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Abstract
Isosurfaces, one of the most fundamental volumetric visualization tools, are commonly rendered using the well-
known Marching Cubes cases that approximate contours of trilinearly-interpolated scalar fields. While a complete
set of cases has recently been published by Nielson, the formal proof that these cases are the only ones possible and
that they are topologically correct is difficult to follow. We present a more straightforward proof of the correctness
and completeness of these cases based on a variation of the Dividing Cubes algorithm. Since this proof is based
on topological arguments and a divide-and-conquer approach, this also sets the stage for developing tessellation
cases for higher-order interpolants and for the quadrilinear interpolant in four dimensions. We also demonstrate
that, apart from degenerate cases, Nielson’s cases are in fact subsets of two basic configurations of the trilinear
interpolant.

Categories and Subject Descriptors (according to ACM CCS): G.1.1 [Numerical Analysis]: Interpolation G.1.2
[Numerical Analysis]: Approximation I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling

1. Introduction

Isosurfaces, one of the fundamental tools in visualization,
extract implicit surfaces representing boundaries or features
of a scalar field. Although algorithms for extracting isosur-
faces have been known since the original Marching Cubes
paper [LC87], isosurfaces consistent with the assumed tri-
linear interpolant were only recently published by Nielson
[Nie03]. Unfortunately, the proof of correctness is complex,
and does not generalize easily to higher dimensions and
higher-order interpolants.

This paper attempts to remedy this with a straightforward
proof of correctness by dividing the cube into smaller blocks,
each of which has simple topology, then re-assembling the
cubes to obtain the overall case. In this way, we demonstrate
that no configurations other than those reported by Nielson
can exist. Moreover, the techniques used in this paper are
potentially useful for analysing other interpolants.

We start by reviewing Marching Cubes in Section 2, then
describe the use of Finite State Machines to represent in-
terpolant topology in Section 3. Thereafter, we will intro-
duce in Section 4 some properties of the trilinear interpolant
upon which we rely, and give an overview of our approach
in Section 5. We then demonstrate that each simple block
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has a simple configuration in Section 6. Sections 7 to 9 then
show how to subdivide into simple blocks, depending on
how many body saddles exist in the interpolant, while Sec-
tion 10 comments on saddles in the interpolant that fall out-
side the original block. Finally, Section 11 states conclusions
and comments on possible future work.

2. Isosurface Extraction & Marching Cubes

Given a scalar function T (x,y,z) defined over some volume
of interest, an isosurface is the surface defined by T−1(h)
for some isovalue h. Since T is usually known at a fixed
set of sample points, extracting isosurfaces depends on ap-
plying an interpolant which defines how to compute T at
points other than the original sample points. Since the sam-
ple points are commonly laid out in a cubic lattice defining
a cubic mesh, one of the commonest interpolants used is the
trilinear interpolant, defined in more detail in Section 4.

Given the cubic mesh defined by the sample points,
Marching Cubes [LC87] geometrically approximates the
isosurface with a separate triangulation in each cube. The
function values at the cube’s vertices are classified as black
if their values are higher than the isovalue h, white otherwise.
This gives 28 = 256 possible cases which can be reduced by
rotational or reflective symmetry to those shown in Figure 1.

The surfaces generated were, however, not watertight,
a fault corrected by (among others) Montani, Scateni &

c© The Eurographics Association 2007.

81

http://www.eg.org
http://diglib.eg.org


H. Carr / (No) More Marching Cubes

Scopigno [MSS94], whose cases were still not consistent
with the (assumed) trilinear interpolant. Correcting this re-
quired consideration of saddle points on the faces of cells
[NH91] and in the body [Nie03], which subdivide the cases
into configurations - isosurfaces that share a case number
but differ in their topology. Further details of the Marching
Cubes literature can be found in a recent survey [NY06].

As noted above, the principal contribution of this paper
is to confirm Nielson’s results, but we do so by using tech-
niques that are potentially applicable to more complex in-
terpolants. We start by describing the use of finite state ma-
chines for modelling interpolant topology, assuming that the
function values at vertices are distinct, an assumption that
we can guarantee with symbolic perturbation [EM90].

3. Finite State Machines for Interpolant Modelling

For a given cube, consider a sweep from high to low iso-
values. Each vertex starts off as white (lower than h), then
becomes black (higher than h). Thus, each cube uses a se-
quence of different cases dictated by the order in which the
vertices are swept past. This sequence can be represented
[CS07] by a finite state machine for geometric and topologi-
cal computations. To construct the finite state machine for a
particular interpolant or set of cases, we define the states to
be the cases, and add a transition from each state (case) to
each other case with one extra black vertex.

Figure 1 shows the finite state machine for watertight
Marching Cubes cases [MSS94]. Each cube always starts
with case 0, then sweeps to case 1, then to case 2, 3 or 4.
But, with two black vertices each, case 2 never sweeps to
case 3 or 4. Instead, case 2 may sweep to cases 5 or 6, but
not 7, since case 2 has two edge-adjacent black vertices and
case 7 has no edge-adjacent black vertices. And so forth, un-
til the full finite state machine is constructed. We will use
this representation to impose indirect constraints on the pos-
sible configurations of the trilinear interpolant.

4. The Trilinear Interpolant

Trilinear interpolation repeats linear interpolation with re-
spect to the x, y and z axes sequentially. Thus, for values
T000,T001,T010,T011,T100,T101,T110,T111 at the vertices of
the cube [0,1]3, the trilinear interpolant is [Nie03]:

T (x,y,z) = axyz+bxy+ cyz+dxz+

ex+ f y+gz+h (1)

a = T111−T110−T101−T011 +

T100 +T010 +T001−T000

b = T110−T100−T010 +T000

c = T011−T010−T001 +T000

d = T101−T100−T001 +T000

e = T100−T000

f = T010−T000

g = T001−T000

h = T000

Saddle points exist where the gradient is zero, i.e. where
all three partial derivatives are zero [Nie03]:

δT
δx

= ayz+dz+by+ e = 0 (2)

δT
δy

= axz+ cz+bx + f = 0 (3)

δT
δz

= axy+ cy+dx +g = 0 (4)

Equations 3 and 4 can be solved for y,z in terms of x and
substituted into Equation 2 to obtain [Nie03]:

x =
1
a

[
−b±

√
−ayaz

ax

]
(5)

y =
1
a

[
−c±

√
−axaz

ay

]
(6)

z =
1
a

[
−d±

√
−axay

az

]
(7)

ax = ae− cd

ay = a f −bd

az = ag−bc

Equations 5-7 are dependent on each other, and there are
at most two distinct body saddles with distinct isovalues:

s = m±~v (8)

m =
1
a

(−c,−d,−b))

~v =
1
a

(√
−ayaz

ax
,

√
−axaz

ay
,

√
−axay

az

)

Both midpoint m and vector ~v affect our analysis. More-
over, the components of v are interdependent, so vx = 0 if
and only if vy = vz = 0, and two distinct saddles su, the upper
and sl , the lower saddle, have isovalues u > l respectively.

Linear changes of variable move isosurfaces in domain or
in range. L(x) = p+qx scales and translates along the x-axis
so that L(m) = (p+mx,my,mz) and~v = (qvx,vy,vz), i.e. the
location of the midpoint is translated and the locations of the
saddles are scaled and translated along the x− axis.

Setting p = 1 and q =−1 reflects the interpolant and pairs
of isovalues along x-aligned edges. Since this also applies to
the y− and z− axes, we can therefore assume that vx,vy,vz >
0, and that the development of isosurfaces occurs along the
line m +~vt. We can then force the upper saddle to be su =
m−~v and the lower saddle sl = m +~v by inverting ~v and
reflecting along all three axes.
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Figure 1: Isosurface evolution of crackfree Marching Cubes [MSS94], represented as a finite state machine [CS07]. Not all
cases exist in a simple block. Note that Case 4 must be followed by Case 6, implying the existence of a face saddle in the block.

4.1. Cross-Gradients on Midpoint Lines

We will also exploit the uniformity of gradients perpendicu-
lar to midpoint lines - axial lines x =− b

a , y =− c
a , or z =− d

a
through the midpoint m. Note that δT

δx is independent of x in
Equation 2 and is linear in z for a given y value. For y =− c

a :

δT
δx

= a(−d
a
)z+dz+b(−d

a
)+ e (9)

= −dz+dz− (
bd
a

)+ e (10)

=
ax

a
(11)

It follows that the gradient perpendicular to a midpoint line
is constant along that line.

5. Overview of Case Construction

To show that Nielson’s cases are complete and correct, we
will divide each cube into blocks - axis-aligned rectilinear
subsets or supersets of the cube. Instead of dividing equally
[CLL∗88], we use planes that guarantee simple blocks -
blocks which only have body or face saddles at their vertices.
Section 6 shows that such simple blocks contain a single sur-
face homeomorphic to a sheet. Section 7 then constructs the
cases where Equation 8 has two solutions by defining an or-
dering of the subblocks’ vertices, then using this to construct
finite state machines showing the development of cases in
the cube. Similarly, Section 8 will deal with cubes with one
saddle, while Section 9 will deal with cubes with no saddle,
and Section 10 deals with saddles outside the initial cube.
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Face Vertex
Edge Point
Edge Loop

Figure 2: Dual Graph of Simple Block, showing edge
loops. Since linearity precludes multiple loops intersecting
an edge, and lack of face saddles precludes multiple loops
intersecting a face, only one configuration is possible: base
case 4C, which we know to be impossible.

6. Handling Simple Blocks

We will show that a simple block B has isosurfaces that must
intersect faces of B, that cases 3, 4, 6, 7, 10, 12, & 13 and
their complements imply the presence of face or body sad-
dles, and that each remaining case has a single surface that
is homeomorphic to a sheet (i.e. without handles).

Lemma 1 Each surface in block B intersects some face of B.

Proof: Assume not. Then there is a surface C entirely con-
tained in the interior of B. As a contour of a continuous func-
tion, it is a closed surface with non-empty interior. Draw an
axis-parallel line through any point in this surface’s interior.
This line must intersect the surface in at least two points,
which therefore have the same isovalue. Since the trilinear
interpolant on an axis-parallel line is linear, all points on this
line have the same isovalue, including the points at which
the line intersects the boundary of the cell. 2

Lemma 2 Cases 3, 4, 6, 7, 10, 12, 13, 7C, 6C, 4C and 3C
may not occur in a simple block.

Proof: Since simple blocks have face saddles only at their
vertices, they may not have ambiguous faces with two diag-
onally opposed black vertices and two diagonally opposed
white vertices, as the (bilinear) interpolant on such a face
would have a saddle point [NH91]. Since cases 3, 6, 7, 10,
12, 13, 7C, 6C and 3C all have ambiguous faces, they cannot
occur in a simple block. Moreover, since case 4 must always
be followed by case 6, which has an ambiguous face, case 4
cannot occur either, and similarly, case 4C cannot occur. 2

Lemma 3 Each isosurface in a simple block B is connected
(i.e. it has only one contour).

Proof: Suppose not. Then there exist at least two dis-
joint surfaces. By Lemma 1, these surfaces each intersect
the faces of B in edge loops connecting one edge to an-
other [NH91]. Since none of the faces are ambiguous, no
face can have more than one edge loop and the cycles are
disjoint. Only one set of two edge loops is then possible,

as shown in Figure 2. But this describes base case 4 or 4C,
which cannot occur in a simple block. 2

Theorem 4 Every isosurface in a simple block B is homeo-
morphic to a sheet.

Proof: For reasons of space, we give an outline only. Sup-
pose not. There must be a highest isovalue at which the sur-
face increases genus, which may only happen at a point that
is locally a saddle point p at which two isosurfaces meet.
This point may be in the interior, on a face, on an edge, or at
a vertex. Interior: p must therefore be a body saddle, which
cannot happen in a simple block. Face: if either of the two
isosurfaces fails to intersect the face, p must again be a body
saddle. So both isosurfaces intersect the face, and p is then a
face saddle, which cannot happen in a simple block. Edge:
if either isosurface is interior, p must be a body saddle, so
both intersect adjacent faces. But, with two adjacent (non-
ambiguous) faces, each must be on a different face, and p
must be a body saddle. only remaining possibility is that the
point is at a vertex of the cube, and a contradiction can be
established in this case based on monotone paths. 2

Corollary 5 In a simple block B, every isosurface is of case
0, 1, 2, 5, 8, 9, 11, 14, 5C, 2C, 1C, or 0C, and the standard tri-
angulations [LC87,MSS94] for these cases are topologically
equivalent to the correct contours.

7. Blocks with Two Body Saddles

We know from Equation 5 that there may be zero, one or
two body saddles. We consider each possibility separately,
divide non-simple blocks into multiple simple blocks, then
use finite state machines to examine the sequence of cases.
For simplicity, we assume that all body saddles are inside the
block until Section 10.

If there are two body saddles, we divide the cube into sim-
ple blocks with axis-perpendicular planes passing through
each saddle, as shown in Figure 3. From Section 4, we know
that the two saddles su and sl have distinct isovalues u > l,
and that vx,vy,vz > 0 with su closer to (0,0,0) than sl .

We thus divide the cube into the blocks defined by the
planes x = 0,xu,xl ,1, y = 0,yu,yl ,1, z = 0,zu,zl ,1, where
(xu,yu,zu) = (px − vx, py − vy, px − vz) and (xl ,yl ,zl) =
(px +vx, py +vy, px +vz). These planes define a set of points
(vertices - various colours), a set of lines (green), and sub-
blocks. We will use Ti jk to refer to the isovalue at vertex
(i, j,k), where i, j,k ∈ {0,u, l,1} For example, the isovalue
of the upper saddle can be written as Tuuu, while the isovalue
of the adjacent vertex in the +z direction will be Tuul . More-
over, each line is axis-parallel and therefore linear in T .

Now, the trilinear interpolant is linear along axis-parallel
lines, and at a body saddle, δT

δx = δT
δy = δT

δz = 0. Since each
partial derivative is the slope of T along an axis-parallel line
T is constant on these lines, and all points co-axial with a
saddle have the same isovalue.
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Figure 4: Ordering of Sub-block Vertices, shown as a set of planes. Arrows show the direction of ascent. Note that face saddles
may only occur in the central subblock on each face.

Figure 3: Subdivision of Block with Two Saddles. Broadly
speaking, darker colours have higher isovalues, lighter
colours have lower isovalues. Red indicates vertices with
the same isovalue u as the upper saddle, yellow indicates
vertices with the same isovalue l as the lower saddle. Other-
wise, vertices of the same colour need not share an isovalue
- black implies an isovalue higher than u, purple is higher
than l, orange is lower than u, white is lower than l.

Coding the upper and lower saddle isovalues u and l as
red and yellow, we extend them as shown, then consider
cross-gradients. A line with one red and one yellow then has
known ordering (black is greater than u, white is lower than
l). Similarly, we can identify the purple vertices as above l
but known to be above u, and the orange vertices as below u
but not known to be below l. These relationships are easier
to see on the individual planes shown in Figure 4: the initial
values of u and l allow us to deduce first the black gradients
on lines, then the grey gradients on the remaining lines.

Now consider the x = 0 face shown at the left of Figure 4.
We know that ambiguous faces only occur when two diago-
nal vertices are both higher than the remaining two vertices.
As we can see from the figure, this can only happen in the
central subface, where u and l are known to be lower than
the two remaining values. Moreover, none of the remaining

x = 0 plane plane of upper saddle

u

ll u

uu

gradient deduced from u & l
gradient subsequently deduced
asymptotes of face saddle

f >f
f f f

f>f

u
u

?

??

Figure 5: Ordering of Sub-block Vertices for Face Block.
Extra vertices are added to the central face of the x = 0 plane
and the plane of the upper saddle, and their vertex ordering
fixed. Vertices marked ’?’ have values between l and u.

subfaces on any of the planes has this configuration. It then
follows that the central subblock on each face has one face
saddle and no other subblock has any face saddles.

7.1. Cases for the Face Block

As an example, we now construct the finite state machine for
this face block. We deal with the face saddle by subdivid-
ing the face block into four simple blocks by passing planes
through the face saddle perpendicular to the face. Since the
face saddle has zero gradient on the face, the added vertices
on the x = 0 have the same isovalue f as the saddle. And the
additional points on the plane of the upper saddle will have
values between u and l, as shown in Figure 5. Since none of
the subfaces thus constructed are ambiguous, we know that
the subblocks are simple blocks. Moreover, the constraints
marked in Figure 5 impose severe constraints on the cases
that may occur in which order, as shown in Figure 6.

Only vertices 0ul and 0lu have isovalues > f , as marked,
so a sweep starts as case 0 in each sub-blocks, then sweeps
past 0ul or 0lu, generating case 1 in one sub-block and case 0
in the other three, giving an overall case 1 in either case. We
then sweep past the other of 0lu and 0ul, generating Niel-
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Figure 6: Cases Possible for Face Block. Note how the se-
quence of cases in individual simple blocks can be used to
build up non-simple cases such as 3.1.

son’s case 3.0, in which two separate surfaces appear. We
next sweep past f , and get case 5 in two subblocks, case
8 in the other two, generating case 3.1, in which a single
tent-like surface appears. The next isovalue swept past is u,
giving cases 1C, 2C, 2C and 5, generating case 1C overall.
Finally, although the cases in individual sub-blocks change,
we generate case 1C until case 0C is reached.

We now ignore the additional vertices inserted and ob-
serve that this block uses cases 0, 1, 3.0, 3.1, 1C and 0C, with
the face saddle being used to disambiguate between cases
3.0 and 3.1 as in the Asymptotic Decider [NH91]. More-
over, each of the three face blocks which includes the upper
saddle uses this sequence of cases, while the remaining three
use the complementary cases.

1

1

1

1

1

1

0 0

1

1

1

1

Black Corner Purple Corner

Figure 7: Left: Sample Evolution Near Black (High) Cor-
ner. Right: Evolution of Surfaces near Purple (High) Corner.
Case Numbers are those used by Nielson [Nie03].

7.2. Cases at High-Isovalue Corners

We now turn our attention to the entire block. In our iso-
value sweep, we note that the three black corners have iso-
values higher than either saddle, while the purple corner of
the block must have isovalues higher than the lower saddle,
but may or may not have isovalues higher than the upper sad-
dle. At a black corner such as 100, the sequence (subject to
symmetries) is as shown in Figure 7. Given our constraints
from Figure 4, the corner itself is swept first, then each of its
immediate neighbours

Let us begin by considering the evolution of a surface at
one of the black corners, e.g. corner 100, as shown in Fig-
ure 7. The constraints in Figure 4 require that the first vertex
swept past is the corner. Moreover, the red, yellow, orange
and white vertices are all at lower isovalues than all black
vertices, so the surface must connect across the face saddles
to the adjacent black corners before the surface may sweep
through the higher (red) saddle. Consequently, the local de-
velopment at the corner is that shown in Figure 7 until con-
nections at face saddles occur, subject to minor variations in
the order in which vertices are swept past.

Similarly, as shown in Figure 7, development at the purple
corner of the block is strongly constrained by the yellow,
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orange and white vertices known to have lower isovalues,
and by the constraints shown in Figure 4. Consequently, the
development of the surface follows the progression shown in
Figure 7, subject to symmetries.

7.3. Overall Evolution in Block

Now that we have analysed the behaviour of the surfaces
near each corner and at each face saddle, we can develop
the set of cases swept through by the isosurface in the full
block - Figure 8 shows the evolution possible, with Figure 9
showing the surfaces in the first few states. Note that the
transition from 7.3.0 to 9 involves sweeping past the orange
vertices at the near corner of the block, but this is just the
inverse of the case shown in Figure 7, as these vertices have
isovalues lower than the upper saddle.

0

1 1

3.0 3.0

7.0 3.1 7.0

13.0 7.17.1

7.2 13.1

7.3.1 13.2

7.3.0

9

13.3.1+

13.3.0

C7.3.0 13.3.1-

C7.3.1 13.6

C7.2 13.5

13.7 C7.1C7.1

C7.0 C3.1 C7.0

C3.0C3.0

C1C1

C0

Figure 8: Finite State Machine In Block with Two Body Sad-
dles. See Figure 9 for surfaces in first few states. Case (state)
numbers as in Nielson [Nie03].

8. One Body Saddle

In the previous section, we showed which cases are possible
when two body saddles exist in the block. One body sad-
dle can occur in one of two ways: either there can be only
one solution to Equation 8 (i.e. ~v =~0), or there can be two
saddles, only one of which occurs inside the block.

If there is only one solution, then~v =~0, and the midpoint

m is the body saddle. Recall from Section 4.1 that the partial
derivatives perpendicular to the midpoint lines are constant.
Since the three partial derivatives at the body saddle are
known to be zero, it follows that the partial derivatives to the
midpoint lines are also zero. Moreover, the trilinear function
is linear on axis-parallel lines in the midpoint planes. Thus,
each line perpendicular to a midpoint line has zero gradi-
ent along it, and it follows that every point in each midpoint
plane has the same function value as m, the saddle point. In
particular, if we split the block along the midpoint planes,
all vertices of sub-blocks except the original vertices of the
block will have function value Tmmm.

However, by assumption, the vertices of the original block
are unique. Thus, at least one of them has a function value
other than Tmmm - without loss of generality, T000 < Tmmm.
Since T0m0 = Tmmm, the gradient along the line y = 0 is posi-
tive, so T010 > Tmmm, as are T001 and T100. Continuing in this
fashion, we find that all vertices of the block with even par-
ity are below the saddle, while all vertices of odd parity are
above the block. Each sub-block then has 7 vertices at Tmmm
and 1 that is either above or below - as a result, only cases 0,
1 or 1C and 0C are possible. Combining the sub-blocks, only
cases 0, 1, 3.0, 7.0, 13.0 and their complements are possible.

9. No Body Saddles

It is possible for there to be no body saddles in the block
either because there are no body saddles (no real roots of
Equations 5-7), or because there are body saddles which
simply do not occur in the block, in which case, as in Sec-
tion 8, we have subsets of the surfaces developed for one
or two body saddles. We therefore concentrate on the case
where no such body saddles exist anywhere. The analysis
will follow the pattern broadly set out above: first, we will
subdivide the block to constrain the possible face saddles,
then establish an ordering, then consider the evolution in
each sub-block, then reassemble the sub-blocks to obtain the
overall evolution.

We first note that, even where there are no body saddles,
the point m = (−c

a , −d
a , −b

a ) is still well-defined in Equa-
tion 8 unless a = 0 (the degenerate case). If m is not in
our block, we can use use linear transformations to scale
the block to include m. Without loss of generality, there-
fore, we assume that m is in the block, and split the block
with axis-perpendicular planes through m. Moreover, since
we know that we can add or subtract a constant to all isoval-
ues without changing the fundamental topology, we assume
that Tmmm = 0.

As with the two body saddle case, our next task is to set
up inequalities that constrain the possible cases. We recall
from Section 4.1 that the gradients along the midpoint lines
are constant, and equal to ax

a , ay
a and az

a . Since the discrimi-
nant in Equations 5 to 7 is negative when no saddles exist, it
follows that none of ax, ay or az may be zero, and that there-
fore the partial derivatives at m are non-zero. Without loss of
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Figure 10: Ordering of Vertices in No Body Saddle Case.
The partial derivatives at the midpoint are guaranteed to be
non-zero and are assumed to be positive. From Section 4.1,
we also know the partial derivatives at the ends of the mid-
point lines. See text for balance of development

generality, we assume that they are all positive - if not, we
merely apply a reflection to that axis to reverse the direction.

Moreover, the partial derivatives perpendicular to the mid-
point lines are constant, so we know the partial derivatives at
the ends of the midpoint lines. Let the function values at the
positive ends of these lines be α,β,γ > 0, as marked in Fig-
ure 10. Since the lines passing through these points have the
same gradient as those passing through the midpoint, we can
easily determine the values α+β, α+ γ and β+ γ marked in
the figure. We next observe that these points define a sub-
block, of which only the isovalue δ is not known relative to
the others. We evaluate Equation 5 for this sub-block, and
obtain (derivation omitted):

a′ = δ−α−β− γ

a′x = αa′

a′y = βa′

a′z = γa′

Since the discriminant under the square root sign must be
negative, we know that:

− αa′βa′

γa′
< 0

and since we know that α,β,γ > 0, it follows that:

a′ > 0

δ−α−β− γ = 0

δ > α+β+ γ

δ > α+β,α+ γ,β+ γ (12)

which gives us three additional gradients, plus three sym-
metrically computed gradients at 000.

Subject to symmetry, the only remaining relationship to
be considered is that between 101 and 100. This may point
in either direction, but we can force T101 < T100. T increases
by δ− (α + γ) > β from 1m1 to 111, but only by beta from

many steps omitted, 
but all leading to

0

1

6.1C

6.0C

3.1C

3.0C2C

1C

0C

Figure 11: Block with Face Saddle in No Body Saddle Case.
Although following the individual cases is tedious, the evo-
lution at the face saddle is resolved by the evolution in the
subblocks.

1mm to 11m. Thus, following backwards through 101 and
10m, eventually we will find points (1,y,1) and (1,y,m) for
which T (1,y,1) < T (1,y,m) < T (1,y,0). We therefore move
the boundary of the block outwards until this is satisfied: all
other inequalities determined so far are unchanged. Repeat-
ing this up to six times, one for each face of the block, we
see that we are guaranteed that our block is contained within
some block for which all of the inequalities shown hold.

We note that face saddles can occur only in the faces
marked, guaranteeing that no more than one face saddle, and
no body saddle, may occur in each sub-block. Repeating the
process in Section 7.1, we end up with Figure 11 or its con-
verse as the evolution in six of the sub-blocks, and a simple
evolution in the two remaining blocks.

Finally, we again assemble the individual sub-blocks, and
discover that, subject to symmetry and to the detailed or-
dering of the vertices, the evolution if no body saddles are
present follows the sequence shown in Figure 12.
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Figure 12: Example of Overall Evolution in No Saddle Case.
Once the bottom case is reached, the sequence reverses.

10. Saddles Outside Block

In the above, we assumed that all body saddles were inside
the block. This is not always the case, but can be handled by
expanding the block to include all body saddles - the cases
used are then subsets of the cases shown above. Detailed
analysis follows the same pattern as above - establishing in-
equalities to constrain vertices, dividing into simple blocks,
and building up the result from simple blocks.

Ultimately, all of the cases presented by Nielson [Nie03]
were encountered and no others.

11. Conclusions & Future Work

We have established that Nielson’s configurations are com-
plete and correct. Moreover, we have shown that there are
two basic possibilities for the development of isosurfaces in
the cell, involving two body saddles and no body saddles, re-
spectively, plus one (degenerate) case with one body saddle,
and observed that all other possibilities are merely subsets of

these. We have also built up a set of techniques - division into
simple blocks, constraint by inequalities, and reconstruction
from simple blocks. We believe that these techniques will
significantly ease the task of determining tessellation cases
for higher order interpolants and for the quadrilinear inter-
polant.

While the proof shown should in principle be usable for
tessellation, the division of each cube depends on the body
saddles of that cube. In practice, this means that triangulated
approximations in adjacent cells will show cracks similar to
the original Marching Cubes. We believe that this can be
remedied by adjustments on the faces of the cubes, and that
this will allow high-quality approximations of the correct tri-
linear surface.
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Figure 9: Partial Development of Surfaces In Block with Two Body Saddles. The surface at the far (purple) corner develops
independently for all isovalues greater than that of the lower (yellow) saddle. The surfaces at the remaining high (black) vertices
are swept past one at a time in accordance with Figure 7. Note how constrained the sequence of cases is, as all black vertices
must be swept past before the high (red) body saddle may be swept past. Only part of the finite state machine is shown with
surfaces.
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