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Abstract

The most common representation of volumetric models is a regular grid of cubical voxels with one value each, from

which a smooth scalar field is reconstructed. However, common real-world situations include cases in which vol-

umes represent physical objects with well defined boundaries separating different materials, giving rise to models

with quasi-impulsive gradient fields. In our split-voxel representation, we replace blocks of N3 voxels by one single

voxel that is split by a feature plane into two regions with constant values. This representation has little overhead

over storing precomputed gradients, and has the advantage that feature planes provide minimal geometric infor-

mation about the underlying volume regions that can be effectively exploited for volume rendering. We show how to

convert a standard mono-resolution representation into a out-of-core multiresolution structure, both for labeled and

continuous scalar volumes. We also show how to interactively explore the models using a multiresolution GPU ray-

casting framework. The technique supports real-time transfer function manipulation and proves particularly useful

for fast multiresolution rendering, since accurate silhouettes are preserved even at very coarse levels of detail.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture and Image
Generation—; Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—.

1. Introduction

The most common representation of volumetric models is a
regular grid of cubical voxels with one value each, from which
a smooth scalar field is reconstructed. This regularity enables
efficient rendering, but is not well adapted to all data distribu-
tions. Common real-world situations include cases in which
volumes represent physical objects with well defined bound-
aries separating different regions, giving rise to models with
quasi-impulsive gradient fields. Boundary regions are promi-
nently visible in volume rendered images, and the sampling
nature of the voxelized representation can lead to aliasing,
since voxel size restricts size and location of rendered details.

Contribution. In order to overcome these limitations, we in-
troduce a volumetric primitive, that we call split-voxel, which
replaces blocks of N3 voxels by one single voxel that is split
by a feature plane into two regions with constant values. The
feature plane provides a linear approximation to the strongest
value discontinuity in the block, while the two values repre-
sent medians or averages which are not blurred over the dis-
continuity. This description is exploited in a multiresolution
GPU ray-casting framework able to handle large out-of-core
datasets, and is used to represent both leaves and inner lev-
els. Specifically, the main contributions of this paper are the
following:

• the split voxel volumetric primitive that encodes scalar
data together with edge detection information;

• a hierarchical approach for converting a standard mono-
resolution voxelized representation into an out-of-core
multiresolution structure based on split voxels, both for
labeled and continuous scalar volumes;

• a simple and efficient ray-casting accumulation scheme
exploiting split-voxels incorporated within a GPU acceler-
ated out-of-core renderer providing real-time exploration
with dynamic transfer function editing.

Advantages. This representation has little overhead over stor-
ing precomputed gradients, and has the advantage that fea-
ture planes provide minimal geometric information about the
underlying volume regions that can be effectively exploited
for volume rendering. In particular, split voxels are able to
track material interfaces, as they occur in many physical ob-
jects, and, when employed in a multiresolution representation,
provide accurate silhouettes even at very coarse levels of de-
tail, reducing the data and time required to render understand-
able images (see figure 1). We show that the split-voxel prim-
itive can efficiently model volume datasets containing inten-
sity scalar values, as well as material labels. Since the method
is applied to scalar values, the renderer is able to change the
transfer function in real-time without the need to reprocess the
data.
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Figure 1: Rendering of labeled scene. Left: The usual linear interpolation method suffers from color bleeding, since interpolated values generate

false colors when accessing transfer functions even when using pre-integration. Middle: using split-voxels, all segmented models keep their color.

Right: a close-up of the scene with low pixel tolerance shows how the split-voxel method preserves boundaries even at very low levels of details,

instead the nearest method suffers from low quality edge representation.

Limitations. The split-voxel model is tuned for scalar fields
containing sharp boundaries between different near uniform
zones. The representation is non-continuous, and volumes ex-
hibiting smoothly varying gradient fields, e.g., the results of
gas/fluids/fire simulations, are not managed as efficiently.

2. Related work

Reconstructing the original data, as accurately as possible
from a discretized representation, while maintaining a reason-
able execution speed and limited memory needs, is a funda-
mental problem in volume graphics. The most common repre-
sentation of volumes in (GPU) volume rendering applications
is a regular grid of scalar values. The most direct way to recon-
struct data from the sampled representation is to use a polyno-
mial filter. Constant and linear filters, directly supported by
the hardware, are by far the most commonly used representa-
tions, but have obvious limits in their reconstruction power. In
case of rapidly varying data, too many samples are required to
avoid aliasing problems, with problems in terms of memory
occupancy and traversal efficiency. Sparser representations
can in principle be obtained with higher order filters. Even
though these filters (typically the tricubic one) can be smartly
implemented on top of linear interpolation to reduce their
computational cost [SH04], their run-time evaluation remains
costly for an interactive renderer due to the many texture
fetches. Ringing artifacts may also appear, and sharp bound-
aries are not directly represented. Moreover, with these contin-
uous representations, sampling has still to be performed at a
high frequency to avoid missing sharp value changes. Various
approaches for reducing sampling rates are known in the lit-
erature. Pre-integrated volume rendering [EKE01, RGW∗03,
LWM04,KSS08] deals with high frequencies in transfer func-
tions rather than in the scalar volume itself. Adaptive sampling
methods solve the boundary detection problem in real-time by
adjusting sampling frequency during ray casting. For instance,
Hadwiger et al. [HSS∗05] combined rasterization of min-max
blocks with adaptive sampling and a secant method solver
to ray cast discrete iso-surfaces on the GPU, while Knoll et
al. [KHW∗09] employ a peak finding strategy which explic-
itly solves for iso-values within the volume rendering integral.
The underlying sampled function is still considered continu-
ous, and due to the cost of repeated evaluation, is at most a

low order polynomial. A number of systems deal with seg-
mented datasets (e.g., [HBH03, RGW∗03]), but the focus is
on blending separate gridded representations using different
pre-determined transfer functions. Our method, instead, en-
codes minimal boundary information in the split-voxel prim-
itive. This way, the primitive can be used for constructing
multiresolution structures while preserving boundary details
even for low resolution scales, and the model can easily be
employed in all kinds of accumulation strategies commonly
considered for volume ray casting. The underlying concept of
our split voxel has been explored in different contexts before.
In two dimensions, geometrical wavelets, which explicitly en-
code discontinuities, were introduced to properly catch edges
often present in images [Don99, WN03], and they have been
applied to approximation and compression problems. Repre-
sentations that enrich images with codes for local boundaries
have also been introduced with the main purpose of combin-
ing vector and raster image features [Sen04, TC04, RBW04].
Modified 2D interpolation rules requiring multiple fetches per
texel are used to support up to four linear discontinuities in
every pixel. The Pinchmap [TC05] improves over these meth-
ods by proposing a GPU-optimized 2D texture representa-
tion which separates the encoding of discontinuities from the
encoding of the signal. The two-colored pixel approach of
Pavic and Kobbelt [PK10], developed in parallel to our work,
also uses a representation using two colors per pixel sepa-
rated by a feature line, and extends it to 3D for a video re-
targeting applications. Other methods are instead targetted to
extract feature preserving surface representations from vol-
ume data [KBSS01, JLSW02]. While these approaches con-
ceptually share similarity to ours, they cannot applied to vol-
ume rendering. In the context of volume rendering, Sereda et
al. [SBSG06] introduced the LH space as a transfer function
domain. It starts from the assumption that every voxel lies ei-
ther inside a material or on the boundary between two materi-
als with lower intensity FL and higher intensity FH, respec-
tively. They show that the LH histogram conveys informa-
tion about dataset boundaries in a more compact and robust
way than common intensity-gradient histograms and there-
fore seems to be well-suited for volume exploration. Praßni
at al. [PRH09] improved this approach by deriving an effi-
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cient technique for the computation of LH values, which is
fast enough to support post-classification at interactive frame
rates. The underlying assumption is similar to our split-voxel
concept, but while these methods deal with the generation of
efficient transfer functions, we instead focus on modeling and
rendering volume data. With respect to the construction of the
split-voxel model, our approach deals with the approximation
of a small cubic scalar volume with two materials and a sep-
aration surface. To this end, various statistical methods can
be employed to perform this classification, such as, for ex-
ample, the well-known Support Vector Machines [Vap95] or
the enumeration strategy of Pavic and Kobbelt [PK10]. The
split-voxel construction deals also with the 3D edge-detection
problem, which has been investigated in depth in the litera-
ture. Our technique shares similarity with the moment-based
operator [LHDC93]. Finally, the split-voxel model is incor-
porated into a multiresolution CUDA rendering framework,
whose data structures and rendering strategy are similar to
those described by Iglesias Guitián et al. [IGM10].

3. Split-voxel model

We consider a generic scalar regular volume, i.e., a discrete
representation over a cartesian grid of a continuous scalar
function s(x), where x ∈ R

3. In this representation, the scalar
value associated to each voxel is derived from some sort of
measurement apparatus or simulation or digital processing,
and it takes the form of an intensity measured value, in the
case, for example, of data directly coming from medical scan-
ning devices, or the form of a material label, when some clas-
sification has been performed over data. In order to enhance
the appearance of surface structures in the volume, it is com-
mon to exploit the gradient ∇s to evaluate a surface shading
model. High quality volume renderers, thus often precompute
gradient values at each voxel position. Precomputing the gra-
dients, rather than evaluating them at run-time, allows the ren-
derer to use high quality filters with kernels larger than those
which can be afforded for on-the-fly computations. Moreover,
since the gradient is a bad predictor for the surface normal ori-
entation in nearly homogeneous regions due to the increased
influence of noise, gradients with low magnitude are typically
filtered out. For instance, Bruckner el al. [BG09] filter out all
gradients whose norm is less than 1

8 of the maximum gradi-
ent magnitude in the dataset. In order to better handle situa-
tions in which the gradient changes abruptly, rather than sim-
ply precomputing and prefiltering gradients, we incorporate in
our split voxel representation a minimal approximation of the
locations of the strongest value discontinuity within the split
voxel region. Specifically, a split-voxel is defined as a volu-
metric primitive representing the interface between two inten-
sity values (or label values in the case of segmented volume
data). The following information is encoded inside a split-
voxel (a 2D schematic representation is showed in Fig. 2): two
scalar values F and B, and the equation of an oriented feature
plane Σ = (α,β,γ,δ) indicating the boundary between F and
B. The same representation is also valid for voxels containing

Figure 2: Split-voxel primitive. A split-voxel replaces a block of N3

voxels by one single voxel that is split by a feature plane into two

regions with constant values. The feature plane provides a linear ap-

proximation to the strongest value discontinuity in the block, while the

two values represent medians or averages which are not blurred over

the discontinuity.

uniform materials, that are encoded by imposing that front ma-
terial is equal to back material and by zero-ing the separation
plane. The representation has the following properties:

• the feature plane Σ provides a linear approximation to the
strongest value discontinuity in the block. It replaces the
gradient as an indication of the local surface normal, and
the availability of a plane constant provides additional in-
formation on the location of the discontinuity;

• the values F , B represent medians or averages which are
not blurred over the discontinuity. Hence, they can be used
for sharp value evaluation and exploited for implement-
ing multiresolution filtering schemes. In particular, a sharp
value for a point P(x,y,z) inside the block can be obtained
by computing a signed distance d = αx+βy+ γz+δ, and
selecting F if d > 0, and B otherwise;

• the storage overhead with respect to a typical precomputed
gradient representation is limited to two values: an addi-
tional scalar and the plane constant; moreover, the addi-
tional information permits to render at coarser levels of
detail, leading to reduced memory needs and frame ren-
dering times. Each split voxel can thus replace blocks of
N3 voxels.

The representation thus trades continuity of the reconstruc-
tion with the ability to rapidly track value changes at negli-
gible cost during rendering algorithms. Boundary sharpness
with split voxels is infinite, and will not depend on the den-
sity of sample points as it might with plain voxels. It is clear
that only a single discontinuity can appear in a single split-
voxel, but this limitation is unavoidable for fixed-size repre-
sentations. Limiting the representation to be linear makes it
fast to compute and efficient for rendering.

4. Construction

The split-voxel construction replaces gradient precomputation
and data filtering in the volume preprocessing pipeline of our
volume rendering framework. The goal is to convert a stan-
dard mono-resolution voxelized representation into a out-of-
core multiresolution structure based on split voxels, both for
labeled and continuous scalar volumes. The process is hier-
archical and constructs an octree of volume bricks, in which
each brick element is a split voxel. We first detail how a single
split voxel is constructed from a gridded representation, and
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then we explain how the procedure is hierarchically applied to
complete the multiresolution hierarchy.

4.1. Constructing a split voxel

Since a split-voxel represents a generic small cubical volume
portion, it can be derived from a standard gridded representa-
tion by considering a voxel block of N3 with resolutions start-
ing from N = 2. In order to increase continuity among adjacent
split-voxels, a boundary overlap of M voxel layers can be also
considered during construction (typically M = 1 or 2), thus
resulting in grids containing (N +2M)3 voxels (see figure 3).
The split-voxel construction procedure specifically consists of
identifying two main values (in the case of intensity based vol-
umes) or labels (in the case of segmented volumes), and the
plane which better separates the two material clusters.

Discrete data. In the case of segmented data, material labels
are intrinsically defined inside the volume grid, and no class
identification is needed. Hence, value classification consists
of identifying the one or two most frequent labels inside the
block. When more than two materials are present inside the
volume, region-growing approaches could be also considered,
but here we decided to limit the definition of split-voxel to
the two most important materials in terms of frequency. Once
classes are identified, if the volume can be represented by a
single value, the associated split-voxel is assigned the same
front and back materials and a null separation plane, other-
wise the separation plane is rapidly estimated by considering
the geometric cluster barycenters pf and pb of the two iden-
tified materials, and the two material frequencies n f and nb.
Specifically, the split surface is defined as the plane with nor-
mal n and passing through p, where

n =
pf −pb

‖pf −pb‖
(1)

p = pb +(pf −pb)
nb

n f +nb

(2)

as depicted in figure 3. If the distance between pf and pb is
too small (a fraction of the voxel size), it is considered that the
region is not easily linearly separable and we assign a uniform
split-voxel with the most frequent label. This happens, for ex-
ample, in the case of noisy regions, of small convex clusters
almost entirely wrapped by another material. In most situa-
tions, however, a good linear approximation of the separating
surface exists. While more elaborate solutions are possible,
we found that this method provides a good approximation of
the orientation and location of the strongest discontinuity (see
Fig. 4 left). Sampled data. When volume data are intensity
scalars, we choose the approach to locally convert the data to a
segmented representation before applying the same procedure
used for the discrete case. To this end, we employ the classi-
cal iterative k-means algorithm [Llo03] to cluster the intensity
values. Specifically, two initial means are defined as the mini-
mum and the maximum intensity values available in the grid.
The iterative procedure creates the two clusters by associat-
ing every intensity value in the grid to the nearest mean, and

Figure 3: Split-voxel construction scheme for segmented data. Two

examples of split-voxel construction. Split-voxel width N is 2 and

boundary overlap M is also 2. Red part is the split-voxel, while the

separation plane is depicted in yellow, and is computed according to

equations 1, 2

it updates the means by computing the centroid of the clus-
ters. Clustering stops when the the assignments to clusters no
longer change or after a fixed large number of iterations. Gen-
erally, after few iterations the algorithm converges with two
resulting intensity values representing the two materials. At
this point, if these intensity values are similar (their difference
is less than a given threshold), we assume that a uniform ma-
terial is contained inside the volume, otherwise we classify
the grid voxels with respect to the two final means and we re-
fer back to the same procedure employed for label volumes,
by computing the separation plane according to equations 1
and 2. The front and back values are then defined by each
cluster median values. We verified that the planes found by
this simple method provide in practice good local approxima-
tions of the surface (see Fig. 4 right).

Figure 4: Close-up views. The left image shows a segmented dataset

(1911× 1908× 1813 resolution), while the right one shows a post-

classified scalar dataset (512× 512× 400 resolution). Note the nice

normals reconstructed by the simple split-voxel construction tech-

nique and the good matching between neighboring planes.

Encoding. In the case of typical 8-bit datasets, each split-
voxel is stored in a 6-byte structure: the plane is represented in
4 bytes, while front and back values use a byte each one. For
the sake of simplicity, and to maintain regularity in the struc-
ture and avoid too many indirections, we store uniform voxels
using the same representation. The split-voxel dataset size has
thus in the worst case at most 50% overhead over the typical
scalar dataset stored with precomputed gradients at the same
resolution (6 bytes in place of 4 bytes per element). However,
since split-voxels are normally used to represent N3-voxel res-
olution volume grids, the actual occupancy ratio is roughly
3/(2N3). For example, in the case of split-voxels represent-
ing just 2-voxel width grids, the occupancy ratio is 3/16, i.e.
18.75% with respect to the original dataset size.
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4.2. Multiresolution hierarchy construction

Our multiresolution structure is a coarse-grained octree whose
nodes are bricks of split-voxels, which are built with a bottom-
up procedure. Each brick is a cubical block with an edge width
of some tens of split-voxels [GMG08]. Leaf bricks are com-
puted by sampling the input volume data and by encoding
each brick component into a split-voxel representation using
the technique of Sec. 4.1. In order to construct non-leaf octree
bricks, instead, we first resample into a gridded representa-
tion the split voxels of the next finer level which fall within
the area of interest for construction. In this resampling proce-
dure, each voxel receives the most dominant among the front
and the back value of the associated split voxel (estimated by
sampling the voxel). Once this procedure is terminated, the
volume subsumed by the brick (plus M layers of overlap), is
represented as a regular voxel grid. The procedure detailed in
Sec. 4.1 is then applied to convert it to the split-voxel repre-
sentation. The procedure is hierarchically repeated until we
reach the octree root. It should be noted that the effect of the
procedure is dual. First of all, each discontinuous split-voxel
ends up having an associated feature plane. Moreover, values
are low pass filtered throughout the hierarchy while not blur-
ring values over discontinuities. The procedure thus applies
edge-preserving filtering for level of detail construction.

5. Rendering

We have integrated the split-voxel primitive in a GPU acceler-
ated out-of-core multiresolution renderer based on single pass
octree ray-casting [GMG08,CNLE09, IGM10].

Hardware accelerated out-of-core multiresolution render-

ing. CPU and GPU strictly cooperate to manage octree traver-
sal and ray-casting. Specifically, a CPU thread, given the cur-
rent viewing parameters, has the responsibility of identifying
an octree cut, by refining bricks whose projected voxel size is
higher than a user-selected threshold, while updating the asso-
ciated LRU cache of bricks in the GPU by loading data from
out-of-core storage. The GPU cache is updated incrementally
frame by frame, and each brick can be reused over several
frames, exploiting temporal and spatial coherence, thus limit-
ing the required frame bandwidth. Moreover, the CPU thread
builds at each frame an octree spatial index for the current cut,
which allows the GPU to perform the traversal of the current
uploaded octree cut. The GPU performs ray-casting, using the
spatial index to enumerate the current cut leaf nodes traversed
by the ray in front-to-back order. If the visited node is empty,
it is simply skipped. If the node is non-empty, the associ-
ated brick is selected in the texture cache, and all the relevant
split-voxels are traversed,while accumulating color and opac-
ity contributions according to the optical model employed.
Octree traversal terminates when the ray leaves the volume
bounding box, or when full opacity is reached. A variety of ac-
cumulation schemes can be employed for split voxels. In this
work, we describe the classic DVR scheme using a 1D trans-
fer function to map values to colors and opacities. Since our
scheme exploits variable step sizes, the renderer works with

(a) Plane intersection inside voxel (b) Plane Intersection outside voxel

Figure 5: Ray DDA traversal. Scheme of voxel traversal using the

DDA algorithm to enumerate intersected voxels. In figure 5(a) the

ray intersects the plane of the central voxel inside [tin, tout ]. The front

material is accumulated along [tin, tplane], the back material along

[tplane, tout ], and shading is computed for both by considering the

plane normal. In figure 5(b) the ray-plane intersection lies outside

the voxel: tplane > tout and only front material is accumulated.

extinction weighted colors, and we thus have a transfer func-
tion τ(s) ∈ [0,∞[ for the extinction coefficient and a transfer
function c(s) for the color, that has to be multiplied by τ(s)
to yield an actual color intensity k̃(s) = τ(s)c(s) for a given
scalar value s. We actually maintain a single 4-components
texture for k̃(s),τ(s). The opacity of a segment of length δt is
derived from an extinction coefficient τi by αi = 1− e−τi·δt .

Non-empty brick traversal and split-voxel accumulation.

Color and opacity accumulation is performed during non-
empty brick traversal. We exploit a 3D digital differential ana-
lyzer (3DDAA) scheme [FI85] to traverse all intersected split
voxels in front-to-back order. For a given ray r = o + dt, af-
ter an initialization step performed upon brick entry, all tra-
versed voxels are enumerated, and at each step the intersec-
tion abscissae tin and tout between the ray and the current
voxel are updated, and the length δt = tout − tin of the cur-
rent ray segment is computed. If the current split-voxel is uni-
form (F = B), we simply accumulate its unshaded contribu-
tion weighted with the ambient component. In order to do
so, we fetch k̃(F) = τ(F)c(F), and convert them to opacity
weighted colors associated to the length δt. When the split-
voxel contains a feature plane, a shaded contribution is in-
stead applied for the front and back values. We thus fetch
both k̃(F) = τ(F)c(F) and k̃(B) = τ(B)c(B) and separately
use them for color accumulation. First, we order materials
with respect to the relative orientation of the plane normal
n and of the viewing ray direction d. When n · d ≤ 0, the
front material is traversed first, otherwise the back material
is traversed first. Second, we intersect the ray with the voxel
plane to derive the tplane abscissa value, and we accumulate
the first material from tin to tplane, and the second one from
tplane to tout , shading both the contributions by using the plane
normal in the lighting equation, as indicated in figure 5(a).
When tplane lies outside the voxel, only one of the two ma-
terials is accumulated: the second material, if tplane < tin, the
first one otherwise, as shown in 5(b). The rendering scheme
thus trades continuity of the reconstruction with the ability to
rapidly track value changes at negligible cost during render-
ing algorithms. Unrelated values are not combined together,

c© The Eurographics Association 2010.

25



Agus et al. / Split-Voxel

and boundary sharpness is infinite and does not depend on
resolution. In many cases, this provides an improvement with
respect to standard volume rendering techniques, which suffer
when adjacent voxels contain very different intensity values,
since interpolation tends to blur abrupt variations and to gen-
erate material values that are not physically present in original
data in that position, often producing a color bleeding effect,
as shown in figures 1 and 6. Finally, another advantage of our
rendering scheme is that split-voxels can be projected to large
screen areas, also for the coarsest level of details, since they
are able to maintain a nice silhouette by shaping the bound-
aries with the voxel planes, as indicated in figure 6.

6. Results

A prototype software system implementing the presented
techniques has been developed on a Linux system using C++
and CUDA. The out-of-core octree structure has been imple-
mented on top of Berkeley DB, exploiting the LZO compres-
sion library to reduce memory occupancy of each split-voxel
brick. We have tested our system with a variety of high res-
olution models and settings. In this paper, we discuss the re-
sults obtained with the processing and inspection of three 8-bit
datasets: a 512 × 512 × 400 micro-CT of a Mata Mata tur-
tle specimen (Source: Digital Morphology Project, the CT-
Lab and the Texas Advanced Computing Center, University of
Texas, Austin ), a 1911× 1908× 1813 synthetic labeled vol-
ume containing various surface models of statues which have
been voxelized, and a 404× 474× 512 labeled volume con-
taining a segmented leg reconstructed from MRI acquisitions
(Source: MiraLab, Geneva ).

Preprocessing. Datasets were processed on a Linux PC Intel
Core 2, 2.66 GHz. The construction of the octree from source
data was performed using octree bricks of 323 split voxels.
Each split voxel was constructed from a discretized grid of
23 voxels with a 2 layers overlap (i.e., a 63 sampling grid). For
the statue dataset, data processing took 7 hours and produced a
360MB octree database starting from an uncompressed source
size of 3.1GB, while for the turtle dataset, data processing
took 15 minutes and produced a 60MB octree database from
an uncompressed source size of 100MB, and finally for the leg
dataset data processing took 10 minutes and produced a 10MB

octree database from an uncompressed source size of 100MB

Processing times are comparable to those of other systems us-
ing high quality gradient precomputation (e.g., a Sobel 53 ker-
nel) [GMG08]. The percentage of the split-voxel in the statue
and leg dataset is 2% with respect to 98% of constant voxels.
On the other side, for the generation of the turtle dataset we
considered a separation threshold of 10 and we got a percent-
age distribution completely different: 72% split-voxels, with
respect to 28% constant voxels. This distribution difference
explains also the difference in compression ratio between label
and scalar volumes. For comparison purposes, we also built
multiresolution datasets to be used with nearest and trilinear
rendering. Datasets to be used with the nearest technique were
produced by considering a median filter to reconstruct a voxel

from its 8 children, while an average filter was employed for
datasets to be used with the linear technique.

Rendering. The performance of our rendering system proto-
type was evaluated on a Linux PC Intel Core 2, 2.66 GHz,
equipped with an Nvidia GTX 280. We considered a num-
ber of interactive inspection sequences using the three models
and measuring actual frame rates (i.e., not only raw rendering
times, but frame-to-frame times). We report here on the results
obtained when using a window size of 800× 600 pixels. Our
technique efficiently supports real-time transfer function ma-
nipulation: please refer to the accompanying video for inter-
active sequences recorded live. When using transfer functions
ranging from moderately opaque to highly transparent, we ex-
perienced that the frame rate of typical inspection sequences
varies between 10Hz for extreme close-up views with trans-
parency to over 40Hz for overall views. Interactive rates are
thus guaranteed even in the most demanding situations. With
respect to image quality, we compared our split-voxel render-
ing method to common direct volume rendering strategies,
employing nearest filtering and trilinear interpolation filter-
ing. The nearest filtering strategy is able to separate between
different materials, but it has the problem that reconstruction
quality is intrinsically poor and needs high resolutions to get
good quality images. On the opposite side, trilinear filtering
increases reconstruction quality at the cost of losing boundary
features. Furthermore, it suffers from color bleeding, since in-
terpolated values generate false colors when accessing transfer
functions even when using pre-integration. Instead, our ren-
dering method exploiting split-voxels is able to keep separa-
tion between materials, so that each material keeps its color,
also in the presence of an impulsive transfer function. Further-
more, boundaries are well preserved even at very low levels
of details. Figure 6 compares the three rendering techniques
applied to the datasets considered with respect to the ability
of avoiding color artifacts, and the ability to reconstruct cor-
rect object silhouettes at various resolutions. In fact, for the
segmented data, which is a detail of the statues label dataset,
in the case of trilinear interpolation other parts of the transfer
function modify the color of the model, while the split-voxel
method keeps the correct color for each object in the scene
(see also Fig. 1 and Fig. 8). Similarly, for the turtle intensity-

Figure 7: Semitransparent volume rendering. Two views of the turtle

dataset.

based dataset, when using trilinear interpolation the boundary
between bone and air is degraded by the interpolated value,
especially for the simplified model. Figure 7 shows two semi-
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Figure 6: Rendering quality comparison. Volume rendering of a continuous intensity based dataset of a turtle CT scan, and a close-up view of

the discrete statues volume (first columns pixel tolerance 2, second columns pixel tolerance 8). Top row: nearest method is not able to preserve

features as resolution decreases, but produces the right color. Middle row: linear method keeps a smooth silhouette, but color bleeding effect is

present and increases for decreasing resolution, and the boundary tends to blur for the coarser representations. Base row: split-voxel method

preserves objects silhouette and sharp separation among different layers even at very low resolutions, while maintaining the correct colors.

Bottom: transfer functions. The right transfer function is the same one as employed for Fig. 1.

transparent views of the turtle dataset. Figure 6 compares the
three techniques also with respect to the ability to preserve
features at low levels of detail. It appears evident that the near-
est method suffers when resolution decreases, while trilinear
interpolation keeps a smooth but thicker silhouette and in-
troduces a color-bleeding problem, and finally the split-voxel
method reconstructs nice silhouettes even for very low levels
of detail, preserving the correct color associated by the trans-
fer function. The low-resolution representations use very little
memory. At extreme magnification levels, the discontinuous
nature of the representation becomes evident, but the images
remain understandable. The nice quality of low levels of de-
tails can be an advantage in a number of applications, e.g., for
streaming and remote rendering.

7. Conclusions and Future Work

We presented a novel volumetric description, which trades
continuity with the ability to model infinitely sharp value

changes. This representation has little overhead over storing
precomputed gradients. Separation planes provide in fact min-
imal geometric information about the strongest discontinuity
in the underlying volume regions, which can be effectively
exploited for multiresolution data filtering and volume render-
ing. In particular, we are able to loosely track material inter-
faces, as they occur in many physical objects, avoiding the
mixing of unrelated values. When employed in a multiresolu-
tion representation, nice silhouettes are preserved even at very
coarse levels of detail, reducing the data and time required to
render understandable images. We have shown that the split-
voxel primitive can be applied to volume datasets contain-
ing intensity scalar values, as well as material labels. Since
the method is applied to scalar values, the renderer is able to
change the transfer function in real-time without the need to
reprocess the data. Even though our implementation can be
improved in many aspects, our approach is the first attempt, to
our knowledge, to model discontinuities inside a voxel prim-
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Figure 8: Knee segmented model. Top row: knee model at pixel tol-

erance 2, base row same model at pixel tolerance 8. As explained on

figure 6 the nearest method (left) preserves proper colors but presents

jagged outlines, the linear one (center) preserves boundaries but pro-

duces color-bleeding effect, while the split-voxels (right) produces

proper colors while maintaining nice silhouettes also for the coars-

est pixel tolerance.

itive in the context of a ray casting framework. The potential
of the split-voxel representation has not yet been adequately
explored. To this end, we plan to investigate other composit-
ing strategies, in order to find more meaningful visualiza-
tion metaphors, such as layer extraction, or non-photorealistic
illustrative methods. Moreover, when dealing with massive
models, we plan to further evaluate the compression capabili-
ties of the split-voxel primitive.
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