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Abstract

We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for mono-
cular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints
and does not suffer from shaking artifacts. The presented motion estimation system uses a single camera to esti-
mate the motion of a human. The results show that inverse kinematics can significantly speed up the estimation
process, while retaining a quality comparable to a full pose motion estimation system.

Our novelty lies primarily in use of inverse kinematics to significantly speed up the particle filtering. It should be
stressed that the observation part of the system has not been our focus, and as such is described only from a sense
of completeness.

With our approach it is possible to construct a robust and computationally efficient system for human motion
estimation.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.7]: Animation—
Computer Graphics [1.3.5]: Physically based modeling—Numerical Analysis [G.1.6]: Constrained Optimization—
Numerical Analysis [G.1.6]: Nonlinear Programming—Image Processing and Computer Vision [1.4.6]: Scene

Analysis—Probability and Statistics [G.3]: Markov processes—
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1. Introduction

Inverse kinematics has found widespread use as an intuitive
posing system for articulated figures in Computer Graph-
ics [Fed03] and for motion planning in Robotics [SKO06].
We propose a novel use of inverse kinematics as a means
to reduce the dimensionality of a particle filter based track-
ing algorithm. Preliminary results show that this approach
significantly reduces the time demands compared to existing
approaches with comparable results. The method may make
it possible to perform visual tracking of general human mo-
tion in an interactive way.

Three dimensional human motion analysis is the process
of estimating the configuration of body parts over time from
sensor input [Pop07]. Traditionally motion capture equip-
ment has been used to track this motion. In motion capture,
markers are attached to the body and then tracked in 3 di-
mensions. Usually this requires multiple tracking devices so
motion capture is most often performed in pre—calibrated
laboratory settings.

(© The Eurographics Association 2009.
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Our long term goal is to use human motion analysis as part
of a physiotherapeutic rehabilitation system. In the system,
the motion of a patient is tracked and analyzed during exer-
cise sessions performed both at the clinic and at the patient’s
home. This application rules out the traditional motion cap-
ture approach, and results in the need for a simpler system
with fewer cameras. These limitations make it necessary to
formulate a better model to compensate for the lack of infor-
mation from the image data. Our approach is to use inverse
kinematics as a way to impose this information.

Our approach utilizes the fact that the pose of a skeleton
can be deduced from the end—effector positions. While a full
human skeleton may have more than 100 degrees of free-
dom, the end—effectors space of the same articulated figure
can have e.g. only 15 degrees of freedom (positional param-
eters of head, hands and feet). This dimensionality reduction
accounts for a significant speedup in the computational de-
mands of the system, compared to analyzing the motion in
the full pose configuration space of the skeleton. The focus
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of this paper is the description of the parts of the system
which relates to this dimensionality reduction,

1.1. Related Work

Estimation of human motion is an inherently high dimen-
sional problem, since human motion is both diverse and has
many degrees of freedom. The traditional approach to reduc-
ing the dimensionality has been to utilize manifold learning,
i.e. to try and restrain the motions in a subspace of the full
space. This approach is used in [WFHO08, UFF06, LCPS08],
but seems to be most suited for a constrained set of motions
like walking or golf-swinging. We want to be able to pro-
cess a larger set of motions, and thus need some other means
of reducing the dimensionality. Inverse kinematics has been
used in motion estimation before [ST03], but not as a dimen-
sionality reduction tool. Our work differs in that it utilizes
the posing abilities of the inverse kinematics system to infer
the pose of the remaining joints. Thus, the estimation can be
performed on the end—effector joints only.

Numerous different approaches to solving the inverse
kinematics problem have been tried. Jacobian transpose
and Jacobian inverse are the traditional methods [Wel93].
Cyclic coordinate descent is a simple greedy algorithm that
is popular for its simplicity. However, it has weak con-
vergence properties especially for large articulated mecha-
nisms [Fed03]. Closed form solutions have also been de-
veloped [MLO5], but they can only be used on specific low
dimensional articulated figures. In practice, this makes the
solutions less suitable for modeling the inter-dependency
between individual limbs of the human body. [ZB94] in-
troduced the formalism of phrasing the inverse kinematics
problem using non-linear optimization.Active set methods
like [ZB94] could also be chosen but they are complicated
to implement and induces book keeping which our method
does not.

Our inverse kinematics system is based on the robust sys-
tem described in [ENEQ9b] that works well with box con-
straint joint limits.The main difference is that our solver uses
a gradient projection instead of the projected conjugate gra-
dient.

The motion estimation system used is the one described
in [HLEN*09]. While [HLEN*09] concentrated on the mo-
tion estimation, this paper focuses on the interactive inverse
kinematics solver.

1.2. Organization of the Paper

The paper is organized as follows. Sec. 2 describes the in-
verse kinematics system used in the solution. The theoreti-
cal foundation for the inverse kinematics solver is explained
along with arguments for the choice of the joint limit model.
Given this inverse kinematics solver we can construct a full
motion estimation system. In Sec. 3 we describe the theory

Figure 1: An illustration of the kinematic model. End—
effector positions are shown as green dots, while the desired
positions (goals) are shown as red dots.

of motion estimation and give an overview of how our sys-
tem is constructed. In Sec. 4 we present the results of our
tests and compare our approach to a traditional particle fil-
tering method in the full pose space. We discuss our results
and the benefits of the new approach. In Sec. 5 we conclude
and present possible avenues for improvements, optimiza-
tions and future work.

2. Interactive Inverse Kinematics

Inverse kinematics is the problem of manipulating the pose
of a skeleton, in order to achieve a desired pose disregarding
inertia and forces. As shown in [ZB94], the problem can be
posed as a non-linear optimization problem.

In the context of human modeling, a skeleton is often
modeled as a collection of rigid bodies connected by ro-
tational joints of 1-3 degrees of freedom. An example is
shown in Fig. 1. All joints are constrained in their rotation,
as exemplified by joint i in Fig. 1 with /; and u; showing the
limits of the angle ;.

To compute the position and orientation of a joint in space,
we perform a transformation of the bone relative to its par-
ent joint. The transformation consists of a rotation and a
translation corresponding to the shape and orientation of the
joint, relative to its parent. These transformations are then
nested to create chains of joints. Each chain ends in an end—
effector, which can be regarded as the handle for controlling
the chain. Thus, the full transformation of a joint from local
space to global space can be performed.

The inverse kinematics problem can be formally stated as
follows. Given the set of joint parameters 6 we can change
these and thus influence the position and orientation of the
end—effector a = F(8). Commonly this is known as forward
kinematics. Inverse kinematics is concerned with the inverse
problem: given a desired end—effector goal position, g, one
seeks the value of 6 such that,

0=F"'(g) . ()

Since a solution to this problem is not guarantied to exist, it
is more practical to minimize the squared distance between
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Figure 2: Finding the rotational derivative of a joint. The
derivative is found as the cross product of the rotational axis
(red) and the vector from joint to end—effector (green). The
resulting tangent vector is shown in blue.

the goal and the end-effector, rather than solving the equa-
tion. The least—squares criterion makes good sense in the in-
verse kinematics context since it is essentially a fitting prob-
lem. By posing the problem as a least—squares fitting prob-
lem, we are given a number of possible methods to solve the
problem [NW99]. Furthermore, the least squares optimiza-
tion approach is more stable in or near singularities than tra-
ditional approaches like e.g. Jacobian inverse [BKOS5].

The objective function for a branched articulated mech-
anism can be constructed using the end—effector function.
Given a skeleton containing K kinematic chains, each with
exactly one end—effector, we agglomerate the K end—effector
functions into one function,

a=1[al...af]" = [F1(®)7 .. Fx(®T] =F©) ,

where a; is the world coordinate position of the jth end—
effector and F ;(8) is the end—effector function correspond-
ing to the jth kinematic chain. Using the agglomerated end—
effector function, we create the objective function,

1(0)=(g—F(8))W(s—F(8)) . ©)

where g = [ng gIT(]T is the agglomerated vector of
end—effector goals, and W is some weight matrix that can be
used to model the relative importance of different goals. The
optimization problem is then,

0" = argmeinf(()) st. 1<0<u . )

Here [ is a vector containing the minimum joint limits and u
is a vector of the maximum joints limits.

Any constrained non-linear optimization method may be
used to solve the problem. In this paper we use a sim-
ple, yet effective, gradient projection method with line
search [NW99]. The motivation for this choice was the speed
and robustness of this approach, and the fact that this par-
ticular approach is tailored specifically to handle box con-
straints.
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To perform the optimization, we need to compute the gra-
dient G of f(8). This is given by

G=(g—a)l", (5)

where J denotes the Jacobian matrix of f(6). Hauberg sez:
This is wrong. The W matrix is missing, and there might
be a sign error. The entries of the Jacobian depend on the
type of goal. In this paper, we will explain positional goals
and orientation goals, both of which are included in the
developed inverse kinematics solver. For rotational joints,
these can easily be computed.

For each chain, the Jacobian matrix contains a 3 x 1 entry
for positional goals. This is computed as the cross product of
the rotational axis and the vector from the joint to the end—
effector, as shown in Fig. 2.

Orientational goals are represented by two 3 X 1 vectors,
yielding a 6 x 1 entry in the Jacobian. This can be computed
as the cross product of the rotational axis of the joint and the
unit vectors representing the orientation of the end—effector.

The two goal types can be combined to create further goal
types such as line goal or partial orientation goals. For more
details of this, see [ZB94].

2.1. Joint Limits

In both animation and motion analysis, it is necessary to use
a fast solver that can handle joint limits robustly. Using box
constraints means that each limit is a simple minimum or
maximum limit on a single variable. Even though these joint
limits are very simple, they are the most common choice in
real time simulation due to their simplicity. Fig. 3(b) shows
a human upper body posed without joint limits. The green
skeleton shows the inverse kinematics solution. Fig. 3(a)
shows the same pose with box constraints. On both figures,
the reference pose is shown in red. As can be seen, the con-
strained pose is not exactly the same as the reference, but
it is much closer than the unconstrained solution. The small
discrepancy is due to the inherent redundancy of human mo-
tion, and not the simplicity of the box constraints. It would
be possible to use more detailed joint limits, but these would
come at an increased computational cost. Setting up joint
limits can be a time consuming process. It is quite intuitive
though and methods exist to automate the process [ENE09a].

We are now ready to include the inverse kinematics solver
in the visual motion estimation system.

3. Visual Motion Estimation

Visual motion estimation is the process of infering the mo-
tion of a moving object from a sequence of images. In this
paper we wish to infer the 3 dimensional pose of a human
moving in front of a camera. In terms of Bayesian statis-
tics, this boils down to estimating the distribution p(s/|/}.;)
at each time step ¢. Here s; denotes some representation of
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(a) Inverse kinematics skeleton posed with box joint
limits.

(b) Inverse kinematics skeleton posed without joint
limits.

Figure 3: A human upper body posed using inverse kine-
matics, with and without joint limits. The inverse kinematics
skeleton is shown in green, a motion capture reference is
shown in red. Notice that regardless of the joint limit model,
there is some redundancy in the legal poses.

the human joint configuration at time #, and I}, = {I},...,I;}
denotes all images observed so far. The actual choice of rep-
resentation will be discussed in Sec. 3.3.

Assuming that the current pose s; only depends on the
previous pose (i.e. the s’s form a first order Markov chain) it
can be proved that the distribution of the current pose can be
estimated recursively as [CGMO07],

P(St|11:t)OCP(It\sr)/P(Stq|11:z71)P(Sr|Sr—1)dSz71 ()

This update equation consists of three simple terms: p(I|s;)
measures how likely a given pose is, when compared to the
current image, p(s;_1|l1;s—1) is the result from the previous
iteration, and p(s/|s;—1) is a prediction of the current pose
based solely on the previous pose. The integral can thus be

interpreted as a prediction of the current pose based on a
motion model and all previously observed images.

From a practical point of view, the integral in Eq. 6 is
hard to evaluate, and approximations are required. Here we
employ a standard Markov Chain Monte Carlo (MCMC)
technique known as the particle filter [CGMO7]. This algo-
rithm reduces the pose estimation to performing the follow-
ing steps iteratively:

1. Draw a set of random samples s,("), n=1,...,N, from the

predictive distribution p(s; |st<"_)l ).
2. Compare each sample to the current image by computing
a normalised weight w,(") x p(k |s,(")) for each sample.
3. Discard samples with low weights by sampling with re-
placements among the samples such that a sample is kept
with probability w'".
We do not provide the full details of the approach here, and
the interested reader is referred to [HLEN™*09] and [CGMO07]
for details.

An immediate question is, how many samples should be
used in the above scheme? Unfortunately, it turns out that
unless strong predictive models are available, the number of
needed samples is exponential in the dimensionality of the
pose representation s;. Thus, it is of great practical impor-
tance to keep the representation as low dimensional as pos-
sible.

To perform the motion estimation we thus only need to
have a system p(s;|s;—1) for making predictions about fu-
ture poses, and a system p(I;|s;) for comparing a pose to the
current image.

3.1. Predicting Future Poses

In general it is hard to predict future poses unless the type
of motion (e.g. walking) is known in advance. We therefore
settle for a simple linear extrapolation scheme for making
predictions. Specifically, we let

R VR, %)

where A,_| = st('i)l - sf'i)z and € is normal distributed noise.
This is a standard predictive scheme in motion estimation
which assumes that the pose sequence s; forms a second or-
der Markov chain.

3.2. Comparing Poses to Images

To be able to compare a pose to an image, we need to de-
fine p(k|s;). The idea behind this system is to project the
pose onto the current image, and compare each limb inde-
pendently to the image. We use a simple Markov Random
Field (MRF) model to describe the appearance of a limb,
in which the limb appearance statistics is described by his-
tograms of a set of descriptive features capturing texture and
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color information. Given a limb L, the corresponding likeli-
hood p(I;|L), takes the form of a Gibbs distribution with an
energy functional of the form

—logp(h|L) = ordf (H™ ,H" |L) + oicdt(H" ,HE|L)

+(delzg(HBm,HB|L) -+ constant ,
®)

where d7(H™ HT|L) is the distance between a texture
model H'" and the observed texture H” . d%(-) and d3(-) are
the similar counterparts of the color and background mod-
els. The o parameters control the relative importance of the
individual terms.

The texture and color models are based on the same prin-
ciple, which boils down to computing a normalized his-
togram of a descriptive feature within the limb and com-
paring that with a normalized model histogram. When com-
paring the histograms we are using the earth mover’s dis-
tance [RTG98], which makes the energy functional invariant
to small perturbations and shifts of the histograms.

The background model is based on a simple threshold-
ing of the absolute difference between a background image
and the current image. This binary image is then compared
to a simple binary rendering of the pose. We then define
d3(HP" HE|L) as the number of pixels where the two bi-
nary images do not agree.

Using Eq. 8 we can compute the log-likelihood of observ-
ing a given limb L in the current image. To compute the log-
likelihood of the entire pose we assume independence of the
limbs and simply sum up the contributions of all limbs, i.e.

—log p(l|si) = — Y log p(|Ly) - ©
k

For more details of this scheme, see [HLEN*(09].

3.3. Representing a Pose

One final question that needs to be answered before the mo-
tion estimation system is complete, is how the pose sy should
be represented. The straight-forward approach is to repre-
sent the pose as the vector of joint angles in the kinematic
skeleton, i.e. s; = 6;. We will denote the resulting system a
full-pose tracker. Such an approach is for instance taken in
[SBFOO].

The problem with the full-pose tracker is the dimensional-
ity of the representation. As mentioned in Sec. 3, the number
of samples needed in the particle filter is exponential in the
dimensionality of the representation. Even for simple kine-
matic skeletons, the number of joint angles easily exceeds
30, which renders the particle filter computationally very ex-
pensive. This in turn makes real-time motion estimation in-
tractable.

As an alternative we propose to use a set of end-effectors
to represent the pose. Specifically, we use the 3 dimensional

(© The Eurographics Association 2009.

coordinates of the head and the hands to represent an upper
body pose. That is, we define

8t = [Xhando s Xhand, s Xhead] > (10)

where Xj,4,4, is the 3 dimensional coordinate of one of the
hands and so forth.

When comparing such a pose to the current image we
need the position of the individual limbs, which is not read-
ily available in this representation. For this, we use inverse
kinematics to compute the joint angles using the head and
hands as end-effectors. This is possible due to the robust-
ness of the inverse kinematics system. We will denote this
system an end-effector tracker. It should be noted that the in-
verse kinematics problem often has several solutions, which
unless handled, may lead to some loss of accuracy.

4. Results and Discussion

To verify the quality and to measure the time improvement
we performed some simple tests. The test consisted of esti-
mating the motion of a person sitting on a chair moving his
arms about. The resulting skeleton had 3 end—effectors , the
hands and the head. The skeleton was fixed at the hip and the
legs were not modeled. The method can handle a full skele-
ton but for this preliminary tests we chose a simple skeleton.
The original video clip used was app. 45 seconds long, at 15
fps.

The purpose of the tests was to compare the time expen-
diture and quality of our method to a traditional method.

We performed tests and timing of the system on a Lenovo
T400 Thinkpad®with an Intel ®core ™2 duo 2.40 Ghz.

Fig. 4, 5 and 6 show selected frames from an im-
age sequence with the pose estimation results superim-
posed. The images in each of the figures correspond to
the 32" 94 126" and the 196™ frame of the se-
quence. A video version of the test results are available at:
http://humim.org/vriphys2009/

The first test was a traditional full pose motion estimation
without inverse kinematics using 100 particles. Fig. 4 shows
the result. Here the system quickly looses track of one arm
and produces a large amount of shaking in the motion esti-
mation. The computations took approximately five minutes
on the test hardware. We then increased the number of par-
ticles to 5000, which resulted in a successful motion esti-
mation with only little shaking. Unfortunately, this required
more than 10 hours of computation time. The results of this
test can be seen in Fig. 5.

The final experiment was run using the inverse kinemat-
ics system for pose calculation, making it possible to track in
only 9 dimensions. Only 25 particles were used and the run-
ning time was approximately 5 minutes. This is a speedup
factor of approximately 120 compared to the 5000 particle
run and a comparable quality, while the 100 particle run is
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comparable in time spent, but in this case, the quality of the
inverse kinematics tracker is much better.

The results show that motion estimation in end—effector
space is possible and that large speedups can be achieved
using this approach. Our long term goal is to create a mo-
tion estimation system for use in a physiotherapeutic reha-
bilitation program and here it is essential to have real-time
performance, in order to provide feedback to both patients
and therapists. Estimation in end—effector space makes this
requirement more feasible compared to estimation in full—
pose space.

Using only a single camera gives no depth information
which means that the system has difficulty in placing the
goals correctly in this direction. This problem might be
solved by using a camera type which can infer some depth
information such as a stereo camera or a time of flight cam-
era. Weighting the depth parameter of the goals with a small
weight might also help since this would give the inverse
kinematics solver more freedom in the placement with re-
gards to the depth. It could however, also result in poses
which would fit badly with the visual data so it could not
stand alone.

5. Conclusion and Future Work

In this paper we presented an application for interactive in-
verse kinematics as dimensionality reduction for sequential
Bayesian motion estimation. We have described how inverse
kinematics can be used to drastically cut down the compu-
tational demands of a human motion estimation system. The
motion estimation method used, is particle filtering which
is a highly parallel process. Thus, it is viable to bring the
motion estimation into the real time domain by combin-
ing the presented method with a parallelized particle filter.
The tracker used in this paper does not utilize parallelization
since the focus has been on measuring the speed improve-
ment obtained from the inverse kinematics system. For this
reason we have also chosen to concentrate on the inverse
kinematics based dimensionality reduction and its impact on
the performance. Thus, focus has not been on the observa-
tion part of the motion estimation.

The inverse kinematics approach used is the simplest pos-
sible with equally weighted positional goals for the hands
and head. This can be improved by weighting the param-
eters such that the depth of limbs are weighted differently
from the rest to reflect the difficulty in estimating depth due
to using only one camera. Inclusion of a prioritized inverse
kinematics scheme could improve the positioning of inter-
mediate goals by utilizing the redundancy of the solution.
A more detailed joint limit model might also prove to be
an interesting addition. Also, a more detailed experimental
validation, e.g. by comparing the tracker with motion cap-
ture data acquired simultaneously with the image data, is
planned.

Figure 4: Traditional motion estimation in full pose space
using 100 particles. Notice that the superimposed figure
looses track of the person in the image.

(© The Eurographics Association 2009.
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Figure 5: Traditional motion estimation in full pose space Figure 6: Motion estimation using inverse kinematics with
using 5000 particles. The results of this motion analysis are 25 particles. As it can be seen the results are very similar to
satisfactory but the computation took more than 10 hours. Fig. 5. However the time spent was only 5 minutes.

(© The Eurographics Association 2009.
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