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Abstract

A novel 3D model classification and retrieval method, based on the PANORAMA representation and Convolutional Neural Net-
works, is presented. Initially, the 3D models are pose normalized using the SYMPAN method and consecutively the PANORAMA
representation is extracted and used to train a convolutional neural network. The training is based on an augmented view of
the extracted panoramic representation views. The proposed method is tested in terms of classification and retrieval accuracy
on standard large scale datasets.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—Visible line/surface algorithms I.3.3 [Computer Graphics]:
Picture/Image Generation—Viewing Algorithms I.5.1 [Pattern Recognition]: Models—Neural Nets

1. Introduction

This work proposes a novel 3D object classification and retrieval
method, based on the PANORAMA [PPTP10] 3D shape descrip-
tor and a convolutional neural network architecture. The proposed
method suggests a learning strategy where the panoramic view im-
ages of the 3D models are fed to a convolutional neural network
(CNN) [LBBH98, HL06].

The 3D models are initially pose normalized, based on their
panoramic view images, using the SYMPAN [STP14] pose normal-
ization algorithm which is based on reflective symmetry. Next, the
PANORAMA representation is extracted from the pose normalized
3D models on both the spatial and orientation domains. These two
distinct representations are concatenated to create an augmented
panoramic view, used for training the convolutional neural network.
It is further suggested that a reduction in the size of the augmented
panoramic view representation actually benefits the training proce-
dure.

The motivation behind the aforementioned method is that the
PANORAMA representation is able to bridge the dimensionality
gap between the 3D object space and the 2D image input typically
required by a convolutional neural network, in a very efficient man-
ner. The PANORAMA representation, previously proposed by our
team, has already proven to be a successful hand-crafted 3D model
descriptor which has achieved state of the art 3D model retrieval
performance in various implementations [PPTP10, STP14, STP13,
SPK∗16]. One of these implementations is the SYMPAN pose nor-
malization method. SYMPAN has achieved highly accurate results

in 3D model pose normalization, as measured via 3D model re-
trieval performance.

The performance of the proposed method is evaluated in terms of
accuracy on both 3D model classification and retrieval tasks. The
dataset used for the evaluation is the publicly available Princeton
ModelNet 3D CAD model dataset [WSK∗15]. This dataset is es-
pecially designed for machine learning algorithms, thus containing
both training and testing partitions. The ModelNet dataset is orga-
nized into two subsets, ModelNet-10, which is categorized into 10
model classes and containing 3D models that are manually cleaned
and oriented, and ModelNet-40, categorized into 40 model classes,
containing 3D models that are manually cleaned but not oriented.

The remainder of this paper is organized as follows: Section 2
briefly discusses recent works on 3D model classification and re-
trieval with emphasis on deep neural network methods. Section 3
details the proposed method. Section 4 presents the experimental
procedure along with the corresponding results. Finally, in Sec-
tion 5 conclusions are drawn and discussed.

2. Related Work

One categorization for 3D shape representation methods can be
performed based on the dimensionality of the representation data:
(a) 2D image-based representations (i.e. planar and panoramic pro-
jections), (b) 3D model-based representations (i.e. 3D shapes, point
clouds and voxels) and (c) higher levels of data representations (i.e.
3D videos, doxels etc). Recent works of the first two categories will
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be discussed in the sequel, as these are most relevant to the problem
at hand.

One of the most acknowledged methods for 3D object retrieval,
based on the extraction of features from 2D representations of the
3D objects, was the Light Field descriptor, proposed by Chen et
al. [CTSO03]. This descriptor comprises Zernike moments and
Fourier coefficients computed on a set of projections taken at the
vertices of a dodecahedron. Su et al. [SMKLM15] present a CNN
architecture that combines information from multiple views of a
3D shape into a single and compact shape descriptor. They show
that this descriptor is able to achieve higher recognition perfor-
mance than single image recognition architectures. Papadakis et al.
in [PPTP10] proposed PANORAMA, a 3D shape descriptor that
uses a set of panoramic views of a 3D object which describe the po-
sition and orientation of the object’s surface in 3D space. For each
view the corresponding 2D Discrete Fourier Transform and the 2D
Discrete Wavelet Transform are computed. Shi et al. in [SBZB15],
convert each 3D shape into a panoramic view, namely a cylinder
projection around its principle axis. Then, a variant of CNN is used
for learning the representations directly from these views. A row-
wise max-pooling layer is inserted between the convolution and
fully-connected layers, making the learned representations invari-
ant to the rotation around a principal axis. In [SBZB15], the authors
use panoramic views that feed a CNN for 3D model categorization
and retrieval. Although similar to PANORAMA, the authors do not
use the two different representations of PANORAMA (one distance
based and one angle-based), nor the three standard projection axes.
Furthermore, although rotation invariance on one axis is achieved
through a specially designed layer of the proposed CNN architec-
ture, it is not described how the key problem of pose normalization
is solved. (Panoramic views change drastically as the orientation of
a 3D model varies).

In [KFR03] Kazhdan et. al. proposed the Spherical Harmonic
Representation, a rotation invariant representation of spherical
functions in terms of the energies at different frequencies. This de-
scriptor is a volumetric representation of the Gaussian Euclidean
Distance Transform of a 3D object, expressed by norms of spher-
ical harmonic frequencies. Wu et al. [WSK∗15] propose to repre-
sent a geometric 3D shape as a probability distribution of binary
variables on a 3D voxel grid, using a Convolutional Deep Belief
Network. Sinha et al. [SBR16] propose an approach of converting
the 3D shape into a ’geometry image’ so that standard CNNs can
directly be used to learn 3D shapes, thus bridging the associated
representation gap. They create geometry images using an authalic
parametrization on a spherical domain. This spherically parameter-
ized shape is then projected and cut to convert the original 3D shape
into a flat and regular geometry image.

A summarized categorization of the aforementioned methods
based on their usage of Machine Learning (ML) and their repre-
sentation dimensionality is presented in Table 1.

Throughout the current literature, view-based representation
methods have proven to be more accurate in both 3D model classifi-
cation and retrieval (see also Section 4). The (view-based) method
that was employed in this work is based on the successful hand-
crafted PANORAMA descriptor representation, extending its us-
age based on CNNs. The proposed method, in a manner similar

Methods using ML Methods not using ML

2D
MVCNN [SMKLM15] LFD [CTSO03]
DeepPano [SBZB15] PANORAMA [PPTP10]

3D
3D ShapeNets [WSK∗15] SPH [KFR03]
Geometry Image [SBR16]

Table 1: Method categorization based on the usage of Machine
Learning (ML) and dimensionality of the descriptor (2D or 3D).

to, but in many ways extending [SBZB15], feeds a CNN with the
PANORAMA representation (both distance and angular) for the
three principal projection axes. In addition, the proposed method
uses a PANORAMA-based pose normalization method ( [STP14]),
in order to normalize the panoramic views of the 3D models, a
necessary step that ensures uniformity among the descriptors. In
[SBZB15] the authors only use a single panoramic view (distance)
for one projection axis. Furthermore, the authors do not clarify how
the problem of pose normalization is handled (except for the rota-
tion invariance of the 2D panoramic image projection axis). Ta-
ble 2 summarizes the differences between the proposed method
and [SBZB15].

PANORAMA-NN DeepPano
2D Image Representation angle, distance distance
Projection Axes XXX , YYY , ZZZ one axis
Pose Normalization XXX , YYY , ZZZ one axis

Table 2: Differences between the proposed method (PANORAMA-
NN) and the method in [SBZB15] (DeepPano).

3. Methodology

In this section, the proposed 3D model classification and retrieval
method, based on the PANORAMA representation views and con-
volutional neural networks is presented. For completion, in the
background subsection, the key methodologies used and previously
developed by our team (i.e. the PANORAMA representation and
the SYMPAN pose normalization method) are briefly discussed.

(a) (b)

Figure 1: (a) A projection cylinder for the acquisition of a 3D
model’s panoramic view and (b) the corresponding discretization
of its lateral surface to the set of points s(φu,yv)

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

2



K. Sfikas, T. Theoharis & I. Pratikakis / Exploiting PANORAMA for CNN Classification and Retrieval

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NDM

50 100 150 200 250 300 350

0 50 100 150 200 250 300 350
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Symmetry Score

W

S
y

m
(W

)

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NDM

50 100 150 200 250 300 350

0 50 100 150 200 250 300 350
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Symmetry Score

 

 

W

S
y

m
(W

)

Figure 2: Two sample 3D models along with their panoramic views and symmetry plane estimations as these are employed in the SYMPAN
pose normalization method.

3.1. Background

3.1.1. PANORAMA Representation Extraction

Let a projection cylinder be defined as a cylinder whose axis is
aligned with one of the principal axes of space (e.g. the z axis),
as described by Papadakis et al. [PPTP10]. To obtain a panoramic
view for a 3D model, it is projected onto the lateral surface of a
cylinder of radius R and height H = 2R, centered at the origin, with
its axis parallel to one of the principal axes of space, see Fig. 1a.
The value of R is set to 2 ∗ dmax where dmax is the maximum dis-
tance of the model’s surface from its centroid.

In the following, the lateral surface of the cylinder is parameter-
ized using a set of points s(φ,y) where φ ∈ [0,2π] is the angle in
the XY plane, y ∈ [0,H] and the φ and y coordinates are sampled at
rates 2B and B, respectively (B is set to be equal to 180). The φ di-
mension is sampled at twice the rate of the y dimension to account
for the difference in length between the perimeter of the cylinder’s
lateral surface and its height. Although the perimeter of the cylin-
der’s lateral surface is 2π ' 3 times its height, the sampling rates
are set at 2B and B, respectively, as these values were experimen-
tally found to give good results. Thus, the set of points s(φu,yv) are
obtained, where φu = u∗2π/(2B), yv = v∗H/B, u∈ [0,2B−1] and
v ∈ [0,B−1]. These points are shown in Fig. 1b.

Next, the value at each point s(φu,yv) of the panoramic view
shall be determined. The computation is carried out iteratively
for v = 0,1, ...,B− 1, each time considering the set of coplanar
s(φu,yv) points, i.e. a cross section v of the cylinder at height yv
and for each cross section rays are cast from its center cv in the φu
directions.

The cylindrical projections are used to capture two different
characteristics of a 3D model’s surface; (i) the position of the
model’s surface in 3D space, (referred to as Spatial Distribution
Map or SDM), and (ii) the orientation of the model’s surface, (re-
ferred to as Normals’ Deviation Map or NDM). To capture these
characteristics two kinds of cylindrical projections s1(φu,yv) and
s2(φu,yv) are used.

To capture the position of the model’s surface, for each cross
section at height yv, the distances from cv of the intersections of the
model’s surface are computed with the rays at each direction φu.
Let pos(φu,yv) denote the distance of the furthest from cv point of
intersection between the ray emanating from cv in the φu direction

and the model’s surface; then s1(φu,yv) = pos(φu,yv). The value
of a point s(φu,yv) lies in the interval [0,R], where R denotes the
radius of the cylinder.

To capture the orientation of the model’s surface, for each cross
section at height yv, the intersections of the model’s surface with
the rays at each direction φu are computed and the angle between
a ray and the normal vector of the triangle that is intersected is
measured. To determine the value of a point s2(φu,yv) the cosine of
the angle between the ray and the normal vector of the furthest from
cv intersected triangle of the model’s surface is used. If ang(φu,yv)
denotes the aforementioned angle, then the values of the s(φu,yv)
points are given by s2(φu,yv) = |cos(ang(φu,yv))|n.

The nth power of |cos(ang(φu,yv))| is taken, where n≥ 2, since
this setting enhances the contrast of the produced cylindrical pro-
jection. It has been experimentally found that setting n to a value
in the range [4,6] gives the best results. Also, taking the absolute
value of the cosine is necessary to deal with inconsistently oriented
triangles along the model’s surface.

A cylindrical projection can be viewed as a 2D gray-scale image
where pixels correspond to the sk(φu,yv) intersection points in a
manner reminiscent of cylindrical texture mapping and their values
are mapped to the [0,1] space.

3.1.2. SYMPAN: PANORAMA-based Pose Normalization

Pose normalization is performed using the SYMPAN method
[STP14] which uses the SDM and the NDM extracted in
PANORAMA. Pose normalization is significant in order to main-
tain integrity between the corresponding panoramic view repre-
sentations of the 3D models. The choice of SYMPAN as the
pose normalization method is due to its high integration with
the PANORAMA representation and the fact that the majority of
real-life 3D models (e.g. CAD objects, human and animal ob-
jects, etc) actually exhibit reflective symmetry, to a certain a de-
gree. Methods that exploit symmetries have exhibited high perfor-
mance, both in terms of pose normalization and retrieval accuracy
(see [STP11, KCD∗02, CVB09]).

Initially, a 3D model, having arbitrary pose, is normalized in
terms of translation and scaling using standard techniques. More
specifically, translation normalization is achieved though the defi-
nition of the 3D model’s centroid and the displacement of this cen-
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troid to the coordinate system origin. Consecutively, the 3D model
is scaled so that it becomes exactly inscribed inside the unit sphere.

The estimation of a plane of symmetry of a 3D model cor-
responds to the detection of a line of reflective symmetry in its
panoramic view. Since translation normalization has been per-
formed, the plane of symmetry of the 3D object will pass through
the origin of the coordinate system. The aim is to rotate the symme-
try plane so that it includes the z axis; then the plane of symmetry
will be detectable in the panoramic image.

Once a plane of symmetry is defined, the first principal axis of
the model is set to be the normal to that plane of symmetry (see
Fig. 2). The remaining two principal axes have yet to be estimated.
The 3D model can thus be rotated so that its symmetry plane coin-
cides with one of the principal planes of space (e.g. the XY plane).

To complete the rotation normalization task, the 3D model is pro-
jected onto the surface of a projection cylinder whose axis is one of
the principal axes of space, perpendicular to the symmetry plane’s
normal. The 3D model is iteratively rotated around the normal axis
to the symmetry plane and the corresponding SDM images are cal-
culated. For each SDM image, the variance of its pixel values is
computed and the rotation that minimizes this variance, is defined
as the rotation which aligns the principal axis of the 3D model to
the axis of the projection cylinder.

3.2. Minimized Augmented Panoramic Views Construction

In order to efficiently train an artificial neural network using the
PANORAMA representation, an augmented schema is employed
based on the panoramic views produced with respect to the three
principal axes.

More specifically, for each principal axis, both SDM and NDM
cylindrical view representations are computed, resulting in a total
of six cylindrical view representations for each 3D model. Half of
each view is appended at the end in order to have no ’wrap-around’
gaps in the representation.

The six representations are then stacked together in the following
order: NDM(X), NDM(Y), NDM(Z), SDM(X), SDM(Y), SDM(Z)
(see Fig. 3). The augmented image representations define the in-
put of the convolutional neural network. The total size of each 3D
model’s augmented view is 1,5 * 360 = 540 pixels width by 180 *
6 = 1080 pixels height.

Once the augmented view has been montaged, its size is reduced
to 10% of its original size, namely 54× 108 pixels. This is per-
formed using bicubic interpolation. Although a significant amount
of detail of the original representation is lost due to the resolution
reduction, it has been experimentally found that the minimized rep-
resentation is sufficient to achieve high performance on the clas-
sification task while maintaining feasible neural network training
times (see Section 4).

3.3. Convolutional Neural Network Architecture

The convolutional neural network architecture selected in the pro-
posed implementation is based on a standard scheme, namely an
input layer followed by a set of convolutional layers and finally

Figure 3: Sample augmented panoramic view of a 3D model.
The order of stacked representations are the following: NDM(X),
NDM(Y), NDM(Z), SDM(X), SDM(Y), SDM(Z).

by the fully connected layer(s) of the output. This architecture was
originally proposed by Krizhevsky et al. [KSH12] and has demon-
strated state-of-the-art performance in image classification.

The above network has been simplified for efficiency reasons.
More specifically, three convolutional layers were used and the cor-
responding feature maps are 64, 256 and 1024 respectively. The
kernel size is respectively set to 5, 5, 3 and the padding is set to 2
for all the layers. After each convolutional layer both a ReLU and
a 2×2 max-pooling layer are inserted.

The output of the architecture consists of one fully connected
layer followed by a dropout layer [SHK∗14] used to reduce overfit-
ting. Finally, a softmax layer outputs class probabilities for a given
input 3D model. The class with the highest probability is consid-
ered as the predicted class for the 3D model.

The network is trained using the stochastic gradient descent
method (SGDM) with momentum set to 0.9.

The aforementioned convolutional neural network architecture,
along with the complete pipeline of the proposed method, is shown
in Fig. 4.
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Figure 4: Illustration of the proposed method pipeline, including
the convolutional neural network architecture.

4. Experiments

4.1. Dataset

The dataset used for evaluating the proposed method is the Prince-
ton ModelNet large scale 3D CAD model dataset [WSK∗15]. Mod-
elNet comprises of 127,915 CAD models split into 662 object cate-
gories. The ModelNet dataset offers two subsets, ModelNet-10 and
ModelNet-40, with both training and testing.

ModelNet-10 comprises 4,899 CAD models split into 10 cate-
gories. The models have been manually cleaned and pose normal-
ized in terms of translation and rotation. The train and test subsets
of ModelNet-10 consist of 3,991 and 908 models, respectively.

ModelNet-40 comprises 12,331 CAD models split into 40 cat-
egories. The models have been manually cleaned but they are not
pose normalized. The train and test subsets of ModelNet-40 consist
of 9,843 and 2,468 models, respectively.

4.2. 3D Model Classification

The proposed method is evaluated on the task of classification of
the test subset 3D models for both ModelNet-10 and ModelNet-40
datasets. The performance is measured via the average binary cat-
egorical accuracy (a value of 1 corresponds to the case where the
category of the test 3D model is correctly predicted and 0 other-
wise).

The proposed method is compared against the LightField
descriptor [CTSO03] (LFD, 4,700 dimensions), the Spher-
ical Harmonics descriptor [KFR03] (SPH, 544 dimensions),
the 3D ShapeNets (ML) [WSK∗15], the DeepPano descriptor
(ML) [SBZB15], the Multi-view Convolutional Neural Networks
(ML) [SMKLM15] (MVCNN) and the Geometry Image (ML) de-
scriptor [SBR16]. Descriptors indicated with (ML), they do involve
machine learning.

The proposed method outperforms all aforementioned methods,
in both ModelNet-10 and ModelNet-40, as shown in Table 3.

4.3. 3D Model Retrieval

Another evaluation of the proposed method was performed on the
task of 3D model retrieval. The same datasets were used and the ac-
curacy was measured via the Mean Average Precision (mAP) met-
ric.

Method ModelNet-10 ModelNet-40
PANORAMA-NN (ML) 0.9112 0.9070
LFD 0.7987 0.7547
SPH 0.7979 0.6823
3D ShapeNets (ML) 0.8354 0.7732
DeepPano (ML) 0.8866 0.8254
MVCNN (ML) N/A 0.9010
Geometry Image (ML) 0.8840 0.8390

Table 3: Classification accuracies on the ModelNet-10 and
ModelNet-40 datasets.

To perform the retrieval task, the activations of the fully con-
nected layer of the convolutional neural network for each input 3D
model was used as the corresponding descriptor for that object. A
3D model descriptor is compared against the rest of the 3D model
descriptors using the L1 distance metric.

Table 4 shows the results of the retrieval experiment, com-
paring the methods of the previous paragraph plus the complete
PANORAMA descriptor. Fig. 6 illustrates the Precision-Recall
plots for the proposed and the compared methods on the two Mod-
elNet subsets. The proposed method outperforms the competition
in both datasets.

Figure 5: Retrieval examples for the proposed method on the
ModelNet-10 dataset. First column illustrates the queries while the
remaining columns illustrate the corresponding retrieved models in
rank order. Note that the first retrieved model is the query model in
all cases.

Fig. 5 illustrates qualitative retrieval results for 10 sample query
models. The first column indicates the query and the remaining
columns (left-to-right in retrieval order) indicate the top 10 re-
trieved 3D models from the ModelNet-10 dataset. Note that the first
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Figure 6: Precision-Recall plots for ModelNet-10 (left) and ModelNet-40 (right) datasets. Illustrated are the proposed method (PANORAMA-
NN) compared to five other retrieval methods.

retrieved 3D model is the query model itself while all the retrieved
3D models belong to the same class as the query.

Method ModelNet-10 ModelNet-40

PANORAMA-NN (ML) 0.8739 0.8345

PANORAMA 0.6032 0.4613
LFD 0.4982 0.4091
SPH 0.4405 0.3326
3D ShapeNets (ML) 0.6826 0.4923
DeepPano (ML) 0.8418 0.7681
MVCNN (ML) N/A 0.7950
Geometry Image (ML) 0.7490 0.5130

Table 4: Retrieval accuracies measured in mAP on the ModelNet-
10 and ModelNet-40 datasets.

Fig. 7 illustrates qualitative retrieval failure cases for 4 sample
query models. The first column indicates the query and the remain-
ing columns (left-to-right in retrieval order) indicate the top 4 re-
trieved 3D models from the ModelNet-10 dataset. As illustrated in
the figure, although the retrieved models do not belong to the same
class as the query model, their structure is similar. For example, in
the fourth row the query is from the desk class and the results from
the table class. These two classes contain models whose structure
is very similar. It is therefore considered safe to conclude that these
failure cases are some of the hardest retrieval examples.

4.4. Implementation

The proposed method was tested on an Intel (R) Core (TM) i7
@ 3.60GHz CPU system, with 32GB of RAM and a discrete
NVIDIA (R) TITAN X with 12GB RAM GPU. The system was
running Matlab R2016b. The PANORAMA representation extrac-
tion method was developed in a hybrid Matlab/C++/OpenGL archi-
tecture while the pose normalization procedure was developed in
Matlab. The artificial neural network was implemented on the Mat-
lab Deep Neural Network toolbox, accelerated using the CUDA
instruction set on the GPU.

The average PANORAMA representation view extraction for a

Figure 7: Sample failure cases, in terms of retrieval accuracy, for
the proposed method. First column illustrates the queries while the
remaining columns illustrate the corresponding retrieved models in
rank order.

10,000 face 3D model is 350 ms. The average pose normalization
time for the same typical model is 1,850ms. The artificial neural
network training procedure requires approximately 15 minutes to
converge. When image representations of higher resolution were
used (reduction to 20% of the original size, namely 108×216 pix-
els) the performance gain was considered insignificant (approxi-
mately +0.005%) while the training procedure doubled in time (ap-
proximately 30 minutes).

5. Conclusion

A novel convolutional neural network based method for the clas-
sification and retrieval of 3D models has been presented. The pro-
posed method is presented as a complete pipeline, defining the in-
put, as well as the parameters and structure of the CNN employed.
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Initially, the 3D models of the dataset are pose normalized using
the SYMPAN algorithm. This is a crucial step since not all dataset
3D models are guaranteed to be pose normalized (e.g. as in the
case of ModelNet-40). Next, for each 3D model, the full set of
PANORAMA representations is extracted and concatenated into
an augmented panoramic view structure; note that PANORAMA
assumes that the models are pose normalized. This structure is min-
imized in terms of dimensionality (i.e. resized to 10% if its original
size) and used as input to a convolutional neural network; the latter
performs the classification task or produces the shape descriptor for
retrieval purposes.

PANORAMA, in addition to being a good shape descriptor, was
able to bridge the gap between the initial 3D model representation
and the 2D input required by convolutional neural networks. The
SYMPAN pose normalization method works with reflective sym-
metries and this could partially explain the high accuracy achieved
on the ModelNet datasets, since the latter consist of CAD models
that contain several such symmetries. The ModelNet datasets used
for evaluation were specifically designed for deep neural network
classification applications.

The proposed method was compared against six published works
on the tasks of 3D model classification and retrieval and was able
to outperform them by a significant margin.
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