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Abstract
We introduce a novel reassembly method for fragmented, thin objects that uses minimal user interaction. Unlike
past methods, we do not make any restrictive assumptions about the geometry or texture of the object. To do
so, we exploit the geometric and photometric similarity along and across the boundaries of matching fragments,
and leverage user feedback to tackle the otherwise ill-posed problem. We begin by encoding the scale variability
of each fragment’s boundary contour in a multi-channel, 2D representation. Using this multi-channel boundary
contour representation, we identify matching sub-contours via 2D partial image alignment. We then align the
fragments by minimizing the distance between their adjoining regions while simultaneously ensuring geometric
continuity across them. The configuration of the fragments as they are incrementally matched and aligned form a
graph structure. By detecting cycles in this graph, we identify subsets of fragments with dependent alignments. We
then minimize the error within the subsets to achieve a globally optimal alignment. Using ceramic pottery as the
driving example, we demonstrate the accuracy and efficiency of our method on six real-world datasets.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations I.4.9 [Image Processing and Computer
Vision]: Applications—Reassembly

1. Introduction

In order to recover the original 3D shape of a fragmented
object, matching fragments must be found and aligned with
each other. When reassembling a volumetric object from full
3D models of its parts, for example, the points that make up
the “break-surface” between two fragments are used to iden-
tify the matching fragments, and to bring them into align-
ment [HFG∗06]. Similarly, in conventional range image reg-
istration, shared surface information may be used to match
and align overlapping scans. An important, but less studied
case, is when the fragments do not share any matching sur-
face.

This problem, which is common in archeology, foren-
sics and paleontology, presents a unique set of challenges.
Without knowing the final shape of the object, the only way
to match and align corresponding fragments is to inspect
the fragments’ boundary contours. Regardless of the shape,
or painted texture of the object, the boundaries, or “break-
contours,” of matching fragments will be similar, both in ge-
ometry and photometetry. Since this thin strip conveys very
little information about the global context of the fragment,
however, identifying matching fragments, and aligning them

are both challenging problems. In order to simplify these
problems, past methods have relied on restricting assump-
tions about the geometry or painted texture of the object.

In this paper, we introduce a three-step method that re-
assembles objects using only the fragments’ boundary con-
tours with minimal user interaction. Fig. 1 outlines our ap-
proach. First, we encode the scale-space of each fragment’s
boundary contour in a multi-channel 2D image representa-
tion. We derive an image registration method based on this
scale-space boundary contour representation to rapidly iden-
tify matching sub-contours. Next, we estimate the transfor-
mation to align the fragments using a least squares formu-
lation that minimizes the distance between the adjoining re-
gions while simultaneously maximizing the resulting geo-
metric continuity across them. The configuration of the frag-
ments as they are incrementally matched and aligned form a
graph structure. By identifying cycles in this graph, we de-
tect subsets of fragments whose alignments are dependent on
each other. When a cycle is formed, we jointly re-optimize
the alignments of the constituent fragments to ensure a glob-
ally optimal configuration, and improve subsequent matches.

We use ceramic pottery as the driving example, and val-
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· · ·

· · ·
(a) Boundary contour encoding (b) Contour matching (c) Pairwise alignment (d) Context incorporation

Figure 1: We introduce a three-step method to reassemble real-world objects of arbitrary shape using only the boundary of
each fragment’s external surface. 1) Using our novel scale-space representation (a), we quickly identify matching boundary
regions (b). 2) We then align the fragments by optimizing the geometric continuity across them(c). 3) Finally, we incorporate
the additional contextual information each match provides to ensure global accuracy (d).

idate our method on several recently excavated real-world
historic artifacts. The results show that our method allows
for accurate reassemblies to be achieved with minimal hu-
man interaction. This has significant implications for arche-
ology where manual reassembly is an excessively time con-
suming task that hampers historical interpretation and dis-
semination of archaeological studies.

2. Related Work

Reassembling thin objects is particularly challenging be-
cause matching fragments share only their boundaries in
common. On its own, this thin strip provides insufficient in-
formation to reliably validate potential matches and align
them. To address this, a common approach is to restrict
the class of objects that may be reassembled by imposing
a global model. Willis and Cooper [WC04, The01], for ex-
ample, assume the object is axially symmetric. The shape
of the fragment can then be compared to the profile con-
tour of the object model to help determine its proper location
and orientation. To determine the profile contour of the vase
or bowl, the authors additionally assume that the fragments
themselves are able to reliably convey this information. We
avoid such limitations by leveraging the similarity matching
fragments must exhibit along and across their boundaries.

Even when a global model is used to simplify the reassem-
bly process, methods that rely on pairwise alignments nec-
essarily suffer from error accumulation. This effect can be
seen even when the object has only three pieces. Once the
first two pieces have been matched, the space for the third
piece may already be too small or too large. To address this,
some authors [WK01,The01] delay the alignment phase un-
til clusters of three matching fragments have been found.
While this does improve alignment quality, it is still a local
optimization and therefore prone to error accumulation. In
range image registration, where pairwise alignment is much
more reliable, accumulated error may be evenly dispersed
to finalize a reassembly. Sharp et al. [SLW04], for exam-

ple, divide up the resulting gap or overlap and evenly dis-
perse the required alignment adjustment. Pulli [Pul99] uses
the point correspondences of the pairwise alignments as soft
constraints on a final global alignment. In object reassem-
bly, however, each additional match provides important con-
textual clues that can be used, not only to increase overall
accuracy, but also to improve subsequent matches. By lever-
aging the context provided by past matches, we are able to
determine the placement of relatively nondescript fragments
without relying on a global model.

Some authors focus specifically on the problem of find-
ing matching boundary contours using only their 3D ge-
ometry. Although the contours are three dimensional, Wolf-
son [Wol90] showed that finding matching sub-contours can
be recast as a one-dimensional string matching problem.
This dimensionality reduction is possible because contours
can be uniquely expressed in terms of their rotationally in-
variant geometric characteristics: curvature and torsion. By
encoding contours in this way, matching regions may now
be detected using the longest common substring algorithm.

Unfortunately, this method is highly sensitive to noise
and other realities as it relies on the calculation of the con-
tour’s third derivative. To address this, including scale in the
matching process has been quite successful. The standard
approach is to incrementally smooth the 3D points of the
contour, recalculating the characteristics at each degree of
smoothness [Wol90, KHW90, GS02, MM86, Mok88]. Al-
though incremental smoothing highlights features of promi-
nence and mitigates the effect of noise, smoothing the ge-
ometry of the contour introduces shapes that are dramatically
different from the original. A more faithful approach to mod-
eling scale is to smooth the geometric characteristics of the
contour. In addition to this, we incorporate the photometric
characteristics of the boundary contour. This additional in-
formation helps inform the contour matching process, and
is particularly useful when many boundary contours share
similar geometry.
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(a) Color (b) Depth (c) Raw (d) Processed

Figure 2: We start with a single scan of each piece. Each
scan is comprised of a color image (a) and corresponding
3D point locations shown here as a depth map (b). We use
depth discontinuities to locate and extract the 3D boundary
of the piece (c), which we then smooth and subsample (d).

3. Boundary Contour Representation

The first step in our method is to identify which fragments
are most likely to align, and where their boundaries match.
In order to do so quickly and accurately, we build a multi-
channel image representation that encodes the scale variabil-
ity of each fragment’s shape and color.

3.1. Boundary Extraction

As shown in Fig. 2, we start by acquiring geometric and
photometric information about each fragments using a range
sensor. For our datasets, the entire surface of each fragment
may be viewed from a single viewpoint. (If this were not the
case, multiple viewpoints could be used to form the exterior
surface of the fragment.) Using depth discontinuities in the
range data we extract the 3D location and color of each point
along the boundary. The raw 3D contour (shown in Fig. 2c)
is too noisy and its sampling is overly dense to allow for re-
liable analysis. We therefore smooth the contour slightly and
sub-sample the points using an iterative technique described
by Leitao and Stolfi [GS02] which ensures that the resulting
contour points are uniformly spaced.

We describe each fragment’s boundary contour as a cyclic
string f (t) of four-valued feature vectors

f (t) = {(κ,τ,cr,cg)t mod n} , (1)

where n is the number of samples along the contour and t is
the sample index. The first two values, κ and τ, curvature and
torsion, encode the rotationally and translationally invariant
geometry of the 3D contour. The second two, cr and cg, are
the red and green chomaticity that encode the appearance
of the contour. These values help locate and refine matches,
particularly when the contour geometry is relatively feature-
less. We choose chromaticity because it provides a measure
of invariance to illumination conditions, which is an impor-
tant consideration in many domains. Note that including the
blue channel would be redundant as the three values sum to
1. Finally, observe that f (·) is periodic, i.e., f (t +n) = f (t).
This captures the cyclic nature of the contour.

Curvature and torsion may be computed from the con-

σr

f (t)κ – Curvature

σr

f (t)τ – Torsion

σr

f (t)cr – Red chromaticity

σr

f (t)cg – Green chromaticity

σr

f (t) – Simplified representation

Figure 3: We encode the shape and color of each fragment’s
boundary contour under various scales. The first two chan-
nels (curvature and torsion) encode the shape and the second
two (red and green chromaticity) encode the color. Shown at
the bottom right is the compact visualization used through-
out this paper. Here, the red channel is curvature, green is
torsion, and blue is the intensity of each contour point.

tour’s coordinates λλλ(t) = (x(t),y(t),z(t)) as, [Str50]

κ =
‖λ̈λλ× λ̇λλ‖
‖λ̇λλ‖3

=

√
A2 +B2 +C2

(ẋxx2 + ẏyy2 + żzz2)3/2
(2)

τ =
(λ̇λλ× λ̈λλ) ·

...
λλλ

‖λ̇λλ× λ̈λλ‖2
=

∣∣∣∣∣∣
ẋxx ẏyy żzz
ẍxx ÿyy z̈zz...
xxx

...
yyy

...
zzz

∣∣∣∣∣∣
A2 +B2 +C2 , (3)

where

A =

∣∣∣∣ẏyy żzz
ÿyy z̈zz

∣∣∣∣ , B =

∣∣∣∣żzz ẋxx
z̈zz ẍxx

∣∣∣∣ , C =

∣∣∣∣ẋxx ẏyy
ẍxx ÿyy

∣∣∣∣ . (4)

Here ‖�‖ and |�| denote the L2 norm and matrix deter-
minant, respectively; and �̇, �̈, and

...
� denote the first-,

second-, and third-order derivatives with respect to the arc
length t, i.e., ∂

∂t , ∂

∂t2 and ∂

∂t3 . We compute these using central
numerical differentiation. The chromaticity values cr and cg
are computed simply by dividing the red and green color
channels by the total sum of the three color channels.

3.2. Encoding Scale

Although this string f (t) accurately describes the boundary
contour, it encodes small-scale detail and noise that may not
precisely align with the matching sub-contour description of
an adjoining fragment. In order to reliably locate matching
boundary contours, we exploit the scale variability of their
geometry and photometry. We use the coarse scale represen-
tation, which is robust to noise and subtle detail, to quickly
estimate potential matches, and the finer scale detail to verify
and fine-tune them.

Past authors [Wol90,KHW90,GS02,MM86,Mok88] typi-
cally encode scale by incrementally smoothing the geometry
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(a) We find matching sub-regions using
longest-common substring at the coarsest scale.

(b) We refine the match using normalized
cross-correlation image registration.

(c) We expand the base to account for the
fan-out of non-matching end-points.

Figure 4: We extract matching boundary contours (red) as matching trapezoidal regions (highlighted boxes) of our scale-space
images. Matches are estimated (a), refined (b), and optimized (c) quickly using this scale-space descriptor. Note how the refine-
ment (b) has shifted the matching region right in the scale-space image (clockwise along the boundary), and how the fan-out
optimization (c) has expanded the base to the full width of the matching boundary regions.

of the contours themselves. This approach, however, intro-
duces shapes that are dramatically different from the origi-
nal. In order to maintain the authenticity of the underlying
geometry and photometry of the contour our approach is to
iteratively smooth the string f (t) itself. We then store the
smoothed values as rows of a multi-channel image S, like the
one shown in Fig. 3. Note that as torsion is a signed value,
in this channel, a value of 0 is given an intensity of 0.5. The
lowest row of pixels S0 encodes the smallest scale detail, i.e.,
SSS0 = f (t). Moving up the image to row r corresponds to a
coarser scale, which we calculate using circular convolution
of the base row with a Gaussian smoothing kernelN (σr) of
standard deviation σr proportional to r,

SSSr =N (σr)~SSS0 , (5)

where~ is the circular convolution operator. In our case, we
let σr = 0.05r and build images with 100 rows. The resulting
representation is now a four-channel 2D image that encodes
the scale-space of the boundary’s geometry and photometry.

4. Matching Boundary Contours

By encoding the scale variability of each boundary con-
tour’s shape and color, the problem of finding matching sub-
contours is now akin to image registration; matching sub-
contours correspond to matching image regions. Note that
because both contours are encoded in counterclockwise or-
dering, one image must first be horizontally flipped. Al-
though chromaticity has a standard range of [0,1], curvature
and torsion are unbounded. To introduce a degree of compa-
rability across all channels, we limit each range by scaling
it. Fig. 4 outlines our matching method.

1) Longest common sub-contour Similar to past work
[MM86,Mok88,WK01], we begin our search with the coars-
est scale, i.e., the top row. Using these highly smoothed val-
ues, we perform a longest-common-substring analysis where
we allow for substrings that wrap around the image. A pair
of four-valued vectors is considered matching if each their

values differ by less than a threshold. The table generated by
the dynamic programming algorithm is then traversed, and
matches are inserted into a queue where priority is given
based on the length of the match. Fig. 4a, shows the top
match for the two pieces shown.

2) 2D image registration refinement Since this coarse
scale involves the most smoothing, there remains some
ambiguity about the precise location of the matching sub-
contour. To address this, we leverage the finer-scaled details
contained in the image region below the estimated match.
Using one region as a template, we refine the location
of the matching region via normalized cross-correlation
image registration. This is shown in Fig. 4b. Note that the
matching region of the smaller piece has moved right in the
scale-space representation and clockwise around the piece.

3) Fan-out estimation The first and last points of every
correctly matching contour sit next to a non-matching point.
In Fig. 4, for example, the match stops when the two con-
tours turn sharply away from each other. This results in con-
trasting values in the two contour description strings en-
coded at the base of the scale-space representations. As we
increase scale, and move up the scale-space representations,
these non-matching values are smoothed with an increasing
number of matching values (as the standard deviation of the
smoothing function σr increases). The result of this smooth-
ing is an iterative decreasing in the number of matching val-
ues. To address this effect, which we call fan-out, we in-
crementally expand the base of the matching regions until
a threshold is surpassed. As shown in Fig. 4c, the resulting
trapezoidal regions correctly convey the full match.

5. Pairwise Alignment

Once two matching boundary regions have been identified,
the second step of our algorithm is to estimate the trans-
formation that brings the fragments into alignment. We for-
mulate this as a least-squares optimization problem where
the error is measured at each sampled point of the matching
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A B
TB,A(b̂bbi(k))âaai(−k)

−k +k
0

Pi

Figure 5: To evaluate the resulting surface continuity at point
i, we intersect the two surfaces with a plane perpendicular
to the boundary contour. We then extract surface normals at
regular intervals. The transformation TB,A is then evaluated
in terms of the gradient of these normals.

boundary contours according to two metrics. The first, which
we call “contour error,” quantifies the distance between cor-
responding points along the contour to ensure that the frag-
ments are tightly aligned. The second, which we call “sur-
face error,” quantifies the geometric continuity across each
pair of corresponding points to ensure that the resulting sur-
face varies smoothly from one fragment to the other.

More precisely, given two fragments A and B, we seek the
transformation TB,A that brings B into alignment with A such
that the sum of squared residuals ∑

m
i e2

i across the m points
of their matching boundary contours is minimized. We for-
mulate the residual at point i as a weighted combination of
our two metrics,

ei = ec
i +αes

i , (6)

where ec
i and es

i are the contour error and surface error, re-
spectively, and α is a relative weighting.

Contour error To formulate the contour error ec, we let
{aaai | 1 ≤ i ≤ m} be the m 3D contour points from A, and
let {bbbi | 1 ≤ i ≤ m} be the corresponding points from B.
The contour error ec

i at point i is then simply the Euclidean
distance between corresponding points,

ec
i = ‖TB,A(bbbi)−aaai‖ , (7)

where the transformation TB,A is defined in terms of a rota-
tion matrix R and a translation vector t,

TB,A(bbbi) = bbbiR+ t . (8)

This error metric is insufficient on its own because the con-
tours do not convey any reliable information about the frag-
ment surfaces themselves.

Surface error Our second error term evaluates the align-
ment quality of the fragment surfaces, which we quantify
using the orientation of surface-normals across the match-
ing boundary regions of the adjoining surfaces. As shown in
Fig. 5, to formulate the surface error es

i at point i, we begin by
computing the plane Pi orthogonal to the boundary contour’s
tangent vector at this point. We intersect this plane Pi with
both surfaces and extract surface normals at regular intervals
in the direction perpendicular to the contour. Specifically, we

let âaai( j) denote the jth surface normal from point aaai, and de-
fine b̂bbi( j) analogously. We then form a piecewise function
qqqi(k) of normal vectors across the matching contour as

qqqi(k) =


âaai(−k) for k < 0
000 for k = 0
TB,A(b̂bbi(k)) for k > 0 .

(9)

Note that we negate k in the first case since âaa(·) is only de-
fined for positive inputs.

An optimal alignment will result in a gradient of sur-
face normals ∂qqqi

∂k whose value at the boundary (i.e., k = 0)
matches the gradient of surface normals on the adjoining
fragments. We therefore compute a target gradient value
equal to the mean of the gradients from both fragments eval-
uated a short distance ε from the boundary contour, and for-
mulate the surface alignment error as

es
i =

∂qqqi
∂k

(0)− 1
2

[
∂âaai

∂ j
(ε)+

∂b̂bbi

∂ j
(ε)

]
. (10)

To compute the derivative of qqq at point i, we extract fif-
teen normals {qqqi(k) | − 7 ≤ k ≤ 7} from a thin strip of the
corresponding surfaces. By restricting this calculation to a
thin strip we avoid any assumptions about the global geom-
etry of the object. We then weight these 15 normals using a
standard discrete derivative kernel. For the target gradients,
we use the same process and evaluate the gradient at ε = 4.
We then solve this system with Levenberg-Marquardt mini-
mization [Mar63].

To provide a measure of similarity between the two terms,
we set α equal to the boundary contours’ sub-sampling dis-
tance divided by π (the maximum value for ec). To reduce
the running time of this optimization, we pre-compute the
intersection planes, surface normals, and target gradients for
each contour point. By doing so, however, we are making the
assumption that the intersection planes at each point are par-
allel. This assumption may be violated, in particular when
alignments are re-optimized, as we discuss next. To address
this, we add an additional error term that quantifies the ori-
entation error of these planes. Since the range of this error is
the same as for es we also weight it with α.

6. Incorporating Context

As illustrated in Fig. 6, the final component of our frame-
work is to incorporate the global geometry of the object as
it becomes known. We use each additional match to increase
the overall alignment quality of the object, which in turn im-
proves the quality of future matches. We encode the global
geometry as a graph in which the nodes represent individual
fragments, and the edges correspond to matching contours
between them. Cycles in this graph correspond to subsets
of fragments whose alignments depend on each other, i.e.
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A
B

C

D

(a) Four piece chain

A
B

C

D

(b) Four piece cluster

Figure 6: As matching contours are found, edges are added
to the assembly graph. When cycles are detected, as in (b),
edges may be jointly re-optimized to incorporate the addi-
tional information. Note how the gap between pieces BBB and
CCC has been closed with the addition of the yellow edge.

changing the orientation of one fragment in such a subset
will impact the alignment quality of the others.

Fig. 6 shows the significance of a cycle in the graph. In
the four node chain of Fig. 6a there is only one path between
any pair of nodes. The addition of the fourth edge in Fig. 6b
has created a cycle. It is plain to see that we cannot adjust
the relative alignment between two nodes without impacting
the quality of at least one other alignment. In other words,
each path between two nodes serves as a set of constraints
that can be used to improve the alignment quality between
them. Using the correspondences embedded in every edge
of the cycle to evaluate the overall error in the subset, we
jointly re-optimize the constituent alignments. Note how the
gap between BBB and CCC has been closed by this process, and the
overall alignment quality of the subset has been improved.

We formulate the alignment of the subset as a least
squares optimization where the residual error is measured
across all points of every matched contour pair according
to Eq. 6. Each alignment’s translation and rotation are op-
timized jointly to minimize the error of the entire subset.
As the number of cyclically dependent nodes approaches the
entire set of fragments, this re-optimization becomes a full
global optimization. By building up the global model in a
bottom-up fashion, however, each re-optimization is simply
a refinement of the previous configuration. Thus, we lever-
age the accurate estimates of our pairwise alignments to re-
duce the search-space of the global optimization.

After updating the alignment of the subset, the set of
points being used to evaluate an alignment may no longer
be an optimal set of correspondences. Recall that the align-
ment quality across a pair of matching contours depends on
the distance between pairs of corresponding points. When
a cycle is formed, we may find that one fragment should
slide along the other to improve the overall alignment qual-
ity. To that end we utilize the core functionality of Besl and
McKay’s iterative closest point (ICP) algorithm [BM92].
Specifically, we iterate between optimizing the transforma-
tions of the subset, and updating the correspondences used
to evaluate them. At each iteration every point is paired with
the nearest point on the corresponding contour.

Figure 7: A 6 piece store bought vase is reassembled using
our system (green box) and by hand (orange box). At each
step the green contour indicates the proposed addition, and
purple indicates alignments that have consequently been ad-
justed. This dataset is labeled VASE in Fig. 13.

7. Grouping Fragments

We introduce one final aspect of our method to aid in the de-
tection of matching contour groups such as the ones shown
in the last three steps of Fig. 7. When two or more pieces are
bound together by matching sub-contours, they effectively
form a single meta-piece. Intuitively, this corresponds to vir-
tually gluing pieces together–the matched sub-contours be-
come internal to the meta-piece. We use a hyper-graph to
represent this part of our algorithm. Each connected com-
ponent subgraph of our alignment graph becomes its own
hyper-node with its own scale-space boundary representa-
tion. We form the boundary representation by first extracting
the unmatched boundary points from all constituent pieces.

This approach ensures that contour regions that have pre-
viously been matched are no longer considered for future
pairings. Additionally, the boundary contour of a meta-piece
will typically have a more favorable representation. In ad-
dition to the examples in Fig. 7, a strong example of this is
found in Fig. 10. The left-most step in the second row shows
a matching contour that spans 3 fragments on the right, and
2 on the left. Since we prioritize candidate matches based
on their length, the small matching contours that make up
this long match would not otherwise have been found in a
reasonable time-frame.

8. Experimental Results

To validate our algorithm we augmented it with an interac-
tive user interface. The most likely matching contour is pre-
sented to the user, who may then accept or reject it. When
a match is accepted, it is added to the graph, and any cycli-
cally dependent alignments are re-optimized. Except where
indicated, the resulting reassemblies contain every fragment
in the dataset. Unfortunately, the exact alignment of the frag-
ments cannot be compared to any ground truth.

In Fig. 7 we show the partial reassembly of a store bought
vase. At each step, the current candidate match is shown in
green, other matches that have been re-optimized are colored
in purple, and any other past matches are shown in red. In
this artificial example, each of the suggested matches is cor-
rect making the full reassembly essentially fully automatic.
As such, the full process requires only about 12 seconds.
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Figure 8: A 16 piece vessel is reassembled using our system (green box) and by hand (orange box). The green contours
indicate our method’s proposed addition, purple contours indicate cyclically dependent alignments that have been re-optimized
to include the green contour’s additional information. This re-optimization is best illustrated in the transition between the middle
two images of the bottom row where a large gap is closed. This result is labeled BOWL1 in the graph of Fig. 13.

Figure 9: A 10 piece vessel is reassembled using our system
(green box) and by hand (orange box). Note the large gap
that is closed in the last step. Shown in purple, nearly every
alignment is adjusted to correct this accumulated error. This
dataset is labeled BOWL2 in the graph of Fig. 13.

In Fig. 13 we compare total reassembly times using our
method with manual reassembly of the actual artifacts, here
this object is referred to as VASE. The remaining five ob-
jects are recently excavated cultural heritage artifacts, and as
such exhibit increased chipping and signs of wear. Although
these datasets describe axially symmetric objects, the frag-
ments themselves are quite small. Consequently, past work
that rely on estimating the profile contour of symmetric ob-
jects [WC04, The01] may not be well suited for this task.

In Fig. 8 we show the steps taken by a user to reassemble
15 pieces of one such historical artifact. Note, however, that
we have omitted a small triangular piece in the top of the
rim. This piece was too small to be reliably analyzed, due
to the fan-out effect discussed in Section 4. This example is
referred to as BOWL1 in Fig. 13.

In Fig. 9 we show the reassembly of an 11 piece historical
artifact. Note how a large gap is closed in the last step, as in-
dicated by the yellow circles. Since many pieces are missing
on this side of the bowl, a long chain of pieces has accumu-
lated error. When the matching contour is found that closes
this gap, the entire rim of the vessel is re-aligned to distribute
the error. This example is referred to as BOWL2 in Fig. 13.

Fig. 10 shows our most challenging dataset. Whereas the

painted scene provides useful clues to archaeologists work-
ing with the artifact itself, the color information contained
at the boundary of each piece is too subtle to be discern-
ing in our scale-space images. Further, there are many small
missing fragments that segment long matching contours. Be-
cause of these two factors many erroneous matches are con-
sidered. We discard clearly erroneous matches by inspect-
ing the resulting alignment error. This dramatically reduces
the amount of user interaction required in all cases. In this
case, however, evaluating alignment error may involve large
cycles of fragments. Note that almost every step involves a
large scale re-optimization. As shown in Fig. 13, this vessel
(referred to as PLATE1) is the only example where assembly
by hand took less time than using our method. Nevertheless,
despite the challenges in this dataset, our method is able to
rapidly align all but one fragment of this object.

In Fig. 11 and Fig. 12 we show two more examples.
These datasets, which are respectively labeled PLATE2 and
PLATE3 in Fig. 13, show the importance of our surface er-
ror alignment metric. Many of the matching contours are es-
sentially straight lines. As such, simply minimizing the dis-
tance between the contours would result in dramatic surface
discontinuity across the matching regions. By additionally
optimizing the geometric continuity across the surfaces, the
pieces are accurately aligned.

9. Conclusion

Whereas past work rely on simplistic assumptions about the
global geometric or photometric structure of the object, our
approach is applicable to any reassembly problem where the
boundary of each fragment may be extracted. To achieve
this, we have introduced a method that bridges the gap be-
tween top-down and bottom-up approaches. Since access to
cultural heritage objects is restricted, simply achieving align-
ment of real artifacts is an important step. Although we uti-
lized only a rudimentary user interface to help cull the expo-
nential search space, we found that our system outperforms a
purely manual reassembly. In future work we will investigate
more engaging user experiences that more fully leverage the
important contributions both human and algorithm may have
on this critical task.
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Figure 10: Steps taken to reassemble a 21 piece artifact. Note how the primary cluster is abandoned after the eighth piece. At
this point the strongest matches were part of the rim. After completing this 4 piece section, a connection was made between the
two components, enabling the completion of the rest of the vase. The final result (green) is compared to the hand reassembly
(orange). Note that a few steps have been omitted for compactness. This vessel is referred to as PLATE1 in the graph of Fig. 13.

Figure 11: This 11 piece vessel is labeled PLATE2 in Fig. 13.

Figure 12: This 8 piece vessel is labeled PLATE3 in Fig. 13.
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