy stress to the failure surface of a generic failure criterion,
is integrated.
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It is often desirable to minimize objectives that depend on the elastic response together with
mass distribution objectives. For example, if we seek to optimize the strength-to-weight ratio
of an asymmetric wheel design (compare with Figs. 6.1 and 6.15), the center of mass has to
lie on the wheel’s axis, and the major axis of the moment of inertia has to align with this
axis [BWBSH14]. Otherwise, the model cannot fulfill its function.

To support the co-optimization of such combinations of objectives, we introduce a second
type of objective that integrates standard functions over the volume delimited by the B-rep

f(q(p)) =
∫︂

V (q)
g(X) dV. (6.5)

Substituting an either constant or spatially-varying density ρ(X) times a monomial t ∈
{1, X, Y, Z,XY,XZ, Y Z,X2, Y 2, Z2} for the integrand, we can compute a model’s mass, its
center of mass, and moment of inertia [BWBSH14]. For example, if we integrate the density
(times the constant 1), we get the mass of a CAD model, and combined with our first type,
we can formulate common strength-to-weight ratio optimizations.

A third type of objective we seek to support only depends on the elastic response of a model

f(x(p)) = g(x). (6.6)

This type of objective enables, for example, inverse shape design [CZXZ14], where the rest
shape of the model is optimized such that the deformed model matches a target shape under
a predefined load as closely as possible.

Shape Optimization In our shape optimizations (Fig. 6.2, Optimization; Section 6.5),
we then seek to minimize a single or a weighted combination of these objectives over the
parameterized volume that a CAD model encloses

min
p
f(p,q(p),x(p)) s.t. cpara(p,q(p)) = 0

Ex(q(p),x(p)) = 0 , (6.7)

enforcing first-optimality constraints on our parameterization and the elastic response. To
prevent shape parameters from taking on values that would lead to non-manufacturable designs,
we add an additional term to f that directly depends on p (e.g., penalizing the radii of two
cylinders to prevent them from overlapping), hence the direct dependence of f on p.

To enable shape optimization on CAD, we contribute

1. a continuous projection of shape parameters onto the constraint manifold spanned by
the user-specified parameterization, guaranteeing well-posedness of the problem, and

2. a technique to efficiently compute derivatives of our hierarchical quadrature rules.

In Section 6.6, we demonstrate our technique on a wide range of examples including the
compliance minimization of a motor housing, the inverse shape design of a lampshade, and
the co-optimization of the strength-to-weight ratio and balance of an asymmetric wheel.
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Figure 6.5: Nesting of Integration Rules To construct rules for integration over volumes V
(left), we rely on rules for integration over the volume’s boundary ∂V , decomposed into planar
areas A (in light gray) and curved surfaces S (in dark gray). To generate rules for area and
surface integrals (middle), we express integrals along the boundary ∂A with integrals along
edges E and curve segments C (right).

6.3 Integrating over Subvolumes
To simulate a complex CAD model on a simulation mesh that is not conformal, we require
quadrature rules for integration of functions over (1) subvolumes, which are part of the model
interior (e.g., to accumulate elastic force density), and over (2) regions on the model surface
(e.g., to aggregate surface traction).
In our setting, quadrature rules are not readily available because the integration domains
are generated at runtime as intersections between arbitrary models and planes (see Fig. 6.3).
Müller et al. [MKO13] proposed a moment-fitting technique to compute on-the-fly quadrature
rules for domains with curved boundaries. Originally developed for integration of implicit
representations and fluid simulation, we propose a variant that avoids failure cases when
integrating over explicitly defined, detailed subvolumes (compare with Fig. 6.4), and—at the
same time—increases computational efficiency of the technique.
In the following, we assume that the NURBS patches have been cut along edges and faces
of the hexahedral mesh. To do so, we rely on robust algebraic curve tracing [BHLH88],
and perturb grid planes to avoid corner cases. Refer to Fig. 6.5 for an example case of a
patch-element intersection (left): Analogously to Müller et al. [MKO13], we build integration
schemes in a hierarchical manner. We use edge and curve rules (right) to integrate over areas
and surfaces, and area and surface rules (middle) to integrate over volumes (left).
Below, we use g : R3 → R to denote a general function defined on the volumetric domain
enclosed by the CAD model. Our goal is to construct quadrature rules that exactly integrate
g, drawn from a function space spanned by a set of basis functions, over a domain D∫︂

D
g(X) dD =

∑︂
j

wjg(Xj). (6.8)

The domain D is either one-dimensional, for integration along axis-aligned edges E (in blue
in Fig. 6.5) or curves C (in yellow), two-dimensional, for integration over planar patches
A (in light gray) or curved surfaces S (in dark gray), or three-dimensional, for integrals
over volumetric domains V . Because we integrate over undeformed domains, we use capital
Xj ∈ R3 to refer to quadrature points corresponding to weights wj.
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Figure 6.6: Integrating Features Designed for integrating over implicitly defined domains,
Müller et al.’s method [MKO13] fails to integrate subelement detail as we demonstrate with
a curve integral to compute the arc length of a cut circle (in yellow). While our integration
accurately predicts the analytical arc length (green vs. dashed line), Müller et al.’s method is
less accurate (see red line) the shorter the edge E (in blue) becomes.

6.3.1 Integrating along Edges and Curves
To integrate along axis-aligned edge segments E, we form one-dimensional integrals, for
example ∫︁[a,b] g(X, Y, Z) dX for an integral along the X-axis. Like Müller et al. [MKO13],
we perform a change of variables to map the interval [a, b], delimited by the two segment
endpoints, to the interval [0, 1], then apply a standard Gauss-Legendre rule.

Intersections of NURBS patches with hexahedral elements form
planar curves that are embedded in planes parallel to one of the
coordinate planes. To integrate along these curves, Müller et
al. [MKO13] construct a divergence-free basis, and express curve
integrals with sums of integrals along straight edge segments.
However, as we illustrate in Fig. 6.6 with a circle example, their
method loses accuracy as the chord length (in yellow) of the
cut circle decreases. Another case that arises in our application
domain is that patches intersect within elements, and form, in
general, spatial curves as shown in the inset.

For accurate integration along curves C, we parameterize them with a mapping from t ∈ [a, b]
to spatial curve points r(t), then use a Gauss-Legendre rule for numerical integration of the
transformed integrals ∫︁[a,b] g (r (t)) ∥r′ (t) ∥ dt where r′ denotes the derivative of the mapping
with respect to parameter t.

While we can expect intersection curves to be sufficiently smooth, we cannot, in general,
extract analytical parameterizations from intersections of the B-rep with the hexahedral mesh.
Hence, we represent them with sample points, and approximate its parametric form with a
Lagrange interpolating polynomial. Note that the accuracy of the Gauss-Legendre integration
is preserved for a polynomial interpolation of sufficiently high degree [AV93].

6.3.2 Integrating over Areas and Surfaces
To integrate over planar areas and surfaces, we make use of the first nesting of our hierarchical
integration scheme. There are two cases to consider: (1) integrals over planar areas that lie
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Figure 6.7: Integrating over Areas To integrate over planar domains A (right), we first
compute an axis-aligned bounding box (middle), then transform the integral to the isoparametric
domain Ā (left). In the domain Ā, we use standard Gauss quadrature points (ξj, ηj) (in beige),
and transform them back to spatial (X(ξj), Y (ηj), Z) after rule construction. For surface
integrals, we perform this transformation in the parameter domain.

in grid planes of the simulation mesh, and (2) integrals over curved surfaces, represented by
NURBS patches.

Area Integrals For integration over planar domains A that are parallel to one of the
coordinate planes, we use moment fitting analogously to Müller et al. [MKO13]. Moment
fitting is similar to the construction of Newton-Cotes rules: given a set of predefined quadrature
points, a system of equations is solved to compute corresponding quadrature weights such
that a polynomial basis {p1, . . . , pm}, spanned by a set of m functions, is integrated exactly.
However, a crucial difference is that, due to the non-standard domain, basis functions cannot
be integrated analytically, and this is the reason why a nesting is necessary.
There is a second important difference between Newton-Cotes and Müller et al.’s construction of
rules: To avoid having to rederive rules whenever the domain [a, b] changes, Newton-Cotes rules
are constructed and tabulated for standard ranges (e.g., the range [0, 1]). For moment fitting,
tabulation of rules is not possible due to the non-standard domains. However, transforming
the area integrals such that the bounding boxes of the transformed domains coincide with the
unit square [0, 1]2 enables the use of a single system matrix for the construction of all our
area and surface integrals. This bears far-reaching advantages: Whenever we make changes to
shape parameters, rules have to be updated. If the system matrix does not depend on the
parameters, the system can be prefactorized and rules updated more efficiently. In addition,
we can avoid having to take derivatives of the inverse of a matrix, leading to a significant
performance increase for evaluations of shape derivatives.
More formally, to integrate over an area A that lies in the XY -plane, we first compute an
axis-aligned bounding box [a, b]× [c, d] (compare with Fig. 6.7 middle), then define a mapping
between isoparametric variables ξ and η and the two spatial coordinates(︄

X(ξ)
Y (η)

)︄
=
(︄
b− a

d− c

)︄(︄
ξ
η

)︄
+
(︄
a
c

)︄
. (6.9)

Because of the linearity of the mapping, its Jacobian is constant and the transformed integral
reads ∫︂

Ā
g(X(ξ), Y (η), Z) det

(︄
∂(X, Y )
∂(ξ, η)

)︄
dĀ (6.10)
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where Ā is the non-uniformly scaled domain, and the determinant of the Jacobian is set to
the constant (b− a)(d− c).

Moment Fitting For readers unfamiliar with moment fitting, we provide a brief technical
overview here, pointing the interested reader to the original work [MKO13] for detail.
To compute the quadrature weights, we form the system⎛⎜⎜⎝

p1(ξ1, η1) . . . p1(ξn, ηn)
... . . . ...

pm(ξ1, η1) . . . pm(ξn, ηn)

⎞⎟⎟⎠
⏞ ⏟⏟ ⏞

A

⎛⎜⎜⎝
w̄1
...
w̄n

⎞⎟⎟⎠
⏞ ⏟⏟ ⏞

w

=

⎛⎜⎜⎝
∫︁

Ā p1(ξ, η) dĀ
...∫︁

Ā pm(ξ, η) dĀ

⎞⎟⎟⎠
⏞ ⏟⏟ ⏞

b

with constant matrix A, evaluating the basis functions at Gauss quadrature points [MKO13].
For moment fitting to work, there need to be at least n ≥ m quadrature points, (ξj, ηj),
forming an underdetermined system. To solve the system, we factorize the pseudo-inverse in
the minimal-norm solution

w = AT
(︂
AAT

)︂−1
b. (6.11)

While matrix A is independent of the integration domain, the right-hand side is not. To
evaluate b, we make use of the divergence theorem∫︂

Ā
pi(ξ, η) dĀ =

∫︂
∂Ā

n(ξ, η) ·Pi(ξ, η) ds̄ (6.12)

where n is the outward-facing normal at (ξ, η) and

Pi(ξ, η) = 1
2

(︄ ∫︁
pi(ξ, η) dξ∫︁
pi(ξ, η) dη

)︄
(6.13)

the antiderivative, chosen such that ∇ ·Pi = pi. Note that the boundary of the domain ∂Ā
consists of straight edge segments and planar curves (see Fig. 6.5 right), and we use rules
developed in Section 6.3.1 to numerically integrate along them.
After construction, we transform the weights and quadrature points back to the original domain

wj = (b− a)(d− c)w̄j and Xj = [X(ξj), Y (ηj), Z]T . (6.14)

Surface Integrals For surface integrals, Müller et al. [MKO13] proceed analogously to
the edge-curve case, and express surface integrals with a sum of integrals over planar areas.
The resulting rules suffer from similar issues as the one-dimensional rules: if the planar areas
become too small, the integration error increases uncontrollably.
For accurate integration over surfaces, we instead make use of the parametric form of NURBS
patches, expressing them as area integrals in parameter space∫︂

S
g(X) dS =

∫︂
A
g(σ̂(u, v)) ∥σ̂u(u, v)× σ̂v(u, v)∥ dA. (6.15)

Thus, integration weights are computed in uv-space, then transformed to physical coordiantes
by multiplication with the area factor ∥σ̂u×σ̂v∥. Due to the non-linearity of this transformation,
the resulting rule may not exactly integrate polynomials in physical coordinates. However, this
error is mitigated by the smoothness of the area factor as we empirically show in Fig. 6.4.
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Figure 6.8: Integrating over Volumes To integrate over a volumetric domain V , we transform
an axis-aligned bounding box of the volume to the unit cube V̄ . For consistency, normals
σ̂u × σ̂v on curved surfaces need to be transformed before we can apply surface area rules.
We use the linear transformation rule for cross products to do so.

6.3.3 Integrating over Volumes
To integrate over volumes, we proceed analogously to area integration (compare with Fig. 6.8):
We first compute a bounding box [a, b]× [c, d]× [e, f ], and define a mapping to the unit cube.
To evaluate the integrals of basis functions over the transformed domains, we use area and
surface rules developed in the previous section, establishing a second and final layer of nesting.
An important detail is that the non-uniform scaling S = diag(b− a, d− c, f − e) has to be
taken into account when we transform integrals over curved domains as we illustrate in Fig. 6.8.
We use the rule for linear transformations of cross products to account for this scaling in our
surface integrals∫︂

A
g(X) ∥Sσ̂u × Sσ̂v∥ dA =

∫︂
A
g(X) det(S) ∥S−T σ̂u × σ̂v∥ dA. (6.16)

6.3.4 Polynomial Bases and their Degree
The choices of bases for the construction of curve, area, and volume rules are not independent
due to two reasons: firstly, the curve or area rules are used to evaluate the flux of polynomials
Pi in the construction of area and volume rules, respectively. Secondly, we use surface rules
to evaluate polynomials in spatial coordinates arising from the finite element method, and
therefore integrals over g ◦ σ̂ with polynomial g need to be approximated sufficiently well.
These observations inform our choice of basis {ξiηjζk : i+ j + k ≤ 4} for our volume rules,
and the compatible basis {ξiηj : 0 ≤ i, j ≤ 4} for our area rules. For surface rules, we use
maximal degree of 5 instead of 4 to account for the additional nonlinearity in the area factor.

6.4 Simulating Cut Elements
To illustrate the use of our rules in solving static elasticity problems on domains enclosed by a
B-rep, it remains to discuss how we can accurately represent interpolated quantities on an
unfitted mesh. To this end, we enrich elements which are cut by the boundary.
After discussing standard elements, we highlight how a change of basis for enriched elements
(1) enables the use of a standard FEM implementation for element energy, force, and tangent
stiffness evaluations for cut elements, (2) increases the efficiency of these evaluations, and (3)
preserves desirable properties of Lagrange shape functions.
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Although we apply our technique to elasticity problems within the scope of this paper, our
technical contributions are not limited to a particular PDE.

6.4.1 Standard Elements and Elasticity
Because our simulation mesh consists of regular cuboids, hexahedral elements lend themselves.
We use standard Lagrange shape functions Ni : R3 → R to interpolate an element’s undeformed
nodes Xi, defining a mapping X(ξ) = ∑︁

i Ni(ξ)Xi from natural to physical coordinates.
Relying on the same interpolation for the deformed configuration, we define the deformation
gradient

F(ξ) = ∂x(ξ)
∂ξ

(︄
∂X(ξ)
∂ξ

)︄−1

with x(ξ) =
∑︂

i

Ni(ξ)xi. (6.17)

The choice of bases for rule construction depends on the order of our shape functions. It
is worth pointing out that the mapping from natural to physical coordinates is linear for
hexahedral elements, meaning that only the coefficients of the polynomial shape functions
change. However, note that, unlike for tetrahedral elements, the deformation gradient is not
constant for linear Ni.
To compute a static equilibrium, the strain energy density Ψ(F) of a linear or hyperelastic
material [SB12, SSB13] is integrated over all hexahedral elements of volume Ve

Eint(x) =
∑︂

e

∫︂
Ve

Ψ(F(ξ)) dV (6.18)

where the integral over element e only depends on the incident nodal degrees of freedom.
Note that we perform integration in physical and not in natural coordinates, hence we transform
quadrature points Xj in the undeformed volume to natural coordinates ξj. To do so, we
subtract the “origin” of the element (vertex closest to the origin for a hexahedron with positive
coordinates) from the quadrature point, then scale the resulting vector with the inverse of the
side lengths of the hexahedron.

6.4.2 Cut Elements
To integrate the strain energy for elements cut into subvolumes, the extended finite element
method introduces additional “enriched” degrees of freedom together with specifically con-
structed shape functions. Our enrichment strategy is mathematically equivalent to Shifted
Sign Enrichment (SSE), which was recently used by Koschier et al. [KBT17] to explicitly
represent strong discontinuities along detailed, piecewise linear cuts. We will first discuss
standard SSE, and then present a reformulation that reduces the computational overhead for
(multi-)enriched elements and simplifies implementation.
For elements cut into multiple subvolumes Vj , standard SSE adds enriched shape functions to
ensure that the function space is complete on every subvolume Vj

x(ξ) =
∑︂

i

⎛⎝Ni(ξ)xi +
∑︂

j:Vj ̸=Vi

1Vj
(ξ)Ni(ξ)xj

i

⎞⎠ (6.19)

where xj
i are the additional degrees of freedom and 1Vj

is the characteristic function that
evaluates to one if a point with natural coordinates ξ is contained in Vj and zero otherwise.
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To ensure completeness, the second sum runs over all subvolumes except the one we “assign”
the original shape function Ni to, denoted by Vi. Refer to Fig. 6.9 left for a 1D example where
two linear basis functions are enriched to ensure that the function space is linear on all three
“subvolumes”. The formulation used by Koschier et al. is identical to this one except for signs.

Replacing the interpolation of deformed nodes in the deformation gradient with this enriched
interpolation, and integrating the strain energy density over the individual subvolumes Vj,
we can accurately simulate the elastic response of the body enclosed in a B-rep. However,
the traditional approach (Eq. 6.19) of adding enriched basis functions to the existing set has
practical shortcomings: For enriched elements, the elastic energy depends on the additional
degrees of freedom, meaning that the elemental force vector and tangent stiffness matrix
grow in size. For example, for linear hexahedral elements cut into k subvolumes, the energy
gradient has size 24k, and the energy Hessian size 24k × 24k. Due to the dependence of the
elemental energy and energy derivative evaluations on the number of subvolumes, custom
code is required for every discrete number of subvolumes.

To resolve these practical roadblocks, we propose to perform a change of basis

x(ξ) =
∑︂

j

(︄∑︂
i

1Vj
(ξ)Ni(ξ)xj

i

)︄
. (6.20)

As illustrated in Fig. 6.9 right (1D example), this basis spans the same function space, but the
support of the basis functions for each subvolume are local to their domain. This reformulation
has far-reaching benefits. Because we can treat each subvolume Vj of an enriched element
like a standard element with nodal degrees of freedom xj

i for every Ni, a standard FEM
implementation can be used to evaluate the elemental elastic energy and its derivatives.
Moreover, unlike the traditional formulation of strong-discontinuity enrichments (Eq. 6.19), the
computational complexity of Hessian evaluations scales linearly instead of quadratically with
the number of subvolumes. For example, for linear hexahedral elements, only k evaluations of
24× 24 Hessian matrices are needed (instead of one 24k× 24k matrix). Because intersections
of CAD models with hexahedral meshes tend to cut elements into large sets of subvolumes,
we observe a remarkable increase in simulation and optimization performance. Additionally,
while the enriched basis in Eq. 6.19 does not fulfill the partition of unity property, our enriched
basis does. This guarantees that rigid body movement can be correctly represented even if
cut elements are present [Liu16].

V1 V3

V2
i

It remains to discuss which degrees of freedom xj
i are shared between incident

elements, and which ones are kept separate: For every element incident to
vertex i, we check if the elemental subvolumes are connecting through grid
faces. As we illustrate in the inset in 2D, we consider connected subvolumes
(volumes separated by dotted lines) to be one entity Vj, adding internal force and tangent
stiffness contributions to a shared degree of freedom xj

i . We therefore have three degrees of
freedom x1

i , x2
i , x3

i instead of five in the inset example. For integration, we consider elemental
subvolumes separate entities.

6.4.3 Boundary Conditions and Gravity
Unlike conformal meshes, our nodal degrees of freedom do not lie on the surface, and we
cannot enforce Dirichlet conditions by holding a subset of them fixed. We instead rely on
Nitsche’s method [Nit71], a technique well-known in mechanical engineering.
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Figure 6.9: Change of Basis Comparing our (right) to Koschier et al.’s basis (left) for a 1D
example where the domain is partitioned into “subvolumes” V1, V2 and V3, we observe that
both are trilinear on all three subvolumes while the support of the individual basis functions
is different: while V2 and V3 are affected by three, and V1 by four DOFs for Koschier et al.’s
basis, all subvolumes are only affected by two DOFs for our basis.
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i

V

i

d
dcrit

V1 V2

Figure 6.10: Differentiability A concave feature of the model (yellow) intersects the hexahedral
mesh adjacent to a simulation node i in a single connected component V (left). If the feature
moves past the boundary of the adjacent elements, the intersection splits into two parts V1
and V2 (right), and the simulation node into two enriched degrees of freedom.

To enforce prescribed displacements û(ξ) on a part of the boundary Sdisp, we introduce a
displacement energy

Edisp(x,λ) =
∫︂

Sdisp
λ(ξ) · (u(ξ)− û(ξ)) dS, (6.21)

setting u(ξ) = x(ξ)−X(ξ). The Lagrange multiplier function λ(ξ) can be thought of as
reaction traction acting on the surface Sdisp to enforce the prescribed displacements. Nitsche
showed that λ equals −P · n where P = ∂Ψ

∂F is the first Piola-Kirchhoff stress (PK1) and n
the surface normal evaluated at ξ. This substitution removes λ as an unknown variable.

In a discrete setting, this formulation is unstable, and we add the common stabilizer

β

2

∫︂
Sdisp
∥u(ξ)− û(ξ)∥2 dS (6.22)

Sdisp

Stract

β too small (unstable)

β in valid range

β too large (locking)

with stabilization parameter β, to Edisp. If β is chosen
too small, the method remains unstable. If it is too large,
elements intersecting the boundary Sdisp effectively lock.
Chosen in the right range, β balances the enforcement
of prescribed displacements with the elastic response of
the model as illustrated in the inset.

Surface tractions t̂(ξ) : R3 → R3 that act on another
part Strac of the boundary (see above inset) can be added as in standard FEM with a traction
energy

Etrac(x) =
∫︂

Strac
t̂(ξ) · u(ξ) dS. (6.23)

Note that for integration over the domains Sdisp and Strac, our rules for curved surface domains
can readily be used.

Minimizing the total potential energy E with Eext = Etrac + Edisp, we can solve for the
equilibrium state x, while accounting for features at subelement resolution. For models where
gravity is non-negligible, we add the energy Egravity(x) =

∫︁
V ρg · u(ξ) dV with density ρ to

the external energy. The constant 3D vector g points in the direction of gravity and has
magnitude equal to the gravitational acceleration.
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6.4.4 Differentiability
In its current form, our XFEM formulation is sufficiently smooth and differentiable with one
exception as we illustrate in Fig. 6.10 with an example in 2D: if shape parameters change, a
subvolume V could split into two subvolumes V1 and V2 in the 1-neighborhood of a vertex i.
As a consequence, the degree of freedom xi is split into two enriched degrees of freedom x1

i

and x2
i , and the elastic response of the model may become discontinuous as a function of the

shape parameters. Note that our simulation is only discontinuous at the point of the split.
To detect cases that could lead to a discontinuity, we compare the subvolumes in the 1- and
2-neighborhood of a vertex. If two (or more) subvolumes in the 1-neighborhood are connected
in the 2-neighborhood, adjustments to shape parameters could lead to a discontinuity.
To avoid these discontinuities, we define a metric d that is zero at the point where a volume
splits, and varies in the range [0, dcrit] if the two subvolumes are close to merging. A metric that
lends itself is the shortest orthogonal distance between the boundary of the 1-neighborhood of
vertex i and a geometric saddle point in the model (compare with Fig. 6.10 right). To ensure
that degrees of freedom smoothly merge as d goes to zero, we add penalties of the form

b(d)∥x1
i − x2

i ∥2 with b(d) = log2
(︄

min
{︄

1, d

dcrit

}︄)︄
(6.24)

to our potential energy E. This procedure guarantees a smooth transition of the simulation
result as concave features pass through the simulation mesh. For numerical reasons, we cut
off b at a high value, so the conditioning of the discretized PDE does not deteriorate. Note
that we have not observed any negative effects due to this choice.

6.5 Optimizing Shape Parameters
Our shape optimization enables a wide range of applications, including combined mass
distribution and strength-to-weight ratio, rest shape optimization, and various other inverse
design problems that require an accurate integration of properties or discretized PDE equations
over the parameterized design domain enclosed by a B-rep.
A key advantage of our approach is that our hexahedral simulation mesh is independent of
our parameterized boundary representation. Hence, in the context of strength-to-weight ratio
or rest shape optimization, we can work with the same hexahedral mesh, even under large
changes of shape parameters.
Before we discuss how to efficiently compute derivatives of integration rules, the elastic response,
and the user-specified parameterization, we will refine our parameterization formulation.

6.5.1 Parameterization
A good parameterization should provide sufficient degrees of freedom to enable meaningful
improvements of combinations of objectives, while preserving the original design intent of the
CAD model. To this end, shape parameters should describe its shape in an intuitive manner,
enabling the user to easily select a subset of them for optimization.
On a low level, we represent CAD models as a set of NURBS patches as described in Section 6.2.
We collect all NURBS control points in a vector q. CAD models typically contain many
geometric primitives, such as, e.g., planar, cylindrical, or toroidal segments. These are more

118



6.5. Optimizing Shape Parameters

r
c

p1

n1

p2 n2

P1

P2

C

d

Constraints(P1, C):
(p1 − c) · n1 − r = 0

d · n1 = 0
Constraints(P2, C):

(p2 − c) · n2 − r = 0
d · n2 = 0

Figure 6.11: Tangential Constraints A cylindrical segment C is tangent to two adjacent
planes P1 and P2. To maintain the tangencies, constraint equations are generated and added
to cpara. The surface parameters p1,n1,p2,n1, c, r,d are part of the parameter vector p.

intuitively described using mid-level parameters such as, e.g., the central axis and radius of a
cylinder. We collect all these parameters in a vector p. Control points in q necessarily depend
on the values of parameters in p, e.g., changing the radius of a cylinder moves the NURBS
control points describing the cylinder’s geometry. We denote this mapping as q = q(p). By
only modifying q indirectly through p, primitives retain their basic shape.

However, additional constraints are required to preserve the design intent of a CAD model. A
frequent example is a fillet, i.e., an initially sharp edge that has been rounded off by adding a
cylinder segment, as seen in Fig. 6.11. The cylinder C is tangent to the planes P1 and P2, and
this tangency must be preserved when modifying p; otherwise, unintended sharp edges may
be introduced. Constraints of this type can be formalized as equations in p, as exemplified for
the fillet in Fig. 6.11.

Once a CAD model is loaded, we traverse all pairs of adjacent surfaces and detect tangency
relationships that need to be preserved. This is done automatically using a look-up table that
stores possible relationships between primitive types, such as the one between a cylinder and
a planes in the fillet example above. Whenever a situation like this is encountered, a list of
implicit constraints is generated for the pair of surfaces in question. Processing the entire
model in this manner yields a non-linear constraint system cpara(p,q(p)) = 0 that needs to
remain satisfied throughout optimization. In addition to these automatic constraints, our UI
enables the user to define high-level model parameters by grouping specific parameters in
p, to keep certain surfaces fixed, or to enforce symmetries in the model. These additional
constraints are also added to cpara.

During optimization, it may occur that no value of p exists which satisfies the tangency and
user-specified constraints in cpara at the same time. To ensure that the CAD model remains
valid regardless, we introduce effective shape parameters p⊥, which represent the projection of
the given parameters p onto the constraint manifold defined by cpara. This projection together
with q = q(p⊥) defines an implicit mapping from model parameters to NURBS control points.
To summarize, we minimize

fpara(p⊥,q) = 1
2∥p⊥ − p∥2 + 1

2∥q(p⊥)− q̂∥2 (6.25)

over the constraint manifold spanned by cpara, or the corresponding Lagrangian

L(p⊥,q,λ) = fpara(p⊥,q)− λT cpara(p⊥,q(p⊥)) (6.26)
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to first-order optimality. Here, p is the set of shape parameters modified through an optimiza-
tion step, and p⊥ is its projection onto cpara. Insufficiently constrained control points q(p⊥)
are modified as little as possible by keeping them close to their initial values q̂.

6.5.2 Shape Optimization and Derivatives
After the user specifies a desired parameterization together with a set of objectives that
depend on the parameterization and the elastic response of the model, we aim at solving the
first-optimality constrained problem

min
p
f(p⊥(p),q(p⊥),x(p⊥)) s.t.

⎡⎢⎣ Lp⊥

Lq
Lλ

⎤⎥⎦ = 0 and Ex = 0. (6.27)

Note that, compared to our formulation as outlined in our overview (Section 6.2), we replace
the direct dependence of the objective on the parameters with an implicit dependence p⊥(p).
Posing a design optimization in this particular way is advantageous because, during numerical
optimization, the parameters p can take on values that do not fulfill our parameterization
constraints, for example during line search along a descent direction. The combination
of a continuous “projection” p⊥(p), formulated with a first-order optimality constraint on
a parameterization Lagrangian, and the use of only valid sets of parameters in objective
evaluations, enables the use of a standard quasi-Newton for optimization where first-order
optimality constraints are implicitly enforced.

In objective and objective gradient evaluations for a particular p, we first solve the Lagrangian to
first-order optimality. We then use the resulting set of control points q(p⊥) in the minimization
of the potential energy E to equilibrium, Ex(q(p),x(p)) = 0. To compute shape derivatives
of our objective with respect to shape parameters

dpf = fp⊥dpp⊥ + fqdpq + fxdpx, (6.28)

we apply the implicit function theorem to our parameterization⎡⎢⎣ Lp⊥,p⊥ Lp⊥,q Lp⊥,λ

Lq,p⊥ Lq,q Lq,λ

Lλ,p⊥ Lλ,q

⎤⎥⎦
⎡⎢⎣ dpp⊥

dpq
dpλ

⎤⎥⎦ = −

⎡⎢⎣ Lp⊥,p
Lq,p
Lλ,p

⎤⎥⎦ (6.29)

and quasi-static equilibrium Ex,xdpx = −Ex,qdpq where we use (.)p for partial, and dp(.) for
total derivatives. For efficiency, we rely on the adjoint method.

6.5.3 Taking Derivatives of Quadrature Rules
If we make adjustments to our shape parameters, the volume V changes, and hence the
domains of our hierarchical rules. While these changes are restricted to elements that were or
are newly cut by the boundary, the cost of taking derivatives of rules can be considerable and
requires a significant amount of bookkeeping. To reduce the computational complexity and
simplify the implementation of shape derivatives, we describe how we can avoid some of the
terms in our volume, area, and surface rules. Note that rule construction only depends on the
control points of the B-rep, hence we can safely ignore other dependencies here.
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Figure 6.12: Derivatives of Curve Rules To parameterize curve integrals, we sample
intersection curves between patches and hexahedral grid planes. We differentiate the following
cases (from left to right): intersection points between three or more model surfaces (cases 1
and 2), sample points on an intersection curve between two surfaces (case 3), sample points
on surface-grid intersection curves (case 4), and intersection vertices between a surface and
two grid planes (case 5).

Area, Surface, and Volume Rules To keep the matrix A in the moment fitting equation
(Eq. 6.11) constant, we propose to transform the non-standard domains. However, the
right-hand side b depends on the shape of the non-standard domain, hence the quadrature
points and weights, in general, depend on the shape parameters

d
dp

∫︂
D(q)

g(X) dD =
∑︂

j

(︄
dwj

dp
g(Xj) + wj

∂g(X)
∂X

dXj

dp

)︄
. (6.30)

A key observation to increase the efficiency of rule derivatives, is, that, if we keep the
transformations for volume, area, and surface integrals after initial rule construction fixed, the
quadrature points no longer depend on the shape parameters for volume, area, and surface
rules

d
dp

∫︂
D(q)

g(X) dD =
∑︂

j

∂wj

∂p
g(Xj) for D ∈ {A, S, V }. (6.31)

Note that for edge and curve rules, the transformation from the general domain [a, b] to a
standard domain [0, 1] is necessary. Otherwise, we cannot apply tabulated Gauss-Legendre
rules. However, if we keep applying the initial transformation for area, surface, and volume
rules, the weights, computed with the moment fitting equation, only depend on the right-hand
side b but not on a shape-dependent transformation. Crucially, these shape derivatives are
exact if function g is in the function space spanned by the bases used for rule construction.

Curve Rules As we pointed out in Section 6.3, it is, in general, not possible to extract an
analytical parameterization for intersection curves that arise when several NURBS patches
intersect within a hexahedral element, or a NURBS intersects with one of the element planes.
Hence, we represent these planar or spatial curves with sample points, and differentiate between
several cases, illustrated in Fig. 6.12.

During optimizations, we make changes to shape parameters, and implicitly also to control
points. Changes to the control points, in turn, move the position of sample points on
intersection curves. To treat NURBS patches and element planes the same, we parameterize
the latter, defining a mapping from parameter values u = [u, v]T to plane points σ̂(u) ∈ R3.
A sample point on two or more “surfaces” is then defined by a pair of uv-coordinates for each
surface. To be able to take shape derivatives, it is important to understand the relationship
between these coordinates and the shape parameters.
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To this end, it is best to look at a specific example (case 1 or 5 in Fig. 6.12) where three
“surfaces” intersect in a single point: if we change p, the control points of the three patches and
also the uv-coordinates in their respective parameter domain, change. What uniquely defines
the uv-coordinates is the constraint that they all map to the same point in 3D, formalized with
an equation σ̂i(ui(p),q(p))− σ̂j(uj(p),q(p)) for every pair (i, j) of “surfaces”. Collecting
these equations in a system Σ = 0, and the uv-coordinates in a vector U, we apply the
implicit function theorem to compute analytical derivatives dpU = −Σ−1

U Σq dpq.
However, this particular case is rare because real-world CAD models typically have filleted
edges and corners with either all adjacent surfaces or subsets of them being tangent (case
2). In such cases, the Jacobian ΣU becomes rank-deficient. Another case that leads to a
rank-deficiency in ΣU arises if we place sample points on intersection curves that are defined
by two “surfaces” (case 3 or 4 in Fig. 6.12).
To be able to compute derivatives in these cases, we first classify sample points by analyzing
the normals of adjacent surfaces. We then complement the equations in Σ = 0 with planes
that span the null space. For example, for a sample point on a sharp edge (cases 3 and
4), we define a plane whose normal is set to the cross product of the two surface normals.
Because the components of derivatives that lie in this null space do not change the value of
our integrals to first order, we can safely ignore them after computing the derivatives.

6.6 Results
Accuracy of Quadrature We evaluated the accuracy of our quadrature scheme by comparing
the results to a ground truth and to the results obtained with Müller et al.’s method [MKO13].
For evaluation, we intersected the model shown in Fig. 6.4 with a regular grid to yield a
large number of geometric subvolumes, and selected a set of 23 test monomials. The ground
truth was obtained by finely triangulating every subvolume and analytically integrating every
monomial.
We generated one integration rule for each subvolume using our method and one using Müller
et al.’s method. For a fair comparison, we used the same quadrature point locations on
surfaces and in volumes, and the same polynomial basis. As an error metric, we use the
absolute difference between the ground truth integral and the quadrature solution, divided by
the integral over the surrounding element. All combinations of subvolumes and monomials
yield 18, 078 data points in total.
Fig. 6.4 shows that our method yields a worst-case relative error of 8.6× 10−4, with the vast
majority of samples below 10−4. Müller et al.’s method may fail to produce usable rules on
curved surfaces if the volume contains few planar surfaces (compare with Fig. 6.6), or if the
distribution of quadrature points on curved surfaces is unfavorable.

Convergence of Quadrature Fig. 6.13 shows additional tests for the convergence of
integration results. We performed volume integral tests on an analytical surface (a semi-torus,
m1), and a model with small topological features (m2). Three parameters were varied during
the test: the tessellation level h of the regular grid, the number of segments per curve used
to approximate line integrals (cf. Section 6.3.1), and the order of these segments (linear or
parabolic).
At the lowest tessellation level, the models are embedded in grids of 6× 12× 4 cells for m1
and 10× 1× 6 cells for m2, respectively. For m2, this is sufficiently coarse that individual cells
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Figure 6.13: Quadrature convergence. Relative error of volume integrals under refinement
of integration grid and refinement of curve integral approximation. The cell side length in the
integration grid is given by h, and is isotropically refined in all three directions. Each curve
(cf. Section 6.3.1) is split into a constant number of segments, which is given in the legend.
The graphs compare a piecewise-linear curve approximation and a piecewise-parabolic curve
approximation. Convergence is faster for parabolic segments, and accuracy improves with both
types of refinement.

may contain several holes. Relative integration errors of down to 10−7 may still be reached by
increasing the number of segments per curve. The comparison between segment types shows
that parabolic segments are more economical; two parabolic segments achieve approximately
the same accuracy as twenty linear segments. The diagrams also indicate faster convergence
rates for parabolic segments, which matches theoretical predictions [AV93]. The computational
cost per segment is similar for linear and parabolic segments, as they use the same number of
integration points.

Comparison to Standard FEM We performed a simulation test of our XFEM formulation
on a standard example of a ring in compression. This was to verify that the extended
formulation with Nitsche’s method on Dirichlet conditions converges to the same result as
standard FEM. A front view of the ring model is shown in Fig. 6.14 (top, right). The blue
bars denote Dirichlet conditions, with an enforced compressive displacement on the bottom.
Vertical stress, σy, along a horizontal cross section is shown as a red curve.

To ensure stability under different embeddings, the simulation was repeated for eight different
rotations of the model within the grid. This leads to Dirichlet conditions and stress measure-
ments at different inclinations, as indicated in Fig. 6.14 (bottom, right). The four plots on
the left show XFEM stresses for different h-refinement levels, where h = 1 corresponds to the
tessellation shown in the figure. The ground truth obtained from high-resolution standard FEM
is shown as the red curve, and the measurements from differently rotated XFEM meshes are
shown as gray curves. The plots show that the stresses converge consistently for all rotations.
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Figure 6.14: Stress convergence. Simulation of ring in compression using XFEM, embedded
in the simulation grid in different orientations (right). Vertical stresses along horizontal
cross-section (left) for different h-refinement levels and different rotations (gray curves), and
ground truth (red curve).

Aircraft Our differentiable simulator can deal with models of high geometric complexity,
exemplified by a model of the internal structure of an aircraft where we simulate the deflection
of the wing under the load of the aircraft (Fig. 6.1 left).

6.6.1 Shape Optimization
In the remainder of this section, we will discuss our optimization results. To visualize
parameterizations, we use yellow for parameterized surfaces and orange for surfaces that move
due to tangent preservation constraints. Dirichlet conditions are shown in red and surface
tractions in green.

Wrench The wrench model (see Figs. 6.2 and 6.17 top row) is composed of a set of
NURBS patches that are subject to many tangency relationships along its edges. The model
is parameterized by the height and width of the slotted indentation in the handle, the height
and width of the hole in the handle, and the fillet radius around the hole. Assigning a linear
elastic material and parameters for a standard tool steel, we optimize the strength-to-weight
ratio under a mechanical advantage setting where a torque is applied to a nut.
Our optimization co-optimizes a type one objective (Eq. 6.4), whose integrand is set to the
exponentiated distance of the Cauchy stress to the von Mises failure surface [SZB18], and
a type two objective (Eq. 6.5) integrating the model’s density. As we can see in Fig. 6.17,
our shape optimization succeeds in significantly improving the mode’s strength, with the
handle hole geometry smoothly passing through several hexahedral elements. Note that our
parameterization preserves all tangencies.

Asymmetric Wheel and Fidget Spinner While many different designs for automobile
wheels exist, they are typically rotationally symmetric in order to ensure that they will spin
stably around their axis and not introduce vibrations. A combination of a type one (Eq. 6.4 with
integrand set to Ψ for linear elasticity) and a set of type two objectives (Eq. 6.5; integrals over
all monomials) enables the co-optimization of the strength-to-weight ratio and mass distribution
of an asymmetric wheel design (see Fig. 6.1 middle and Fig. 6.15). As we demonstrate in
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Figure 6.15: Asymmetric Wheel.

the accompanying video with scaled-down, 3D printed wheels, the unoptimized input wobbles
while our optimized design spins stably. The reason for this difference is that the center of
mass (black spheres in the second column in Fig. 6.15) does not lie on the spinning axis (9.9
mm off for a wheel of 40 cm diameter; 22 mm off when considering the mass properties of
the wheel spokes and hub only) for the unoptimized design. The parameterization used in
the optimization allows for the width of the spokes of the wheel to vary, and the additional
compliance term ensures that the result is not only functional (CoM misalignment <0.1 mm)
but also optimal from a structural point of view (see stress visualizations in Fig. 6.15). While
structural considerations are less relevant in toy design, the use of only type two objectives
enables the design of asymmetric spinning toys such as a fidget spinner that combines (with
some imagination) a teapot, a SIGGRAPH logo, and a bunny in a unified design (see Fig. 6.17
bottom row).

Motor Housing In this example, we optimize the compliance of an aluminium housing for
an electric motor, with cooling fins on the outside. Tailored for manufacturing by casting
or machining, it is of paramount importance to keep the model undercut-free. Moreover, to
preserve its function and appearance, it is essential to enforce rotationally symmetric changes.
To this end, we parameterize the thickness and width of the 6 “spokes” with a total of 4
parameter (Fig. 6.16 params), constraining the normals of the surfaces that are orthogonal
to the symmetry axis in the initial design, to remain orthogonal throughout optimizations.
Relying on a type one objective with Ψ set to linear elasticity, we are able to reduce the overall
compliance of the model by 6.7%.

Lampshade Targeting furniture design, we perform hyperelastic rest shape optimization
[CZXZ14] on an initially flat lampshade design that consists of six rotationally symmetric,
curved blades protruding from the central unit containing the light fitting (see Fig. 6.1 right
and Fig. 6.17 middle row). In contrast to our other examples, we parameterize the continuous
outer surface of the lampshade design (a total of 48 control points) and optimize the model’s
rest shape (type three objective, Eq. 6.6) such that the outer surface deforms into a toroidal
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Figure 6.16: Motor Housing.
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Figure 6.17: Wrench, Lampshade, and Fidget Spinner.
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Figure 6.18: Topology Optimization.

target shape under self-weight. During optimizations, we keep the curvy silhouette fixed,
and constrain the inner surface to move with the outer surface with a thickness preservation
constraint. To manufacture the optimized lampshade, we use MoldStar 30 rubber. As can
be seen in our accompanying video and in Fig. 6.17, the lampshade deforms into the desired
target shape (max. target matching error is 16 mm before and 0.6 mm after optimization).
Because Schulz et al.’s technique [SXZ+17] does not scale well with the number of parameters,
shape optimizations like this one would be difficult to perform with their method. For accurate
simulations, we rely on a Mooney-Rivlin model.

Topology Optimization Although our framework does not currently support topology
changes, we can mimic topology optimization by optimizing a grid of 20 × 8 square holes
(total of n = 160 shape parameters). The objective is to design a symmetric bridge that
minimizes compliance under a volume constraint. The initial grid with boundary conditions,
the optimized grid, and the deformed states are shown in Fig. 6.18.

The side length li of any square hole is allowed to vary within 0 < li < 1. The true volume
fraction of a geometric cell is given by Vi = 1 − l2i . To drive parameters towards extremal
values, we use Ṽ i = V

2/3
i to penalize the volume of intermediate cells relative to their stiffness,

and constrain 1
n

∑︁
i Ṽ i = 0.7. The simulation uses an 80× 32 grid, so each cell is meshed by a

4×4 block of elements, some of which appear and disappear as walls move through them. The

Demonstration Grid #SV #P #S t #i
Aircraft 160x40x160 15,840 - 679 104 -
Wrench 32x4x12 926 5 54 8.0 64
Fidget Spinner 16x16x1 161 12 82 3.2 28
Asym. Wheel 10x20x20 1,652 14 154 70 31
Motor Housing 30x30x18 6,628 4 557 86 43
Lampshade 26x26x38 1,954 48 6 352 17
Topology Opt. 80x1x32 2,143 160 653 50 33

Table 6.1: Simulation and Optimization Statistics Columns from left to right: name of
the demonstration; resolution of simulation grid; number of integration subvolumes (#SV);
number of shape parameters (#P); number of NURBS patches in the CAD model (#S); time
per iteration or total simulation time (Aircraft) in seconds (t); number of iterations (i).
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result is in line with conventional topology optimization results. Moreover, this demonstrates
the capability of our method to deal with large numbers of optimization parameters as well as
very thin model sections.

Performance All simulations and optimizations were performed on a single core of an
Intel Core i7-8700. Tab. 6.1 provides data about the complexity of models and timings of
optimization and simulation routines. We rely on linear shape functions in all our simulations.

6.7 Conclusion
We have devised a generic shape optimization that enables the solution of a wide range of
computational design problems directly on a CAD representation. While we have developed
our hierarchical integration and extended finite element formulation with an eye on shape
optimization, we see applications beyond the discussed context. For example, because our
simulation of CAD models is fully differentiable, it is well suited for applications in geometric
deep learning [KMJ+19].
Our proposed change of basis of enriched shape functions makes it straightforward to turn an
existing FEM implementation into one that supports strong discontinuities in cut elements.
Moreover, it makes Hessian computations for cut elements significantly more efficient, and
leads to a basis that preserves not only the Kronecker delta but also the partition of unity
property. A change of basis as used herein would be beneficial in XFEM applications in general.
Furthermore, we introduced a parameterization Lagrangian that enables optimization with
a set of parameters that does not lie on the constraint manifold defined by a user-specified
set of constraints. Implicitly enforcing the first-order optimality of this Lagrangian in shape
optimizations, we can compute analytical gradients of the continuous projection of the
parameters onto the closest set of valid values. We see utility of this projection in other
computational design problems and beyond.

Limitations & Future Work While our integration schemes and XFEM formulation supports
the use of relatively coarse hexahedral meshes, Dirichlet conditions cannot be fulfilled exactly
along the boundary of the domain. Although we have not experienced any difficulties in
choosing a stabilization parameter that prevents locking or instabilities, striking for the right
balance between fulfillment of displacement constraints and elastic response may be challenging.
If the fulfillment of constraints is unsatisfactory, an increase in resolution, hence a decrease of
computational efficiency, is unavoidable. While we rely on an axis-aligned hexahedral grid for
increased performance, the support of conforming elements in cells that intersect the boundary
of a constrained domain, or an adaptive refinement as common in Finite Cell (FC) methods
are valid alternatives left for future work. Another exciting future avenue is the extension of
our strong discontinuity formulation to weak discontinuities, enabling applications in dual or
multimaterial modeling [VWRKM13]. For example, Nitsche’s method could be used to treat
discontinuities in the deformation gradient.
Finally, our shape optimization does not handle topological changes in the relationships between
neighboring NURBS patches. Enforcing their preservation with constraints, we demonstrate
with our results that large changes to shape parameters are possible. While it is often desirable
to preserve these relationships, there are applications where topological changes are beneficial,
constituting an exciting future direction. A differentiated CAD kernel could be useful in this
context [MBA+18].
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CHAPTER 7
Conclusion

We explored two topics in fabrication-aware shape optimization and found solutions that
operate directly on the same parametric representations that are used in the manual design
process. This places these methods firmly in a modern iterative design workflow, in which
user editing and simulation-based optimization can alternate and complement each other.
The problem we studied first explores the design of bending-active rod structures in the plane
and in three dimensions. We discovered that despite the non-linearity present in computing
equilibrium states of these systems, the inverse problems can all be posed as linear programs
and solved to optimality almost instantaneously. Furthermore, these problems admit concise
geometric descriptions of the design space, some of which are intuitive enough that visual
inspection suffices to establish whether a problem instance is feasible.
We also used these geometric characterizations as part of iterative optimization routines that
improve the ease of fabrication and stability of designs. For these optimization problems, we
arrived at a parametric, spline-based description of curves naturally, because the constraints
that define the feasible space depend on the precise location of inflection points, which are
difficult to control in the discrete setting.
In the last problem, which studies simulation and shape optimization techniques on CAD
models, maintaining and optimizing the original parametric representation was a conscious
decision rather than a natural outcome. Most numerical methods for solving PDEs depend on a
decomposition of the domain into geometrically simple elements, so it is more straight-forward
to discretize CAD models before performing a simulation. We developed a method in which
the embedding space is discretized instead of the model, and we perform numerical integration
on subdomains bounded by patches of the original parametric surfaces. This way, we achieve
a differentiable relationship between CAD parameters and analysis result, which allows us to
embed the simulation routine in a gradient-based shape optimization procedure. Thereby we
enable a unique workflow in which a designer can manually edit a CAD model, improve it
using simulation-based optimization, and go back to making manual adjustments as desired.
The current implementation of this method suffers from a few shortcomings that are inherited
from other extended finite element method type simulations. One issue is the application of
Dirichlet boundary conditions, which is subject to locking artifacts not present in conforming
finite element simulations. While some methods have been proposed to resolve this problem,
they usually require model-specific parameter tuning or rely on mixed finite element methods
that drastically increase the size of the simulation problem. Another issue is the lack of
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adaptive remeshing in our method, which limits its application to coarse simulations, or
situations in which the refinement points are fixed a-priori. Preserving differentiability of
the simulation result throughout remeshing is likely a formidable challenge, for which a yet
unexplored combination of extended finite element techniques and differentiable meshing may
be necessary [RAM+21].

The work on elastic curves and Kirchhoff rods presented in this thesis arose from the desire to
contribute to fabrication-aware optimization a result that furthers our understanding of the
physical limits of a system, rather than explore them heuristically with numerical optimization
techniques. For this purpose, I chose to study plane elastic curves as one of the simplest
non-linear physical systems that can be reproduced in the real world with relative ease. It
became clear that the design space associated with this system is much easier to describe
than suspected, and the same turned out to be true for Kirchhoff rods, despite the complexity
added by non-linear constraints.
Working on these subjects makes me very optimistic that similar techniques may be fruitful
to characterize the design space of physical systems in more than one dimension. One such
existing result concerns elliptic PDEs and says that a scalar coefficient field can be reconstructed
from the solution and right-hand side under certain sufficient conditions [Ric81]. Recently,
Wang et al. [WS21] pointed out a set of necessary conditions for solutions to elliptic PDEs
with general positive-definite coefficient matrix fields, but do not discuss to which extent they
are sufficient. Studying the latter question may provide valuable insights into design problems,
and could possibly be extended to study inverse problems in elasticity.
One such problem, whose solution would have immediate applications to metamaterial mech-
anisms [IFW+16, ILH+19], is to determine the stiffness data in equations of elasticity from
displacement and boundary data. Several variants of this problem are exciting: one could
try to find solutions in the most general stiffness space, where all thermodynamically admis-
sible materials, i.e., positive-definite stiffness tensors, are allowed, and fabricate them using
dehomogenization techniques. One could also restrict the search space to spatially-varying
isotropic materials, i.e., find solutions to the Navier–Cauchy equations, and fabricate them on
3d printers allowing for materials with continuously-varying stiffness.
There are also several subproblems depending on how much of the displacement data is
described. Characterizing all displacement fields that admit a solution would provide theoretical
insight into the physical limits of elasticity, but finding solutions in which only displacements
on part of the boundary are fixed may be most useful for practical applications such as the
discovery of elastic mechanisms. Another interesting question which is relevant to mechanism
design is whether the inverse problem becomes fundamentally more difficult if non-linear
equations of elasticity, such as those that arise from applying the St. Venant–Kirchhoff material
model, are used. I suspect that this is not the case because from an “inverse point of view”,
the unknowns and their constraints do not change if non-linearity is introduced in the strain
computation.
I hope that I have managed to transport some of my excitement about studying inverse
problems in fabrication-aware optimization to the reader. It is my strong belief that there are
many beautiful and useful results waiting to be discovered here.
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APPENDIX A
Plane Elastic Curves

A.1 Proof of Geometric Characterization
Here we give a proof of Theorem 1. It uses a short lemma, which we show first.

Lemma 11. With the notation from Theorem 1, let s0 ∈ S0. Furthermore, let (t, n) be the
right-handed orthonormal basis adapted to γ at s0, i.e., t = γ′(s0). Then, (1) there exists a
neighborhood of s0, in which s0 is the only root of s ↦→ ⟨γ′′(s), n⟩; (2) it holds that

lim
s→s0

κ(s)
⟨γ′′(s), n⟩ = 1.

Proof. (1) We can find ε > 0 small enough, such that for all s ∈ Sε := (s0−ε, s0)∪(s0, s0+ε),
we have κ(s) ̸= 0 and ⟨γ′(s), t⟩ > 1

2 . Assume for the sake of contradiction that there
exists s1 ∈ Sε with ⟨γ′′(s1), n⟩ = 0. Then, it follows from 0 ̸= |κ(s1)| = ∥γ′′(s1)∥ that
⟨γ′′(s1), t⟩ ̸= 0. This lets us compute

⟨γ′(s1), t⟩ = 1
⟨γ′′(s1), t⟩

⟨γ′(s1), γ′′(s1)⟩ = 0,

because ⟨γ′, γ′′⟩ ≡ 0. But this contradicts ⟨γ′(s1), t⟩ > 1
2 .

(2) By expressing κ in the coordinate system (t, n), we get

κ

⟨γ′′, n⟩
= det(γ′, γ′′)
⟨γ′′, n⟩

= ⟨γ′, t⟩ − ⟨γ
′, n⟩⟨γ′′, t⟩
⟨γ′′, n⟩

.

For the first term on the right-hand side, we have lims→s0⟨γ′(s), t⟩ = 1. For the second term,
write ⟨γ′, γ′′⟩ ≡ 0 in coordinates to get

⟨γ′, n⟩⟨γ′′, n⟩+ ⟨γ′, t⟩⟨γ′′, t⟩ = 0, so ⟨γ′′, t⟩ = −⟨γ
′, n⟩⟨γ′′, n⟩
⟨γ′, t⟩

,

where the denominator is non-zero in Sε. Using this equality, the second term becomes

−⟨γ
′, n⟩⟨γ′′, t⟩
⟨γ′′, n⟩

= ⟨γ
′, n⟩2

⟨γ′, t⟩
,

which goes to zero as s→ s0, because ⟨γ′(s0), n⟩ = 0. This shows the statement.
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Proof of Theorem 1. Direction “⇒”: Assume γ is an equilibrium curve, so there exist a ∈ R,
b ∈ R2, and an admissible stiffness function K with Kκ = a+ ⟨b, γ⟩. We show that then (1)
and (2) hold. From K > 0, it follows that either a ≠ 0 or b ≠ 0, because otherwise κ ≡ 0,
which contradicts that S0 is finite.
Case b = 0: Then, a ̸= 0, and κ has the same sign as a everywhere, so there are no
zero-curvature points, and (2) is vacuously true. Choose any line L that does not intersect γ
to satisfy (1).
Case b ≠ 0: Proof of (1): The level sets of the function f : R2 → R : x ↦→ a+ ⟨b, x⟩ form
a family of parallel lines. Let L be the zero-level set of f . We have 0 = K(s)κ(s) if and only
if s ∈ S0, and thus 0 = a+ ⟨b, γ(s)⟩ if and only if s ∈ S0. This shows that γ and L intersect
exactly in γ(S0).
Next, we show that L is not tangent to γ in any of the zero-curvature points. With the
notation from Lemma 11, assume for the sake of contradiction that L is tangent to γ at s0,
i.e., ⟨b, t⟩ = 0, which implies b = ⟨b, n⟩n.

γ(s0)
t L

n
κ > 0

b

⌈Claim: ⟨b, n⟩ > 0. Proof of claim: By S0 finite, we know that κ is
non-zero in (s0, s0+ε) for ε > 0 small enough, so it does not change sign
in this interval. If κ > 0 in (s0, s0+ε), then γ winds counterclockwise in
this interval, and thus ⟨γ − γ(s0), n⟩ > 0 in some interval (s0, s0 + ε1),
because (t, n) is right-handed. From 0 = a+ ⟨b, γ(s0)⟩, it follows that

Kκ = a+ ⟨b, γ⟩ = ⟨b, γ − γ(s0)⟩ = ⟨b, n⟩⟨γ − γ(s0), n⟩.

From Kκ > 0, we see that ⟨b, n⟩ > 0. The case κ < 0 in (s0, s0 + ε) proceeds analogously:
Then, γ winds clockwise in (s0, s0 + ε), so ⟨γ − γ(s0), n⟩ < 0 in some interval (s0, s0 + ε1).
Because Kκ < 0, we have ⟨b, n⟩ > 0 again. This shows the claim. ⌋
Because ⟨b, n⟩ > 0, and K is bounded from below by a positive constant, there exists A > 0
such that for all s ∈ (s0, s0 + ε1),

⟨γ(s)− γ(s0), n⟩
κ(s) = K(s)

⟨b, n⟩
≥ A.

By Lemma 11, we know that

lim inf
s→s0

⟨γ(s)− γ(s0), n⟩
⟨γ′′(s), n⟩ = lim inf

s→s0

⟨γ(s)− γ(s0), n⟩
κ(s) ≥ A, (A.1)

and that ⟨γ′′, n⟩ does not change sign in some interval (s0, s0 + ε]. Let sε be a maximizer of
|⟨γ′′, n⟩| in (s0, s0 + ε]. Note that a maximizer exists because |⟨γ′′, n⟩| is continuous, and the
supremum is not attained at s0 because ⟨γ′′(s0), n⟩ = 0. Then,

|⟨γ(sε)− γ(s0), n⟩| =
∫︂ sε

s0

∫︂ s1

s0
|⟨γ′′(s2), n⟩| ds2 ds1 ≤ ε2|⟨γ′′(sε), n⟩|,

where the equality follows from applying the fundamental theorem of calculus twice, and the
inequality from bounding the integration area by ε2, and the integrand by its maximum. This
shows that |⟨γ(s)−γ(s0),n⟩|

|⟨γ′′(s),n⟩| becomes arbitrarily small close to s0, which implies

lim inf
s→s0

⟨γ(s)− γ(s0), n⟩
⟨γ′′(s), n⟩ = lim inf

s→s0

|⟨γ(s)− γ(s0), n⟩|
|⟨γ′′(s), n⟩| = 0.
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This contradicts Eq. A.1, and our indirect assumption is proven false. We conclude that L is
not tangent to γ in s0.

Proof of (2): To show secant-boundedness of κ at s0 ∈ S0, write1

γ′(s0 + h) = γ′(s0) + hγ′′(s0) + o(h) = t+ o(h),

and, by integrating, γ(s0 + h) = γ(s0) + ht+ o(h2). The equilibrium equation gives

K(s0 + h)κ(s0 + h) = a+ ⟨b, γ(s0) + ht+ o(h2)⟩ = h⟨b, t⟩+ o(h2).

Because of the non-tangency property, we have ⟨b, t⟩ ̸= 0, so the right-hand side is secant-
bounded at h = 0. On the other hand, K is bounded from below and above by positive
constants. Thus, κ is secant-bounded at s0.

Direction “⇐”: We assume that (1) and (2) hold and show the existence of K admissible
and a ∈ R, b ∈ R2 that solve Kκ = a+ ⟨b, γ⟩. Because κ is secant-bounded on S0, it changes
sign at every s0 ∈ S0. Because of the non-tangency condition, γ crosses from one side of
L to the other at every s0 ∈ S0. Thus, the portion of the curve with κ > 0 lies fully on
one side of L, and the portion with κ < 0 lies fully on the other. Choose a and b such that
L = {x ∈ R2 : a+ ⟨b, x⟩ = 0} and such that a+ ⟨b, x⟩ > 0 on the same side of L as κ > 0.

Then, formally set K(s) := a+⟨b,γ(s)⟩
κ(s) for s ∈ [0, l]. Away from S0, this function is positive and

continuous, and thus bounded from above. Furthermore, κ is continuous on [0, l] and thus
bounded, which implies that K is also bounded from below by a positive constant, away from
S0.

It remains to show that K is also bounded from above and below by positive constants as
s→ s0 ∈ S0. By the same argument as above, we have

K(s0 + h) = ⟨b, t⟩h+ g(h)
κ(s0 + h) , where g(h) = o(h2). (A.2)

Both numerator and denominator are secant-bounded at h = 0, and the signs of their secant
bounds coincide. This is enough to guarantee that K has the desired bounds. To see this,
one analyzes K as h→ 0+ and h→ 0−, for the cases where the secant bounds are either all
positive or all negative.

For example, take the all-positive case and analyze h→ 0+: There exist d,D, e, E > 0 and
ε > 0 such that dh < ⟨b, t⟩h+ g(h) < Dh and eh < κ(s0 +h) < Eh for all h ∈ (0, ε). Then,
we can bound d/E < K(s0 + h) < D/e. This shows that K is admissible.

A.2 Moment Equilibrium Under Gravity
In Section 5.1 of the main article, we give an expression for the energy potential of an elastic
curve with constant thickness and spatially-varying width under gravity,

W [α] =
∫︂ l

0
K
(︃1

2κ
2 + ⟨γ, e⟩

)︃
,

1We write o(z(h)) as a shorthand for some function g(h) such that limh→0 g(h)/z(h) = 0. This means
that g(h) decays strictly faster than z(h) as h→ 0. Therefore, if f ∈ C1, then f(x+h) = f(x)+hf ′(x)+o(h).
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where e ∈ R2 is a constant dependent on gravity, thickness, and material properties. We
are looking for extremals subject to the constraint γ(l) = γl, i.e., the endpoint of the curve
is fixed to lie at γl. According to the method of Lagrange multipliers, these extremals are
characterized by α and λ ∈ R2 for which the variation of

L[α, λ] =
∫︂ l

0

1
2Kκ

2⏞ ⏟⏟ ⏞
A

+
∫︂ l

0
K⟨γ, e⟩⏞ ⏟⏟ ⏞

B

+
∫︂ l

0
⟨λ, γ′⟩⏞ ⏟⏟ ⏞

C

vanishes, and such that γ(l) = γl. The variations of A, B, and C are given by

δA =
∫︂ l

0
Kκδα′ = −

∫︂ l

0
(Kκ)′δα,

δB =
∫︂ l

0
K(s)

(︃∫︂ s

0
⟨Rγ′, e⟩δα

)︃
ds,

δC =
∫︂ l

0
⟨λ,Rγ′⟩δα.

To derive the moment equilibrium equation at a point ς ∈ (0, l), we formally set δα = δς , the
delta distribution centered at ς. Then, the variations of A and C evaluate to

δA = −(Kκ)′(ς) and δC = ⟨λ,Rγ′(ς)⟩.

The variation of B is given by

δB =
∫︂ l

0
K(s)⟨Rγ′(ς), e⟩χ[0,s](ς) ds

= ⟨Rγ′(ς), e⟩
∫︂ l

0
K(s)χ[0,s](ς) ds = ⟨Rγ′(ς), e⟩

∫︂ l

ς
K,

where χ[0,s] denotes the characteristic function on [0, s]. Setting the variation of L to zero,
we arrive at the Euler–Lagrange equation

0 = −(Kκ)′(ς) + ⟨b, γ′(ς)⟩+ ⟨Rte, γ′(ς)⟩
∫︂ l

ς
K,

where we have substituted λ = Rb.
The last step in deriving the moment equilibrium equation is to find an antiderivative of the
function above. For the first two summands, an antiderivative is given by −Kκ+ ⟨b, γ⟩. For
the last summand, we use the identity

d
ds

(︄
f(s)

∫︂ l

s
g −

∫︂ l

s
fg

)︄
= f ′(s)

∫︂ l

s
g

to conclude that an antiderivative is given by

⟨Rte, γ(ς)⟩
∫︂ l

ς
K −

∫︂ l

ς
⟨Rte, γ⟩K.

In its integrated form, the moment equilibrium equation is given by

−K(ς)κ(ς) + ⟨b, γ(ς)⟩+ ⟨Rte, γ(ς)⟩
∫︂ l

ς
K −

∫︂ l

ς
⟨Rte, γ⟩K + a = 0

with the integration constant a.
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A.3 Adjoint Equations for Conjugate Points
A.3.1 Summary
We show how to compute ∂Z/∂K|(σ,K) by applying the adjoint method to the Euler–Lagrange
equations and the Jacobi criterion. Let us define the functional F [K] :=

∫︁
δσ(s)Z(s,K) ds with

δσ the delta distribution centered at σ, so δF/δK = ∂Z/∂K|(σ,K). For easier implementation,
δσ can also be replaced with a bump function that has small support, is centered at σ, and
integrates to one.

The cofactors of the matrix Z =
(︃

ζ η1 η2
M1 N11 N12
M2 N21 N22

)︃
appear in the adjoint equations, and we will

denote them by C(·), e.g., Cζ is the cofactor associated with the top-left entry ζ in Z. The
adjoint variables will be denoted by overbars. First, we compute M̄ i, N̄ ij, ζ̄, and η̄i via the
following sequence of adjoint equations:

M̄
′
i = δσCMi

, M̄ i(l) = 0,
N̄

′
ij = δσCNij

, N̄ ij(l) = 0,

−(Kζ̄ ′)
′
− ⟨λ, γ′⟩ζ̄ = ∑︁

k M̄kTk − δσCζ , ζ̄(l) = 0, ζ̄ ′(l) = 0,
−(Kη̄′

i)
′ − ⟨λ, γ′⟩η̄i = ∑︁

k N̄kiTk − δσCηi
, η̄i(l) = 0, η̄′

i(l) = 0.

Then, we solve for the extremal of the variational problem∫︂ l

0

1
2
(︂
Kᾱ′2 − ⟨λ, γ′⟩ᾱ2

)︂
+
[︂
ζ̄ζ⟨Rλ, γ′⟩+∑︁

i η̄i(ηi⟨Rλ, γ′⟩+ gi)

+∑︁
i M̄ igiζ +∑︁

ij N̄ ijgiηj

]︂
ᾱ

s.t.
ᾱ(0) = 0,
ᾱ(l) = 0,

and
∫︂ l

0
Tiᾱ =

∫︂ l

0
gi

(︂
ζ̄ζ +∑︁

kη̄kηk

)︂
for i = 1, 2

to compute ᾱ. Finally, the variational derivative of F reads

δF [δK] =
(︂
ζ̄(0) +∑︁

iη̄i(0)
)︂
δK(0) +

∫︂ l

0

(︂
ᾱ′α′+ ζ̄

′
ζ ′+∑︁

iη̄
′
iη

′
i

)︂
δK.
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A.3.2 Derivation
For easier reference, we repeat all primal equations that need to be taken into account when
deriving the adjoint.

−(Kα′)′ + ⟨λ,Rγ′⟩ = 0, α(0) = α0, α(l) = αl,

subject to γ(l) = γl,

−(Kζ ′)′ − ⟨λ, γ′⟩ζ = 0, ζ(0) = 0, ζ ′(0) = 1,
−(Kη′

i)′ − ⟨λ, γ′⟩ηi = ⟨Rγ′, ei⟩, ηi(0) = 0, η′
i(0) = 1,

M ′
i = ⟨Rγ′, ei⟩ζ, Mi(0) = 0,

N ′
ij = ⟨Rγ′, ei⟩ηj, Nij(0) = 0,

Z =

⎛⎜⎝ ζ η1 η2
M1 N11 N12
M2 N21 N22

⎞⎟⎠ ,
Z = detZ,

F =
∫︂
φZ.

In the following, indices always run from 1 to 2, and integrals from 0 to l. We introduce the
adjoint variables ᾱ, λ̄, ζ̄, η̄i, M̄ i, and N̄ ij , corresponding to lines 1–6 of the primal equations.
Furthermore, denote by C(·) the cofactors of Z, e.g., Cζ is the cofactor associated with the
top-left entry ζ in the matrix.
The variation of F , before appending additional terms, reads

δF =
∫︂
φ
(︂
Cζδζ +∑︁

i Cηi
δηi +∑︁

i CMi
δMi +∑︁

ij CNij
δNij

)︂
.

Next, let us account for the adjoint terms resulting from expressions of the form −(Ku′)′,
where u ∈ {α, ζ, ηi}. This results in

δ
∫︁
−ū(Ku′)′ = (−ūu′δK +Kū′δu−Kū δu′)|l0

+
∫︁

(ū′u′δK − (Kū′)′δu) .

After considering the boundary conditions on α, ζ, and ηi, we get

δ
∫︁
−ᾱ(Kα′)′ = (−ᾱα′δK −Kᾱ δα′)|l0

+
∫︁

(ᾱ′α′δK − (Kᾱ′)′δα) ,

δ
∫︁
−ζ̄(Kζ ′)′ = −ζ̄ζ ′δK

⃓⃓⃓l
0

+
(︂
Kζ̄

′
δζ −Kζ̄ δζ ′

)︂⃓⃓⃓
l

+
∫︁ (︂
ζ̄

′
ζ ′δK − (Kζ̄ ′)′δζ

)︂
,

δ
∫︁
−η̄i(Kη′

i)′ = −η̄iη
′
iδK|

l
0 + (Kη̄′

iδηi −Kη̄i δη
′
i)|l

+
∫︁

(η̄′
iη

′
iδK − (Kη̄′

i)′δηi) .

The remaining term in line 1 and the equality constraint in line 2 yield

δ
∫︁
ᾱ⟨λ,Rγ′⟩ =

∫︁
ᾱ (⟨δλ,Rγ′⟩ − ⟨λ, γ′δα⟩)

= ⟨δλ,
∫︁
Rγ′ᾱ⟩ −

∫︁
ᾱ⟨λ, γ′⟩δα,

δ⟨λ̄,
∫︁
γ′ − γl⟩ =

∫︁
⟨λ̄, Rγ′⟩δα.
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The remaining term in line 3 yields

δ
∫︁
−ζ̄⟨λ, γ′⟩ζ = −⟨δλ,

∫︁
ζ̄ζγ′⟩ −

∫︁
ζ̄ζ⟨λ,Rγ′⟩δα−

∫︁
ζ̄⟨λ, γ′⟩δζ,

and the ones in line 4,

δ
∫︁
−η̄i (⟨λ, γ′⟩ηi + ⟨Rγ′, ei⟩)

= −⟨δλ,
∫︁
η̄iηiγ

′⟩+
∫︁
η̄i⟨Rei − ληi, Rγ

′⟩δα−
∫︁
η̄i⟨λ, γ′⟩δηi.

Similarly, for lines 5 and 6,

δ
∫︁
M̄ i (M ′

i − ⟨Rγ′, ei⟩ζ)
= M̄ i δMi

⃓⃓⃓
l
−
∫︁
M̄

′
iδMi +

∫︁
M̄ iζ⟨γ′, ei⟩δα−

∫︁
M̄ i⟨Rγ′, ei⟩δζ,

δ
∫︁
N̄ ij

(︂
N ′

ij − ⟨Rγ′, ei⟩ηj

)︂
= N̄ ij δNij

⃓⃓⃓
l
−
∫︁
N̄

′
ijδNij +

∫︁
N̄ ijηj⟨γ′, ei⟩δα−

∫︁
N̄ ij⟨Rγ′, ei⟩δηj.

Next, we gather the expressions multiplying variations that we do not want to evaluate, i.e., δα,
δλ, δζ, δηi, δMi, and δNij . We will do this process in reverse order, because this corresponds
to the natural order in which the adjoint equations need to be solved. For δMi and δNij , we
have

M̄
′
i = φCMi

, M̄ i(l) = 0,
N̄

′
ij = φCNij

, N̄ ij(l) = 0.

For δζ and δηi, we have

−(Kζ̄ ′)′ − ⟨λ, γ′⟩ζ̄ = M̄ i⟨Rγ′, ei⟩ − φCζ , ζ̄(l) = 0, ζ̄
′(l) = 0,

−(Kη̄′
i)′ − ⟨λ, γ′⟩η̄i = N̄ ij⟨Rγ′, ei⟩ − φCηi

, η̄i(l) = 0, η̄′
i(l) = 0.

Collecting terms multiplying δα yields

(Kᾱ′)′ = −ᾱ⟨λ, γ′⟩+ ⟨λ̄, Rγ′⟩
+ (ζ̄ζ +∑︁

i η̄iηi)⟨Rλ, γ′⟩
+∑︁

i(η̄i + M̄ iζ +∑︁
j N̄ ijηj)⟨γ′, ei⟩, ᾱ(0) = 0, ᾱ(l) = 0,

and for δλ, the two-component equation∫︁
Rγ′ᾱ =

∫︁
(ζ̄ζ +∑︁

i η̄iηi)γ′.

Putting the equations for δα and δλ together, we see that they correspond to the constrained
Euler–Lagrange equations of a quadratic variational problem with linear integral constraints in
ᾱ, where λ̄ is used as a Lagrange multiplier:∫︂ l

0

1
2
(︂
Kᾱ′2 − ⟨λ, γ′⟩ᾱ2

)︂
+
[︂
(ζ̄ζ +∑︁

i η̄iηi)⟨Rλ, γ′⟩

+∑︁
i(η̄i + M̄ iζ +∑︁

j N̄ ijηj)⟨γ′, ei⟩
]︂
ᾱ

s.t.
ᾱ(0) = 0,
ᾱ(l) = 0,

and
∫︂ l

0
Rγ′ᾱ =

∫︂ l

0
(ζ̄ζ +∑︁

i η̄iηi)γ′.
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Finally, the variational derivative of F can be assembled from all terms involving δK. This
gives

δF [K; δK] = (ζ̄ +∑︁
i η̄i) δK

⃓⃓⃓
0

+
∫︂ l

0

(︂
ᾱ′α′ + ζ̄

′
ζ ′ +∑︁

i η̄
′
iη

′
i

)︂
δK.

A.4 Constraint Satisfaction
Algorithm 4.2 calls the routine EnforceConstraints, which acts on the control points
of a spline curve. Its objective is to restore the equilibrium property of the curve through
collinearity of inflection points, and to enforce boundary conditions and fixed arc length.

We assume a spline parametrization γ(t, q) = ∑︁
i Bi(t) qi with Bi piecewise polynomial and

control points q1, . . . , qm ∈ R2. For a total number of N constraints, we denote the constraint
manifold as G(q) = 0 with G : R2m → RN , and its Jacobian as JG : R2m → RN×2m. Rows
of JG corresponding to linear constraints may be precomputed at the beginning, and the
remaining rows are updated every time the routine is called. First, we discuss all constraint
types, and then the Newton-type iteration by which they are enforced.

Collinearity of Inflections We over-constrain inflection points by keeping the inflection
line L constant during optimization. For each inflection, this produces one equality con-
straint of the form Ginfl(q) := a+ ⟨γ(t0(q), q), b⟩ = 0, where t0 depends on q implicitly via
det(γ′(t0, q), γ′′(t0, q)) = 0. Derivatives can be evaluated as

∂t0
∂qi,j

= − 1
det(γ′, γ′′′) [det (∂γ′/∂qi,j, γ

′′) + det (γ′, ∂γ′′/∂qi,j)] ,

∂Ginfl

∂qi,j

=
⟨︄
∂γ

∂qi,j

+ γ′ ∂t0
∂qi,j

, b

⟩︄
,

where qi,j represents the j-th coordinate of qi. Note that regularity of the constraint Ginfl(q) = 0
is guaranteed by the upper bound on R[K] that is introduced in Algorithm 4.2.

Boundary Conditions Boundary points are fixed by constraints γ(0) = γ0 and γ(l) = γl,
and tangents by constraining ⟨γ′(0), n0⟩ = 0 = ⟨γ′(l), nl⟩, where n0 and nl are the initial
normals to the curve at its endpoints. These constraints are linear in q, so the derivatives
∂γ/∂qi,j and ∂γ′/∂qi,j can be precomputed at the beginning.

Fixed Arc Length The arc length of a curve is discretized as l(q) = ∑︁n−1
i=0 ∥γ(ti+1, q) −

γ(ti, q)∥, and fixed with a constraint Garc(q) := l(q)− l0 = 0. Here t0, . . . , tn is a sampling
of the parameter domain, and l0 is the initial arc length.

Enforcing Constraints The input to EnforceConstraints is a set of control points
q0 ∈ R2m that might violate the constraints, and the goal is to find qn such that G(qn) = 0,
and qn close to q0. We achieve this using an underdetermined Newton iteration qi+1 = qi +∆q,
where ∆q is the least-norm solution to JG ∆q = −G. This iteration does not converge to the
orthogonal projection of q0 onto {q ∈ R2m : G(q) = 0}, but it is a good approximation that
can be computed robustly.
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A.5 Nonlinear Materials
Our design system can be extended to account for certain material nonlinearities. We have not
explored these models in our physical results, except for the spiral example shown in Fig. 4.7,
which uses plasticity to account for the curvature of the innermost winding.

Nonlinear Elasticity The left-hand side of Eq. 4.3 represents the internal moment M(s) =
K(s)κ(s) integrated over a cross section of an elastic strip. We can further decompose
K(s) = P w(s), where w(s) is the width of the strip, and P represents a linear material law.
A wide class of nonlinear material laws take the similar form

M(s) = P (κ(s))w(s)κ(s),

for P : R → R>0 an even function, and thus P ′(0) = 0. This class includes for example
strain-hardening behaviors (P ′′(0) > 0), and strain-softening behaviors (P ′′(0) < 0). Perhaps
surprisingly, the theory developed in Section 4.3 applies to these laws as well, as long as the
moment-per-unit-width function m(κ) := P (κ)κ is injective in the relevant curvature range.
If this is the case, we can solve for a ∈ R and b ∈ R2 using the same linear program, and then
compute w(s) from the equation w(s)m(κ(s)) = a+ ⟨b, γ(s)⟩.

Plasticity If an elastic strip is bent beyond the elastic limit of the base material, some of
the deformation will become permanent, and the strip does not return to its original flat state
after removing external forces. This effect was noticeable in our experiments with bending
cardboard (200 gsm) for curvature radii below 2 cm.
The simplest plasticity model is that of an ideally plastic material, which assumes that the
linear stress-strain law is replaced by a constant law at the elastic limit. Applied to elastic strips,
this model postulates the existence of a curvature limit κlim, such that all curvature beyond
this point becomes plastic. We implemented this model in our design system by replacing κ(si)
in Eq. 4.4 by an effective curvature κeff(si) := min{κ(si), κlim}. This implementation does
not account for path-dependent deformation during the bending process, or the formation of
plastic hinges. As such, it is only an approximation of ideally plastic behavior.
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APPENDIX B
Kirchhoff Rods

B.1 Proof of Proposition 2
We show that zero is the tight lower bound of the torsional rigidity for any given bending rigidity.
In other words, given I ∈ S2

++ and ε > 0, we can find a bounded (and simply-connected)
domain D ⊂ R2 with bending rigidity equal to I and torsional rigidity at most ε.
Choose I ∈ S2

++ and r > 0, and construct a domain Ω ⊂ R2 as follows: Starting from an
elliptical disk with bending rigidity I, add linear cuts from the boundary to the interior in such
a way that the domain remains simply connected and that the incircle radius (the supremum
of the radii of all circles contained in Ω) falls below r, as illustrated in Fig. 5.6 (right). Let
χ ∈ H1

0 (Ω) be the solution to ∆χ = −1 in Ω and χ = 0 on ∂Ω, where H1
0 (Ω) denotes the

Sobolev space of weakly differentiable functions in L2(Ω) supported in Ω.
Partition the axis-aligned bounding rectangle of Ω into a rectilinear grid such that every cell
has side lengths greater than 2r and at most 3r (which is always possible for small enough r).
This guarantees that every cell intersects Ωc in a set containing a line segment of positive
length, on which χ = 0. By the Poincaré–Friedrichs inequality [Bra07, II.1.5-6], we have

∥χ∥L2(C) ≤ 3r ∥∇χ∥L2(C)

for every cell C of the partition, and by summing over all cells,
∥χ∥L2(Ω) ≤ 3r ∥∇χ∥L2(Ω).

By Green’s first identity, we have

∥∇χ∥2
L2(Ω) =

∫︂
∂Ω
χ∂nχ−

∫︂
Ω
χ∆χ =

∫︂
Ω
χ ≤ ∥χ∥L1(Ω),

and by the Cauchy–Schwarz inequality,

∥1 · χ∥L1(Ω) ≤ ∥1∥L2(Ω)∥χ∥L2(Ω) =
√︂
µ(Ω)∥χ∥L2(Ω),

where µ denotes the Lebesgue measure. Altogether, this gives

∥∇χ∥2
L2(Ω) ≤ ∥χ∥L1(Ω) ≤

√︂
µ(Ω)∥χ∥L2(Ω) ≤ 3r

√︂
µ(Ω)∥∇χ∥L2(Ω).

Cancelling ∥∇χ∥L2(Ω) and squaring gives
J = 4∥∇χ∥2

L2(Ω) ≤ 36r2µ(Ω).
Choosing r such that 36r2µ(Ω) ≤ ε gives the statement. □
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B.2 Proof of Proposition 7 (cont.)
It remains to show that the case ⟨c, c̄⟩ = 0 with c ̸= 0 reduces to Theorem 6. We know by
assumption that all tangent lines of γ intersect the Euclidean line λ(c, c̄), as shown in Fig. 5.8
(left). This implies that every connected component of γ((0, ℓ)) \ λ(c, c̄) is contained in a
plane P with λ(c, c̄) ⊂ P . The points γ(s0) ∈ λ(c, c̄) are exactly the inflection points of γ,
so there are finitely many connected components and planes.

P
P̄ γ

γ(s0)

λ(c, c̄)

e1

e2

e3

o

γ′

n̄1

n̄2

γ

λ(e2, 0)

Consider an interval (s0−ε, s0+ε) small enough such that γ((s0−ε, s0))
is contained in a plane P , and γ((s0, s0 + ε)) in a plane P̄ . Assume
for the sake of contradiction that P ̸= P̄ , so P ∩ P̄ = λ(c, c̄). Then,
the tangent line of γ at s0 must coincide with λ(c, c̄).
Assume wlog that γ(s0) coincides with the origin, (c, c̄) = (e2, 0), and
P is normal to e3. Next, consider the parallel frame F̄ = (n̄1, n̄2, γ

′)
such that n̄1 ≡ −e3 on the interval (s0 − ε, s0). This frame is related
to F by a constant rotation Q ∈ SO(2), and satisfies the equilibrium
equation with Ī = QtIQ:

EF̄ nĪ k̄n = E(FnQ)(QtIQ)(Qtkn) = EFnIkn = c× γ + c̄,

according to Eq. 5.1. Noting that κ̄2 ≡ 0, ⟨n̄2, e1⟩ = −⟨γ′, e2⟩, and
⟨n̄2, e2⟩ = ⟨γ, e1⟩ on (s0 − ε, s0), we can write out the equilibrium
equation in coordinates, which yields

Īxyκ̄1⟨γ′, e1⟩ = 0 = Īxyκ̄1⟨γ′, e2⟩, EĪxxκ̄1 = ⟨γ, e1⟩.

The two equations on the left imply Īxyκ̄1 ≡ 0 and thus Īxy ≡ 0 because κ̄1(s) = 0 only
at s = s0. The equation on the right is exactly the equilibrium equation from Theorem 6,
with λ(e2, 0) equivalent to L. That λ(e2, 0) is tangent to γ contradicts Theorem 6(1), and
shows P = P̄ . By repeating the argument, we see that every connected component of
γ((0, ℓ)) \ λ(c, c̄) is contained in the same plane. □

B.3 Helical Symmetry of Constant-Curvature Parallel
Equilibrium Curves

We give a sketch of the proof that solutions to

γ′′(s) = B(γ(s))× γ′(s), with B(x) = κ
c× x+ c̄

∥c× x+ c̄∥
,

initial conditions given in Eq. 5.15, and constant κ > 0 have a discrete helical symmetry with
axis e3, i.e., there exist h, ζ ∈ R and σ > 0, such that, for all s ∈ R,

γ(s+ σ) =
(︃

cos ζ − sin ζ 0
sin ζ cos ζ 0

0 0 1

)︃
γ(s) +

(︂ 0
0
h

)︂
.

To show this, we note that B is divergence-free, so the equation γ′′ = B × γ′ describes the
trajectory of a charged particle in a magnetic field. In cylindrical coordinates with radius ϱ,
azimuth θ, and height z, we define the vector potential

A(ϱ, θ) = κp

ϱ

(︃√︂
ϱ2 + p2 − 1

)︃
eθ(θ) + κ

(︃√︂
ϱ2 + p2 − 1

)︃
e3,
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such that divA = 0 and curlA = B, where B is given by

B(ϱ, θ) = κ√
ϱ2 + p2 (ϱeθ(θ) + pe3)

in cylindrical coordinates. The Lagrangian for a charged particle in a magnetic field is given
by 1

2⟨γ
′, γ′⟩+ ⟨γ′, A ◦ γ⟩, which we can use to extract invariants of our differential equation

by using Noether’s theorem. Symmetry under time translation gives the arc-length condition
ϱ′2 + (ϱθ′)2 + z′2 = 1, and symmetry under translation along e3 and rotation around e3 gives
two new invariants

Iz = z′ + κ
√︂
ϱ2 + p2, Iθ = ϱ2θ′ − κp

√︂
ϱ2 + p2,

which show that z′ and θ′ only depend on ϱ (but not on θ and z). We compute 0 =
⟨γ′, c× γ + c̄⟩ = ϱ2θ′ + pz′ = Iθ + pIz, showing that Iθ = −pIz. Next, we substitute θ′ and
z′ in the arc-length condition for the invariants, which gives (for ϱ ̸= 0),

ϱ′2 = 1− ϱ2 + p2

ϱ2

(︃
Iz − κ

√︂
ϱ2 + p2

)︃2
, (B.1)

showing that ϱ′ only depends on ϱ, up to sign. To determine zeros of ϱ′, substitute ϱ̄ =√
ϱ2 + p2 ≥ |p|, which gives

ϱ̄2(1− (Iz − κϱ̄)2) = p2.

On ϱ̄ > |p|, this equation has either two distinct real solutions, or one real double solution
(which corresponds to the special case of a single-helical solution). In the former case, we
have ϱ′(ϱ) = 0 exactly for some ϱ = R1 and ϱ = R2, with 0 < R1 < R2. Then, ϱ consists of
alternating, mirror-symmetric segments, on which ϱ monotonically increases from R1 to R2,
and then monotonically decreases from R2 to R1. To show that the sign of ϱ′ actually changes
at R1 and R2, one verifies ϱ′′ ̸= 0 at these points. Furthermore, θ′ and z′ only depend on
ϱ, so every pair of alternating segments will give a copy of the same curve segment, which
is translated along and rotated around e3 with respect to the previous one. This shows the
discrete helical symmetry of γ.

B.4 Proof of Proposition 10
(1)⇒ (2): By (1), we assume that there exists (I, J) : (0, ℓ)→ K satisfying the equilibrium
equation EFnIkn + µJτγ′ = c× γ + c̄, such that J and the eigenvalues of I are bounded
from below and above by positive constants. Furthermore, κ = ∥kn∥ is also bounded from
below and above by positive constants, because it is positive and continuous on [0, ℓ].
Taking the inner product between the equilibrium equation and γ′ yields µJτ = ⟨γ′, c× γ+ c̄⟩,
which shows that ⟨γ′/τ, c×γ+ c̄⟩ has the required properties by the coercivity and boundedness
of J .
To show the second inequality, take the inner product between the equilibrium equation and
ωn/(Eκ2), which yields

λ1 ≤
⟨︄
kn

κ
, I
kn

κ

⟩︄
=
⟨︃
ωn

Eκ2 , c× γ + c̄
⟩︃
≤ λ2,

with λ1 ≤ λ2 the eigenvalues of I. Furthermore, from

J ≤ 4ψ(I) ≤ 4λ1
λ2

λ1 + λ2
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and the coercivity and boundedness of I, we find that there exists ε > 0 such that J+ε ≤ 4λ1.
Combining these inequalities with the expression for µJτ from above, we get

ε = (J + ε)− J ≤
⟨︄

4ωn

Eκ2 −
γ′

µτ
, c× γ + c̄

⟩︄
≤ 4 supλ2,

which shows the required bounds.
(2)⇒ (1): Define J = ⟨ γ′

µτ
, c× γ + c̄⟩ to satisfy the tangential component of the equilibrium

equation. From the limit properties of ⟨γ′/τ, c× γ+ c̄⟩ at zeros of τ , we see that J is coercive
and bounded, and we can extend it with arbitrary positive values at these zeros.
Satisfying the normal component equation EIkn = F t

n(c×γ+ c̄) with an appropriate choice of
I is equivalent to satisfying EĨQkn = QF t

n(c×γ+ c̄) for some Q ∈ SO(2) with an appropriate
choice of Ĩ, because we can transform Ĩ = QIQt. Furthermore, I inherits coerciveness and
boundedness from Ĩ, so it suffices to show these properties for the latter.
We choose Q ∈ SO(2) such that Qkn = κe1, so it suffices to find Ĩ such that EκĨe1 =
QF t

n(c × γ + c̄). Choosing Ĩxx = 1
Eκ2 ⟨ωn, c × γ + c̄⟩ satisfies the first component of this

equation, and we can uniquely determine Ĩxy from the second. Next, we pick Ĩyy = JĨxx+4Ĩ
2
xy

4Ĩxx−J

in order to satisfy J = 4ψ(Ĩ), which is checked by direct computation.

To verify that Ĩ is coercive and bounded, it suffices to show that tr Ĩ and det Ĩ = J(Ĩ2
xx+Ĩ

2
xy)

4Ĩxx−J
are bounded from below and above by positive constants. This can be seen from the
formula 2λ1,2 = tr Ĩ ±

√︂
tr2 Ĩ − 4 det Ĩ. For Ĩxx, boundedness is clear by continuity and from

4Ĩxx = ⟨v1/µ+ v2, c× γ + c̄⟩ > 0. For Ĩyy and det Ĩ, boundedness of the numerator is clear
from the boundedness of Ĩxx and J , and boundedness of the denominator can be seen from

4Ĩxx − J =
⟨︄

4ωn

Eκ2 −
γ′

µτ
, c× γ + c̄

⟩︄
,

and the limit properties of the expression on the right-hand side, which follow from (2). We
conclude that λ1 and λ2 are also bounded from below and above by positive constants, which
gives the required coercivity and boundedness of I. □

B.5 Cheat Sheet
Some of the symbols refer to quantities that vary across the length of a beam with arc-length
parameter s ∈ (0, ℓ). In the paper, we will often omit the parameter s for brevity, whenever we
make an argument that is true at every parameter location. Sometimes, we will also write, e.g.,
I ∈ S2

++ instead of I : (0, ℓ)→ S2
++, when it is clear from context that a choice I(s) ∈ S2

++
is made for every s ∈ (0, ℓ).

Sym. Type Description
(·)′ (·)′ : Cd → Cd−1 First derivative with respect to arc-length parameter s
[·]× [·]× : R3 → R3×3 Transforms a vector v ∈ R3 into its “cross product matrix”,

the skew-symmetric matrix [v]× such that [v]×x = v × x for
all x ∈ R3

a a ∈ R>0 Radius of an ellipse, associated with the first semi-axis
(cosφ, sinφ)t
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b b ∈ R>0 Radius of an ellipse, associated with the second semi-axis
(− sinφ, cosφ)t

β β : (0, ℓ)→ R Rotation of the normal plane, relating two frames F and
Fβ adapted to the same curve γ via Fβ,n = FnQβ, with
Qβ =

(︂
cos β − sin β
sin β cos β

)︂
(c, c̄) c, c̄ ∈ R3 Homogeneous coordinates of the linear complex C
C C ⊂ Λkl Set of all lines in R3 whose Plücker coordinates (l, l̄) satisfy

⟨l, c̄⟩+ ⟨l̄, c⟩ = 0
D D(s) ⊂ R2 Cross section of the Kirchhoff rod at a particular s ∈ (0, ℓ);

often assumed to be elliptical
E E ∈ R>0 Young’s modulus of the base material
ei ei ∈ R3 Standard basis vectors e1 = (1, 0, 0)t, e2 = (0, 1, 0)t, and

e3 = (0, 0, 1)t

F F : (0, ℓ)→ SO(3) Moving frame adapted to γ; encodes the twist of the Kirchhoff
rod deformation; the columns of F are given by F (s) =
(n1(s), n2(s), γ′(s))

Fn Fn : (0, ℓ)→ R3×2 The matrix of material normals of F , so Fn = FS = (n1, n2)
fi fi ∈ R3, i = 1, . . . , n Concentrated point load fi is applied to the centerline of a

rod at γ(si)
γ γ : (0, ℓ)→ R3 Arc-length parametrized curve that gives the centerline of a

deformed Kirchhoff rod; assumed at least twice continuously
differentiable

I I : (0, ℓ)→ S2
++ Area moment of inertia tensor of the cross section of the

Kirchhoff rod, at a particular s ∈ (0, ℓ), given by I(s) =∫︁
D(s)

(︂
y2 −xy

−xy x2

)︂
d(x, y)

J J : (0, ℓ)→ R>0 Torsional rigidity of the cross section of the Kirchhoff rod, at
a particular s ∈ (0, ℓ); computed as J(s) = 4

∫︁
D(s) ∥∇χ∥2,

where χ is the solution to ∆χ = −1 in D(s), and χ = 0 on
∂D(s)

K K : (0, ℓ)→ R3×3 Stiffness matrix of the Kirchhoff rod, at a particular s ∈
(0, ℓ); the upper-left two-by-two block is given by EI, and the
lower-right entry by µJ ; we often use K and the pair (I, J)
interchangeably, because E and µ are assumed fixed

k k : (0, ℓ)→ R3 Curvature vector of the framed curve (γ, F ), with components
k = (κ1, κ2, τ); related to F and ω via ω = Fk and [k]× =
F tF ′

kn kn : (0, ℓ)→ R2 Vector of material curvatures of F , so kn = Stk = (κ1, κ2)t

K K ⊂ S2
++ × R Set of admissible stiffnesses (I, J) that satisfy 0 < J ≤

4ψ(I); by abuse of notation, we write K ∈ K and (I, J) ∈ K
interchangeably

K∗ K∗ ⊂ K Set of stiffnesses induced by elliptical cross sections, i.e., J =
4ψ(I)

κi κi : (0, ℓ)→ R Material curvatures κ1 and κ2 of F ; measure bending of
the Kirchhoff rod around the material normals n1 and n2,
respectively

κ κ : (0, ℓ)→ R≥0 Total (Frenet) curvature of γ, given by κ = ∥γ′′∥; for any
frame F adapted to γ, it holds that κ =

√︂
κ2

1 + κ2
2

ℓ ℓ ∈ R>0 Length of the Kirchhoff rod
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λ λ(l, l̄) ⊂ R3 Map from the Plücker coordinates l, l̄ ∈ R3 with ⟨l, l̄⟩ = 0 to
the line in R3 incident to the point l×l̄

⟨l,l⟩ and with direction l
Λkl Λkl ⊂ P5 Klein quadric, the set of all points with homogeneous coordi-

nates (l, l̄) ∈ R6 satisfying ⟨l, l̄⟩ = 0; we interpret these points
as Plücker coordinates of a line in R3 with direction v and
incident to a point x, such that (l, l̄) = (v, x× v)

M M : (0, ℓ)→ R3 Accumulated moment on a deformed rod, given by M =∫︁ s
0 γ × q

µ µ ∈ R>0 Shear modulus of the base material
ni ni : (0, ℓ)→ R3 Material normals of the moving frame F , so ni = Fei for

i = 1, 2
ν ν ∈ (−1, 1/2) Poisson’s ratio of the base material
ω ω : (0, ℓ)→ R3 Darboux vector of the moving frame F ; related to F and k

via ω = Fk and F ′ = [ω]×F
p p : (0, ℓ)→ R3 Line load applied to the centerline of a rod, where p(s) gives

the load density at γ(s)
φ φ ∈ R Orientation of ellipse with respect to reference frame;

first and second semi-axes are given by (cosφ, sinφ)t and
(− sinφ, cosφ)t respectively

ψ ψ : S2
++ → R>0 The determinant-over-trace function ψ(X) := det X

tr X

Q Q : (0, ℓ)→ R3 Accumulated load on a rod, given by Q(s) =
∫︁ s

0 q
q q ∈ D ′((0, ℓ);R3) Load distribution applied to the centerline of a rod, consisting

of a line load p and point loads fi

S S ∈ R3×2 Selection matrix S =
(︂ 1 0

0 1
0 0

)︂
that extracts the first two columns

of a three-column matrix by multiplication from the right, i.e.,
(x1, x2, x3)S = (x1, x2)

S2
++ S2

++ ⊂ R2×2 Set of all symmetric positive-definite 2-by-2 matrices
SO(3) SO(3) ⊂ R3×3 Set of all rotations of R3 about the origin
s s ∈ (0, ℓ) Arc-length parameter of γ
si si ∈ (0, ℓ), i =

1, . . . , n
Concentrated point load fi is applied to the centerline of a
rod at γ(si)

τ τ : (0, ℓ)→ R Twist of the moving frame F ; measures rotation per arc-length
unit around γ′
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