
 
 

Dealing with Shape Complexity 
for Internet Access and Graphic Applications 

 
Jarek Rossignac 

GVU Center and College of Computing 
Georgia Institute of Technology 

www.gvu.gatech.edu/~jarek 
 

Abstract 
 
Standard representations of 3D models are so verbose that only very simple models can be accessed over common 
communication links for immediate viewing. This situation is not likely to improve, since the need for more 
accurate 3D models and their deployment throughout a broader spectrum of industrial, scientific, and consumer 
application areas will outpace the improvements in transmission bandwidth to the office, home, or mobile worker or 
private user. Recently developed multi-resolution modeling technologies play an important role in addressing this 
bandwidth bottleneck, especially when combined with other approaches, such as intelligent culling, pre-fetching, 
and image-based rendering. This tutorial will discuss the details of compression, simplification, and progressive 
transmission techniques and of their interrelations. 
 



Introduction 
Objectives 
In this tutorial I discuss the storage complexity of digital representations of 3D shapes. I focus on the details of 
compression, simplification, and progressive transmission techniques. My objective is to provide the reader with an 
in-depth expertise of the details of a selected subset of these techniques. You may ask �Why?�. You are right, a 
technique popular today may be replaced tomorrow. So why teach a particular one? I believe that one should 
understand one approach in depth to be able to grasp the differences between approaches and appreciate the hidden 
subtleties. If you hear about or read about a new approach, you should be able identify its advantages and 
drawbacks, based on the experience you had with the one technique that you know in details. What kind of 
drawbacks am I talking about? Complexity of the algorithms in excess of what you would consider implementing, 
poor behavior for a type of models that are important for your application domain, limitations on the type of models 
that it is capable of handling. 

Motivation for this research 
3D models play an important role in manufacturing, architecture, petroleum, entertainment, training, engineering 
analysis and simulation, medicine, science, and so on. I believe that they will soon impact electronic commerce and 
replace the flat windows on our screens. Why is that? 
Two reasons. First, 3D rendering is pervasive and practically free (all PCs come with a powerful 3D graphics 
board). Second, 3D is how we see our universe (in perspective and with parallax and motion queues). So why should 
we put up with other, less natural representations?  
Some would say: �Because 3D does not provide any intrinsic benefits�. This is a common mistake. 3D perspective 
provides you with the ability to see details within a broader context of their surrounding. Furthermore, this 
presentation is natural and thus does not come at the cost of an excess of cognitive load. I mean that we don�t have 
to think about what the images mean if they look like the type of things that we have been used to see since 
childhood. We can tell what things are by the way they look. We can tell how they relate to each other by the way 
they touch or move. 
Of course, one could suggest that our children are more familiar with 2D animated characters that appear in their 
video games than with the 3D world, and one could use this as an argument to point out that we can adapt to a 2D 
presentation and to the use of icons, like a trashcan on a desktop. Sure, we could. But why should we? Who wants to 
use a black&white TV or computer screen today? Yet, some of us can still hear the voices of those who believed 
that color monitors were unnecessary and will never take off. 
So, convinced? You probably were before reading this, since you decided to read it. So let�s move along. 
For many of these applications, 3D data sets are increasingly accessed through the Internet. Why? Because the data 
you want is most often somewhere else. Maybe it is available form online 3D catalogs or being modified by your 
designer colleagues. 
The number and complexity of these 3D models is growing rapidly. Why? Several reasons: improved design and 
model acquisition tools, wide spread acceptance of this technology, and incessant need for higher accuracy. If we 
want to use 3D models, we need them to be more than course replicas of the real thing. 
In many of these applications, human productivity or satisfaction would be significantly enhanced by the possibility 
of an immediate access to remotely located 3D data sets for visual inspection or manipulation.  
Do we always have to transmit the 3D shape? No, sometimes we could get away with imagery and still think that we 
are seeing a 3D environment. For example, like the backdrops in the movies, we could use images (textures) for the 
background and thus avoid sending geometry. We could also send one image and then transmit the minimum 
information required for modifying this image to produce the next one. For example when we pan, a portion of the 
image is simply shifted. Nevertheless, even when these and other image-based rendering techniques are used to 
reduce the fraction of the 3D representation that must be transferred at any given time, geometry transfer remains the 
bottle-neck.  
Consequently, it is urgent to develop optimal bit-efficient formats and associated compression and fast 
decompression algorithms for 3D models. 

Target audience 
This tutorial is geared towards researchers and developers interested in inventing and implementing simple and 
robust transmission acceleration techniques for 3D models. It is not designed to provide leading researchers with a 



comparative study of the subtleties of various approaches. They don�t need a tutorial. Instead I focus on presenting 
practical solutions and offer my impressions of the field, stressing the opportunities for exploring other approaches. 

Prerequisites 
I would like this tutorial to be accessible to most readers who are familiar with only he most primitive concepts of  
3D geometry, graphics, and algorithms. I would like to say that I expect you to know only what a point is, what a 
pixel is, and what an array is. Unfortunately, I also expect you to know a bit more about programming. I will assume 
that you know how to manage doubly inked lists and other graph structures. I will also assume that you are 
comfortable with simple geometric constructions and with the basic concepts used in ray-casting and projective 
rendering techniques. 

Methodology 
After this introduction, I will start with a detailed discussion of a simple solution to a simple problem. How to 
compress and decompress a simple triangle mesh. Then I will explain how to generalize these compression 
techniques to a broader, and more useful, domain�of coffee cups�and airplanes. In each chapter, instead of 
discussing and comparing various approaches, I will focus on one or two.  

Outline of the tutorial 
The tutorial is structured as follows. 

Compression  
I will first spend some time discussing why we want to focus on triangle meshes and on tetrahedra meshes. I will 
define what I call simple triangle meshes (STMs) and present a simple data structure and primitive operations for 
them. I will also discuss some of their properties that we will exploit later to estimate compression ratios or prove 
compression bounds. I will clarify the distinction between connectivity and geometry and analyze their relative costs 
in uncompressed representations. 
I will introduce the Edgebreaker compression technique for STMs. I am rather proud of it, because the complete 
compression algorithm takes only a page of a low-level Fortran-like code and yet it is one of the best compression 
technique available to date. It bridges the gap between practical compression efforts for graphics and theoretical 
results on planar graphs encoding. In fact, I dare say that it has improved on prior art in both areas. Edgebreaker 
produces what I call the CLERS sequence of symbols, one per triangle, which can always be encoded with an 
average of less then 2 bits.  
I will also teach an elegant (i.e., simple and fast) decompression technique that Andrzej Szymczak and I have 
discovered for the CLERS encoding produced by Edgebreaker.  
I will also describe the Matchmaker approach that David Cardoze and I have developed for representing non-
manifold solid models using data structures for manifold triangle meshes. I will then discuss extensions of these 
compression/decompression techniques to more general triangle meshes, which may have handles and holes. I will 
discuss a simple trick from Touma and Gotsman for dealing with the holes in triangle meshes. I will build upon the 
discussions that Gabriel Taubin and I have had on how to best explain the encoding of handles.  
Edgebreaker, and many of the competing techniques focus on the compact encoding of the connectivity information. 
The connectivity specifies which sample points belong to which triangle, and thus also which triangles are 
neighbors. The encoding of the location and of other properties attached to the sample points, must also be 
addressed. The choice of a technique for compressing locations is often orthogonal to the choice of the method for 
compressing the connectivity. Most techniques are based on geometric estimators. I will describe a very simple and 
effective geometry compression technique based on a predictive scheme first proposed by Touma and Gotsman. 
I will review several improvements of the Edgebreaker approach developed in collaboration with a PhD student 
Davis King or by other researchers in the US, Germany, and Israel. 

Progressive transmission 
I present two simplification techniques as a form of  lossy compression. Simplification takes a triangle mesh and 
produces another one, which has fewer triangles, but still resembles the original. The simplification that I will 
describe first is often referred to as �vertex clustering�. I developed it with my friend Paul Borrel at IBM Research 
many years ago. I will include it here because it is rather trivial to implement in a very fast and robust manner. It 
also can automatically simplify objects that have many handles or connected components into objects that have 
much fewer of those. This is an important advantage over other simplification approaches. Unfortunately, vertex 
clustering does not produce the best results. Other methods, although slower and often restricted to simple meshes, 
have been proposed to produce better looking simplified models for a given triangle budget. Nevertheless, vertex 



clustering is still in use in its original form and has recently been combined with other techniques by several 
researchers. I will also describe one of these �better looking� techniques. It was developed with Remi Ronfard and is 
similar to a mesh simplification technique developed simultaneously by Hugues Hoppe. Both are inspired by 
Hugues prior work on edge-collapse operations. 
At this point, we will have the tools to compute a more or less simplified model and to compress it for faster 
transmission. What if we transmit a very crude model first and then realize that we need a more accurate model? 
Can we use any of the previously received information and thus reduce the cost of transmitting the better model? 
That is called progressive transmission. I will start with a description of Hugues Hoppe�s Progressive Mesh. This 
very simple solution is based on the encoding of a sequence of inverse edge-collapses, which in some sense undo the 
simplification steps in reverse order. It is simple and effective, but does not produce a very compact format. I will 
describe the improvements that Renato Pajariola and I have developed. We traded granularity of the progressive 
model for a better compression. This approach is called Compressed Progressive Meshes. 

Compression 
Simple triangle meshes (STMs) 

Interpolating samples 
The shape of a 3D object is defined by its boundary. What is the boundary? Let me for the sake of simplicity say 
only that it is the surface that separates the interior of the object from its exterior.  
That surface may be sampled by generating a dense set of points on it. Yet, the sample points do not by themselves 
define the shape. For example, the set of points in Fig. 1 (left), do not specify a surface. A triangular interpolation of 
them (right) does. We need to understand how to interpolate between the samples. Why is that? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1: The interpolation of a set of sample points by a triangle mesh 
 
Here is a simple answer to this question. Without the interpolation, we would not be able to compute the intersection 
of a ray with the object. Why? Because the ray would most probably miss all the sample points. So? Well, if we 
can�t compute ray/surface intersections, how are we going to compute pictures of the object? After all, the ray-
tracing technique used to produce realistic images of 3D scenes is based on computing ray-surface intersections.  
What if we project the sample points on the screen instead? We would avoid the ray/surface intersection problem 
altogether. True, but two problems will occur.  
First, we will not know how to compute the color and intensity of the reflected light, because we do not have any 
information about the orientation of the surface at a sample point. We could fix this problem by associating the 
surface normal to each sample point. (I call these sample points �surfels�, short for surface-elements and 
counterpart of the term �pixel�.) 
Second, several surfels may project onto one pixel and none onto another pixel, that should have been covered by 
the projection of the object on the screen. We could fix this problem by making sure that there are enough surfels so 
that each pixel that should be covered is covered by at least one surfel. If we do not have an adaptive surfel model, 
this solution would prevent us from zooming too much. An alternative solution would be to replace surfels with 
balls (or adaptively oriented disks) so that there is no gap between the balls of neighboring surfels on the surface. 
Balls of the same radius would work if the surfels were uniformly distributed on the surface.  The color of each ball 
would be computed from the surface normal at the associated surfel. Now some pixels may be covered by the 
projections of the balls of several surfels. Which color should be used? A weighted average of colors may provide a 



good compromise if the weights are proportional to the distance between the surfels projection and the center of the 
pixel and if they take into account the relative depth of these balls. 
So what is the conclusion? Do we need interpolation at all? If we took all sorts of precautions, such as having the 
surfels uniformly distributed and ensuring that the distance between any two surfels is smaller than the constrictions 
or other details of the surface, then we may be able to do graphics. But the price of these precautions is not worth the 
benefits. What do I mean by �price�? The required number of surfels will increase storage and transmission delays. 
Given that the whole purpose of this tutorial is to discuss how to reduce them, we will forgo the opportunity of an 
interpolation-free life and focus on the transmission of models that combine sample points (with or without normals) 
with an interpolation scheme. So why did I bother you with this discussion? Because I want you to realize that we 
have a choice of representation and that although we have made today the decision to use interpolating models, that 
decision may need to be revisited if the circumstances change. 

Smoothness and connectivity 
OK. So we need to know how to interpolate between the samples. There are two aspects of the interpolation: 
smoothness and connectivity. To better understand them, consider the simplest interpolation: a triangle. It is a 
planar facet defined by three sample points, called the corners of the triangle. A triangular interpolation may differ 
from the original shape, not only because it may not exactly match the shape, but because is may have drastically 
different smoothness or connectivity.  
True, we could have opted for interpolations that have non-triangular connectivity. For example, samples are often 
arranged into quadrilaterals. It may be valuable to retain that original organization for several reasons, one being that 
they may be easier to compress than triangles. This was the topic of a study by Davis King in me and by several 
other researchers. Nevertheless, they can be easily triangulated and I will focus the rest of this tutorial on triangle 
connectivity. (You can only accomplish so much you your life.) 
Clearly, if the original shape is a smooth surface, say a coffee cup, a triangle-interpolation of a set of sample points 
will not look like it unless a lot of samples are used or unless the interpolation, or at least its rendering is 
smoothened. So, the solution is to use higher order interpolating or approximating surfaces. You may have run into 
such things as B-splines, NURBS, or subdivision surfaces. I view them as filters that start with an interpolating 
triangle mesh and then apply a smoothing process that recursively chop corners or splits and bends faces and edges. 
The result is a smooth curved surface that either interpolates the samples or runs close to them. So, you should 
remember that even when one uses smooth surfaces, they are in general defined in terms of a triangular (or 
quadrilateral) interpolation of the sample points. Therefore it is important to compress such triangular interpolations, 
even when a smooth interpolation is ultimately produced. 

 
 
 
Fig 2: The interpolation of a set of sample points may have the wrong smoothness or connectivity. 
 
The connectivity of the triangle interpolation (and thus of the corresponding smooth surface) may not always agree 
with the connectivity of the original surface. By connectivity, I mean the graph that maps each sample point into its 
neighbors. Figure 2 attempts to explain this in 2D. Instead of a surface, I show (top-left) a smooth curve upon which 
a set of sample points (large dots) were selected. These are shown without the curve (top-right) to stress the fact that 
the points alone do not define the interpolation. Here, in 2D, the interpolation corresponds to the way edges 
interpolate between consecutive sample points along the curve. These edges in 2D correspond to triangles in 3D. A 
correct interpolation (bottom-left) has the same connectivity as the original curve. If two samples were neighbors on 
the original curve, they are on the correctly interpolated approximation. Yet, although topologically correct, the 



resulting shape is piecewise linear and is thus a poor approximation of the smooth shape. A much worse 
interpolation (bottom-right) corresponds to a different connectivity. 
This example may also serve as an answer to a question that we have not yet asked, but that is at the heart of  some 
compression decisions. Although we may want to know the connectivity, so that we can produce the desired linear 
or smooth interpolation, it is not clear that we need to encode it. Why not simply encode the sample points and 
transmit them. Let the decompression algorithm recover the connectivity automatically. Well, as shown in Figure 2 
(bottom-right), this may not be easy, especially when the size of features is comparable to the distance between 
neighboring sample points. Basically, to avoid having to encode the connectivity and still be sure that the recovered 
connectivity is correct, we would have to ensure that the neighbors of each sample points are closer to it than other 
samples. And even that clause will not suffice. But with more precautions it can be done, simply because techniques 
for guessing the connectivity of a set of sample points exist and because we can agree on which technique will be 
used. Therefore, we can try to ensure that the sample points are chosen in such a way that the application of the 
chosen connectivity-recovering techniques will produce the correct connectivity. If it does not, we can insert 
additional sample points. This approach has been used for finite element mesh generation. 
Because we do not always have control over the sampling process, because the connectivity-recovery algorithms are 
computationally expensive and rather challenging to debug, and especially because we do not want to transmit more 
sample points than necessary, we will assume that the connectivity has to be encoded and transmitted. 

Simple Triangle Mesh (STM) 
A simple triangle mesh is homeomorphic to a sphere. What does it mean to be homeomorphic to a sphere? Think 
about a sphere whose surface is covered by triangles that do not overlap. That�s it? Well, not quite. The triangles do 
overlap, but only at their borders. Each triangle has 3 borders. I am carefully distinguishing borders from edges. 
Although not endorsed in the literature, this distinction will help us make things clear. Think about each triangle as a 
tile on the floor. It has three borders, which are straight line segments. Now, arrange the tiles so that each border of 
each triangle is either exactly aligned with the border of another triangle or is not touching any other triangle, except 
maybe at its two end-points. Such a flat arrangement of four triangles is shown on Fig. 3 (bottom-left). Each triangle 
has three corners. You may have noticed that I have refrained from calling them vertices. Why. Because I want to 
reserve the terms edges and vertices to the entities represented in the entire mesh, and distinguish them from the 
corresponding topological elements of a triangle. So, the small arrangement of Fig. 3 (bottom-left) has 4 triangles, 6 
vertices, and 9 edges.  

 
 
Fig 3: A simple triangle mesh is a planar triangle graph. 
 
Three of these edges correspond to line segments where two borders overlap. I call them the interior edges  of the 
mesh. Each interior edge corresponds to exactly two borders. The other six edges correspond to a single border each. 
I call them the exterior edges of the mesh. (Others have used "open edges" or even "borders".) 
Three of the vertices correspond to a single corner. The others mark locations where more corners meet. 
The connectivity information associates three vertices with each triangle. These specify the location of the triangle 
corners, and these define the shape, position, and orientation of the triangle. 
Note that, although the tiles are initially arranged on the floor, we could move the vertices out of the plane. 
For example, we could fold the small arrangement of Fig. 3 at its interior edges by moving the three single-corner 
vertices out of the plane. If we make them coincident and replace them with a single vertex where three corners 
meet, we have changed the connectivity and have produced a tetrahedron with 4 triangular faces, 6 internal edges, 
and four vertices. Such a tetrahedron is the simplest example of a Simple Triangle Mesh (STM). The folding 



operation, which has identified several vertices and �zipped� together pairs of external edges is the essence of the 
Wrap&Zip approach that we will use for decompressing triangle meshes. 
So, you may think of an STM as a planar triangular tiling of a floor that has been folded and zipped so that it does 
not have any external edges. That unfortunately is not a sufficiently restrictive definition. Why? Well, the devious 
mind could construct flat tillings, then fold them and zip them to obtain figures with separate components, handles 
(through holes), and even Klein bottles that are not orientable. So, to avoid such complications, we need top be more 
specific.  
Let�s arrange our triangles on the floor so that there are only and exactly 3 external edges (Fig. 3, top-right). The 
tiling has to be connected. The triangles cannot overlap.  
Remember that, except for external edges, each border is matching exactly one other border. If this was not the case, 
we would have a T-junctions, as shown in Fig. 4 (left). Why do we wish to prevent such T-junctions? Because it is 
harder to represent them in a uniform and compact data structure and because the compression efforts have assumed 
simple data structures. If you did have T-junctions, you could always split some triangles and get rid of them, as 
illustrated in Fig. 4 (right) or think of triangles with T-junctions at their borders as polygons with flat corners. 
 

 
 
Fig 4: Splitting a triangle to remove a T-junction 
 
Now take a big triangle whose three borders match exactly the exterior edges of this arrangement of tiles on the 
floor. Slide the triangle under the tiles without disturbing anything. (You have to do this with sudden push.) You 
made a two layer tiling, with a big triangle as the first layer. In this arrangement there are no more external edges.  
Now gently, blow some air between the two layers and let the whole thing inflate a little by moving up vertices that 
are not corners of the bottom triangle. You have an example of an STM.  
You may further deform it by moving vertices. No matter what you do to the vertices, if you don�t tell anybody, they 
will still think that you have an STM. But of course, you may have inadvertently, or purposely, made the triangles 
intersect each other or made two vertices or two edges coincide, although the representation you have thinks that 
they are different vertices. We would say that you have the connectivity of a STM, but that its immersion in space 
(i.e. the actual position of the vertices) is inconsistent with that connectivity. We cheat in this way when representing 
non-manifold models using an STM structure. 
To draw STMs, we will use the convention illustrated in Fig. 3 (right). You basically pick a back facing triangle and 
stretch it, pulling the rest of the mesh, until all other triangles are front-facing. Then you draw what you see. So, 
remember that the three edges that bound such a figure are not really external edges. They each correspond to a 
border of some front-facing  triangle and to a border of the back triangle. 

Testing whether a set of triangles forms an STM 
Only few models are STMs. You want some examples of non-STMs? How about a cup? It has a handle. Some call 
that a through-hole. So a cup is not an STM. Now to be precise, a real cup is usually smooth, and therefore a 
triangulated surface will only be an approximation of it, STM or not STM. That observation is at the heart of the 
whole tutorial, because most compression techniques are lossy, and the fact that we accept in the first place to use an 
approximating triangulated model for a ball or cup justifies the fact that we can take some liberty with that model in 
order to compress it. 
So, you should ask: �How do we know whether a model has STM connectivity or not?�. The answer is not trivial. In 
addition to the fact that we do not want any T-junctions and that all edges are internal, we need to ensure that the 
surface has a single connected component, is orientable, and has no handles. We could start by making sure that 
triangles don't intersect one another. To specify  this requirement more precisely, let us consider the triangles as 
being relatively open. By that I mean that they do not include their borders and corners. Let the edges also be 
relatively open, so that they do not include their bounding vertices. Now, a proper immersion of an STM has to 
following property. All the triangles, edges, and vertices are pair-wise disjoint. If this is the case, their union forms a 
tight shell that separates the interior of a volume from its exterior. Paint the exterior faces of the triangles in green 



and the interior faces in red. If, from where you are, you see a green face, then it is front-facing. This process helps 
us to define outward pointing normals. These are important for graphics. 
In practice, however we don�t want to even consider geometry. Why? First, because vertex locations may have 
accuracy problems, in which case we may not be able to ensure that we are always making consistent decisions. 
Second, because testing for geometric intersections is expensive (quadratic cost, need for extended precision to 
avoid round-off problems). Third, because we may want to use an STM connectivity and the associated data 
structures to represent shapes that violate our non-intersection rule.  
So, let us define STM connectivity in terms of adjacency relations, regardless of vertex locations. 
Let us say that two corners are coincident if they point to the same vertex. Let us also say that two borders, B1 and 
B2 are coincident if each corner of B1 is coincident with a corner of B2.  
We say that two triangles are adjacent when they have coincident borders. We will assume that two adjacent 
triangles have only one coincident border. That is, only one border of triangle A coincide with a border of triangle B. 
Two adjacent triangles are border-connected. This border-connectivity relation is transitive. So if A is border-
connected with B and B is border-connected with C then A is with C. To test whether a mesh is border-connected, 
you start with a triangle, paint it, and then recursively visit all adjacent triangles that have not yet been painted. If at 
the end you have reached  them all, the mesh is border-connected. More formally, a set of triangles is border-
connected if any pair of its triangles is border-connected by a chain of zero or more triangles.  
Let us assume that each triangle is represented by its three corners and that each corner is simply an identifier of the 
corresponding vertex. So, several corners point to the same vertex. Assume that these 3 corners are arranged in a 
circular list for a given triangle. The list has no beginning: it is circular. So {a,b,c}, {b,c,a}, and {c,a,b} are the same 
list. A different list could be stored as {b,a,c}, {c,b,a}, and {a,c,b}. Consider that the Ids (a, b, and c) are integer 
indices or pointers. We could store the list of corners in a table of 3 entries so that the smallest of the three is the first 
one. The other two would be either in order or out of order. That choice may be used to define an orientation of the 
triangle. This orientation may be used to also orient the borders. So, the borders of triangle {a,b,c} would be the 
oriented segments ab, bc, and ca. We say that two adjacent triangles have compatible orientations if their common 
border have opposite orientations. For example {a,b,c} and {b,d,a} do not have compatible orientations. {a,b,c} and 
{b,a,d} do. 
Here�s simple process for testing whether the mesh is orientable. Pick an orientation for the first triangle, then visit 
the other triangles, as we did for testing connectivity. In addition to painting the new triangles, you switch their 
orientation if they are not compatible with the last triangle. You also test whether each the current triangle is 
compatible with its previously visited neighbors (adjacent triangles). 
We say that a triangle is incident upon a vertex if one of its corners references the vertex. 
A vertex is manifold if its incident triangles are border-connected. To visualize what it means, consider that a 
manifold vertex is surrounded by a chain of triangles, each one being border-connected with the next. A non-
manifold vertex, on the other hand, has several of such chains incident upon it. Like for example when the apices of 
two cones meet. 
Consider a set of triangles with the following properties: 
1. Each border is coincident with exactly one border of another triangle. 
2. Any two adjacent triangles have only one coincident border. 
3. The mesh is border connected. 
4. The mesh is orientable 
5. All vertices are manifold 
Such a set is an orientable manifold surface and represents the boundary of a solid (3D volume). However, the 
volume may have handles (i.e., through holes). How can we detect these? The topological answer is to check for the 
existence of  closed loop cuts that would not split the surface. This is non-trivial. Later, when we discuss the 
extension of the Edgebreaker algorithm to meshes with handles, we will learn a practical method for dealing with 
handles (and of course for detecting if there are any). For the time being, we will invoke a simpler trick to test for 
the existence of handles. It is based on the following observation. 
The number of handles in an orientable manifold mesh is equal to T/4-V/2+1 where t is the number of triangles and 
V is the number of vertices. This formula is derived by simple substitution in the Euler equation, V-E+T=2(S-H), 
where E is the number of edges and S the number of connected components. We simply replace E with 3T/2, 
because there are 3T borders and each pair of them is an edge. 
So, a simple strategy for checking that there are no handles in a connected, orientable, manifold mesh is to count the 
number of triangles and vertices and to verify that T/4-V/2+1 is zero. For example, for a tetrahedron, we have T=4 
and V=4, thus the formula yields 1-2+1, which is zero. 
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Data-structure for representing STMs 
In the above discussions, we were implicitly assuming that the mesh is represented in some data structure that 
identifies the vertices through pointers or some ID to a table of vertex coordinates (and possibly other vertex 
properties). For simplicity, we will assume that each vertex is identified by an integer number. We were also 
implicitly assuming that the connectivity was identified by a table of triplets of corners, one per triangle. Indeed 
these two tables suffice to define the connectivity.  
The variation of the Euler formula presented above yields for STMs: T=2V-4. Therefore, for complex STMs, we 
have roughly twice more triangles than vertices. If we were to represent each vertex coordinate with B bits, the 
vertex table would take 3BV bits, ignoring normals, colors, and other vertex data. Given that for each corner we 
would need to store log(V) bits (or more precisely the ceiling of log(V)), we would need a total storage of 
3BV+6Vlog(V) bits. Which is 3V(B+2log(V)) bits. Note that as soon as 2log(V) becomes larger than B, the triangle 
table dominates the storage cost. Research on compression tries to balance the storage costs of vertex locations and 
of connectivity. 
Before we attempt to compress the connectivity, let us represent the mesh in a different format, which will not only 
make it easy to retrieve the corner information, but will support a more effective traversal of the mesh from one 
triangle to an adjacent one. Why? Because compression techniques discussed here are based on this traversal. 
We will base the traversal on operators that move from one border to another and that identify the triangle associated 
with the border and the vertex of that triangle that is not a vertex of the border. The semantics of these operators is 
best described visually (See Fig 5.) The bottom border, marked b, on the top-left triangle will be the starting entity 
that I will use to illustrate the operators. The border b is oriented, as we discussed earlier. For simplicity, think of b 
as an integer, which identifies a border in some table. We will discuss data structures in a minute.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5: Local border operators. 
 
Let b.t be the integer id of the triangle associated with b. I am using here a simplified object-oriented notation. A 
trivial way to implement it would be to have a triangle table T and to interpret b.t as T[b]. For simplicity, I will use 
b.x.y as a short for (b.x).y.  
Although we do not need to store them explicitly, it is convenient to have names for the starting and ending vertices 
of b. Let me call them b.s and b.e, respectively. The third vertex will be denoted b.v (it is shown on the right of Fig. 
4). All three are integer references to the vertex table. 
Let b.p and b.n be integers that refer to the previous and next borders around b.t. 
So far, we have only provided operators that were readily available from the simple listing of corners for each 
triangle. To support the traversal of the mesh from one triangle to an adjacent one, we define b.o, which refers to the 
other border that coincides with b. As explained below, b and b.o have opposite orientations. Of course b.o.o is b.  
During the compression, we will use the references  indicated on the right of Fig. 5. In addition to b.t and b.v, they 
include b.l and b.r. These will help us to access  the left and right neighbors of b.t. 
Note that we do not actually need to store the links represented by all these operators. For example, b.p is b.n.n. 
Also, b.r is b.n.o and b.l is b.p.o. 
I like to store only b.o and b.v. This is an aesthetic choice. How do I get b.t and b.n? 
I simply make the entries of the three borders of an given triangle consecutive in my data structure. So, b.t is b DIV 
3, where DIV is an integer division. I make sure that I store them in the order {b, b.n, b.p} that is compatible with 
the triangle orientation. Then b.n is simply 3(b.t)+((b+1) MOD 3). And b.p is b.n.n. 
If you were to implement these as tables, you would need only the O and the V tables, where b.o is O[b] and where 
b.v is V[b]. Actually, V[b] would return an integer that we could use as an index into the arrays that contain the 
vertex coordinates and other properties. 



So, how would these two tables be used? For example, if you wanted to go to the right triangle, you would replace b 
by b.r. If you were using tables as data structures, you would say b:=O[N(b)]; where N(b) could be a macro defined 
as 3(b DIV 3)+((b+1) MOD 3). 
What is the storage cost of this representation? 
For each border b, we need to store two things: a log(V) bit reference b.v to the vertex table and a log(6V) bit 
reference b.o to the border table. We need log(6V) bits because there are 3T borders, three per triangle and because 
there are roughly twice as many triangles than vertices. 
So the total storage cost of the connectivity using this data structure is 6V(log(V)+log(6V)), or 
12Vlog(V)+6Vlog(6)). For large V, this takes twice more space than the simple table of triplets of corners, which 
requires 6Vlog(V) bits. So this is not a step in the right direction. We will only use this temporary representation for 
to support a simple compression or simplification algorithm. 
The two tables, O and V, may be computed efficiently from the table of corner triplets. How is that done?  
First, we can trivially fill in the V table for the triplet of consecutive borders of each triangle. We simply enter one 
triangle at a time. For each triangle, we append three borders. For each border, we enter the id of the opposite vertex. 
Thus, if the first triangle is {a,b,c}, the first border would be bc, the second ca, and the third ab. Remember that the 
starting and ending vertices of border bc are not stored explicitly. They may be accessed using the DIV and MOD 
operators as above, or though combination of the primitive operations (b.n.v and b.n.n.v).  
To fill in the O table takes more work. We first make three versions of each triangle, by performing a circular 
permutation of its corners. So, triangle {b,a,c} would also yield {a,c,b) and {c,b,a}. With each copy, we associate 
the triangle ID. Then we rearrange each entry by swapping the first two corners if they are out of order. We mark 
these entries where the swap has occurred. Now each entry represents a border or its inverse. We can sort them 
efficiently using a hashing method. (We know all possible keys for the first corner.) Now, adjacent triangles will be 
consecutive in this sorted list, because the coincident borders were represented  in the same way (one was inverted) 
and thus ended up being consecutive.  
In conclusion, I have specified in this chapter what I mean by a simple triangle mesh, I have suggested a simple data 
structure for representing it and local operators for traversing it, and I have proposed simple and efficient algorithms 
for building the data structure and for implementing the operators. Now we are ready to compress connectivity of 
the mesh. 

Edgebreaker compression for STMs  
Edgebreaker produces a sequence of symbols taken from the set {C,L,E,R,S}. I call this sequence the clers stream. 
There is one symbol per triangle, although the two initial ones could be skipped, because they are always C. It also 
produces a sequence of vertex ids. I will call this sequence the order stream. Because Edgebreaker only appends 
entries into these streams, I will use them as logical names of output channels and use a WRITE command to append 
to them. 
The entries in the clers stream will be encoded using a variable length binary coding scheme. I will propose a simple 
one and discuss improvements later. 
The order stream defines the order in which the vertices should be transmitted. More precisely, it is a dictionary. If 
the first number in the order stream is K, it means that our vertex number K will be labeled as vertex one by the 
decoder. Thus, we can simply send the vertices in the order in which the decoder would be expecting them. For 
example send vertex K first.  
Note that as long as the sender and the decoder agree on a systematic perturbation, other orders may be chosen. We 
may for example chose to send one vertex out of ten first, and then send the rest. Why? Possibly to better distribute 
the early vertices and know more about the overall shape early on. This knowledge may help in a progressive 
scheme and may also help better predict the locations of the remaining vertices. The vertices will also be encoded as 
explained later. 
Edgebreaker performs a systematic depth-first traversal of the mesh. It enters each new triangle from one side, tries 
first to go right and then left. It only visits each triangle once. It paints (marks) all the visited vertices and triangles. 
To implement the painting metaphor, we use the v.m and t.m operators which take a binary value in the set 
{painted,virgin}. They may be implemented using separate arrays, Mv[b.v] and Mt[b.t]. Let clers and order be 
initially empty and the paint tables be set to virgin. 
Let border b denote the current triangle, Edgebreaker check whether the opposite vertex, b.v is virgin and if so, it 
appends the symbol C to clers. If b.v.m is painted, then Edgebreaker checks whether the left and right triangles have 
been painted (using b.l.t.m and b.r.t.m). The four possible combinations of these two variables correspond to the 
symbols, L, R, E, and S. The five situations are depicted on in Fig. 6. 
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Fig 6: Edgebreaker CLERS states and labels. 
 
The entire algorithm is included below. In our notation, the variables C, L, E, R, and S represent some binary 
encoding of the corresponding symbols. 
To encode a mesh, we pick an arbitrary border b, paint its two vertices (b.n.v.m:=painted; b.n.n.v.m:=painted;), and 
append them to the order stream. 
Then we call the procedure visit(b) presented below. It uses a recursive call to follow the right corridor when an S 
triangle is encountered.  
  
RECURSIVE PROCEDURE visit (e) 
 REPEAT 

 BEGIN 
 b.t.m:=painted   # mark the triangle as visited 
 IF b.v.m==virgin  # test whether tip vertex was visited 
    THEN BEGIN   # case C 
  WRITE(vertices, b.v); # append index V[e] to vertex order 
  WRITE(clers, C)  # append encoding of C to clers string 
  b.v.m:=painted;  # mark tip vertex as visited 
  b:=b.r; 
  END 
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    ELSE IF b.r.t.m==painted # test whether right triangle was visited 
     THEN IF b.l.t.m==painted # test whether left triangle was visited 
      THEN BEGIN 
    WRITE(clers, E); # append encoding of E to clers string 
    RETURN; # exit (or return from recursive call) 
    END 
      ELSE BEGIN 
    WRITE(clers, R); # append encoding of R to clers string 
    b:=b.r;  # move to left triangle 
    END 
     ELSE IF b.l.t.m == painted # test whether left triangle was visited 
      THEN BEGIN 
    WRITE(clers, L); # append encoding of L to clers string 
    b:=b.l  # move to right triangle 
    END 
      ELSE BEGIN 
    Visit(b.r); # recursive call to visit right branch first 
    b:=b.l;  # move to left triangle 
    END; 
 END; 

 
The typical beginning of a  clers stream starts with a series of C symbols as Edgebreaker turns around one of the 
vertices of the initial border. Then the algorithm spirals out as shown in Fig. 7. The stream initially contains mostly 
C and R symbols. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 7: Typical starting Edgebreaker sequence, producing the clers stream CCCCCRCCRCRC 
 
Fig. 8 shows a different spiral, which leads to an S triangle. The recursion will start another "visit", which will go to 
the E case, because both b.r.m and b.r.l are painted. Thus recursion will return after writing E. Edgebreaker will 
resume its traversal and proceed to the left neighbor of the S triangle. 
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Fig 8: An S triangle early in the spiral. 
 
A slightly more complex right branch of an S triangle is shown Fig 9. The encoding produces the clers stream: 
CCCRCCCRCCCRCCCRRLCCCRCSLE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 9: A more complex Edgebreaker beginning producing the clers stream 
CCCRCCCRCCCRCCCRRLCCCRCSLE  
 
Edgebreaker is always working to visit an edge-connected set of triangles, splitting it sometimes through an S 
operation in two parts and working on the one at a time. Fig. 10 illustrates a typical ending of the traversal of one 
such connected set. Triangles not yet visited are shown (left) in white. The upward arrow indicates where we are 
coming from, that is how we enter this set. The resulting triangle labels are shown (right). They are appended to 
clers in the following order: CRSRLECRRRLE. Notice that at the S triangle, the set is split and a recursive call visits 
the RLE triangles.  
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Fig 10: Typical ending Edgebreaker sequence, producing the clers stream CRSRLECRRRLE  
 
I have marked the left borders of C triangles in thicker lines to indicate the corridors followed by EB. The S 
triangles corresponds to places where the corridors bifurcate (a Y junction for the traveler). The E triangles 
correspond to the endings of corridors. The other triangles define how a corridor is tiled. 

Guaranteed 2T bit encoding of the CLERS stream 
Except for the first two vertices, there is a one-to-one association between the vertices of the mesh and the triangles 
processed by C operations (remember that vertices are only painted when we encounter C triangles). Therefore, the 
number of Cs is V�2, which equals T/2, given that V=(T+4)/2. The total number of non-C operations, T�V+2, also 
equals T/2. Hence, if we use a 1-bit code for C and 3-bit codes for the other four operations, the total cost for storing 
the string with the above scheme would be exactly 2T bits. 
Because the first two operations are Cs, they can be omitted from the string, yielding a total storage cost of 2T�2 bits 
for any STM.  
This guarantee is important, because many compression techniques produce good compression ratios for very large 
meshes, but perform poorly on small meshes. So if you have a lot of small meshes to send, they are not much use. 

Wrap&Zip decompression of the CLERS stream 
The Wrap&Zip decompression algorithm, that Andrzej Szymczak and I have developed, receives a binary encoding 
of the clers string and reproduces a labeled planar triangle graph that is homeomorphic to the original graph and has 
its vertices labeled as discussed in the compression section. The process is very simple and has two phases: 
Wrapping and Zipping. (You may have already guessed this from the name.) They may be performed sequentially or 
simultaneously.  
Furthermore, if inline decompression is desired, so that the receiver may build (and possibly render) the initial 
portions of the mesh before receiving the rest, the encoding of the vertices may be interleaved with the clers 
sequence. 
The Wrap&Zip decompression works by first growing a triangle-tree. (They are very easy to grow in Georgia, 
where the climate is nice, i.e., hot and humid, through much of the summer.)  
To initialize the process, we read the first symbol from the clers stream  (it is a C of course), create one triangle, an 
number its vertices 0, 1, and 2. That was easy. Then we assign orientations to two of its borders: from 0 to 1 and 
from 1 to 2. (These orientations are discussed later and are called zippers.) We declare  that the border bounded by 
vertex 0 and vertex 2 is hot. We will attach new triangles to hot borders and make new borders hot. 
To execute the wrapping process, we keep reading symbols from the clers stream. For each symbol, we attach one 
triangle to the hot border and possibly make hot one or both free borders of this new triangle. Which border is hot is 
indicated by the exiting arrows of  Fig. 11 for each symbol. An C and an L make the right border hot. An R triangle 
has its left border hot. An S triangle will first make its right border hot, maybe pursuing this right branch through a 
recursive call, and then when that branch is fully grown, it will make its left border hot and continue to grow that 
way. An E triangle has no hot border. 
As we grow the triangles, you could partially fill in the O and V tables for an STM. I say paritally, because only the 
hot borders (and their coincident borders) have an opposite in the O table. (which is filled when we proceed to the 
next triangle and glue it to the hot border.) The other borders are free  (i.e. we do not know what their opposite are). 
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Furthermore, only when we encounter C symbols, do we enter a b.v label for the border b that is coincident with the 
hot border. When I say that we enter a label, I mean that we store the next available integer at that corner. (We keep 
a vertex counter to know which integer to enter.) 
 
 
 
 
 
 
 
 
 
 
 
Fig 11: Free border orientation for Wrap&Zip. Initial triangle on the left.  
 
Remember, each C triangle corresponds to a vertex. During compression, we have labeled these vertices in the order 
in which they were encountered by C operations. Now we are simply reassigning these labels. 
Some of the vertices do not get labels. They are coincident with labeled vertices, but we don�t know yet which ones. 
Once the tree is grown, we have a triangulation of a simply connected polygon that has a single component and no 
holes. It has a boundary (so it is not an STM). Its boundary is a set of external edges. Note that all the vertices are 
connected to external edges. There are no interior vertices. One such flattened triangle-tree (which happens to be a 
single corridor), is shown Fig. 12 (left). It cam from the encoding of a dodecahedron (left). The arrows are shown on 
both the unfolded tree and on the initial triangles of the dodecahedron. During compression, Edgebreaker started 
visiting the dodecahedron from the central front triangle and went down to a C triangle and then turned right (i.e. to 
our left). The cracks on the dodecahedron indicate edges that were either on the initial triangle, or that were the left 
edges of a C triangle.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 12: Zipping up  the triangle tree.  
 
Well� that was easy. We made a nice triangle tree. But this is not the STC that we were supposed to get. 
Patience.  We�ll zip it up (and get back the dodecahedron on the right of Fig 12). However, before we do so, we 
need to install the zipper. It comes in little pieces. Each piece corresponds to an exterior edge of the triangle tree. 
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Each zipper piece is oriented as shown Fig. 11. Notice that all zippers are oriented clockwise, except for free borders 
of C triangles and except for the initial triangle. Of course, we don�t need to wait until the whole tree is grown to 
install the oriented zippers. Each time we attach a triangle to a hot border, we know which of its borders will be 
attached to other triangles and which of them will be zippers. So we can install them right away. That means: orient 
the free borders properly. Let us allocate a bit to store that information. 
Now all we have to do is zip. Anytime we find two external edges that are incident upon the same vertex and 
oriented to point away from it, we zip. (It is like attaching the two bottom parts of a zipper before zipping it up.) 
When I say zip, I mean that we make the two borders coincident. They already had one common vertex. Now we 
make their other vertices coincident. How? We copy the label of the corner that has one in the corner that does not. 
Andrzej Szymczak and I have proven that during the zipping operation, one of these two vertices has a label and the 
other one does not. 
The process is illustrated Fig. 13. The previously reconstructed part of the triangle tree is darker. Its external edges 
are oriented  and ready to be zipped (a). Then we build the triangle tree for the clers sequence  CRSRLECRRRL and 
install zippers. When we are done installing the zipper for the last L triangle, we are in a situation where we can zip, 
but just one pair of borders (b) that bound triangles L and C. The corner at the end of the border of the C triangle had 
a label. The corner at the end of the L triangle did not. After the zipping, both point to the same vertex. The result of 
that zip and of the growth of the final E triangle is shown (c) where both corners point to the same vertex and thus 
are now shown as coincident. Then we can zip up the rest (d), staring from the borders of triangles E and C. Note 
that as we walk along the crease of the zip, the vertices on the left have labels, but the vertices on the right do not.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 13: Zipping up  the triangle tree.  
 
The creases are the walls of the corridors. They have been produced as the left borders of C triangles. That is why 
their vertices are labeled. 
So, should we keep checking for zipping opportunities everywhere?  
No. We know exactly when to check. Note that no zipping may be initiated by the creation of a C triangle, because 
the matching edge has not yet been created. Also, note that no zipping may be initiated by the creation of an R 
triangle, because its arrow is pointing towards a vertex that bounds the gate (which is not oriented). Finally, S 
triangles have no arrows, since both their free edges will be used as gates. So we only need to watch out for zip 
opportunities with L and E triangles. 



I suggest to use, during the tree-growing process, a doubly linked circular list. Each entry would point to an exterior 
edge and would also store the orientation of the zipper that is attached to it. In fact, the entry would point to the 
border that corresponds to that edge. One entry in that doubly linked list would be the hot border. Other hot borders 
may be piled up on the stack. As we grow the tree, we insert one new entry in the doubly linked list. Either just 
before, or just after the hot border.  
When we grow E or L triangles, we use the list to check whether the new external edge that we have just added is 
adjacent to another external edge that also points away from their common vertex. (We use the doubly linked list to 
locate that neighboring edge.) If so, we zip and remove the two entries from the doubly linked list. 
The decompression algorithm has linear time complexity. To prove this, notice that we start the recursive zipping 
procedure at most T times: once for each L and E operation. Consequently, we stop the zipping procedure the same 
number of times. (The zipping procedure only goes up the creases and does not bifurcate.)  Therefore, the number of 
times we test a vertex and decide not to zip it is bounded by T. The number of successful zip operations equals the 
number of free borders divided by two, which is precisely V�1.  
Both the Edgebreaker compression and the Wrap&Zip decompression algorithms have been tested on a variety of 
meshes. For example, running on a single processor SGI Power Challenge, compressing the bunny model with 
69,674 triangles took 3.87 seconds and decompression took 0.38 seconds. This decompression rate of 184K triangles 
per second was achieved without any attempt to optimize performance. 

Topological extensions 

Holes 
I will now discuss extensions of these compression/decompression techniques to more general triangle meshes, 
which may have handles, holes, and non-manifold singularities.  
To clarify the distinction between handles, holes, and cavities, consider that a torus has one handle (also, called 
through-hole), while a solid wooden ball with an empty small core has an enclosed cavity, but no hole or handle 
(using our terminology). A spherical surface, from which one has cut out a disk, is no longer a closed boundary that 
separates space into disjoint components. We say that such a surface has a hole and is thus a two-manifold with 
boundary, having for boundary a single one-manifold curve. Of course, a surface may have multiple holes. 
Let us address the hole-problem first. A triangle mesh with a triangular hole is illustrated in Fig. 17. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 17: A triangle mesh with a hole  
 
Although we are using a different technique for encoding such meshes with Edgebreaker, for sake of simplicity I 
will explain a very elegant approach that was first published by Touma and Gotsman. Consider the polygonal hole 
of Fig. 18 (left). Create a dummy vertex (for which you need not specify coordinates). Then use it as the tip of a fan 
of triangles whose border matches the boundary of the hole (right). We have filled the hole. Now it suffices to 
remember the id of that dummy vertex.  
If we fill all holes this way, we can encode a mesh with holes using Edgebreaker and transmit the ids of the dummy 
vertices before the vertex stream so that the decoder can skip the dummy vertices. The decoder will first reconstruct 
the connectivity of the mesh with holes plugged in by fans. Then it will remove all triangles incident upon the 
dummy vertices. Finally, it will decode the vertices. 
We have opted for a different solution, because the cost of encoding the ids of the dummy vertices and the 
unnecessary triangles can be somewhat reduced by using a different approach. Nevertheless, the approach outlined 
above is so simple that it may be preferred . From now on, we assume that our mesh has no holes. 



A bit of caution is appropriate here. In pathological configurations where the union of all borders of unmatched 
triangles forms a non-manifold curve, the approach above will not work. Basically you do not know how to build the 
fans. In fact, there are configurations for which no fans can be built that would produce the boundary of a solid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 18: Filling the hole with a dummy vertex.  
 

Non-manifold solids 
We will consider here only triangle meshes where with edges that correspond to an even number of coincident 
borders. (We assume that all holes have been successfully removed.) Furthermore, we assume here that the triangle 
mesh is a valid boundary of a solid polyhedron that has a well defined interior and exterior. We can say that such a 
boundary forms a waterproof surface. If  the mesh has several connected components, we treat them one at a time. 
Such meshes may exhibit two types of non-manifold situations. Non-manifold edges and non-manifold vertices.   
Non-manifold edges are edges where more than two borders meet. They have 2K incident triangles, where k>1. 
Such a model is shown Fig. 14 (left). 
 
 
 
 
 
 
 
 
 
 
Fig 14: Non-manifold solid with a non-manifold edge (left) and vertex (right).  
 
Although all vertices bounding non-manifold edges are themselves non-manifold in some sense, we will restrict the 
term of non-manifold vertex to non-manifold vertices (as defined earlier) whose incident edges are manifold. Such a 
vertex is shown Fig. 14 (right). 
The approach that David Cardoze and I have chosen is in our Matchmaker technique is to split the borders of each 
non-manifold edge into pairs. We have decided to impose a constraints on this match-making.  
To explain the constraint, consider that each pair of matched borders is an edge now. Consider also that we are 
allowed to bend the edges. The constraint is that there is a way of bending the edges so that the resulting shape 
would be a valid solid with all its edges manifold and no faces intersecting other faces. We call that an edge-
manifold solid. Notice that an edge-manifold solid may still exhibit non-manifold vertices.  
We say that the original solid is the limit of  a family of edge-manifold solids obtained by a continuous straightening 
of the edges. Such solids preserve certain properties, which are important for the validity of certain algorithms. For 
example, we know that adjacent triangles of an edge-manifold solid have compatible orientations. Furthermore, we 
know that if we put a bug (a really tine one) on the exterior face of a triangle and let it crawl through the non-
manifold edge to the exterior face of  the adjacent triangle, as defined by our matching, the bug will stay outside of 
the solid and will be able to breathe. Less careful matching strategies may suffocate the adventurous bug. 



Our objective is not only to satisfy the above constraint, but also to reduce the number of non-manifold vertices in 
the resulting edge-manifold solid. For example, the matching of Fig 15 removes two non-manifold edges, but leaves 
one non-manifold vertex (left). We then have to duplicate that vertex (right) to obtain a manifold mesh that can be 
encoded by our Edgebreaker algorithm. Remember that Edgebreaker likes to paint vertices. It would get confused if 
we tried it on a polyhedron with non-manifold vertices. We were successful in the solid of Fig. 15 to pair match the 
borders coincident with the non-manifold edge in the back so that the two vertices that bound the non-manifold edge 
become manifold. In this case we made a passage inside the solid through the gap between the (imaginary) bends of 
the two manifold edges that resulted from the matching. In most cases, we are able to match coincident borders 
without introducing non-manifold vertices.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 15: A non-manifold solid.  
 
We picked this example, however, to illustrate that his is not always possible. In order to keep the central vertex 
manifold, we need to match the four borders of  the front non-manifold edge in a different manner, which results in a 
non-manifold vertex. We need therefore to duplicate that vertex in our representation (right), and we hate having to 
do that. 
How do we do the matching? You may ask. Our approach is based on the property shown Fig. 16, that we have 
discovered and proven. Each connected component of the boundary of a 2D region may be represented by a single 
closed curve that may intersect itself at its non-manifold vertices but does not cross itself. Again, the fact that it does 
not cross itself may be formulated more precisely by stating that the non-manifold curve is the limit of a series of 
manifold curves. To do the matching of the edges at the non-manifold vertices of the 2D case, we perform two 
traversal of the edges of each connected component of the boundary. First, we form natural circuits by always taking 
the rightmost edge that has not yet been visited (left). The labels of each circuit are painted in a different color. Then 
we visit the edges again. But this time, if we reach a non-manifold vertex with edges of a new color (that we have 
not yet seen), we take the leftmost of these. Otherwise, we continue our boring round taking the rightmost edge of 
the current color. Notice that, in the example of  Fig. 16 (right), each connected component of the boundary of the 
polygon is represented by a single closed curve that has the desired property. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 16: A non-manifold solid.  
 
You may wonder what all this has to do with our problem of matching borders of non-manifold edges. Well, if you 
were to take all the triangles incident upon a vertex that is bounding one or more non-manifold edges and look at the 



S*

external edges (boundary) of the union of these triangles, you would get a polygonal (3D) curve. Each edge of that 
curve corresponds to a triangle. Non-manifold edges incident upon our vertex are mapped by this process into non-
manifold vertices of that curve. Although the curve is 3D, we can inherit from the triangles the notion of leftmost 
and rightmost. Therefore, we can execute our little walk strategy. The resulting matching of the pairs of edges of 
that 3D curve that are incident upon a non-manifold vertex define how we match the triangles. 

Handles 
For clarity, we first describe how Wrap&Zip uses an extended CLERS code to reconstruct the connectivity of 
meshes with handles. Then, we suggest a format for storing this extended code. Finally, we explain how the 
extended code is generated by a modified version of Edgebreaker�s compression algorithm. 
The extended decompression algorithm reads the sequence of op-codes in the CLERS string and builds the triangle 
tree. However, it now must handle 6 types of triangles: the five C, L, E, R, and S types described above, plus the 
new S* type.  
As it is for S triangles, the triangle-tree is grown from the right edges of the S* triangles, but not from their left 
edges, which temporarily become bounding edges. The extended CLERS string associates, with each S* triangle, an 
integer identifying a matching bounding edge that is glued to the left edge of the S triangle prior to zipping. 
Fig. 19 shows a typical process of encoding a handle. Before it is processed by the compression algorithm, a handle 
(left) has a simply connected bounding loop. A fist S* triangle breaks the mesh into a topological polygon with one 
hole (second image from the right). A second S* triangle unifies the outer loops with the hole-bounding loop 
(bottom left). With each S* triangle is associated a reference to the corresponding edge (bottom-right). 
 
 
 
 
 
 
 
 
 
 
Fig 19: Discovering handles when returning to an S triangle.  
 
Wrap&Zip decodes the CLERS sequence as described previously, but marking the left edges of S*-triangles as glue-
edges. It builds the triangulated polygon and performs zipping operations whenever possible. 
Once the entire triangle-tree topological polygon is built, Wrap&Zip traverses its boundary and builds an array of 
edge-pointers indexed by the integer edge ID incremented as we visit the consecutive edges along the bounding 
loop. This array will speed up the identification of the matching edges for the glue-edges of each S* triangle. 
Then, Wrap&Zip traverses the triangle-tree again and glues the left edge of each S* triangle with the edge identified 
by an integer associated with the triangle. (That integer is computed during compression and stored in a separate 
table. It is used as an index into the array of edge-pointers.) Each glue operation stitches the mesh, merging two 
edges into one and merging their four vertices into two. Note that for orientable surfaces, there is no ambiguity as to 
the relative orientation of the two edges being glued. 
Also, note that changing the order of the gluing operations does not affect the topology of the result because the 
matching edges are identified independently of each other.  
Furthermore, note that each handle in the original mesh produces two S* triangles. The gluing operation associated 
with one of them will split the boundary of P into two disjoint loops. The second one will merge these two loops 
back into a single loop because the left edge of its S* triangle and the edge that it should be glued to are in separate 
loops (see Fig. 19). Consequently, executing the 2h gluing operations, where h is the number of handles, restores a 
single bounding loop.  
The topological model that results from the gluing operations represents a shape, which no longer is a simple 
polygon. Instead, it is topologically equivalent to a surface obtained by cutting a small disk out of the original 
surface. The boundary of that disk is a single loop of edges. Each edge in the loop coincides physically with another 
edge of the loop. Wrap&Zip does not need to identify this correspondence through global gluing operations nor 
through geometric coincidence tests. Instead, it applies the �zipping� process described earlier and restores the 



original manifold or pseudo-manifold surface with handles by a series of local zipping operations that glue pairs of 
adjacent edges that point towards their common vertex (using the orientation of the free edges derived from the op-
code associated with each triangle). 
The generalization of the CLERS format must contain the information necessary to identify the S* operations and 
the integer edge-identifier associated with each S* triangle. One could add one bit to the Edgebreaker code used for 
the S triangles in order to distinguish S triangles from S* triangles. When the number of handles, h, is much smaller 
than the number of S triangles, it is more compact to use the same code for S and S* operations and to distinguish 
them by storing a table of integer counts. Each count indicates how many of these S-or-S* triangles that precede the 
current S* triangle were actually of type S. This count could be the total number of S triangles preceding the current 
S* or just their count from the previous S* (or from the beginning for the first S* in the CLERS code). With each 
count in the table we also associate the edge identifier. 
There are T+2 free edges bounding P. Therefore we need 2hlog2(T+2) bits to store all the edge identifiers. If the 
table is decoded after the CLERS string, we know s, the total count of S or S* triangles, and need only 2hlog2(s) bits 
to identify the 2h triangles of type S*. In practice, s is about T/20 or less. The number of handles varies from model 
to model, but is typically mush smaller then s. 
Let us now describe how Edgebreaker's compression algorithm may be adapted to produce the table for handles 
when generating the modified CLERS code for supporting meshes with handles.  
Compression proceeds as before labeling the encountered triangles as C, L, E, R, or S. Some of the S triangles are 
temporarily mislabeled during this process and will be turned later into S* triangles.  
When compression reaches an S triangle, it starts a recursion to follow the right corridor. At the end of this corridor 
(and all its children) it returns from recursion. Before moving left, while still on the border of the S triangle, we test 
whether the left neighbor is still virgin. If so, we are really on an S triangle and a new (left) branch of the triangle-
tree will be constructed. If however, the opposite triangle is marked as already visited, then the S triangle is 
relabeled as a triangle of type S*. 
Once all the triangles are labeled, we traverse the loop of bounding (free) borders and number them using increasing 
integers.  The ID is initialized to zero and we start the process at the first free border of the first triangle of the 
triangle-tree. Each time we encounter a border that has an opposite triangle of type S*, we store with that triangle 
the ID of the border. 
Finally, we traverse the border a second time exploiting the triangle labels to avoid the initial tests that define the 
traversal. We keep track of the counts of S and S* triangles; store the triangle labels in the CLERS string (replacing 
each S* with an S); and produce the appropriate entries into our table, which identifies the S* triangles and the 
associated glue-edges. 

Geometry compression 
Most vertex-compression techniques are based on a vertex estimation. We start by normalizing the representation 
of vertex coordinates. We simply build a tight enclosing box around the model, chose a unit along each direction of 
the box, and express the vertex coordinates as integers. If we chose a larger unit, we will have more error, but 
smaller integers. We select the unit and the origin so that all coordinates are integers in the interval [0,2k-1]. For 
most applications, sufficient accuracy may be provided with k between 6 and 14. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 20: Parallelogram used for predicting a vertex. 
 
Then we predict the vertices using the location of previously decoded vertices and the connectivity information, 
which tells us who our neighbors are. Touma and Gotsman have proposed a very simple  predictor. If the last 
triangle was bounded by vertices A, B, and C, with the hot border being BC, then they use C+AB prediction for the 
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next vertex (see Fig. 20).  To give them full credit, they also use a bend for the parallelogram, computed using 
model dependent statistics. 
Compression uses the predictors and encodes only the difference between the predicted and the correct vertex 
location. Decompression predicts the vertex using the same technique, decodes the difference vector, and adds it to 
the predicted location to obtain the correct vertex location. 
If the predictions are good, the corrective vectors are short and their coordinates are small integers. Because the 
distribution of these integers is not uniform, variable length entropy or arithmetic coding technique are used to 
compress the corrective vectors. The amount of compression depends of course on the smoothness of the surface, its 
level of tessellation, and the quantization factor k. For k=10 or 11, it is not uncommon to compress the location data 
to about 12 to 14 bits per vertex. 
In opposition to the connectivity compression, which was lossless, geometry compression is lossy,because it 
involves the quatization step (conversion of vertex coordinate to fixed length integers). 

Improvements to the encoding of clers streams 
We first present a few improvements to the encoding of the clers stream produced by Edgebreaker. 

Expected 1.7T bit Edgebreaker code never exceeding 2T bits 
CL and CE combinations in the clers stram are impossible. Why? Because they would force the two triangles to 
have two coincident borders, and thus three coincident corners. And we have excluded this possibility for STMs. 
To take advantage of this constraint, we can use a shorter code for S and R symbols that follow a C, thus we have 
two modes: �after a C� and �not after a C�.  
In the �after a C� mode, there are only 3 possible symbols: C (coded as 0), R (coded as 11) and S (coded 10). In the 
�not after a C� mode, we use the following codes for the five possible symbols: 0 for C, 110 for L, 101 for R, 100 
for E, and 111 for S. Experimental results with this code (which show a ratio of 36% R operations, almost half of 
which follow a C) consistently result in a storage cost of 1.7T bits.  
This code will never exceed 2T bits. 

Guaranteed 1.84t bit code 
A slightly more complex code, that Davis King and I have proposed, is guaranteed to store any valid CLERS 
sequence in less than 1.84T bits. It encodes C as 0, S as 10 and R as 11, when they do not follow a C. Symbols that 
follow a C are encoded using one of three possible codes.  
Code I: C is 0, S is 100, R is 101, L is 110, E is 111.  
Code II: C is 00, S is 111, R is 10, L is 110, E is 01.  
Code III: C is 00, S is 010, R is 011, L is 10 and E is 11. 
We have proven that, for any given simple mesh, one of these three codes is guaranteed to yield a total storage of 
less than (1+5/6)T bits. We simply produce all three in parallel and store the shortest, preceded by a 2-bit identifier 
that will tell the decoder which code was used for the particular mesh. 

Expected average code between 1.3T and 1.6T bit  
By exploiting the relative frequencies of the various operations in large meshes, Andrzej Szymczak and I have 
devised a slightly different code that works better in practice, but no longer guarantees never to exceed 2T bits.  
We encode CC, CS, and CR pairs as single symbols. We break the CLERS sequence into symbols of one or two 
letters each. Each symbol is one of the seven words listed in the table below. For each word, we suggest a binary 
code and indicate the number of letters that would be part of such words in a 100 letters sub-string generated for a 
typical model (we used the 69,674 triangle Stanford Bunny). The right column indicates the bit-cost associated with 
the occurrences of the word in a 100 letter sub-string.  

Word code # of letters Cost  
CR (after even Cs) 01 53.6 53.6 bits 
CC (after even Cs) 00 22.4 22.4 bits 
CS (after even Cs) 1101 1.2 2.4 bits 
R (after even Cs) 10 19.6 39.2 bits 
E 1100 1.6 6.4 bits 
S (after even Cs) 1111 0.9 3.6 bits 
L 1110 0.3 1.2 bits 
TOTAL  100 128.8 bits 



 
We have explored a variety of models. The compressed file size varies between 1.3T bits (for a typical models such 
as the Stanford Bunny) and 1.6T bits (for 2D Delaunay  triangulations). 

Custom entropy codes between 0.91T to 1.26T bit  
For large meshes, Andrzej Szymczak and I have devised a technique that constructs a Huffman code as follows. We 
introduce a space after each non-C symbol that is followed by a C. The resulting words start with one or more C 
symbols, which are followed by one or more non-C symbols.  
Experimenting with Delaunay triangulations of 200,000 triangles, we found only 1,400 words. A Huffman encoding 
of these words yields 1.26T bits. The table of codes takes about 32,000 bits (0.16T bits for meshes with 200,00 
triangles), but a part of it corresponding to most frequent words can be preloaded and kept constant for all large 
meshes.  
For more realistic (i.e., smaller) models (such as the 69,674 triangle Stanford Bunny) the dictionary had only 173 
words and the cost of Huffman encoding is 0.85T bits. The total cost, including the dictionary is 0.91T bits.  
We use the 69,674 triangle Stanford Bunny to compare the performance of the Edgebreaker compression with 
respect to other general purpose compression techniques.  
We have found that, Edgebreaker provides roughly a 50-to-1 compression ratio for gzipped files representing the 
uncompressed connectivity of triangle meshes, which is usually the main storage factor for uncompressed 
representations. Further attempts to gzip the best CLERS format result in a less than 2% improvement. 

Alternative compression techniques 
Deering's vertex buffer 
Michael Deering�s approach is a compromise between a standard triangle strip and a general scheme for referencing 
any previously decoded vertex.  Deering uses a 16 registers cache to store temporarily 16 of the previously decoded 
vertices for subsequent uses. He suggests to use one bit per vertex to indicate whether each newly decoded  vertex 
should be saved in the cache. Two bits per triangle are used to indicate how to form the next triangle. One bit per 
triangle indicates whether the next vertex  should be read from the input stream or retrieved from the cache. 4 bits of 
address are used for randomly selecting a vertex from the stack-buffer, each time an old vertex is reused. Assuming 
at best that a ratio of 14/16 vertices are reused from the cache and that 2/16 vertices must be reused while they are 
not in the cache, the total cost of Deering�s approach, when combined with a random access to previously decoded 
vertices would be 4.5+0.125log(V). Note that it may prove difficult to build such generalized strips while 
maintaining a low count of vertex replication. 

Hoppe's vertex insertion 
Hugues Hoppe�s Progressive Meshes permit to transfer a 3D mesh progressively, starting from a coarse mesh and 
then inserting new vertices one by one. Hoppe applies a vertex insertion that is the inverse of the edge collapse 
operation popular in mesh simplification techniques (as discussed in the next section). This insertion process is 
illustrated Fig 21. Two adjacent edges are marked with a thick line (left). They define a slipt and their common 
vertex is replicated (center).  Two new triangles are inserted (right). 
 
 
 
 
 
 
 
 
 
 
Fig 21: Vertex insertion (the inverse of an edge collapse). 
 
A vertex insertion identifies a vertex v and two of its incident edges. It cuts the mesh open at these edges and fills 
the hole with two triangles. v is thus split into two vertices.  
Each vertex is transferred only once in Hoppe�s scheme. The cost of G for each vertex is the identification of one of 
the previously transferred vertices (on average more than 0.5log(V)) plus the cost of identifying two of the incident 



edges (5 bits are sufficient if no vertex is bounding more than 32 edges). Thus, the cost per triangle would be more 
than 2.5+0.25log(V). 

Turan 
Turan has shown that the structure of a labeled planar graph may be encoded  using slightly less than 6T bits. 
Having a constant number of bits per triangle has a significant advantage over the previous approaches, which all 
include a log(V) factor, especially for highly complex meshes. 
Turan builds a vertex spanning tree and uses it to represent the boundary of a topological polygon of 2V-2 edges. 
The structure of this tree is encoded  using 4V−4 bits. There are at most 2V-5 edges  that do not belong to the vertex 
spanning tree. These may be encoded using 4 bits each. The overall cost is thus, 12V-24 bits. 

Taubin and Rossignac 
The Topological Surgery method developed by Gabriel Taubin and me also builds a vertex spanning tree of T that 
splits the surface of the mesh into a binary tree of corridors (generalized  triangle strips). They encode both trees 
using a run length code, which for highly complex meshes yields an average of less than two bits per triangle. In 
addition, they use one bit per triangle to indicate whether the next triangle in a corridor is attached to the left or the 
right edge of the previous one. The compactness of the encoding of both trees comes from the fact that, by 
construction, both trees tend to have very few nodes with more than one child. Sequences of consecutive nodes with 
a single child are grouped into runs and encoded by simply storing their length, using a number of bits that is the 
ceiling of the log of the length of the longest run. 
For pathological cases, with a non-negligible proportion of multi-child nodes, their approach does no longer 
guarantee a constant number of bits per triangle. 
The vertices are stored in the depth-first traversal order  of the vertex spanning tree. The entire mesh is represented 
by the list of vertex coordinates, an encoding of the sparse vertex and corridor trees, and the string of left/right bits. 
This technique has been applied to the compression of VRML files and has been integrated in the MPEG-4 standard.  

Denny and Sohler Vertex permutation 
Denny and Sohler have proposed a technique for encoding T for planar triangulations of sufficiently large size as a 
permutation of the vertices in V. They show that there are less than 28.2|V| +O(log|V|) valid triangulations of a planar set 
of v points, and that for sufficiently large |V|, each triangulation may be associated with a different permutations of 
these points (there are approximately 2|V| ln(|V| ) such permutations). Their approach requires transmitting a triangle 
that contains the set and the vertices of V in a suitable order, computed by the compression algorithm. The decoding 
process sorts V lexicographically and then sweeps over the crude triangulation left to right. At each vertex of V, the 
enclosing triangle is identified and the vertex is inserted according to the incidence relation derived from the 
permutation. The vertices of V are transmitted progressively in batches. The successive batches are constructed 
through repetitive plane-sweeps, during which all vertices with degree at most 6 are removed incrementally and the 
resulting holes re-triangulated. For each point, the information needed to reconstruct that triangulation is encoded in 
the permutation of the vertices of the batch. The batches are decompressed in inverse order. Although for 
sufficiently complex models the cost of storing G is null, the unstructured order in which the vertices are received 
and the absence of the incidence graph during their decompression makes it difficult to use predictive techniques for 
vertex encoding.  

Summary of storage requirements 
The table below compares the storage cost of the previously described techniques for a simple mesh with a 
negligible number of bounding vertices. The cost is expressed as the number of bits per triangle. 
 

Vertex table 3log(|VI|)  
Independent triangles 2.5log(|VI|)+0.5  
Bar-Yehuda 1.25log(|VI|)+9.25 Require complex algorithms to compute sequence. 
Triangle strips 0.5log(|VI|)+1  
Deering 0.125log(|VI|)+4.5 Assuming that we can build general strips with minimal vertex repetition. 
Hoppe 0.25log(|VI|)+2.5 Assuming a constant bound on the number of edges per vertex 
Turan 6 Works for general planar graphs 
Taubin,  Rossignac 1.5 - 3.5 Only when trees have long runs. 
Denny and Sohler  0 Only for sufficiently complex 2D triangulations. Permutes vertices. 

 



Mesh simplification 
We focus in this section on 3D model simplification, a preprocessing step that generates a series of 3D models 
(sometimes called "impostors'' or "impersonators''), which trade resemblance to the original model for fidelity.  
Simplification techniques are a form of  lossy compression. The compute a different model, which as fewer triangles 
and vertices, but resembles the original model. Of course, as the number of triangle is reduced, the fidelity of the 
corresponding approximation drops. The various approaches to simplification make different tradeoffs  between 
speed, quality, and complexity of the implementation. 

Rossignac and Borrel�s vertex quantization 
The vertex clustering technique that Paul Borrel and I have invented, is the simplest to implement and most efficient 
simplification approach. It groups vertices into clusters by coordinate quantization (round-off), computes a 
representative vertex for each cluster, and removes degenerate triangles which have at least two of their vertices in 
the same cluster. All vertices whose coordinates round-off  to the same value are merged. The accuracy of the 
simplification is thus controlled by the quantization parameters (see Fig 22). The vertices of the original triangular 
mesh (far left) are quantized, which amounts to associating each vertex with a single cell of a regular subdivision of 
a box then encloses the object. Cells which contain one or more vertices are marked with a circle (center left). All 
the vertices that lie in a given cell form a cluster. A representative vertex is chosen for each cluster. It is indicated 
with a filled dot. The other vertices of each cluster are collapsed into one and placed at the representative vertex for 
the cluster (far  right). Triangles having more than one vertex in a cluster collapse during this simplification process 
(shaded  triangles center right). They will be removed to accelerate the rendering of approximated versions of the 
object while other neighboring triangles may expand. The resulting model (far right) has fewer vertices and 
triangles, but has a different topology. Notice that a thin area collapsed into a single line, while a gap was bridged by 
a different line segment. 
 
 
 
 
 
 
 
 
 
 
Fig 22: Vertex clustering. 
 
It is aimed at very complex and fairly irregular CAD models of mechanical parts. It operates on boundary 
representations of an arbitrary  polyhedron and generates a series of simplified models with a decreasing number of 
faces and vertices. The resulting models do not necessarily form valid boundaries of 3D regions--for example, an 
elongated solid may be approximated by a curve segment. However, the error introduced by the simplification is 
bounded (in the Hausdorff distance sense) by a user-controlled accuracy factor and the resulting shapes exhibit a 
remarkable visual fidelity considering the data-reduction ratios, the simplicity of the approach, and the performance 
and robustness of the implementation.  
The original model of each object is represented by a vertex table containing vertex coordinates and a face table 
containing references to the vertex table, sorted and organized according to the edge-loops bounding the face. The 
simplification involves the following processing steps:  
1. grading of vertices (assigning weights) as to their visual importance  
2. triangulation of faces 
3. clustering of vertices 
4. synthesis of the representative vertex for each cluster 
5. elimination of degenerate triangles and of redundant edges and vertices  
6. adjustment of normals 
7. construction of new triangle strips for faster graphics performance 

Grading 
A weight is computed for each vertex. The weight defines the subjective perceptual importance of the vertex. We 
favor vertices that have a higher probability of lying on the object's silhouettes from an arbitrary viewing direction 



and vertices that bound large faces that should not be affected by the removal of small details. The first factor may 
be efficiently estimated using the inverse of the maximum angle between all pairs of incident edges on the candidate 
vertex. The second factor may be estimated using the face area. 
Note that in both cases, these inexpensive estimations are dependent on the particular tessellation. For example, 
subdividing the faces incident upon a vertex will alter its weight although the actual shape remains constant. 
Similarly, replacing a sharp vertex with a very small rounded sphere will reduce the weight of the corresponding 
vertices, although the global shape has not changed. A better approach would be to consider the local morphology of 
the model (estimate of the curvature near the vertex and estimate of the area of flat faces incident upon the vertex 
(see [Gross95] for recent progress in this direction). 

Triangulation 
Each face is decomposed into triangles supported by its original vertices. Because CAD models typically contain 
faces bounded by a large number of edges, a very efficient, yet simple triangulation technique is required. The 
resulting table of triangles contains 3 vertex-indices per triangle.  
Note that attempting to simplify non-triangulated faces will most probably result in non-flat polygons. On the other 
hand, it may be beneficial to remove very small internal edge loops from large faces prior to triangulation. This 
approach will significantly reduce the triangle count in mechanical CAD models, where holes for fasteners are 
responsible for a major part of the model�s complexity. Simplifying triangulated models without removing holes 
will not create cracks in the surface of the solid and will not separate connected components, Removing holes prior 
to simplification may result in separation of connected components or in the creation of visible cracks. 

Clustering 
The vertices are grouped into clusters, based on geometric proximity. With each vertex, we associate the 
corresponding cluster's id. Although a variety of clustering techniques was envisioned, we have opted for a simple 
clustering process based on the truncation (quantization) of vertex coordinates. A box, or other bound, containing 
the object is uniformly subdivided into cells. After truncation of coordinates, the vertices falling within a cell will 
have equal coordinates. A cell, and hence its cluster is uniquely identified by its three coordinates. The clustering 
procedure takes as parameters the box in which the clustering should occur and the maximum number of cells along 
each dimension. The solid's bounding box or a common box for the entire scene may be used. The number of cells 
in each dimension is computed so as to achieve the desired level of simplification. A particular choice may take into 
account the geometric complexity of the object, its size relative size and importance in the scene, and the desired 
reduction in triangle count. The result of this computation is a table (parallel to the vertex table) which associates 
vertices with cluster indices (computed by concatenating cluster integer coordinates).  
This approach does not permit to select the precise triangle reduction ratio. Instead, we use a non-linear estimator 
and an adaptive approach to achieve the desired complexity reduction ratios. For instance, given the size and 
complexity of a particular solid relative to the entire scene, we estimate the cell size that would yield the desired 
number of triangles, we run the simplification, and if the result is far from our estimate, we use it for a different level 
of detail and adjust the cell size appropriately for the next simplification level. 

Synthesis 
The vertex/cluster association is used to compute a vertex representative for each cluster. A good choice is the 
vertex closest to the weighted the average of the vertices of the cluster, where the results of grading are used as 
weights. Less ambitious choices, permits to compute the cluster's representative vertices without reading the input 
data twice, which leads to important performance improvements when the input vertex table is too large to fit in 
memory. Vertex/cluster correspondence yields a correspondence between the original vertices and the representative 
vertices of the simplified object. Thus, each triangle of the original object references three original vertices, which in 
turn reference three representative vertices. (Note that representative vertices are a subset of the original vertices, 
although a simple variation of this approach will support an optimization step that would compute new locations of 
the representative vertices.) The representative vertices define the geometry of the triangle in the simplified object.  
The explicit association between the original vertices and the simplified ones permits to smoothly interpolate 
between the original model and the simplified one. The  levels of detail may be computed in sequence, starting from 
the original and generating the first simplification, then starting with this simplified model and generating the next 
(more simplified) model and so on. This process will produce a hierarchy of vertex clusters, which may be used to 
smoothly interpolate between the transitions from one level to the next, and hence to avoid a distracting popping 
effect. We have experimented with such smooth transitions and concluded that, although visually pleasant, they 
benefit did not justify the additional interpolation and book-keeping costs. Indeed, during transition phases, the faces 
of a more detailed simplification must be used when the lower level of detail may suffice to meet the desired 
accuracy. For example, consider that simplification 2 contains 1000 triangles and corresponds to an error of 0.020, 
and that simplification 3 contains 100 triangles and corresponds to an error of 0.100. If the viewing conditions 



impose an error cap of 0.081, we could use simplification 2 alone and display only 100 triangles. If however we 
chose to use a smooth interpolation between consecutive levels in the transition zone for errors between 0.080 and 
1.020, we would have not only to compute a new position for 500 vertices as a linear combination of two vertices, 
but we will have to display 1000 triangles. Consequently, the smooth interpolation will result in significant runtime 
processing costs and in an order of magnitude performance drop for this solid. Assuming uniform distribution, this 
penalty will be averaged amongst the various instances (only 40% of instances would be penalized at a given time). 
The total performance is degraded by a factor of 4.6. 
Also note that in order to prevent the accumulation of errors, when a level of detail is computed by simplifying 
another level of details, the cells for the two simplification processes should be aligned and the finer cells should be 
proper subdivisions of the coarser cells. 

Elimination 
Many triangles may have collapsed as the result of using representative vertices rather than the original ones. When, 
for a given triangle, all three representative vertices are equal, the triangle degenerates (collapses) into a point. When 
exactly two representative vertices are equal the triangle degenerates into an edge. Such edges and points, when they 
bound a triangle in the simplified object are eliminated. Otherwise, they are added to the geometry associated with 
the simplified model. Duplicated, triangles, edges, and vertices are eliminated during that process. Efficient 
techniques may be invoked, which use the best compromise between space and performance. When the number of 
vertices in the simplified model is small, a simple hashing scheme will yield an almost linear performance. When 
the number of vertices in the simplified model is large, duplicated geometries may be eliminated at the cost of 
sorting the various elements.  

Adjustment of normals 
This step computes new normals for all the triangles coordinates. It uses a heuristic to establish which edges are 
smooth. The process also computes triangle meshes. We use a face clustering heuristics which builds clusters of 
adjacent and nearly coplanar faces amongst all the incident faces of each vertex. An average normal is associated 
with the vertex-use for all the faces of a cluster.  

Generation of new triangle strips 
Because each simplification reduces the model significantly, it is not practical to exploit triangle strips computed on 
the original model. Instead, we re-compute new triangle strips for each simplified model. 

Runtime level selection 
Several levels of detail may be pre-computed for each object and used whenever appropriate to speed up graphics. In 
selecting the particular simplification level for a given object, it is important to take into accounts the architecture of 
the rendering subsystem so as not to oversimplify in situations where the rendering process is pixel bound. For 
example, the cost of rendering in software and in a large window an object that has a relatively low complexity but 
fills most of the screen is dominated by R. Consequently, simplification will have very little performance impact, 
and may reduce the image fidelity without benefit. On the other hand, displaying a scene with small, yet complex 
objects, via a software geometric processing on a fast hardware rasterizer will be significantly improved by 
simplification before the effects of using simplified models become noticeable.  
Isolated edges, that result from the collapsing of some triangles may be displayed as simple edges whose width is 
adjusted taking into account their distance to the viewer. 

Advantages and implementation 
The process described above has several advantages over other simplification methods:  
The computation of the simplification does not require the construction of a topological adjacency graph between 
faces, edges, and vertices. It works of a simple array of vertices and of an array of triangles, each defined in terms of 
three vertex-indices.   
The algorithm for computing the simplification is very time efficient. In its simplest form, it needs to traverse the 
input data (vertex and triangle tables) only once. 
The tolerance (i.e. bound on the Hausdorff distance between the original and simplified model) may be arbitrarily 
increased reducing the triangle count by several orders of magnitude. 
To further reduce the triangle count, the simplification algorithm may produce non-regularized models. Particularly, 
when using the appropriate tolerance, thin plates may be simplified to dangling faces, long objects to isolated edges, 
and (groups of) small solids into isolated points. 



The approach is not restricted by topological adjacency constraints and may merge features that are geometrically 
close, but are not topologically adjacent. Particularly, an arbitrary number of small neighboring isolated objects may 
be merged and simplified into a single point. 
The simplification algorithm was combined with the data import modules of IBM's 3D Interaction Accelerator and 
exercised on hundreds of thousands of models of various complexity. It exhibits a remarkable performance 
characteristics, making it faster to re-compute simplifications than to read the equivalent ASCII files from disk. The 
algorithm pre-computes several levels of detail, which are then used at run time to accelerate graphics during 
interaction with models comprising millions of triangles. The particular simplification level of a given object is 
computed so as to match a user specified performance or quality target while allocating more geometric complexity 
(and thus more rendering cost) to objects which a higher visual importance.  
Our experience shows that typical CAD models of mechanical assemblies comprise dozens of thousands of objects. 
The relative size and complexity of the objects may vary greatly. A typical object may have a thousand triangles in 
its original boundary. The simplification process described here may be used to automatically reduce the triangle 
count by an average factor of 5 without impacting the overall shape and without hindering the users ability to 
identify the important features. Further simplifications lead to further reduction of the triangle count, all the way 
down to a single digit, while still preserving the overall shape of the object and making it recognizable in the scene. 
This simplification process has been further improved to yield a better fidelity/complexity ratio by incorporating 
topological and curvature considerations in the clustering process. However, these improvements only lead to 
additional computational costs and more complex code. 

Ronfard and Rossignac's Edge collapse 
Remi Ronfard and I have devised a different approach, which permits greater movement of vertices in areas where 
the surface is approximately flat. It is based on the edge-collapse operation of Fig 21. The distinction of this 
approach to similar edge-collapse approaches by Hugues Hoppe and others is the way in which we evaluate a bound 
on the total error resulting from each edge collapse. We need that bound to order the edge collapses, so that we 
execute the least damaging first. 

Vertex displacement (as used in the vertex clustering technique) provides a rather pessimistic error bound. Imagine 
for example a displacement of a vertex in a dense triangulation of a flat portion of a terrain. When vertices move 
along the plane of the terrain, the represented geometry remains flat, and therefore the Hausdorf error is zero, 
although the vertex displacements may be large. 

Ronfard and I have introduced an error estimator which measures the displacement of vertices in the direction 
orthogonal to their incident faces. Their estimator computes the maximum distance from the new location P of the 
vertex to all the supporting planes of the vertices that have collapsed into P. This estimator works well for flat and 
nearly flat regions, but may not provide an upper bound close to sharp edges or vertices, as shown below. In the 
cases of sharp corners, Ronfard and I introduce an additional plane that is orthogonal to the average normal to the 
incident triangles and suffices to guarantee a precise upper bound on the error.  

Progressive transmission 
Rather than waiting for the detailed 3D model to arrive, the remote user may wish to download an initial crude 
model first. This model may be visualized to provide the initial feedback and guide early navigation decisions. Then 
it would be automatically upgraded to a more accurate model. Note that, if, based on the approximated model, the 
user decides early on to turn around or to switch to a different 3D model, the accurate model needs not be 
downloaded at all. The client would simply interrupt its download.  
Notice also that when a 3D model appears small on the screen, a low resolution approximation, as described below 
may be used for rendering. If the viewer never approaches that object, its detailed representation will never be 
needed by the client. 
In conclusion, the bandwidth requirements may be reduced considerably by first transmitting a low resolution model 
and then a more accurate one, if at all necessary. 
So, if you never need the higher resolution model, we can put together the results of the previous two sections: 
simplify the model first, then compress it and transmit it. 
Now, suppose that you did this, and then you realize that the client does need the higher accuracy model. Well, we 
can pre-compute and store a compressed version of the high accuracy model and transmit it when needed. This is a 
viable approach. When both the crude and then the full resolution models are needed, the total transmission cost is 
the sum of the two. If the crude model is really simple, then the overhead of this approach over transmitting only the 
full resolution model is small. Furthermore, if we factor in the probability of not needing the full resolution model 
for a random object, this is a compelling solution. 



So, why not stop here? 
The problem with the "two-level" approach is that either you have to work with a very crude model, or you have to 
wait a long time to see the fully accurate one. Wouldn't we rather get a crude model and then see it improve 
progressively as we wait or as we approach it? Several techniques were developed to support this.  
How do you compare them? Consider the graph of Fig. 23. It shows the approximation error of the model currently 
available to the client as a function of time (i.e., number of bits transmitted). Note that for a little while you have 
nothing (the error is very large). Then you receive and decompress the crudest model. The elapsed time is the time 
to first picture. (Although it includes the request, transmission, decompression, and rendering, we will only discuss 
the transmission cost here.) Then, if you need more resolution, with each fraction of bits received, the accuracy of 
the model is upgrade.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 23: Error/time evolution. 
 
How do we compare two progressive schemes? The smaller the area below that curve, the better a scheme. 
Typically we want to reduce the error quickly (want the curve to be low). We also want to limit the amount of time 
we wait for the whole resolution model (the curve should be as much left as possible). 
Of course, this curve cannot be this smooth, because you need to receive more than one bit to improve the accuracy 
of the model. So, in reality, the bits are transmitted in batches and the curve becomes a set of horizontal steps. You 
have to wait between steps and after each step the error is decreased by some amount.  
The main decision in selecting a progressive approach is the size of the steps. In the two step approach discussed 
above, the size of the steps is huge.  
Hugues Hoppe's progressive mesh is the other extreme. Each step corresponds to the inverse of an edge-collapse, 
and thus inserts one vertex and two triangles. Because these operations are transmitted in inverse order of the 
simplification operations, the error decreases with each step. 
The cost of each step was discussed in the compression section. The bulk of it lies in the need for encoding the ids of 
two adjacent edges at each step. This cost is proportional to the log of the number of edges (which, in practice, 
grows linearly with the number of vertices and triangles). 
To reduce this overhead, Renato Pajarola and I have decided to group these vertex-split operations into batches, 
which define bigger steps. One such step is illustrated in Fig. 24. 
The economy of scale, which results from the grouping, is exploited using the following approach. Instead of 
encoding the ids of all the edges that will have to be split, we encode one bit for each vertex of the current mesh. A 
zero means, leave it alone. A one means split it. For each vertex that has to be split, we also encode the information 
necessary to select two of its incident edges. Since the encoder and the decoder know how many edges there are, we 
can encode this in a compact manner. 
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Fig 24: Progressive transmission (crude model plus upgrades) 
 
How do we know the association between bits and vertices? We simply use the same mesh traversal as the one used 
for Edgebreaker. We transmit the bits in the order in which the corresponding vertices are visited by C operations. 
The set of triangle-pairs inserted in a given step are illustrated in Fig. 25. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 25: Triangles inserted in one batch 
 
At first, this system seems to be rather wasteful. A vertex in the crude model may be associated with a zero. Then in 
the second step, it may be associated with a zero again, and so on. So the total cost per vertex seems to be 
significant. Not quite. There are very few vertices in the crude model. So that first set of zeros is amortized over all 
the vertices in the entire model. Subsequent zeros are more numerous, but there are fewer and fewer of them 
associated with a vertex on average. On average, the amortized cost of encoding that vertex selection bit and the bits 
for identifying two if its incident edges is about 3.6 bits per triangle. 
The vertex location is encoded using a predictor that takes into account the location of the split vertex and of its 
neighbors. 

 



The total number of triangles, the number of step (i.e. of levels of detail), and the total number of bits per triangle 
are given for five models, which represent the typical shape used in entertainment and engineering applications. The 
shapes are illustrated in Fig. 26 from left to right. The total bit-cost per triangle is split into the cost of encoding the 
connectivity (both the bits identifying the split-vertices and the bits identifying their incident edges). These costs are 
indicated in parentheses.  
1. Bunny: 9666 triangles, 10 LODs, 11.3 t bits (3.6 connectivity + 7.7 geometry) 
2. Horse: 21622 triangles, 9 LODs, 10.6 t bits (3.5 + 7.1) 
3. Skull: 21904 triangles, 7 LODs, 10.9 t bits (3.4 + 7.5) 
4. Fohe: 7240 triangles, 7 LODs, 13.7 t bits (3.5 + 10.1) 
5. Fandisk: 12950 triangles, 9 LODs, 11.4 t bits (3.7 + 7.7) 
 
 
 
 
 
 
 
 
 
Fig 26: Models used to test our progressive transmission 
 

Conclusions 
Triangle meshes are the simplest interpolation of sample points in 3D. The vertex location and the connectivity of 
these meshes must be encoded when we wish to transmit them. Vertex location are best encoded as corrective 
vectors between a predicted location and the correct one. Good predictions lead to short corrective vectors whose 
coordinates may be encoded with variable length compression schemes. 
To encode the connectivity, we have discussed the Edgebreaker scheme. It visits the mesh in a spiral and paints 
vertices and triangles. It also assigns symbols in the {C,L,E,R,S} set to the triangles and consecutive integers top the 
vertices. The sequence of symbols captures the connectivity if the vertices are sent in the order indicated by their 
integer labels. The cost of the connectivity is guaranteed to be below 2 bits per triangle and in practice averages one 
bit per triangle. The cost of transmitting vertex locations depends on the desired accuracy, but in practice fluctuates 
between  6 and 8 bits per triangle.  
When compression is not sufficient, we simplify the model by clustering vertices or collapsing edges. This is a form 
of lossy compression. 
A crude (simplified) model may be refined. This approach is cheaper than transmitting the finer model from scratch. 
The total cost of transmitting the connectivity in such a progressive manner is about 3.5 bits per vertex. For the 
small 1.5 bit per vertex overhead, the typical model is received in 7 to 10 progressive refinement steps. The savings 
come from the fact that more accurate models are available sooner to the user and that the transmission of the fully 
accurate models may often be avoided because the model remain small on the screen or because the viewer turns 
away. 
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