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Overview
¢ Introduction
* Problem Samples
= Local Shape Matching
= Global Shape Matching
= Symmetry

« Conclusions and Wrap up
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Part I: Introduction

Local Shape Matching

Introduction
* Problem statement and motivation
« Example data sets and characteristics
* Overview: problem matrix

Rigid Local Matching
« Rigid ICP, variants, convergence

Deformation Models
» Deformation modeling and regularizers

 Elastic deformation models, differential geometry background
 Thin shell models vs. volumetric deformation

Local Deformable Shape Matching
« Variational models for deformable matching
¢ Animation reconstruction
¢ Advanced animation reconstruction
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Global Shape matching

Global Shape matching (cont.)

Feature Detection and Description
 Extrinsic features
e Intrinsic features

Rigid, Global
¢ Branch-and-bound and 4PCS

Global, Articulated, Pairwise
» Graph cut based articulated matching

Global, Isometric, Pairwise
* Isometric matching and quadratic assignment
« Spectral matching and applications
* Finding a solution using RANSAC and "PLANSAC" techniques
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Symmetry

Conclusions and Wrap-up

Symmetry in Shapes
¢ Detection
« Voting methods and alternatives
e Structural regularity
¢ Applications

Conclusions and Wrap-up
¢ Conclusions
¢ Future work and open problems

In the end:
¢ Q&A session with all speakers
« But feel free to ask questions at any time
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Problem Statement
and Motivation

Deformable Shape Matching

What is the problem?

Settings:
* We have two or more shapes
* The same object, but deformed
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Deformable Shape Matching

Applications

What is the problem?

Settings:
« We have two or more shapes
« The same object, but deformed

Question:
* What points correspond?

Why is this an interesting problem?

Building Block:

« Correspondences are a building block for
higher level geometry processing algorithms

Example Applications:
e Scanner data registration
« Animation reconstruction & 3D video
« Statistical shape analysis (shape spaces)
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Applications

Deformable Scan Registration

Why is this an interesting problem?

Building Block:

» Correspondences are a building block for
higher level geometry processing algorithms

Example Applications:
¢/ Scanner data registration
* Animation reconstruction & 3D video
« Statistical shape analysis (shape spaces)

Scan registration
 Rigid registration is standard

Why deformation?
e Scanner miscalibrations
= Sometimes unavoidable, esp. for large acquisition volumes
* Scanned Object might be deformable
= Elastic / plastic objects
e In particular: Scanning people, animals
= Need multiple scans
= Impossible to maintain constant pose

ics 2011 Course — Ci i i ic Data Sets

ics 2011 Course — C ting Ce in ic Data Sets

Example: Full Body Scanner

Applications

Full Body Scanning

Why is this an interesting problem?

Building Block:

« Correspondences are a building block for
higher level geometry processing algorithms

Example Applications:
* Scanner data registration
¢/ Animation reconstruction & 3D video

o Statistical shape analysis (shape spaces)
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3D Animation Scanner

Structured Light Scanners

New technology
¢ 3D animation scanners
« Record 3D video —

e Active research area

Ultimate goal
* 3D movie making
* New creative perspectives

»

R Nt

space-time

¥

motion compensated
structured light

color-coded
stereo structured light

courtesy of James Davis, ~ courtesy of Phil Fong,  courtesy of Soren Kénig,
UC Santa Cruz Stanford University TU Dresden
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Passive Multi-Camera Acquisition

Time-of-Flight / PMD Devices

segmentation &
belief propagation

[Zitnick et al. 2004]
Microsoft Research

photo-consistent
space carving

Christian Theobald
MPI-Informatik

PMD Time-of-flight camera
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Animation Reconstruction

Animation Reconstruction

Problems .
* Noisy data

* Incomplete data (acquisition holes) noise
* No correspondences
holes

q
#

missing correspondences

Remove noise, outliers

Fill-in holes
(from all frames)

Dense correspondences
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Applications

Statistical Shape Spaces

Why is this an interesting problem?

Building Block:

« Correspondences are a building block for
higher level geometry processing algorithms

Example Applications:
¢ Scanner data registration
¢ Animation reconstruction & 3D video
«| Statistical shape analysis (shape spaces)

iAiTids

Morphable Shape Models
¢ Scan a large number of individuals
= Different pose
= Different people
« Compute correspondences
» Build shape statistics (PCA, non-linear embedding)
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Statistical Shape Spaces

Numerous Applications:
e Fitting to ambiguous data
(prior knowledge)
e Constraint-based
editing

¢ Recognition,
classification, q ? @

regression / ‘ / ol

9
“

Building such models
requires correspondences

i e
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Data Characteristics

Scanner Data — Challenges

Challanges

“Real world data” is more challenging
e 3D Scanners have artifacts

Rules of thumb:

“Noise”

« “Standard” noise types: B
= Gaussian noise (analog signal processing)
= Quantization noise

» The faster the worse (real time vs. static scans) * More problematic: Structured noise 4’;{ w.,.\
 Active techniques are more accurate = Structured noise (spatio-temporally correlated)
(passive stereo is more difficult than laser triangulation) * Structured outliers
o There is more than just “Gaussian noise”... * Reflective / transparent surfaces
* Incomplete Acquisition
= Missing parts
= Topological noise
ics 2011 Course — Computing Ct i ic Data Sets 29 ics 2011 Course — Computing C in ic Data Sets 30




Challanges

Challanges

“Noise”
| “Standard” noise types: B
= Gaussian noise (analog signal processing)

= Quantization noise " {

¢ More problematic: Structured noise AN Nt/
= Structured noise (spatio-temporally correlated)
= Structured outliers
= Reflective / transparent surfaces

¢ Incomplete Acquisition
= Missing parts

= Topological noise

“Noise”

« “Standard” noise types:
= Gaussian noise (analog signal processing)
= Quantization noise

* More problematic
= Structured noise (spatio-temporally correlated)
= Structured outliers
= Reflective / transparent surfaces

¢ Incomplete Acquisition
= Missing parts
= Topological noise
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Challanges

Challanges

“Noise”
* “Standard” noise types:
= Gaussian noise (analog signal processing)
= Quantization noise
¢ More problematic
= Structured noise (spatio-temporally correlated)

= Structured outliers

= Reflective / transparent surfaces
e Incomplete Acquisition

= Missing parts

= Topological noise

“Noise”

« “Standard” noise types:
= Gaussian noise (analog signal processing)
= Quantization noise
¢ More problematic
= Structured noise (spatio-temporally correlated)
= Structured outliers
= Reflective / transparent surfaces
¢/ Incomplete Acquisition
= Missing parts
= Topological noise

ics 2011 Course - € i i ic Data Sets 33

ics 2011 Course — C ting Ce in ic Data Sets

Outlook

This Tutorial

Different aspects of the problem:
» Shape deformation and matching
= How to quantify deformation?
= How to define deformable shape matching?
» Local matching
= Known initialization
* Global matching
= No initialization
* Animation Reconstruction
= Matching temporal sequences of scans
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Problem Statement:
Pairwise Deformable Matching

Problem Statement

Given:

» Two surfaces S, S, < R3
* Discretization:

= Point clouds S = {s;,...,s,}, s;€ R*or
= Triangle meshes
We are looking for:

* Adeformation function f, ,: S, - R®
that brings S, close to S,
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Problem Statement

We are looking for:
* Adeformation function f, ,: $; - R®
that brings S, close to S,
Open Questions: 5
¢ What does “close” mean? (‘1‘
¢ What properties should f have? -

Next part:
* We will now look at these questions more in detail
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Notations

Computing Correspondences in
Geometric Datasets

ICP + Tangent Space optimization for
Rigid Motions

Eurographics 2011

L ARDIDRO LI

Registration Problem
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Registration with known Correspondence

Given
Two point cloud data sets P (model) and Q (data) sampled from surfaces
@, and @, respectively.

data

Assume @ is a part of @,

{p,} and {g,} such that p, — ¢,
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Registration Problem
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Registration with known Correspondence

Given
Two point cloud data sets P and Q.

Goal
Register Q against P by minimizing the squared distance between the
underlying surfaces using only rigid transforms.

7z

data

{p,} and {g,} such that p, — ¢,

p, = Rp,+t = %IPZ”sz +1-q,

-

R obtained using SVD of
covariance matrix.

alignment
error

0 SN R
X n

a
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Registration with known Correspondence

Squared Distance Function (F)

{p,} and {g,} such that p, — ¢,

p,— Rp,+t = H}lth"RP, +1-q,

X
"

£ R obtained using SVD of 4

EE . ! f

=" covariance matrix. \

r=a-kp ®
P
. 4 o 8
= n
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ICP (Iterated Closest Point)

Squared Distance Function (F)

Iterative minimization algorithms (ICP)

[Besl 92, Chen 92]

po—o o o oo o000 o9

1. Build a set of corresponding 2. Align corresponding points 3. Iterate
points d
N §7 % o / o,
L
X
P
Properties
» Dense correspondence sets F( ® ) dz
. . . X =
» Converges if starting positions are “close” »or
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No (explicit) Correspondence

Registration Problem

Rigid transform o that takes points ¢, = @(q;)

Our goal is to solve for,

min Y F(a(g,),®,)
9;€0

An optimization problem in the squared distance field of P,
the model PCD.
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Registration Problem

ICP in Our Framework

o =rotation (R) + translation(?)

¢ Point-to-point ICP (good for large d)

— — 2 —
Our goal is to solve for, F(X,®p) = (x-p) = 51 1
min Y F(Rg, +1,®,)
Rt 9;€0
e Point-to-plane ICP (good for small d)

Optimize for Rand t. =

P F(X,®p)=({0-(x-p))’ = &=0
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Registration in 2D

Example d2trees

* Minimize residual error  £(,t,,t,)

M,

k

depends on F* data PCD (Q).

2D 3D
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Approximate Squared Distance
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Convergence Funnel

For acurve VY,

Py

d
d'pl

F(x, ¥)= X2+ X5 =5%x2 + x>

[ Pottmann and Hofer 2003 ]

Translation in x-z plane.
Rotation about y-axis.

_‘-_'" 00 /

|| Converges

1 Does not converge
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Convergence Funnel (Invariant) Descriptors

.

£, P:{pi}
%:
AP ) vy e closest point — based on Euclidean distance
2 o000 @ - u',bt,';
T ey G t Py by 2
P2 F Ay AAKH PV DYy p VD
HADIDEY B2 PADNDIDIIIOIDY P={p,a,b,..}
d . VD g YA D
LI TR T Yy My
» ,.e ] _bh 9 ’ .. L] .. ’ e closest point — based on Euclidean distance between
20 @ Yo b point + descriptors (attributes)
Plane-to-plane ICP distance-field
formulation
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Descriptors Integral Volume Descriptor
Lo X
bt v = d ()
i JB.(p)ns
e closest point — based on Euclidean distance .
[ ]
i
mH 4 5
Ve(p) = 41> ——r" + 0(r°)
3 4
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Descriptors When Objects are Poorly Aligned
P={p} ¢ Use descriptors for global registrations
* closest point — based on Euclidean distance global alignment — refinement with local (e.g.,
ICP)
y o
] ]
Y »h »
P={p,,a.,b,..} by, Y
Py Yy p VD
PAMD DO
e closest point — based on Euclidean distance between YA P )y
point + descriptors (attributes) '.' .' L] '. "'
"
R Y
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Aligning 3D Data

Computing Correspondences in _
. If correct correspondences are known, can find
Geometric Datasets correct relative rotation/translation

Local, Rigid, Pairwise

The ICP algorithm and its extensions

LLANDUDNG LK | Sneouovesy. ¢ i &

Eurographics 2011
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Pairwise Rigid Registration Goal Aligning 3D Data

How to find correspondences: User input?
Feature detection? Signatures?

Alternative: assume closest points correspond

@—»/\f

Align two partially-
overlapping meshes
given initial guess

for relative transform
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Outline Aligning 3D Data
... and iterate to find alignment
ICP: Iterative Closest Points e |terative Closest Points (ICP) [Besl & McKay 92]
Classification of ICP variants Converges if starting position “close enough”

 Faster alignment
» Better robustness

ICP as function minimization
m — /\/‘
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Basic ICP

ICP Variants

Select e.g. 1000 random points

Match each to closest point on other scan,
using data structure such as k-d tree

Reject pairs with distance > &k times median

Construct error function:
E= z‘@l +1—gq,

2

Minimize (closed form solution in [Horn 87])

Selecting source points (from one or both meshes)
Matching to points in the other mesh

Weighting the correspondences

Rejecting certain (outlier) point pairs

Assigning an error metric to the current transform

o Uk wNE

Minimizing the error metric w.r.t. transformation
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ICP Variants
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Point-to-Plane Error Metric

Variants on the following stages of ICP
have been proposed:

Matching to points in the other mesh

Weighting the correspondences

Rejecting certain (outlier) point pairs

Assigning an error metric to the current transform

o Uk wWN R

Minimizing the error metric w.r.t. transformation

Selecting source points (from one or both meshes)

Using point-to-plane distance instead of point-to-point
lets flat regions slide along each other [chen & Medioni 91]

N4 NERIRN
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Performance of Variants
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Point-to-Plane Error Metric

Can analyze various aspects of performance:
e Speed
o Stability
e Tolerance of noise and/or outliers
e Maximum initial misalignment

Comparisons of many variants in
[Rusinkiewicz & Levoy, 3DIM 2001]

Error function:
E= Z((Rpx +t—q1‘)'ni)2

where R is a rotation matrix, t is translation vector

Linearize (i.e. assume that sin 8~ @, cos 8 ~1):

r

EzZ((pi—ql.)-n,.+r-(p,.><ni)+t-nl.)2, where r=|r,

r

Result: overconstrained linear system

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets



Point-to-Plane Error Metric Closest Compatible Point

Closest point often a bad approximation to

Overconstrained linear system corresponding point
Ax =b,
. Can improve matching effectiveness by restricting
o o o e om o . match to compatible points
A=« Py o> com o R b= P2y o Compatibility of colors [Godin et al. 94]
f e Compatibility of normals [pulli99]
. .
Solve using least squares o Other possibilities: curvatures, higher-order derivatives,
ATAx= ATh and other local features
x=(ATA)'A"S
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Improving ICP Stability ICP Variants

Closest compatible point

Stable sampling ) Selecting source points (from one or both meshes)
Matching to points in the other mesh

Weighting the correspondences

Rejecting certain (outlier) point pairs

Assigning an error metric to the current transform

I e

Minimizing the error metric w.r.t. transformation
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ICP Variants Selecting Source Points

Use all points

Selecting source points (from one or both meshes) Uniform subsampling
‘ Matching to points in the other mesh
Weighting the correspondences Random sampling

Rejecting certain (outlier) point pairs

Assigning an error metric to the current transform Stable sampling [Gelfand et al. 2003]

 Select samples that constrain all degrees of freedom
of the rigid-body transformation

I

Minimizing the error metric w.r.t. transformation
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Stable Sampling

Stability Analysis

Uniform Sampling Stable Sampling

B s ook sabte

Key: || 300Fsstable

B «oorssubee B soorssuabee
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Covariance Matrix
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Sample Selection

Aligning transform is given by ATAx = ATh, where

Ty

Ty

, —(Pr=q)m
X=| > b: =(P2=qp)m

t
t,
t

« pxmp o« om o>

A:&pzxnzﬁ&nz = |

z

Covariance matrix C = ATA determines the change in error when
surfaces are moved from optimal alighment

Select points to prevent small eigenvalues
» Based on C obtained from sparse sampling

Simpler variant: normal-space sampling
 Select points with uniform distribution of normals
« Pro: faster, does not require eigenanalysis
e Con: only constrains translation
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Sliding Directions

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Result

Eigenvectors of C with small eigenvalues correspond to
sliding transformations

+

- 01l

3 small eigenvalues 3 small eigenvalues 2 small eigenvalues
2 translation 3 rotation 1 translation
1 rotation 1 rotation

A ma

1 small eigenvalue 1 small eigenvalue
1 rotation 1 translation
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Stability-based or normal-space sampling important
for smooth areas with small features

Normal-space sampling

Random sampling

[Geffand]
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Selection vs. Weighting

Projection to Find Correspondences

Could achieve same effect with weighting

Hard to ensure enough samples in features
except at high sampling rates

However, have to build special data structure

Preprocessing / run-time cost tradeoff

Idea: use a simpler algorithm to find correspondences

For range images, can simply project point [Blais 95]
¢ Constant-time
» Does not require precomputing a spatial data structure
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Improving ICP Speed
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Projection-Based Matching

Projection-based matching

Selecting source points (from one or both meshes)
Matching to points in the other mesh

Weighting the correspondences

Rejecting certain (outlier) point pairs

Assigning an error metric to the current transform

oV AE WwWN R

Minimizing the error metric w.r.t. transformation

Slightly worse performance per iteration

Each iteration is one to two orders of magnitude
faster than closest-point

Result: can align

two range images A4 Ty '
in a few milliseconds, Vol
vs. a few seconds fosr
:“ 8.4
g e Lok e et
- I . — - -
L

8 5 180 15 20 29 30 30 4 48 %
Tine (ns,)
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Finding Corresponding Points
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Application

Finding closest point is most expensive stage
of the ICP algorithm

« Brute force search — O(n)

e Spatial data structure (e.g., k-d tree) — O(log n)

Given:
e A scanner that returns range images in real time
e Fast ICP
» Real-time merging and rendering

Result: 3D model acquisition
» Tight feedback loop with user
e Can see and fill holes while scanning
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Scanner Layout

Theoretical Analysis of ICP Variants

One way of studying performance is via empirical
tests on various scenes

How to analyze performance analytically?

For example, when does point-to-plane help? Under
what conditions does projection-based matching
work?
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Photograph
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What Does ICP Do?

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Real-Time Result

Two ways of thinking about ICP:
« Solving the correspondence problem
e Minimizing point-to-surface squared distance

ICP is like (Gauss-) Newton method on an
approximation of the distance function

’_\ f(x)

v

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

What Does ICP Do?

Two ways of thinking about ICP:
* Solving the correspondence problem
e Minimizing point-to-surface squared distance

ICP is like Newton’s method on an
approximation of the distance function

'(x)

—_

\\

\—’\
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What Does ICP Do? Point-to-Plane Distance

Two ways of thinking about ICP:
* Solving the correspondence problem
* Minimizing point-to-surface squared distance

ICP is like Newton’s method on an
approximation of the distance function

o |CP variants affect shape of
global error function or ™~

local approximation \

\—’\

AY
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Point-to-Surface Distance Point-to-Multiple-Point Distance
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Point-to-Point Distance Point-to-Multiple-Point Distance
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Soft Matching and Distance

. Convergence Funnel
Functions

Translation in x-z plane.

Soft matching equivalent to standard ICP on (some) Rotation about y-axis.

filtered surface

Produces filtered version of distance function
= fewer local minima

/

Multiresolution minimization [Turk & Levoy 94]
or softassign with simulated annealing
(good description in [Chui 03]) _ B Converges

1 Does not converge
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Mitra et al.’s Optimization Convergence Funnel
Precompute piecewise-quadratic approximation to '
distance field throughout space if
Store in “d2tree” data structure ANy ) ,000
",r“""u" ':I'. '..."
TN phy VS o Py 2 b
= P2 hF Ay AAK DYDYy p VD
o HF S D2 EDY G » DAY NN
R 5w VD e YA PP Dy
@y TV 5o Yy My
L R T ) ! L)
Yo 0T PR
A Yo
Plane-to-plane ICP distance-field
on formulation
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Mitra et al.”s Optimization

Precompute piecewise-quadratic approximation to
distance field throughout space

Store in “d2tree” data structure

At run time, look up quadratic approximants and
optimize using Newton’s method

* More robust, wider basin of convergence

» Often fewer iterations, but more precomputation
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Computing Correspondences in
Geometric Datasets

Deformation Models

Eurographics 2011

LLANDUDMNG LIk

Mesh Deformation

Global deformation
with intuitive
detail preservation
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Mesh Deformation

Local & global
deformations

. f
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Mesh Deformation

Character posing
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Mesh Deformation

Editing of
“bad” meshes
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Mesh Deformation

Editing of complex meshes
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Mesh Deformation

Reconstruction of deforming objects

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Overview

e )

» Surface-Based Deformation

|+ Space Deformation

» Multiresolution Deformation

- Differential Coordinates

» Outlook: Nonlinear Methods
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Spline Surfaces

+ Tensor product surfaces (“curves of curves”)
— Rectangular grid of control points

k l

s(u,v) = ZdeNl"(u)N]”(v)
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Spline Surfaces

+ Tensor product surfaces (“curves of curves”)
— Rectangular grid of control points
— Rectangular surface patch

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 10

Spline Surfaces

+ Tensor product surfaces (“curves of curves”)
— Rectangular grid of control points
— Rectangular surface patch

* Problems:
— Many patches for complex models
— Smoothness across patch boundaries
— Trimming for non-rectangular patches
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Subdivision Surfaces

+ Generalization of spline curves / surfaces
— Arbitrary control meshes
— Successive refinement (subdivision)
— Converges to smooth limit surface

— Connection between splines and meshes

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 12




Subdivision Surfaces

+ Generalization of spline curves / surfaces
— Arbitrary control meshes
— Successive refinement (subdivision)
— Converges to smooth limit surface

— Connection between splines and meshes
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Spline & Subdivision Surfaces

+ Basis functions are smooth bumps
— Fixed support
— Fixed control grid

+ Bound to control points
— Initial patch layout is crucial
— Requires experts!

+ Decouple deformation from surface
representation!

Modeling Metaphor

+ Mesh deformation by displacement function d
— Interpolate prescribed constraints
— Smooth, intuitive deformation
= Physically-based principles

d:S—R?
p — p+d(p)

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 16

Physically-Based Deformation

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

* Non-linear stretching & bending energies

/ ksﬂ|1 - I’H2]+ kme[ — ]1’||2] dudv
Q

stretching bending

* Linearize energies

I O O O o
JQ

stretching bending

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 17

Modeling Metaphor

Physically-Based Deformation

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

+ Minimize linearized bending energy

B = [ Il + 2+ |45 () = i)

+ Variational calculus, Euler-Lagrange PDE

AQd = duyvuu + 2duuve + dppre = 0 f’(.’L‘) =0

= “Best” deformation that satisfies constraints

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 18




Deformation Energies

Ap=0

Literature

» Botsch & Kobbelt, “An intuitive framework for real-time
freeform modeling”, SIGGRAPH 2004

» Botsch & Sorkine, “On linear variational surface
deformation methods”, TVCG 2007

» Botsch et al, “Efficient linear system solvers for mesh
processing”, IMA Math. of Surfaces 2005

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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A’p=0
Initial state Ad=0 A%d =0
(Membrane) (Thin plate)
Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 19
Discretization

+ Laplace discretization

1
oA Z (COt Qj + cot ﬁ”)(d] — dl)
L JEN;

A%d; = A(Ad))

Ad; =

+ Sparse linear system

Az : 0
010 d | = o
001 : oh;
—————

a

=M

Overview

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 20

» Surface-Based Deformation

+ Space Deformation

* Multiresolution Deformation
- Differential Coordinates

» Outlook: Nonlinear Methods

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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Discretization

+ Sparse linear system (19 nz/row)

A2 :
0I o0 d; =
0 0 I :

-

=M

+ Can be turned into symm. pos. def. system
— Right hand sides changes each frame!
— Use efficient linear solvers...

Surface-Based Deformation

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 21

* Problems with

— Highly complex models

— Topological inconsistencies
— Geometric degeneracies

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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Freeform Deformation

+ Deform object’s bounding box
— Implicitly deforms embedded objects

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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Freeform Deformation

+ Deform object’s bounding box
— Implicitly deforms embedded objects

« Tri-variate tensor-product spline
— Aliasing artifacts

+ Interpolate deformation constraints?
— Only in least squares sense

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 28

Freeform Deformation

Modeling Metaphor

+ Deform object’s bounding box
— Implicitly deforms embedded objects

« Tri-variate tensor-product spline

I m n

d(u,v,w) = Z Z Z diji Nfu) Nj(v) Nj(w)

i=0 j=0 k=0

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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+ Mesh deformation by displacement function d
— Interpolate prescribed constraints
— Smooth, intuitive deformation
= Physically-based principles d(p;) = d;

p — p+d(p)

Freeform Deformation

+ Deform object’s bounding box
— Implicitly deforms embedded objects

+ Tri-variate tensor-product spline

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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Volumetric Energy Minimization

+ Minimize similar energies to surface case

S sl 4 I+ 4 e AV — i

+ But displacements function lives in 3D...
— Need a volumetric space tessellation?
— No, same functionality provided by RBFs

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 30




Radial Basis Functions

+ Represent deformation by RBFs

d(x) = ZWj o (lle; =xl) +p(x)

J

« Triharmonic basis function ¢ (r) = r®

— C2 boundary constraints
— Highly smooth / fair interpolation

/ 3 ”du,uuHZ + Hduu,u”2 + ...+ ”dww'u)“2 dudvdw — min

RBF Deformation

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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\ =

1M vertices

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 34

RBF Fitting

+ Represent deformation by RBFs

d(x)=> w;-o(le; —x[) +p(x)
j
+ RBF fitting
— Interpolate displacement constraints
— Solve linear system for w; and p

“Bad Meshes”

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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¢ 3M triangles
¢ 10k components
¢ Not oriented
¢ Not manifold

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 35

RBF Fitting

+ Represent deformation by RBFs

d(x) = ZWj o (lle; =xl) +p(x)

J

+ RBF evaluation
— Function d transforms points
— Jacobian Vd transforms normals
— Precompute basis functions
— Evaluate on the GPU!

Local & Global Deformations

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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Literature

» Sederberg & Parry, “Free-Form Deformation of Solid
Geometric Models”, SIGGRAPH 1986

+ Botsch & Kobbelt, “Real-time shape editing using
radial basis functions”, Eurographics 2005

Multiresolution Editing

Frequency decomposition

Change low %

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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frequencies
Add high frequency details,
stored in local frames
Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 40

Overview

Multiresolution Editing

» Surface-Based Deformation

+ Space Deformation

* Multiresolution Deformation
- Differential Coordinates

» Outlook: Nonlinear Methods

Multiresolution

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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Multiresolution Modeling

+ Even pure translations induce local rotations!
— Inherently non-linear coupling

+ Or: linear model + multi-scale decomposition...

P
J‘}\ ;L s
J\»*‘k“ )

¥

Original Linear deform.

Non-linear deform.

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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........................................................ >
Modeling

c P
S @
2 g
2 Freeform S
g —> a
£ Modeling c
I} g
o =
o} o
o =1

Detaﬂ

Informatlon
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Global Frame Details

« S and B have identical
connectivity

p;=b;+h;

+ Vertices p; and b; are
corresponding

+ Detail vector h; represented p,=b)+h;
in global coordinate system

= Details don’t rotate

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 42




Local Frame Details

« S and B have identical p; = b; + ayn; + fit;
connectivity

+ Vertices p; and b; are
corresponding

« Detail vector h; represented p, = b + ayn} + it}
in local coordinate system
(normal & tangent vectors)

= Details rotate

Limitations

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 43

+ Neighboring displacements are not coupled
— Surface bending changes their angle
— Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 46

Normal Displacements

+ Displacements parallel to P =Dy hin,
normal field of B

+ Barycentric interpolation
yields smooth normal field

(like Phong shading)
p; = b} + hinj

+ Base point b; now is not
necessarily a vertex of B

= Details rotate, no tangent
component required

Limitations

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 44

+ Neighboring displacements are not coupled
— Surface bending changes their angle
— Leads to volume changes or self-intersections

Normal Displacements

ey
_—
Calt t M
R :
! A L
Original Normal Displ. Nonlinear
Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 47
. . .
Limitations
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+ Neighboring displacements are not coupled
— Surface bending changes their angle
— Leads to volume changes or self-intersections

+ Multiresolution hierarchy difficult to compute for
meshes of complex topology / geometry

+ Might require more hierarchy levels

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 48




Overview

» Surface-Based Deformation

+ Space Deformation

* Multiresolution Deformation
- Differential Coordinates

» Outlook: Nonlinear Methods

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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Differential Coordinates

Gradient-Based Editing

+ Use piecewise linear coordinate function

p(uvv) = sz : QSL(U U)
* Its gradient is "
Vp(u,v) = Z p; - Voi(u,v)

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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+ Manipulate differential coordinates instead of
spatial coordinates
— Gradients, Laplacians, ...

» Then find mesh with desired differential coords
— Basically an integration step

Gradient-Based Editing

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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+ Use piecewise linear coordinate function

p(u7 U) = Z p;- (bi(uﬁ U)
* Its gradient is "
Vp(u,v) = Z p; - Voi(u,v)

+ It is constant per triangle

Vpl;, = G; € R¥

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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Gradient-Based Editing

+ Manipulate gradient field of a function (surface)
g =Vf g—g
« Find function whose gradient is (close to) g’

f = argmin/ |V — g'||” dudv
£ Jo

+ Variational calculus yields Euler-Lagrange PDE

Af =divg’

Gradient-Based Editing

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

51

+ Gradient of coordinate function p
— Constant per triangle Vp|, =: G, € R3*3

Gy Pir
— G :
: ~— :
Gp cR3F*V pg

+ Manipulate per-face gradients

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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Gradient-Based Editing

+ Reconstruct mesh from changed gradients
— Overdetermined problem G € R**V

T
P1 G}
G- : = .
py " Gl

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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Gradient-Based Editing

+ Reconstruct mesh from changed gradients
— Overdetermined problem G € R*7*V
— Weighted least squares system
— Linear Laplace system

P’ G}

divV =A \ p,,” div G/,

Deformation Gradient

+ Handle has been transformed affinely ;
T(x)=Ax+t ﬂ

+ Deformation gradient is
VT (x)=A

+ Polar decomposition gives rotation and scale/
shear components R and S

A=UxVv?" — A=RS,R=UV?, s=vzv”

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 58

Construct Scalar Field

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

« Construct smooth scalar field [0,1]
« s(x)=1: Full deformation (handle)
+ s(x)=0: No deformation (fixed part)
+ s(x)€(0,1): Damp handle transformation (in between)

59

56

Manipulate Gradients

* Manipulate per-face gradients G; — G/
1. Compute gradient of handle deformation

2. Extract rotation and scale/shear components
3. Compute smooth scalar blending field

4. Apply damped rotations to gradients

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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Construct Scalar Field

+ How to construct scalar field?
— Either use Euclidean/geodesic distance

y

_ disto (p)
" disto(p) + dists (p)

s(p)

— Or use harmonic field
* Solve A(s) =0

. 1 € handle
*with  s(p) = { 0 ge fixed
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Damp Handle Transformation

+ Original gradient of handle transformation
— Rotation: R(c,a, o)
— Scaling: S(0)

« Damping for triangle (vi, v, vv) is A = s((pi+pi+pPx)/3)

+ Gradient damped by scalar A
— Rotation: R(c,a, A-a)
— Scaling: SO0+ (1-M)-1)

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 61

Gradient-Based Editing

Original Rotated Gradients Reconstructed Mesh

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 62

Laplacian-Based Editing

Limitations

+ Differential coordinates work well for rotations
— Represented by deformation gradient

+ Translations don’t change deformation gradient
— Translations don’t change surface gradients / Lapl.
— “Translation insensitivity”

—__ .
4 i n ="

1 J;\J o
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Overview

» Surface-Based Deformation

|+ Space Deformation

* Multiresolution Deformation
- Differential Coordinates

» Outlook: Nonlinear Methods

+ Manipulate Laplacians field of a surface
0; =As(p;) , dir 52

« Find surface whose Laplacian is (close to) &’
p = argmin/ HAsp — 5'”2 dudv
P Q

+ Variational calculus yields Euler-Lagrange PDE

AZp' = Agé'

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 63
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Comparison
Original Var. Min. Gradient Nonlinear

n N 9
1 27

LAy

. )

sl J’J-(‘ ) 3 ix /T. },g
PPN »

' ) '
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PriMo

+ Qualitatively emulate thin-shell behavior
+ Thin volumetric layer around center surface

+ Extrude polygonal cell per mesh face

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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PriMo

+ How to deform cells?
— FEM has problems if elements degenerate...

+ Prevent cells from degenerating
= Keep them rigid

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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PriMo

+ Connect cells along their faces
— Nonlinear elastic energy
— Measures bending, stretching, twisting, ...

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
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PriMo

1. Extrude Prisms
2. Prescribes position/orientation for cells
3. Find optimal rigid motions per cell

4. Update vertices by average cell transformations

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 70
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Space PriMo

=2

Volumetric
Discretization

-9

Space
Deformation

Cell-Based
Deformation
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Space PriMo

5.5k 5.5k

Embedded Deformation

+ Parameterize model with deformation graph

+ Find optimal affine transformation for each node

e
-
Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 76

Embedded Deformation
Live edit
Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 77
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Space PriMo
14k components Deformed triangle soup
Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 74
Space PriMo
Error driven refinement
Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 75

Overview

» Surface-Based Deformation

+ Space Deformation

(e Multiresolution Deformation

- Differential Coordinates

L Outlook: Nonlinear Methods
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Literature

+ Botsch, Pauly, Kobbelt, Alliez, Levy, Geometric Modeling Based
on Polygonal Meshes, Chapter 11 on Shape Deformation,
SIGGRAPH 2007 Course Notes

» Botsch, Pauly, Gross, Kobbelt: PriMo: Coupled Prisms for
Intuitive Surface Modeling, SGP 2006

» Botsch, Pauly, Wicke, Gross: Adaptive Space Deformations
Based on Rigid Cells, Eurographics 2007

+ Sumner, Schmid, Pauly: Embedded Deformation for Shape
Manipulation, SIGGRAPH 2007
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Computing Correspondences in
Geometric Datasets

Local, Deformable, Pairwise
Variational Model - Deformable ICP

Eurographics 2011
LLANDUDNG L | Brextovesyig

Variational Model
What is deformable shape matching?

Example

What are we looking for?

What are the Correspondences?

Problem Statement: ”

Given: 5%

» Two surfaces S, S, < R3 S:

We are looking for:

 Areasonable deformation function f: S, — R3
that brings S, close to S,

lics 2011 Course — C i i ic Data Sets Eurographics 2011 Course — C iting C in ic Data Sets 4
Example This is a Trade-Off
Deformable Shape Matching is a Trade-Off:
2 « We can match any two shapes
using a weird deformation field
Correspondences?

y —
“A too much deformation J optimum

¢ We need to trade-off:
= Shape matching (close to data)
= Regularity of the deformation field (reasonable match)

ics 2011 Course — Ci il i ic Data Sets
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Variational Model

Variational Model

Components: M
é\‘

Variational Problem:

* Formulate as an energy minimization problem:

Matching DiStan{e:/'H< E(f)= E(match)(f) + E(regularizer)(f)
Deformation / rigidity:
— ( —
g
ics 2011 Course — C i i ic Data Sets ics 2011 Course — Comput iting C in ic Data Sets 8

Part 1: Shape Matching

Point Cloud Matching

Assume:
¢ Objective Function:

E™ () =dist(f, ,(S,).5,)

e Example: least squares distance

[ (match) ()= jdist(xl ) 52)2dx,

x €8

?
)
S:
51

e Other distance measures:
Hausdorf distance, Lp—distances, etc.

e L, measure is frequently used (models Gaussian noise)

Implementation example: Scan matching
¢ Given: S, S, as point clouds

= S ={s,Y, ..., 5,1}

=S, ={s,?, ..., 5,,%}

¢ Energy function: f,-(51)
(match) S ‘51‘ S . (2)
E™n () =203 dise(s,,5
m g

 How to measure dist(S,,x)?

= Estimate distance to a point sampled surface

jics 2011 Course — Ct i ic Data Sets )

jics 2011 Course — C ting Ce in ic Data Sets 10

Surface approximation

Surface approximation

£ 0
el o
2 L, 5,-(2)
3
S84, b

Solution #1: Closest point matching
¢ “Point-to-point” energy

()=S0 disls w5
m i !

° o

L 5 0)

o0 o f(51)

Solution #2: Linear approximation
* “Point-to-plane” energy
« Fit plane to k-nearest neighbors
* k proportional to noise level, typically k = 6...20

ics 2011 Course — Computing Ct i ic Data Sets 11
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Surface approximation

Variational Model

° o
0 ., ? o
o e, )
o o o 5[,( )
O ,

o
000 f(s)

Solution #3: Higher order approximation
« Higher order fitting (e.g. quadratic)

= Moving least squares

Variational Problem:

* Formulate as an energy minimization problem:

E(f) =B (f)+ =) ()

—X Sf =

ics 2011 Course — Computing C: i ric Data Sets 13
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Part Il: Deformation Model

Elastic Volume Model

What is a “nice” deformation field? E(regu/arizer)( 1)
* Isometric “elastic” energies -
= Extrinsic (“volumetric deformation”)
= Intrinsic (“as-isometric-as ;:(
possible embedding”) _

e Thin shell model
= Preserves shape (metric plus curvature)
¢ Thin-plate splines
= Allowing strong deformations, but keep shape

Extrinsic Volumetric “As-Rigid-As Possible”
¢ Embed source surface S; in volume

* fshould preserve 3 x3 metric tensor (least squares)

E(regularizer) (f) _ J.I: Vf VfT _ I]Z dx

first fundamental form I (R3*3)

jics 2011 Course — Ct i i ic Data Sets 15
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Volume Model

How does the deformation look like?

Variant: Thin-Plate-Splines
o Use regularizer that penalizes curved deformation

E(regularizer] (f) _ J.Hf (X) 2 dx

Vi second derivative (R3*3)

H,=V(Vf)

as-rigid-as
possible
volume

/
\

thin

Vi ambient space f(v,) plate
1 original splines
Sy
S,
2011 Course - Computing C i ic Data Sets 17 2001 Couree = Cammomr -  Datasens




Isometric Regularizer

Elastic “Thin Shell” Regularizer

Intrinsic Matching (2-Manifold)
» Target shape is given and complete

* Isometric embedding

E(regularizer)(f) _ J'[ Vf va B I]Z dx

“Thin Shell” Energy I
N
« Differential geometry point of view S 1l
= Preserve first fundamental form I 1 f

= Preserve second fundamental form II I

?

= ..ina least least squares sense

51 first fund. form (S, intrinsic) e Complicated to implement S
e Usually approximated
f Vf = Volumetric shells (as shown before)
tangent space = Other approximation (next slide)
Sy
S2
ics 2011 Course — Computing C il ric Data Sets 19 ics 2011 Course — Computing C in ic Data Sets 20
Example Implementation Parameterization
Example: approximate thin shell model Parameterization of S,
* Keep locally rigid  Surfel graph
= Will preserve metric & curvature implicitly o This could be a mesh, but does not need to
e |dea
= Associate local rigid transformation with surface points
= Keep as similar as possible
= Optimize simultaneously with deformed surface
» Transformation is implicitly defined by deformed surface
. edges encode
(and vice versa)
topology
surfel graph
ics 2011 Course — Ci i i ic Data Sets 21 ics 2011 Course — Co iting C in ic Data Sets 22
Deformation Deformation
frame t frame t+1 frame t frame t+1

\ prediction

A L_' L
Orthonormal Matrix A;

per surfel (neighborhood),
latent variable

\ prediction

N

A L_' L
Orthonormal Matrix A;

per surfel (neighborhood),
latent variable

err%

2
(regularizer) _ tgl) _ gl (+1) (¢+1)
g~ 5 a0 -0 s 50

surfels neighbors

ics 2011 Course — Computing Ct i ic Data Sets 23
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Unconstrained Optimization

Variational Model

Orthonormal matrices

e Local, 1st order, non-degenerate parametrization:

0
o @ Pl A =Ayexp(Cx,)
Cx,- =l-a 0 vy '
. t
-B -y 0 :AO(I+CXE’)

e Optimize parameters o, 3, 7, then recompute A,
» Compute initial estimate using [Horn 87]

Variational Problem:

* Formulate as an energy minimization problem:

E(f) =B (f)+ =) ()

</~<§(

;{
/’ d

ics 2011 Course — Computing C: i ric Data Sets
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Deformable ICP

Deformable ICP

How to build a deformable ICP algorithm
e Pick a surface distance measure
« Pick an deformation model / regularizer

E(f) — E(mutch) (f)+E(regularizer) (f)

—A

;‘(
/ d

2011 Course — C¢ ting Ce in ic Data Sets 28

Deformable ICP

Example

How to build a deformable ICP algorithm

e Pick a surface distance measure

 Pick an deformation model / regularizer

e Initialize f(S;) with S, (i.e., f=1id)

 Pick a non-linear optimization algorithm
= Gradient decent (easy, but bad performance)
= Preconditioned conjugate gradients (better)
= Newton or Gauss Newton (recommended, but more work)
= Always use analytical derivatives!

e Run optimization

Example
e Elastic model

 Local rigid coordinate
frames

« Align A>B, B>A

ics 2011 Course — Computing Ct i ic Data Sets
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Computing Correspondences in
Geometric Datasets

Local, Deformable, Sequences

Animation Reconstruction

Eurographics 2011
LLAMNDOUDHNO Lk

Overview & Problem Statement

Overview

Real-time Scanners

Two Parallel Topics
* Basic algorithms
» Two systems as a case study

Animation Reconstruction

e Problem Statement

 Basic algorithm (original system)
= Variational surface reconstruction
= Adding dynamics
= Iterative Assembly
= Results

* Improved algorithm (revised system)

244 Ny
space-time color-coded
stereo structured light

.

motion compensated
structured light
courtesy of James Davis,
UC Santa Cruz

courtesy of Phil Fong,
Stanford University

courtesy of Soren Konig,
TU Dresden

ics 2011 Course = C i i ic Data Sets 3
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Animation Reconstruction

Animation Reconstruction

Problems
* Noisy data

* Incomplete data (acquisition holes) noise

holes

Rl

missing correspondences

» No correspondences

Remove noise, outliers

Fill-in holes
(from all frames)

Dense correspondences

ics 2011 Course — Ci il i ic Data Sets 5
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Animation Reconstruction
Surface Reconstruction

Variational Approach

Variational Approach:

= S - original model
D — measurement data

= Variational approach:

E(S1D) ~ E(DIS) + E(S)

measurement | | prior

ics 2011 Course — Compu ting C in ic Data Sets

3D Reconstruction

Implementation...

Data fitting
ED|S) ~ 2;dist(S, d;)?

Implementation: Point-based model
e Our model is a set of points

S e “Surfels”: Every point has n;
a latent surface normal
e h . P;
Prior: Smoothness « We want to estimate B ,
E(S) ~ fscurv(S)z — position and normals Sue!
'S
ics 2011 Course — Ci i i ic Data Sets E] ics 2011 Course — Co iting C in ic Data Sets 10
Data Term-E(D|S) Priors — P(S)
Data fitting term: s E
‘ match

Surface should be close to data

Truncated squared distance
function

Epaen(D,S) = Y trunc,(dist(S,d;)°)

data pts

LN

Sum of distances? of data points to surfel planes

Point-to-plane: No exact 1:1 match necessary

Truncation (M-estimator): Robustness to outliers

-~ N

more likely

less likely

Canonical assumption: smooth surfaces
« Correlations between neighboring points

ics 2011 Course — Computing Ct i ic Data Sets
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Point-based Model

Nasty Normals

Simple Smoothness Priors:

 Similar surfel normals: E_m

; .y Ssmooth 1=
Ef}.:m)m (S) = Z Z (n, -n; )Z, "’zH =1 V_J
« Surfel positions — flat surface:

surfels neighbors
2
'(2)
EQun(8)= % (si-s,n6)

surfels neighbors

« Uniform density:

Er.apzm(s): Z Z(S, “UL’mé’B)Z ELaD\ace e

surfels neighbors

&

[c.f. Szeliski et al. 93]

Optimizing Normals
s Problem: E0,,(9= Y X (n-n ) stfnl=1
surfels neighbors

* Need unit normals: constraint optimization

« Unconstraint: trivial solution (all zeros)

ics 2011 Course — Ci i i ric Data Sets 13
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Nasty Normals

Neighborhoods?

Solution: Local Parameterization

e Current normal estimate tangent,
e Tangent parameterization =/> tangent,
* New variables u, v '

* Renormalize
* Non-linear optimization X
* No degeneracies n(u,v) = ny +u-tangent,

+v-tangent,

[Hoffer et al. 04]

Topology estimation
» Domain of S, base shape (topology)
* Here, we assume this is easy to get
¢ In the following
= k-nearest neighborhood graph
= Typically: k = 6..20
Limitations
¢ This requires dense enough sampling

* Does not work for undersampled data /J ]

jics 2011 Course — Ct i i ic Data Sets 15
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Numerical Optimization

3D Examples

Task:
« Compute most likely “original scene” S
» Nonlinear optimization problem

Solution:
« Create initial guess for S
= Close to measured data
= Use original data
¢ Find local optimum
= (Conjugate) gradient descent
= (Gauss-) Newton descent

3D reconstruction results:

(With discontinuity lines,
not used here):

ics 2011 Course — Computing Ct i ic Data Sets 17
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3D Reconstruction Summary

Data fitting:
E(D|S) ~ 2, dist(S, d,)?

s
Prior: Smoothness |/
E(S) ~ [ curv(S)? S_s

Optimization:
Yields 3D Reconstruction

Animation Reconstruction
Adding the Dynamics

ics 2011 Course — Ci i i ric Data Sets

Extension to Animations

Recap: Correspondences

Animation Reconstruction
¢ Not just a 4D version

= Moving geometry,
not just a smooth hypersurface

» Key component: correspondences

« Intuition for “good correspondences”:
= Match target shape
= Little deformation

Correspondences?

“A too much deformation Joptimum

22
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Animation Reconstruction

Animation Reconstruction

Two additional priors:
Deformation

E4S) ~ [ deform(S,, S,;,)? I/\ =

Acceleration

Ey(S) ~ I, 8, t)?

Not just smooth 4D reconstruction!
¢ Minimize
= Deformation

= Acceleration
¢ This is quite different from smoothness
of a 4D hypersurface.

25
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Animations

Discretization

Refined parametrization of reconstruction S
« Surfel graph (3D)
» Trajectory graph (4D)

Refined parametrization of reconstruction S
 Surfel graph (3D)
e Trajectory graph (4D)

edges encode
topology

surfel graph

ics 2011 Course — Ci ric Data Sets
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Discretization

Missing Details...

Refined parametrization of reconstruction S
 Surfel graph (3D)
e Trajectory graph (4D)

— time ———

frame 4

frame 1 frame 2 frame 3

How to implement...
¢ The deformation priors?
= We use one of the models previously developed
¢ Acceleration priors?

= This is rather simple...

ics 2011 Course — C: i i ic Data Sets
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Recap: Elastic Deformation Model

Recap: Elastic Deformation Model

Deformation model
« Latent transformation Al) per surfel
e Transforms neighborhood of s;
¢ Minimize error (both surfels and Al)

frame t+1

frame t

\ prediction

\

A, ]_;L

per surfel (neighborhood),
latent variable

"

Orthonormal Matrix A;

ics 2011 Course — Computing Ct i ic Data Sets
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Recap: Elastic Deformation Model

Recap: Unconstrained Optimization

frame t frame t+1

\ prediction

Orthonormal matrices

N e Local, 1st order, non-degenerate parametrization:
0 a p
A, = A, exp(Cx,)
\ A ]_'aL‘ G“=|-a 0 » 0 €XP{Lx;
g -y 0) =AU G)
Orthonormal Matrix A, ¢ Optimize parameters o, 3, 7, then recompute A,
per surfel (neighborhood), « Compute initial estimate using [Horn 87] tangent,
latent variable - tangent,
N '
erro/r \ c.f: unconstraint »
normal optimization
, 2
7 _ o _ O ) [t+D _ ((t+]) n{u,v) = ny + u-tangent,
Fuon(®= % ncvwzyhny_s[A,(sY s0)- e s ] 1
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Animation Reconstruction Acceleration
Two additional priors: Acceleration priors
. ¢ Penalize non-smooth trajectories
Deformation [ e Eacea
—_ 2 ~
— gt _ogt t+1 @
Ed(S) ~ Lg deform(St, SHI)Z ,/‘ E"“EZ(A) [S' 28 +; ] !. lé I
« Filters out temporal noise ' : '
Acceleration
E(S) ~ [s, 5, )2
ics 2011 Course — Ci ic Data Sets 34 ics 2011 Course — Co iting C in ic Data Sets 35

Optimization

For optimization, we need to know:
o The surfel graph

* A (rough) initialization close to correct solution
Optimization:
* Non-linear continuous optimization problem

* Gauss-Newton solver (fast & stable)

How do we get the initialization?

o [terative assembly heuristic to build & init graph

ics 2011 Course — Computing Ct i ic Data Sets

Iterative Assembly




Global Assembly

Assumption: Adjacent frames are similar
* Every frame is a good initialization for the next one

« Solve for frame pairs

B ] ]

AR Q

Iterative Assembly
Iterative assembly
¢ Merge adjacent frames 1.6
. . N
* Propagate hierarchically 1.4
¢ Global optimization 1..2/ \3..4 5.6
Vd NN

(avoid error propagation)

space
- — - —
—
—

&
frame 11 frame 12 frame 13 frame 14 frame 15 frame 16 time
[data set courtesy of C. Theobald, MPI-Inf]
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Iterative Assembly Alignment
Pairwise alignment Alignment:
¢ Two frames
T T o) ¢ Use one frame
o as initialization
3 8 9
@ = © o ¢ Second frame
a a Jo} “ -
7 7] ol as “data points
i, J, o ¢ Optimize
o
time — time —
adjacent aligned
trajectory sets frames
data set: Zitnick et al., Microsoft Research]
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Iterative Assembly Iterative Assembly
Pairwise alignment Topology stitching
o] e}
1 1 e i
Q ® 8 ® £ % £
o bt Q
7] % g 7] g % s
o e}
! Lo Lo oo
—_— —_— —_— _———
time — time — time —» time —
adjacent aligned aligned merged
trajectory sets frames frames topology

ics 2011 Course — Computing Ct ic Data Sets
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Topology Stitching Iterative Assembly
Recompute Topology e r ; Topology stitching
* Recompute kNN/g-graph g @%%H g gﬁ{;u
« Topology is global H__ & + T g 0
time —» © ®
5] 2 O
N 2 © ol
3| 1 JR3se
Sanity Check: { o $ %
» No connection if distance changes —_—
time — tlme —>
aligned merged
frames topology
[data set courtesy of S. Kénig, S. Gumhold, TU Dresden]
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Iterative Assembly Iterative Assembly
Problem: incomplete trajectories Hole filling
@ @ @ ) @
=’a’] -’
8 : ] $3° g $3 g ggg 231
2 o $3¢ o z 2 o el
O0-O0-0® eSS & 3
_— _— _—
time — time — time — tlme -
merged uninitialized uninitialized copy from neighbors,
topology surfels surfels optimize
ics 2011 Course — Ci ic Data Sets 46 Eurographics 2011 Course — C iting C in ic Data Sets 47
Iterative Assembly Global Optimization
Resampling Last step:
« Global optimization time —
T ) T * Optimize over all frames T
8 e 8 simultaneously §
@ @ o
a a
7] w ete +
i) ) Improve stability: Urshapes gz
— _ » Connect hidden “latent” frame
time —» time — to all other frames
hole filled remove dense surfels (deformation prior only) urshape
result (constant complexity) « Initialize with one of the frames P
ics 2011 Course — Ci ic Data Sets 48 ics 2011 Course — C il in ic Data Sets 49




Meshing

Last step: create mesh

« After complete surfel graph
is reconstructed

 Pick one frame (or urshape)

* “Marching cubes” meshing
[Hoppe et al. 92, Shen et al. 04]

* Morph according to trajectories
(local weighted sum)

2011 Course — Com in ric Data Sets

Results

Elephant

deformation & rotation,
noise, outliers, large holes

20 49,500 963,671 6 min 52 sec 4h 25 min

[Pentium-4, 3.4GHz]

Facial Expression

Dataset courtesy of S. Gumbhold,
University of Dresden

20 32,740 400,000 6 min 59 sect’) 7h31min [Pentium-4, 3.4GHz / (13.0GHz]

Improved Algorithm
Urshape Factorization

Improved Version

Factorization Model:
 Solving for the geometry in every frame
wastes resources
« Store one urshape and a deformation field
= High resolution geometry
= Low resolution deformation (adaptive)
* Less memory, faster, and much more stable
« Streaming computation (constant working set)

jics 2011 Course — Computing C in ic Data Sets.




We have so far...

New: Factorization

data
f
\ l
trajectories
S urshape
ics 2011 Course — Ci i i ric Data Sets 56 ics 2011 Course — Comput iting C in ic Data Sets
Components Components
Variational Model Variational Model
« Given an initial estimate, * Given an initial estimate,
improve urshape and deformation improve urshape and deformation
Numerical Discretization Numerical Discretization
¢ Shape ¢ Shape
¢ Deformation e Deformation
Domain Assembly Domain Assembly
¢ Getting an initial estimate ¢ Getting an initial estimate
e Urshape assembly e Urshape assembly
ics 2011 Course — Ci i i ic Data Sets 58 ics 2011 Course — Co iting C in ic Data Sets

Energy Minimization

Data Fitting

Energy Function w m G
e e

E(f: 5) = Edata + Edeform + Esmooth

Components @ ushape
o E o0(f, S)— data fitting
* Egerorm(f) — elastic deformation, smooth trajectory
e E.oon(S)—smooth surface

Optimize S, f alternatingly

Edata(f' S) h

Data fitting
o Necessary: f(S) = D;
* Truncated squared distance
function (point-to-plane)
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Elastic Deformation Energy

Surface Reconstruction

Edeform(f) Esmooth(s) \ J
AN
S
Regularization Data fitting ) .
. (D .. D,
« Elastic energy Smooth surface i \Yi = . (c )
o Fitting to noisy data 44/ o TR
e Smooth trajectories S S
ics 2011 Course — Ci ric Data Sets 62 ics 2011 Course — Comput iting C in ic Data Sets 63
Factorization Components
i= =2 Variational Model
« Given an initial estimate,
improve urshape and deformation
data Numerical Discretization
¢ Shape
e Deformation
f deformation
Domain Assembly
¢ Getting an initial estimate
urshape e Urshape assembly
ics 2011 Course — Ci i i ic Data Sets 64 ics 2011 Course — Co iting C in ic Data Sets 65
Discretization Discretization
@20 o) @20 o)
geometry geometry
1 1
Q J deformation Q ) deformation
~o_ e, - ~o_ e, -
Sampling: Sampling:
e Full resolution geometry o Full resolution geometry
* Subsample deformation = High frequency
* Subsample deformation
= Low frequency
ics 2011 Course — Computing Ct i ic Data Sets 66 ics 2011 Course — Computing C in ic Data Sets 67
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Discretization

Shape Representation

g ;

geometry

deformation

Sampling:
» Full resolution geometry
= High frequency, stored once
¢ Subsample deformation
= Low frequency, all frames = more costly

Shape Representation:
o Graph of surfels (point + normal + local connectivity)
e E,00n— Neighboring planes should be similar
* Same as before...

ics 2011 Course — Ci i i ric Data Sets
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Deformation

Deformation

geometry

S<o__--"" “thick shell”

Volumetric Deformation Model
» Surfaces embedded in “stiff” volumes
« Easier to handle than “thin-shell models”
¢ General — works for non-manifold data

Deformation Energy
* Keep deformation gradients Vf as-rigid-as-possible
e This means: VfTVf=1

o Minimize: Egppom= [ 7 [yl | VED)TVEE) — 1] |2 dxdt

ics 2011 Course — C: i i ic Data Sets

jics 2011 Course — C ting Ce in ic Data Sets 71

Additional Terms

Discretization

More Regularization
* Volume preservation: £, = [;[,||det(Vf)—1]|2

= Stability
o Acceleration:  E,.=J;[y1102 f]|?

= Smooth trajectories

. Velocity (weak): o= [ fy110, fI2

geometry
e
b deformation

How to represent the deformation?

= Damping
* Goal: efficiency
e Finite basis:
As few basis functions as possible
ics 2011 Course — Computing Ct i ic Data Sets 72 ics 2011 Course — Computing C in ic Data Sets 73
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Discretization

Meshless Finite Elements

~ P 1
O geometry

2
e deformation

Meshless finite elements
e Partition of unity, smoothness
e Linear precision
* Adaptive sampling is easy

Topology:

* Separate deformation
nodes for disconnected
pieces

* Need to ensure

= Consistency
= Continuity

e Euclidean / intrinsic
distance-based coupling rule

= See references for details

ics 2011 Course — Ci i i ic Data Sets

jics 2011 Course — Com)
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Adaptive Sampling

Components

Adaptive Sampling
¢ Bending areas
= Decrease rigidity
= Decrease thickness
= Increase sampling density

» Detecting bending areas:

Variational Model
« Given an initial estimate,
improve urshape and deformation

Numerical Discretization
¢ Deformation

residuals over many frames £ ' e Shape
Domain Assembly
¢ Getting an initial estimate
e Urshape assembly
ics 2011 Course — Ci i i ic Data Sets 76 ics 2011 Course — Co iting C in ic Data Sets 77

Urshape Assembly

Hierarchical Merging

Adjacent frames are similar
« Solve for frame pairs first

* Assemble urshape step-by-step

w5 0§ F

L] B g B e B [
L5 E;-«g -L% | :‘;k glE ‘-rt -2 A
- E\ } 8 } A A S
frame 11 frame 12 frame 13 frame 14 frame15 frame 16
ics 2011 Course — Computing C i ic Data Sets 8 ics 2011 Course = C: i in ic Data Sets 79
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Hierarchical Merging

Initial Urshapes

G B & &

f(S) ‘:}

Y

f !
- @

Eurographics 2011 Course = C

~ P B & §
fts) @

f I

-

ic Data Sets

Eurographics 2011 Course — C ic Data Sets

81

Initial Urshapes

w o B § @ o o B & &
s LU o @20 $ER
@ 8 @ 8 8 @

ics 2011 Course = C ic Data Sets

82

Eurographics 2011 Course — C ting Ce ic Data Sets
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Align & Optimize

Hierarchical Alignment

- ®
0@
N/

. u

ics 2011 Course — Ci

TR
oG B G
N2 /

' \

¥ @

LI

ic Data Sets

urographics 2011 Course — C¢

ic Data Sets 85
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Hierarchical Alignment

B & T

f(S)
f

S

© 79 Q

Eurographics 2011 Course — C i i ic Data Sets 86

Results

:

79 frames, 24M data pts, 21K surfels, 315 nodes

423 'nodes

120 frames,
30M data pts,
17K surfels,
1,939 nodes

34 frames,
4M data pts,
23K surfels,
414 nodes

15



Quality Improvement

old version new result old version new result

2011 Course — Computing C in ric Data Sets

Summary: Variational Model

E(S,£,d) = e (S, £,d) + (B g + Bugune + Bacear + Evvtoein)(S 5 + B (S)

data deformation urshape

T
B (S, £,d) = D" trunc(dist(d;, (S))*)

=1 =1

oS8 = [0,
vi(s)

IV £, 07V £, 1) - IHZFdx

B0 = [0,V £0x,0]-1] d
v(S)

2
82

Bpeu S0 = [0, (x)[? £6x, t>] dt EuunS.0=[ w<x>[% £6x, z)) da
s 5

E s (9 = [ 0,000, @725 dx
s

2011 Course — Computing C in ic Data Sets
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Time Ordered Scans

Computing Correspondences in ~

Geometric Datasets o -
et & j :"-._ ) s ’
Kinematic Surfaces - S
t ! ti+2
pi = (501 -— {(o) t/) o c RY ¢/
Eurographics 2011 ; e {pf} ’ {(P, o )-P, Rt R}
LLAMDUDMO LIk | Bneortiversty. ¢ _
Eurographics 2011 Course — Ct ing Corr in ic Data Sets
Rigid Transformation Time Ordered Scans

(R,1)? ~ ~ N\

\ ”/ G ) N e

P Q ti it 2

(R,1)’ (R, 0)""!

p— Rp+t R'R=1

P/ = {p/} .= {(p}.¥)),p] Rt/ € R}

Eurographics 2011 Course — C ing Corr in ic Data Sets. 2 Eurographics 2011 Course — C ing Corr in ic Data Sets

Scanning (Moving) Objects Space-time Surface

~
:{ sample spacing
[ —1 "_ (G)

J
a2
)
Y
time,
\ spacing
J

L

Eurographics 2011 Course — C ing Corr in ic Data Sets 3 Eurographics 2011 Course — C ing Corr in ic Data Sets.




Kinematic Surfaces

Space-time registration — kinematic surface estimation

Eurographics 2011 Course — Ct ing Corr in ic Data Sets




Scan Registration

Computing Correspondences in
Geometric Datasets

Solve for inter-frame
motion: ¢; := (R}, t;)

Dynamic Registration

Eurographics 2011 ‘
LLAMDIIDMNO LIk | Smeoctniversty ¢

Eurographics 2011 Course — Ct ing Corr in ic Data Sets

Scan Registration The Setup

Given:
A set of frames {P,, P,, ... P}
Goal:
Recover rigid motion {a,, a.,, ... o, } between
adjacent frames
Eurographics 2011 Course — C ing Corr in ic Data Sets. Eurographics 2011 Course — C ing Corr in ic Data Sets

Scan Registration The Setup

Smoothly varying object motion
Unknown correspondence between scans

Solve for inter-frame Fast a(eq.IISItlon -
motion: @ = (R .t) motion happens between frames

Eurographics 2011 Course — C ing Corr in ic Data Sets Eurographics 2011 Course — C ing Corr in ic Data Sets.




Insights Space-time Surface

sample spacing
(o

Rigid registration — kinematic property of space-
time surface (locally exact)

Registration — surface normal estimation

p/ - o (B)) = (R;p/ )

Extension to deformable/articulated bodies

Eurographics 2011 Course — Ct ing Corr in ic Data Sets
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Time Ordered Scans Space-time Surface

sample spacing
(o

IIIIIIII oy —‘\
.-'"f.l i s .:f.
R i J - ) ) e
ti i+l tiv2
~ st rod L ] ¥ il
P; - oi(p;) R;p; +t;,t" + A1
Pl = (p/ 1).pl e R 1 Pl
P’ = {p{} = {(p{.t).p{ €R",t/ €R} gy
e 1 d 1 1B 1 oy — ¢ : “(.(n o]
0,j = argmin z d~(o;(p;).S)
i=1
Eurographics 2011 Course — C ing Corr in ic Data Sets. Eurographics 2011 Course — C ing Corr in ic Data Sets

Space-time Surface Spacetime Velocity Vectors

sample spacing
(o

— )};
X Tangential point movement — velocity vectors orthogonal to surface normals
Y o 3 !.". — o~y S)

b Are P
) 0L = argmin ) d”(o;(p/).S)

) -~ i=l

.I'\. e
Eurographics 2011 Course — C ing Corr in ic Data Sets Eurographics 2011 Course — C ing Corr in ic Data Sets.




Spacetime Velocity Vectors

Registration Algorithm

Tangential point movement — velocity vectors orthogonal to surface normals

v(p,)n(p,)=0

1. Compute time coordinate spacing (o), and form
space-time surface.

2. Compute space time neighborhood using ANN,
and locally estimate space-time|surface normals.

3. Solve linear system to estimate (c;,c).

4. Convert velocity vectors to rotation matrix +
translation vector using Pliicker coordinates and
quarternions.

Eurographics 2011 Course — Ct ing Corr in ic Data Sets

Final Steps

Eurographics 2011 Course — Ct ing Corr in ic Data Sets

Normal Estimation: PCA Based

(rigid) velocity vectors —> v p:f ) = (e; X p; +Tj;1)
& j i?
min n-[c-x A | -ﬁ-]
c,f.Ea‘;gi i ( PR i ‘
Plane fitting using PCA using chosen neighborhood points.
Eurographics 2011 Course — C ing Corr in ic Data Sets. Eurographics 2011 Course — C ing Corr in ic Data Sets
. Normal Estimation: Iterative
Final Steps .
_ Refinement
(rigid) velocity vectors ! v pf J = ])IIJ €, 1)
|J’ 7

Update neighborhood with current velocity estimate.

Eurographics 2011 Course — Ct ing Corr in ic Data Sets
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Normal Refinement: Effect of Noise

Comparison with ICP

0 1 2 3 4 5

Uniform Noise Margin (times @)

Stable, but more expensive.

-

ICP point-plane

Dynamic registration

Eurographics 2011 Course — Ct ing Corr in ic Data Sets

Normal Estimation: Local

Eurographics 2011 Course — Ct

ing Corr

ic Data Sets

Rigid: Bee Sequence (20 frames)

_Triangulation

Perform local surface triangulation (tetrahedralization).

Eurographics 2011 Course — Ct ing Corr in ic Data Sets

Normal Estimation

Eurographics 2011 Course — Ct

ing Corr

ic Data Sets

Rigid: Coati Sequence (2,200 rames)

A
e Teetrahedralizition

o 1 2 3 4

Timescale (times @)

Stable, but more expensive.

Eurographics 2011 Course — Ct ing Corr in ic Data Sets
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Handling Large Number of Frames Deformable: Hand (100 rames)

input frames registered result

Eurographics 2011 Course — C ing Corr in ic Data Sets. Eurographics 2011 Course — C ing Corr in ic Data Sets.

Rigid/Deformable: Teapot Sequence Deformable: Hand o ames

(2,200 frames)

scan #1 : scan #50 scan #1 : scan #100

Eurographics 2011 Course — C ing Corr in ic Data Sets. Eurographics 2011 Course — C ing Corr in ic Data Sets

Deformable Bodies Deformation + scanner motion: Skeleton (100 frames)

; 2

min )" w/ [(cj X pf+EJ,-. 1) -ﬁ}.’]

Cluster points, and solve smaller systems.

Propagate solutions with regularization.

input frames registered result

Eurographics 2011 Course — C ing Corr in ic Data Sets Eurographics 2011 Course — C ing Corr in ic Data Sets.



Deformation + scanner motion: Skeleton (100 frames) Conclusion

Simple algorithm using kinematic properties of

SN \\\'«\ space-time surface.
e RNNR,
Easy modification for deformable bodies.
e
Ty Suitable for use with fast scanners.

scan #1 : scan #50 scan #1 : scan #100
Eurographics 2011 Course — C ing Corr in ic Data Sets Eurographics 2011 Course — C ing Corr in ic Data Sets
Deformation + scanner motion: Skeleton (100 frames) Limitations
Need more scans, dense scans, ...

Sampling condition — time and space

rigid components

Eurographics 2011 Course — C ing Corr in ic Data Sets Eurographics 2011 Course — C ing Corr in ic Data Sets

Pe rfO rmance (on 2.4GHz Athlon Dual Core, 2GB RAM)

Model # scans # points/scan Time
in 1ONKs imins}
bunny csimulied) 314 338 13 thank you
bee 2,200 20.7 51
coati 2,200 28.1 71
teapot wigid) 2.200 212 68
skeleton simutued) 100 559 11
hand 100 40.1 17

Eurographics 2011 Course — C ing Corr in ic Data Sets Eurographics 2011 Course — C ing Corr in ic Data Sets




Computing Correspondences in
Geometric Datasets

Local Shape Matching
Section 2.3b: Local Deformable Matching

Robust Local Registration

Eurographics 2011
LLANDUDND Lk | Smeorte

. 9

Pairwise
Non-Rigid Registration

Initial Alignment

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Source & Target

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Deformation and Occlusion

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

No Explicit Prior Knowledge

about

¢ full 3-D model
- COI’I’CSPDndCﬁCCS

* regions of overlap

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets




Goal: Automatic Local Registration

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Ingredients for Non-Rigid Registration

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Chicken & Egg Dilemma

solve within a ;lge\\

optimization problem

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Embedded Deformation

Deformation Model

[Sumner et al.‘07]

* efficiency

¢ generality

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Deformation Model

[Sumner et al.'07]

efficiency

generality
natural deformation

detail preservation

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets




Deformation Model

[Sumner et al.'07]

efficiency
generality
natural deformation

detail preservation

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Deformation Model

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Embedded Deformation

deformation graph

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Embedded Deformation

point

constraints

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Embedded Deformation

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Embedded Deformation

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets




Embedded Deformation

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Embedded Deformation

deformed

Sourc

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Global Optimal
Correspondence Optimization

Minimize Alignment Error

deformed

source

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Correspondences as Unknowns

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Partial Data

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets




Confidence Weights Continuous Representation

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets [Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Continuous Representation Continuous Representation

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets [Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Depth-Scan Parameterization Optimization

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets [Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets




Regularization Relaxation

1000 — 1

100 — 0.1

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Results

Synthetic Model

Comparison to Ground-Truth

Elephant (329 nodes, 21k vertices)

21K vertices 329 nodes

B max
Source Target Initial Alignment &
Registration Correspondence Error .
min
[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets 33 [Furographics 2011 Course — Computing Correspondence in Geometric Data Sets 3
Real Scans Optimization
120 K vertices 336 nodes
219 iterations 2min |9s
Source Target Initial Alignment Initial Alignment Registration
[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets EE| [Furographics 2011 Course — Computing Correspondence in Geometric Data Sets |




Energy Term Visualization

Deformation

E¢mooth

Erigid

44 K vertices 798 nodes

Source Target

Initial Alignment

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets 37

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

£ |

Optimization

Initial Alignment

Registration

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets 39

Comparison to Previous
Techniques on Non-Rigid ICP

Comparison with other N-ICP

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Comparison with other N-ICP

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets




Depth-Scan of a Draping Table Cloth

Suitable for Isometric Deformations

source warget Initial alignment

N-ICP our method

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets a3

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Limitations

minima Daramet: o small features

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Robust De-Coupling

Robust Non-Rigid ICP

Sampling
¥
Closest Point
¥
Deformation

!

converges!

'

Reduce Stiffness

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Alignment Error Minimization

SpointlVi

\-

[Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets




Optimization

Etot = ogy Egy + "u:_-,hl[“r id T %smooth Fsmooth

® Inaccurate

« inefficient
* less robust

Eurographics 2011 Course — Computing Correspondence in Geometric Data Sets

Talk to you later!




Computing Correspondences in
Geometric Datasets

Local Shape Matching
Section 2.3c: Local Deformable Matching

Practical Animation Reconstruction

Eurographics 2011
LLANDUDND Lk | Smeorte

T k

Digitizing Dynamic Objects

[Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Real-Time 3D Scanner
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Geometry and Motion Reconstruction
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State of the Art

Industry Standard
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Markerless Performance Capture Limitations
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Real-Time 3D Scanner Dense Space-Time Reconstruction
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Early Test — 34 Frames

Bi-Resolution Approach
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Deforming Subject Partial Scans
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Partial and Non-Rigid Registration Partial and Non-Rigid Registration

[Eurographics 2011 Course — Computing C ic Data Sets [Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Bi-Resolution Approach Bi-Resolution Approach
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Bi-Resolution Approach

[Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Reconstruction Framework

detail 35 detail non-rigid

estimation < /'!." estimation registration
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Reconstruction Framework

deail 1 non-rigid
estimation registration

detail
aggregation
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Non-Rigid ICP

* jnaccur
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Adaptive Deformation Model

Non-Rigid ICP

Refine Graph

[Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Adaptive Deformation Model
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Detail Aggregation Detail Estimation

Edetail = i+ di P+ 8 > di — dsl?
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Detail Estimation Forward-Backward Propagation
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3D Acquisition — 100 Frames

Reconstruction Process
The Puppet
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Initial Registration
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Template Warping
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Final Reconstruction — 100 Frames
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Correspondence Visualization
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Detail-Coefficient Stability
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Close-up Comparison
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More Results

Grasping Hand — 34 Frames
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Crumpling Paper Bag — 85 Frames
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Facial Expressions — 200 Frames
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Limitations

What’s Next?
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Computing Correspondences in
Geometric Datasets

Global Shape Matching
Section 3.1a: Features

Extrinsic Key Point Detection and Feature Descriptors

Eurographics 2011
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The story so far

Problem statement

» Given pair of shapes/scans, find correspondences
between the shapes

Local shape matching

 Solves for an alignment assuming that pose is similar or
motion is small between shapes / scans

e Like “tracking” of motion in this respect

In this session: Global Shape Matching

Eurographics 2011 Course — C i in ic Data Sets

What is Global Matching?

Local vs Global

Problem statement

 Find the globally optimal correspondences between a pair
of shapes
» Search space = set of all possible correspondences

e Same sense as local minimum vs global minimum in
optimization

* Don’t get confused with global registration

= “Global registration” is commonly used to refer to aligning
multiple scans together to make a single shape

Local Matching vs.  Global Matching

» Search in space of
transformations,

» Search in the space of all

possible correspondences,
minimize alignment energy minimize alignment energy
e Incredibly large search

space... nearly impossible?

« Relatively small search
space... relatively easy

=> Features to the rescue!

ics 2011 Course = C i i ic Data Sets
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Our eyes recognize features

Types of features

Face # Arm

e Why? It looks different!
e Can dramatically reduce space of possible solutions

¢ How can we directly compare the geometric content to
recognize similarity/dissimilarity?

Welcome to the world of feature descriptors..

Spherical Harmonic Heat diffusion

N Local Surface N .
Shape Signature si RIFT descriptor Signature
[Kazhdan et al. 03] ignature [skelly and Sclaroff 07) [Sun et al. 09]
[Liand Guskov 05]

Point Signatures
[Chua & Jarvis 97]

3D Shape Context
[Frome et al. 04]

Slippage Features
[Bokeloh et al. 08]

\ ‘ Year
I [ T T
Spin Images 3D Tensor Descriptor | | Multi-scale Scale dependent/
[Johnson 97] [Mian et al. 04] Principal Curvature Invariant features
- [Yang et al. 06] [Novatnack & Nishino 08]
Multi-scale is etal.07]

Line features HMM Descriptor
[Pauly et al. 03] [Castellani et al. 08]

« Many more exist... possibly with different objectives
= ex) Matching whole shape vs. local patches

ics 2011 Course — Ci il i ic Data Sets
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An Example: Spin Images

Spin Image Construction

One of the earliest feature descriptors
e Established, simple, well analyzed
e Clearly illustrates the process of how this type of
recognition works
« Alsoillustrates potential problems & drawbacks common
to any type of feature descriptor

» Converts a local patch of geometry into an image, which
we can directly compare to determine similarity

rotate ®

/

E E AR R

Images from [Johnson 97)

ics 2011 Course — Ci i i ic Data Sets 7
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Spin Image Matching

Compressing Spin Images

Compare images directly to obtain similarity score
o Linear correlation coefficient = Similarity measure
¢ Compute only in “overlap”: when both bins have a value

Match paints by
matching spin-images

‘é-“ "‘"-s

LR
- 4,

Spin images from the same model are similar
¢ Reduce redundancy with PCA compression
« Save space and matching time

-
"‘.

E_ - > L !
1 @
Images from [Johnson 97] Images from [Johnson 97]
ics 2011 Course — Ci i i ic Data Sets S Eurographics 2011 Course — Ct iting C in ic Data Sets 10

Spin Image Matching

Problem #1: False positive/negative

Can detect geometrically similar parts
» But there are limitations

b

Matched points

Detected feature points

False positive
« Saying that two points match when in fact they don’t

False negative
¢ Saying that two points don’t match when in fact they do

Aka “noise” or “outliers”
« Occurs with any type of descriptor

ics 2011 Course — Ci il i ic Data Sets 11
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Problem #2: Parameter Selection

Problem #3: Non-unique patches

Examples of parameters in spin images
¢ Bin size
¢ Image width
« Support angle
¢ Mesh resolution

How to pick the best parameters?
e Fortunately well analyzed for spin images
« Others are studied/analyzed to varying degrees

What to do in flat/spherical/cylindrical regions?
« In this case, the region is not “unique” or distinctive
« Doesn’t make sense to compare such regions..
e Or does it?

= Increasing the scale/support

e Multi-scale features, select scale automatically
* “Global” features — ex) heat diffusion signature

jics 2011 Course — Com)

ric Data Sets
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Conclusion

Feature descriptors
« Very useful for narrowing down search space
¢ Does not solve the problem completely

« Additional optimization in the (reduced) search space is
needed > explored in the next few talks!

ics 2011 Course — C: i i ic Data Sets




Computing Correspondences in
Geometric Datasets

Global Shape Matching
Section 3.3: Global, Articulated, Pairwise
Graph Cut Based Matching

Eurographics 2011

LLAMNDOUDMNO LI

Articulated Shape Matching

Movement consists of few parts
* Material so far focused on matching individual corresp

* Now: point groups move together
= Each group according to a single rigid transformation

Eurographics 2011 Course — C i in ic Data Sets

How can we simplify the problem?

Basic idea

» Before: Optimizing correspondences of individual points
« Articulated: Optimizing correspondence of groups of points

* Q) What are the groups?
= Generally: don’t know in advance.
= If we know in advance: [PGO8]

» Q) What is the motion for each group?
= We can guess well
= ICP based search, feature based search

« If we know the articulated movement (small set of
transformations {T})
* Reformulate optimization

= Find an assignment of transformations to the points that
“minimizes registration error”

Transformations J )“
from finite set \
( 17 \
> W v

Target Shape I{

Source Shape P

ics 2011 Course = C i i ic Data Sets
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Basic idea

How to find transformations?

Find the assignment of transformations in {T} to points in P,
that maximizes:

n n
P(mu/ch)(xl "“’xr’) - le(smglei H})f;‘umpaltb[d X, € {T}

i=1 ij=1

“Data” and “Smoothness” terms evaluate quality of assignment

Global search / feature matching strategy [CZ08]
« Sample transformations in advance by feature matching
« Inspired by partial symmetry detection [MGPO06]

= Covered later in the course!

Local search / refinement strategy [CZ09]

< 1 T ) -
- i p— Start with initial part labeling, keep refinin,
—, N _ N ° itial p g, keep g
| ; Transformations J ? transformations of each part via ICP
ﬁ‘-’ \ from finite set ?\% « Refine part labels using transformations, repeat
y y b N\ H
e { A 3 )i - alternation
Source Shape P Target Shape {{
ics 2011 Course — C il i ic Data Sets Eurographics 2011 Course — C il in ic Data Sets




Motion Sampling Illlustration

Motion Sampling lllustration

Find transformations that move parts of the source
to parts of the target

L

Source Shape Target Shape

Find transformations that move parts of the source
to parts of the target

___— Sampled Points

Source Shape Target Shape

ics 2011 Course — Computing C i ric Data Sets v
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Motion Sampling lllustration

Motion Sampling lllustration

Find transformations that move parts of the source
to parts of the target

-

Source Shape Target Shape

Find transformations that move parts of the source
to parts of the target

Rotations

Translations

Translate

Source Shape Target Shape Transformation Space

ics 2011 Course = C i i ic Data Sets )
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Motion Sampling lllustration

Basic idea

Find transformations that move parts of the source

.
.

to parts of the target
Rotations
S &
sl t1 ° - < o
L

...

Transformation Space

Source Shape Target Shape

Find the assignment of transformations in {T} to points in P,
that maximizes:

n n
(match) N (singlo (compatibly
P (x],...,)»”)—l |R | IP,, ,x, €{T}
i1 i,j=1

“Data” and “ terms evaluate quality of assignment

A discrete labelling problem > Graph Cuts for optimization

-y

e r)\ Transformations A e N\
/TN L

™ p
{ - ¥ of e
Source Shape P Target Shape {{

ics 2011 Course — Computing C i ic Data Sets bhs
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Data Term

Smoothness Term

For each mesh vertex: Move close to target

How to measure distance to target?

* Apply assigned transformation fp forall p = f!,(p)
* Measure distance to closest point j in target

= p

= -0 3
[ { | . \ .
4 A A @ Ll v
g Jala) W fala)
ics 2011 Course — C ic Data Sets 13 Eurographics 2011 Course — Comput iting C in ic Data Sets 14

For each mesh edge: preserve length of edge

V(pa-fp.ta) = |Ip—all — |l £o(p) — fa(a)]|

Original Length
* Both versions of f,(q) moved q close to the target
« Disambiguate by preferring the one that preserves length
P it

- (N

Transformed Length

Symmetric Cost Function

Optimization Using Graph Cuts

Swapping source / target can give different results
» Optimize {T} assignment in both meshes
« Assign {T} on source vertices, {T1} on target vertices
» Enforce consistent assignment: penalty when fp #* fu

o

/K N (N

argmin Data + +
) Source
Assignment from a set
of transformations  Data ;. + +
o Data and terms apply to both shapes

o Additional

S S LY . el
{ | J o Weights to control relative influence of each term
«" .2’“” N o Use “graph cuts” to optimize assignment
q
uy Y ) fr \¢ J Io(P) o [Boykov, Veksler & Zabih PAMI '01]
¢ o £ ChiosRemiatgnalty
ics 2011 Course — Ci ic Data Sets 15 Eurographics 2011 Course — C iting C in ic Data Sets 16

Synthetic Dataset Example

Synthetic Dataset w/ Holes

Y
: Q 1
\ \\’.‘ -
\ ) ‘
Target Aligned Result
1.5%I

i N
n

N

Source

- { NV N

YA ' !
0%

Motion Segmentation (from Graph Cuts) Registration Error 4,

R A

g T

\\\{ﬁ { AW /{f
Source Target

- i oy -

St 17

[ %a {.//f". A\\ 'y

Distance (from Target) to the closest point

Aligned Result
(% bounding box diagonal)

I 9,

I5.3%

o
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Arm Dataset Example

Arm Dataset Example

Missing Data

Missing Data ~_

I 5.4%

. IO%

Distance (from Target) to the closest point
(% bounding box diagonal)

Source Noisy Target . . .
v larg Aligned Result Motion Segmentation
Eurographics 2011 Course = C: ic Data Sets 19 Eurographics 2011 Course — Computing C in ic Data Sets i
Performance Pros/Cons
Dataset #Points | # Labels | Matching | Clustering | Pruning Graph Cuts Feature matching: Insensitive to initial pose
Horse 8431 |1500 |2Amin |30sec  |(skip)16sec | 1.1hr « May fail to sample properly when too much missing data,
Arm 11865 1000 55.0sec | 0.9sec 12.4 min 1.2hr non—rigid motion
Hand (Front) | 8339 1500 14.5sec | 0.7 sec 7.4 min 1.2hr o Hard assignment Of transformations
Hand (Back) | 6773 1500 17.3sec | 0.9sec 9.4 min 1.6 hr

Graph cuts optimization is most time-consuming step
* Symmetric optimization doubles variable count
* Symmetric consistency term introduces many edges

Performance improved by subsampling
¢ Use k-nearest neighbors for connectivity

Source

Target

ics 2011 Course = C ic Data Sets

Conclusions

We can simplify the problem for articulated shapes

Instead of searching for corresponding points, search for an
assignment of transformations

Explicitly sample a discrete set of transformations
Refine the transformations via local search

Optimize the assignment using graph cuts
No marker, template, segmentation information needed
Robust to occlusion & missing data

Thank you for listening!

ics 2011 Course — Ci ic Data Sets
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Computing Correspondences in
Geometric Datasets

Global, Isometric, Pairwise:
Isometric Matching and Quadratic Assighment

Eurographics 2011
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Overview and Motivation

Global Isometric Matching

Global Isometric Matching

Goal

* We want to compute correspondences between
deformable shape

» Global algorithm, no initilization

Approach & Problems
« Consistency criterion: global isometry

Problem
* How to find globally consistent matches?

Model

* Quadratic assignment problem
= General QA-problem is NP-hard

= But it turns out: solution can usually be computed
in polynomial time (more later)

ics 2011 Course = C i i ic Data Sets
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Isometric Matching

(vs. extrinsic matching)

Invariants

Rigid Matching
« Invariants: All Euclidean distances are preserved

Eurographics 2011 Course — C¢ il in ic Data Sets




Invariants

Invariants

Intrinsisc Matching
« Invariants: All geodesic distances are preserved

Intrinsisc Matching
* Presevation of geodesic distances
(,intrinsic distances”)
* Approximation
= Cloth is almost unstretchable
= Skin does not stretch a lot

= Most live objects show approximately isometric surfaces
¢ Accepted model for deformable shape matching

= In cases where one subject is presented in different pose:

= Accross different subjects: Other assumptions necessary

= Then: global matching is an open problem

S

ics 2011 Course — Ci ic Data Sets

Eurographics 2011 Course — Computing C in ic Data Sets

Feature Based Matching

Quadratic Assignment Model

Problem Statement

Deformable Matching
« Two shapes: original, deformed
¢ How to establish correspondences?

¢ Looking for global optimum
= Arbitrary pose

Assumption

* Approximately isometric
deformation

S. Konig, TU Dresden

Eurographics 2011 Course — C ting Ce in ic Data Sets
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Algorithm

Algorithm

Feature-Matching
» Detect feature points

» Local matching: potential correspondences

 Global filtering: correct subset

Feature-Matching

¢ Detect feature points
= Locally unique points
= Such as: maxima of Gaussian curvature
= E.g.: Geometric MLS-SIFT Features

» Local matching: potential correspondences

* Global filtering: correct subset

ics 2011 Course — Ci ic Data Sets

Eurographics 2011 Course — C¢ il in ic Data Sets




Algorithm

Algorithm

Feature-Matching
» Detect feature points

= Locally unique points
= Such as: maxima of Gaussian curvature
= E.g.: Geometric MLS-SIFT Features

¢ Local matching: potential correspondences
= Descriptors
= E.g. curvature histograms

« Global filtering: correct subset

Feature-Matching

« Detect feature points
= Locally unique points
= Such as: maxima of Gaussian curvature
= E.g.: Geometric MLS-SIFT Features

¢ Local matching: potential correspondences
= Descriptors
= E.g. curvature histograms

« Global filtering: correct subset
» Quadratic assignment
= Spectral relaxation [Leordeanu et al. 05]
= RANSAC

Eurographics 2011 Course — C i i ic Data Sets
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Quadratic Assignment

Quadratic Assignment Model

Most difficult part: Global filtering
¢ Find a consistent subset
¢ Pairwise consistency:
= Correspondence pair must preserve intrinsic distance
¢ Maximize number of pairwise consistent pairs
= Quadratic assignment (in general: NP-hard)

Quadratic Assignment
¢ n potential
correspondences

* Each one can be
turned on or off

« Label with variables x;
« Compatibility score:

n n
P("’"m”(xl ,...,X,,) — H P,(:mgn-] H Pf/compﬂmblz) X, € {0,1}
i=1

i,j=1

ics 2011 Course = C i i ic Data Sets
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Quadratic Assignment Model

Quadratic Assignment Model

Quadratic Assignment
» Compatibility score:

= Singeltons:
Descriptor match

n

(match) _ (compatible) (match) _ (single) (compatible)
P (e X, ) = P; X, {01} PN (xy,,x,) =] P, Iz ,x, €{0,1}
i,j=1 i=1 ij=
ics 2011 Course — C i i ic Data Sets 17 Eurographics 2011 Course — C il in ic Data Sets 18

Quadratic Assignment
« Compatibility score:
= Singeltons:
Descriptor match

= Doubles:
Compatibility




Quadratic Assignment Model

Quadratic Assignment
¢ Matrix notation:

P["’“""’)(xl X)) = ﬁ P’[smmcj ﬁ P’(‘;‘ompntvblcj
i=1

i,j=1

n n
lOgP[muuh)(X‘ X,)= Zlﬂg P.'["'WM + legRT;:;m;uutthle]
i=1

i,j=1
= xs + x'Dx

« Quadratic scores are encoded in Matrix D

e Linear scores are encoded in Vector s

e Task: find optimal binary vector x

ics 2011 Course — Computing C: i ric Data Sets




Computing Correspondences in
Geometric Datasets

Quadratic Assignment Model

Global Shape Matching
Section 3.4b: Global, Isometric, Pairwise

Spectral Matching and Applications

Eurographics 2011 7
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Quadratic Assignment
¢ Matrix notation:
P(muuh)(xl ""'Xn) _ 1—[ R(WW) 1—[ P’(’;nmpuuhle]
i=1

ij=1

n n
logP(mazch)(Xl X, ) = zlogE[:mglc] + ZlogR(Jmmpambra]

i=1 ij=1
= xs + x'Dx
¢ Quadratic scores are encoded in Matrix D
e Linear scores are encoded in Vector s
e Task: find optimal binary vector x

Eurographics 2011 Course — Computing C in ic Data Sets

Spectral Matching

Spectral Matching

Simple & Effective Approximation:
¢ Spectral matching [Leordeanu & Hebert 05]
¢ Form compatibility matrix:

Diagonal:
Descriptor match

Off-Diagonal:
Pairwise compatibility

All entries within [0..1]
= [no match...perfect match]

Approximate largest clique:
« Compute eigenvector with largest eigenvalue
* Maximizes Rayleigh quotient:
x"Ax
|

“Best yield” for bounded norm
= The more consistent pairs (rows of 1s), the better

arg max o
x|

= Approximates largest clique
¢ Implementation
= For example: power iteration

ics 2011 Course — C: i i ic Data Sets
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Spectral Matching

Spectral Matching Example

Post-processing

* Greedy quantization
= Select largest remaining entry, setitto 1

= Set all entries to O that are not pairwise consistent
with current set

= Iterate until all entries are quantized

In practice...
 This algorithm turns out to work quite well.
* Very easy to implement
e Limited to (approx.) quadratic assignment model

Application to Animations

Feature points:
Geometric MLS-SIFT
features [Li et al. 2005]

Descriptors:
Curvature & color
ring histograms

Global Filtering:
Spectral matching

Pairwise animation matching:
Low precision passive stereo data
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Application In Detail: [HAW*08]

Overview

Combines the spectral matching with a deformation
system to perform registration

* A good illustration of how a matching method fits into a
real registration pipeline

A pairwise method
« Deform the source shape to match the target shape

Source + Targe!

Source Samples

Correspondences

Rigid Clusters

J
Gray = source
Yellow = target

Registration Result

Performs both correspondence and deformation

L[ Correspondence H Deformation }J

« Correspondences based on improving closest points

 After finding correspondences, deform to move shapes
closer together

* Re-take correspondences from the deformed position
« Deform again, and repeat until convergence

ics 2011 Course — Ci ric Data Sets
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Overview

Overview

Performs both correspondence and deformation

Correspondence

Deformation

—

5 basic steps

1.Closest points

2.Improve by feature matching
3.Filter by spectral matching
4.Expand sparse set
5.Fine-tune target locations

Performs both correspondence and deformation

L[ Correspondence H Deformation ]J

2 basic steps

1.Fit per-cluster rigid transformation
2.Sparse least-squares solve for
deformed positions

Occasional step: Increase cluster size

ics 2011 Course — C: i i ic Data Sets
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Detailed Overview

Sample for robustness & efficiency

Sampling
* Whole process works with reduced sample set

Correspondence & Deformation
* Examine each step in more detail

Discussion
 Discuss pros/cons

Coarse to fine approach
o Use uniform subsampling of the surface and its normals

« Improve efficiency, can improve robustness to local
minima

Source + Target

Source Samples

Let’s make it more concrete

« Sample set denoted ; — L7
* In correspondence: for each s, find corresponding target
points 7,
* In deformation: given ¢,, find deformed sample positions
Si, that match #; while preserving local shape detail

ics 2011 Course — Computing Ct i ic Data Sets
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Correspondence Step #1

Correspondence Step #2

Target (yellow) € Source (gray)

Find closest points

» For each source sample, find
the closest target sample
= s =sample point on source
= t=sample point on target

. 2
arg min Hs 1
el

e Usually pretty bad

Closest point correspondences

Target (yellow) € Source (gray)

Improve by feature matching
e Search target’s neighbors to
see if there’s better feature
match, replace target
= Let f(s) be feature value of s

t < arg min Hf(s)—f(t')

FeN(1)

2

« Iterate until we stop moving

« If we move too much, discard
correspondence

e Much better, but still outliers

Feature-matched correspondences

Eurographics 2011 Course — Ci i i ic Data Sets 13
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Correspondence Step #3

Correspondence Step #3

Target (yellow) € Source (gray)

Filter by spectral matching

« (First some preprocessing)

¢ Construct k-nn graph on both
src & tgt sample set (k = 15)

» Length of shortest path on
graph gives approx. geodesic
distances on src & tgt

d,(s;,8,) d, (1))

e Goal is to filter these ---------- 2>
and keep a subset which is
geodesically consistent

Target (yellow) € Source (gray)

Filter by spectral matching

» Construct affinity matrix M
using these shortest path
distances

* Consistency term & matrix

d (s,,s,) d(t.,t
c,f:min{M,M}, ¢, =1
d, (1)) " d,(s,05)
e—cy2
M — (=) cij >
& 0 otherwise.

= Threshold ¢, = 0.7 gives how
much error in consistency we are
willing to accept

Feature-matched correspondences

ics 2011 Course — € ic Data Sets 15
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Correspondence Step #3

Correspondence Step #4

Target (yellow) € Source (gray)

Filter by spectral matching

* Apply spectral matching: find
eigenvector with largest
eigenvalue - score for each
correspondence

o Iteratively add corresp. with
largest score while consistency
with the rest is above c_0

 Gives kernel correspondences

* Filtered matches usually sparse

Filtered correspondences

Target (yellow) € Source (gray)
Expand sparse set

» Lots of samples have no target
position

« For these, find best target
position that respects geodesic
distances to kernel set

t, =argmine, (s,,t)
teN, (t,.T)

o)=Y [dss)-dwt)]

(set0ek

B> pnded correspondences
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Correspondence Step #4

Correspondence Step #5

Target (yellow) € Source (gray)

Expand sparse set
e Lots of samples have no target
position
» Compute confidence weight
based only how well it respects
geodesic distances to kernel set

1
m:exp(—m) e=? z e (s, t)
2e ‘ ‘(sk,lk)el(

Red = not consistent ---—>

Target (yellow) € Source (gray)

Fine-tuning

 So far, target points restricted
to be points in target samples

* Not accurate when shapes are
close together

 Relax this restriction and let
target points become any point
in the original point cloud

* Replace target sample with a
closer neighbor in the original

Blue = very consistent point cloud
Expanded correspondences E f)(;lded correspondences
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Deformation Correspondence matching term

Solved by energy minimization (least squares)
* Last step gave target positions 7,

* Now find deformed sample positions si' that match
target positions ¢,

Two basic criteria:
* Match correspondences: s, should be close to 7,
 Shape should preserve detail (as-rigid-as-possible)
¢ Combine to give energy term:

E=4A_FE  +A..E

corr~ corr rigid ' rigid

Combination of point-to-point (a=0.6) and point-to-
plane (B=0.4) metrics
¢ Weighted by confidence weight w; of the target position

B, = Yo afs -t + As ~t)n )|

s;eS

Point-to-point Point-to-plane

ics 2011 Course — € ic Data Sets 21
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Shape preservation term

Clusters for local rigidity

Deformed positions should preserve shape detail

* Form an extended cluster gk for each sample point: the
sample itself and its neighbors

* For each Ek find the rigid transformation (R,T) from
sample positions to their deformed locations

12
E =Y |Rs, +T,—s)|
5,€C;
* When solving for s,.' , constrain them to move rigidly
according to each cluster that it’s associated with

2
Eigia =Y. Ex =Y, Y [Resi+ T —si
k K s,eC;

« Initially each cluster contains a single sample point

« Every 10 iterations (of correspondence & deformation),
combine clusters that have similar rigid transformations
(forming larger rigid parts)
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Advantages of features & clustering

Results

Source + Target Without Features ~ Without Clustering With Both

Eurographics 2011 Course — Computi i ic Data Sets 25 Eurographics 2011 Course — Computi i ic Data Sets 26
Results Results
. Efficient, robust method
—
v L
| ~)
data set #poses #pairs |S| 1S pre time reg time
Horse 10 45 B0k 2500 T4s 13.6s
Armadillo 12 66 332k 2500 7.68 14.8s
Arms 36 630 B0k 600 21s 1.1s
Shoulder 33 528 117k 800 34s 1.9s
Torso 27 231 325k 1100 4.55 4.5
Eurographics 2011 Course — C Data Sets 27 Eurographics 2011 Course — C: i Data Sets 28
.
Conclusion

Non-rigid registration under isometric deformations

« Improve closest point correspondences using features and
spectral matching

» Deform shape while preserving local rigidity of clusters

e Iteratively estimate correspondences and deformation
until convergence

* Robust, efficient method

» Relies on geodesic distances (problematic when holes are
too large)

Eurographics 2011 Course _ C¢ i i ic Data Sets 29




Computing Correspondences in
Geometric Datasets

Global, Isometric, Pairwise
RANSAC - Forward Search - Efficiency

Eurographics 2011
LLAMNDOUDMNO LI

Ransac and Forward Search
The Basic Idea

Random Sampling Algorithms

RANSAC

Estimation subject to outliers:

¢ We have candidate
correspondences

e But most of them are bad
 Standard vision problem

e Standard tools:
Ransac & forward search

data ° pickrnd.2 ¢
o ° o S
%0 oo ° 8090 o 4 °
°08 0o °98 oo
. 983, ’/' © 838,
° ° o o P o
data ° pickrnd. 2 ° data °
o o o
° 5 ° —— °
8090 0 4 Fe%00 4 oseroe
° oo 080 o ¢
° Sog ° Toq g
o o © o o o o

»,Standard” RANSAC line fitting example:
e Randomly pick two points
 Verify how many others fit
* Repeat many times and pick the best one (most matches)

lics 2011 Course — C i i ic Data Sets 3 Eurographics 2011 Course — C iting C in ic Data Sets
Forward Search
St - teration . © Ransac-Based
808570 ° 0% 5 0 g. ° ° o a
s, s g, Correspondence Estimation
° >80 ° 3?’&.@_ ° "45.4‘
result °
Forward Search: R °
..
 Ransac variant R g
« Like ransac, °

but refine model by ,growing”
» Pick best match, then recalculate
¢ Repeat until threshold is reached

ics 2011 Course — Ci i i ic Data Sets 5




RANSAC/FWS Algorithm

Ransac/FWS Details

Idea
« Starting correspondence
* Add more that are consistent
= Preserve intrinsic distances

* Importance sampling algorithm l

Advantages
« Efficient (small initial set)
« General (arbitrary criteria)

Algorithm: Simple Idea
 Select correspondences with probability proportional to
their plausibility
« First correspondence: Descriptors
« Second: Preserve distance (distribution peaks)
« Third: Preserve distance (even fewer choices)

« Rapidly becomes deterministic
* Repeat multiple times (typ.: 100x)

= Choose the largest solution (larges #correspondences)

ics 2011 Course — Computing C: ric Data Sets
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Ransac/FWS Details

Foreward Search Algorithm

Provably Efficient:
» Theoretically efficient (details later)
e Faster in practice (using descriptors)

Flexible:

e In later iterations (> 3 correspondences), allow for outlier
geodesics

¢ Can handle topological noise

Forward Search

Add correspondences incrementally

Compute match probabilities given the information
already decided on

Iterate until no more matches can found that meet a
certain error threshold

Outer Loop:
= Iterate the algorithm with random choices
= Pick the best (i.e., largest) solution

ics 2011 Course — C: ic Data Sets

2011 Course — Computing Ce in ic Data Sets

Foreward Search Algorithm

Foreward Search Algorithm

scores

Step 1:
 Start with one correspondence

= Target side importance sampling:
prefer good descriptor matches

= Optional source side imp. sampl: prefer unique descriptors

Descriptor
matching

posterior
(distance)

Step 2:

« Compute ,posterior” incorporating geodesic distance
= Target side importance sampling:
sample according to descriptor match x distance score
= Again: optional source side imp. sampl: prefer unique descriptors

ics 2011 Course — Computing Ct ic Data Sets
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Foreward Search Algorithm

Foreward Search Algorithm

posterior
(distance &
descriptors)

Step 2:
* Compute ,posterior” incorporating geodesic distance

= Target side importance sampling:
sample according to descriptor match x distance score

= Again: optional source side imp. sampl: prefer unique descriptors

posterior
(distance &
descriptors)

Step 3:

* Same as step 2, continue sampling...

ics 2011 Course — Computing C: i ric Data Sets 13
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Foreward Search Algorithm

Another View

posterior Landmark Coordinates
(distance & . i i . .
descriptors) « Distance to already established points give a charting of
the manifold
target
Step 3:
« Same as step 2, continue sampling...
ics 2011 Course — Ci il i ic Data Sets 15 2011 Course — Computing Ce in ic Data Sets 16
Results Results: Topological Noise

Spectral Quadratic Assignment
[Leordeanu et al. 05] [Tevs et al. 09]

Ransac Algorithm

2011 Course — Computing Ct i ic Data Sets 17

ics 2011 Course — Computing C in ic Data Sets 18




Complexity

How expensive is all of this?

Cost analysis:
* How many rounds of sampling are necessary?

Constraints [Lipman et al. 2009]:
« Assume disc or sphere topology
* An isometric mapping is in particular a conformal
mapping
« A conformal mapping is determined by 3 point-to-point
correspondences

jics 2011 Course — Computing C in ic Data Sets

20

How expensive s it..?

Costs...

First correspondence:
» Worst case: n trials (n feature points)
« In practice: k <<n good descriptor matches
(typically k =~ 5-20)

Second correspondence:
» Worst case: n trials, expected: \n trials
e In practice: very few (due to
descriptor matching, maybe 1-3)

Last match:
* At most two matches

Overall costs:
* Worst case: O(n?) matches to explore
e Typical: O(n'>) matches to explore

Randomization:
» Exploring m items costs expected O(m log m) trials
* Worst case bound of O(n? log n) trials

« Asymptotically sharp: O(c)-times more trials for shrinking
failure probability to O(exp(-c?))

ics 2011 Course — C: i i ic Data Sets

2011 Course — Computing Ce in ic Data Sets

22

Costs...

General Case

Surface discretization:
» Assume g-sampling of the manifold (no features):
0(&?) sample points
« Worst case O(&* log £1) sample correspondences
for finding a match with accuracy &
o Expected: O(&73 log £7).

In practice:
« Importance sampling by descriptors is very effective
» Typically: Good results after 100 iterations

Numerical errors:
« Noise surfaces, imprecise features: reflected in probability
maps (we know how little we might know)

Topological noise:
* Use robust constraint potentials
* For example: account for 5 best matches only

Topologically complex cases:
» No analysis beyond disc/spherical topology
« However: the algorithm will work in the general case
(potentially, at additional costs)

ics 2011 Course — Computing Ct il ic Data Sets
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Partial Symmetry Detection

Shape model (represented as point cloud, mesh, ...)

Partial and Approximate Symmetry
Detection for 3D Geometry

N\

Identify and extract similar (symmetric) patches of
different size across different resolutions

S
FF

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Symmetry in Nature Related Work

“Symmetry is a complexity-reducing concept [...]; seek it everywhere.”
- Alan J. Perlis

[Podolak et al. "06] [Loy and Eklundh "06] [Gal and Cohen-Or "05]
"Females of several species, including [...] humans, prefer symmetrical males." Hough transform on tradeoff memory for
- Chris Evan feature points speed

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Symmetry for Geometry Processing Types of Symmetry

Transform Types:

Reflection ( D)
eflection -.\\/ /

. .
Rotation+ (/I
J

L™ -
[Katz and Tal 04] [Funkhouser et al. *05] Uniform Scaling

s

&

] N N

f = = 8L < S
= T=EE Y9

[Khazdan et al. '04] [Sharf et al. "04]
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Contributions Reflective Symmetry: A Pair Votes

Automatic detection of discrete symmetries !

reflection, rigid transform, uniform scaling e
—0 d I
Symmetry graphs ! .
high level structural information about object
Output sensitive algorithms !
low memory requirements b
transformation space
Problem Characteristics Reflective Symmetry: Voting Continues
Difficulties
o Which parts are symmetric ! .
. d I
objects not pre-segmented
 Space of transforms: rotation + translation
 Brute force search is not feasible
¢
Easy transformation space
» Proposed symmetries ! easy to validate
Reflective Symmetry Reflective Symmetry: Voting Continues
d I
¢

transformation space
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Reflective Symmetry: Largest Cluster

Pruning: Local Signatures

He

Sp! ' d o
-:.-'
Ry
el
.'*-' q)

transformation space

Local signature ! invariant under transforms

Signatures disagree ! points don’t correspond
1

(0,1/a)

a
o Use (x;, K,) for curvature based prunin
(1/(a +b).1/a)) (iey 1) P J

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Pipeline

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Reflection: Normal-based Pruning

) Ui laee) ) |
4 — . by g - LN = .

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Pipeline

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Point Pair Pruning

input model sampde set
i > i 2 i i

! AN

all pairs curvature based

curvature + normal based
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Transformations

Random Sampling

Reflection ! point-pairs

Rigid transform ! more information

n
1
n
; €y Robust estimation of
\ . €2 principal curvature frames
p [Cohen-Steiner et al. '03]
P, € ! @

Height of clusters related to symmetric region size

Random samples !
larger regions likely to be detected earlier

Output sensitive

Eurographics 2011 Course ~ Computing Correspondences in Geometric Data Sets

Mean-Shift Clustering

Eurographics 2011 Course ~ Computing Correspondences in Geometric Data Sets

Model Reduction: Chambord

Kernel:
Radially symmetric
Radius =~

Eurographics 2011 Course ~ Computing Correspondences in Geometric Data Sets

Verification

Eurographics 2011 Course ~ Computing Correspondences in Geometric Data Sets

Model Reduction: Chambord

Clustering gives a good guess
Verify ! build symmetric patches

Locally refine solution using ICP algorithm
[Besl and McKay "92]

1 52%

Eurographics 2011 Course ~ Computing Correspondences in Geometric Data Sets
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Model Reduction: Chambord Approximate Symmetry: Dragon

1 52%

detected symmetries

correction field
UNITS: fraction of bounding box diagonal

Eurographics 2011 Course ~ Computing Correspondences in Geometric Data Sets
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Sydney Opera House Limitations

Cannot differentiate between small sized svmmetries and
com d d

—

-

. cluster hoight
| "

[Castro et al. 06]
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Sydney Opera House Articulated Motion: Horses

cluster height
8o

©

®

O ONO)
5l 2
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Regular Structure

Discovering Structural

Regularity in 3D Geometry

Mark Pauly Niloy J. Mitra  Johannes Wallner ~ Helmut Pottmann Leonidas Guibas

ETH Zurich IIT Delhi TU Graz TU Vienna Stanford University
u
Ty 10
WIEN

Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPH T -'x..LD

Regular Structure
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Regular Structures Regular Structure
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Regular Structure

Motivation

* Regularity — form, semantics

Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPHIE O;J Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPHE O;J
Motivation Motivation
* Regularity — form, semantics
» Scan cleaning, completion
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Motivation Motivation
* Regularity — form, semantics * Regularity — form, semantics
» Scan cleaning, completion
» Compression
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Motivation Related Work

* Regularity — form, semantics

» Scan cleaning, completion
» Compression

» Geometric edits, synthesis

Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPHIE .:‘ Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPH 03‘

Motivation Related Work

* Regularity — form, semantics w
\:.’J"?,_,-J-

{ R

[Martinet et al. *07]

[Podolak et al. *06] [Loy, Eklundh "06] [Mitra et al. "06]
» Scan cleaning, completion
» Compression
» Geometric edits, synthesis
» Growth laws or design principles
Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SHGRAPHE t:’ Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGORAPH:TC .:‘

Inspiration Related Work

ONGROWTH p
AND FORM /)
The Coargetr Revieal ldnar R
[Podolak et al. "06] [Loy, Eklundh "06] [Mitra et al. "06]
A& g@& ~ W
[Funkhouser et al. "05] [Thrun, Wegbreit 05] [Shimari et al. “06] [Liu et al. "08]

On Growth and Form
[Thompson 1917]

y

»
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Related Work

Structure Discovery

=1

[Hays et al. "06]

: ”'.. -

[Loy, Eklundh "06] [Mitra et al. "06]

~ F‘F

[Shimari et al. "06]

rarstorm
map ©

[Wang et al. "08]

[Mueller et al. "07] [Baudes et al. "08]

Input Model

i

Structure
Discovery

Regular Structures

Niloy J. Mitra

SIGGRAPH .5
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Related Work

Structure Discovery

[Funkhouser et al. *05]

[Hays et al. "06]

: ”'.. -

[Mitra et al. *06]

[Loy, Eklundh "06]

~ F‘F

[Thrun, Wegbreit "05]

[Shimari et al. “06] [Liu et al. "08]

EEREGT H
Hranstorm
man @

i
1T

[Mueller et al. *07] [Wang et al. "08]

[Baudes et al. "08]

Transform
Analysis

Input Model Transform Clusters

'

Structure
Discovery

Regular Structures

Niloy J. Mitra
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Structure Discovery

Structure Discovery

Input Model

Transform
Analysis

Transform Clusters

\

Model
Estimation

Regular Structures Transform Generators
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Structure Discovery

Structure Discovery

. Transform
Analysis
uis T T
Input Model Transform Clusters
Structure Model
Discovery Estimation
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P |
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Regular Structures

Transform Generators

Transform
Analysis

Aggregation
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Structure Discovery

Repetitive Structures

_, Transform regesneas
Analysis Temang ARy

a0 g L gk

Input Model Transform Clusters

i

Structure Model
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Regular Structures

Transform Generators

* |Invariance under transformations
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Structure Discovery

Repetitive Structures

Transform
Analysis

Transform Clusters

Model

Estimation

'

—

P |

Aggregation | <

Transform Generators

* |Invariance under transformations

W

Translation

s
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Repetitive Structures

Repetitive Structures

* Invariance under transformations

.jhhh.

Translation

-ﬂuu.

* Invariance under transformations

dh

Translation + Rotation

1
:'l i

Rotation + Scaling

Rotation
Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPH t_r‘ Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPH t_r‘
Repetitive Structures Repetitive Structures
* Invariance under transformations * Invariance under transformations
Translation . ..l s N
= dm . . I=: : L .
Scaling u h
- .y . '. Translation + Rotation Rotation + Scaling
Rotation
1-parameter patterns
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Repetitive Structures Repetitive Structures
* Invariance under transformations * Invariance under transformations
Translation x Translation
Translation + Rotation
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Repetitive Structures

Repetitive Structures

* Invariance under transformations

Translation x Translation Translation x Rotation

* 1-parameter groups

emE

Scaling T

!._..-hhh

Translation

1n) -
g~
Rotation

* Commutative 2-parameter groups

B W 0 8D

Rotation x Scaling

L K’

Translation + Rotation Rotation + Scaling

Translation x Translation Translation x Rotation

’
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Repetitive Structures

Structure Discovery

* Invariance under transformations

Translation x Translation Translation x Rotation

Rotation x Scaling

> Transform
Analysis
Input Model Transform Clusters

' \

Structure Model
Discovery Estimation

'

_—::::I"ﬁ"_' < | Aggregation |
--'_E_L_rﬁ'l
-

Regular Structures

7«

Transform Generators
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Repetitive Structures

Structure Discovery

* Invariance under transformations

Translation x Translation Translation x Rotation

Rotation x Scaling

2-parameter commutative patterns

prsihog ! T Transform
] Analysis
2 1]\ )

Input Model Transform Clusters

} '

Structure Model
Discovery Estimation

} '

| Aggregation |-

(SN
Regular Structures

Transform Generators
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Transformations

Transformations
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Transformations [Mitra et al.

*06]

Transformations
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Niloy J. Mitra Discovering Structural Regularity in 3D Geometry

y

SHRGRAPH I .._/‘

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

SIGGRAPHZE

y

)



Transformations

Transformations
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Transformations
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NS TN N
e N N N

4L

L0

———

— T
’;/.’_‘\ }‘/’_‘\\ ‘/’A
M PN - -

Lo

([ [JI] odHd
| L] = L L]
=S & sSHeS & —_— ¥ ] ¥ | ¥ e ! — _—
O > ~/ \ — < / »? transformations
\‘_\__H_‘ -»// \\_‘_t_v{’//
spatial domain transformation space
Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPHIE ig Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPHTCE ig



Transformations

Model Estimation
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Model Estimation

Transform Mapping

density plot of
pair-wise transformations

Gzi-Gji — {ig1 + Jjg2}
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Model Estimation

Transform Mapping
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Transform Mapping

Transform Mapping
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Is there a Pattern?

Structure Discovery
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Model Estimation

Model Estimation

+ Grid fitting
— input: cluster centers
C: {Cl,...,cn}
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Model Estimation

Model Estimation

* Global, non-linear optimization

+ Grid fitting
— input: cluster centers

C={ci,...,cn}

— unknowns: grid generators

Xij = ig1 + jg2

grid Iocatign \ /

generating vectors

’
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Model Estimation

Model Estimation

* Global, non-linear optimization

— simultaneously detects outliers and
grid structure

+ Grid fitting
— input: cluster centers

C={cy,...,cn}

— unknowns: grid generators

’
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J ; 1€ |—n,n
Xij =181 + J82 [=n.n]
J € [_m7 m]
grid location )
generating vectors
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Model Estimation

* Fitting terms

Model Estimation

IC|
Box =300 llew = x(k)|?
/

* Global, non-linear optimization
\
cluster center

grid structure
closest grid point

Ex_.c= ZZ Zj &Xij —c(i,5)|?

grid point
Niloy J. Mitra

closest cluster center

Discovering Structural Regularity in 3D Geometry

SIGGAAPH ._r‘

Niloy J. Mitra

— simultaneously detects outliers and
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Model Estimation

* Fitting terms

SIGGRAPH

Model Estimation
data confidence
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* Global, non-linear optimization

— simultaneously detects outliers and
grid structure
\ final generators g1, g2
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Model Estimation
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Structure Discovery
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i [ . Transform >
Analysis
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Input Model
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» Data and grid confidence terms

Transform Clusters

Structure
Discovery
21\2
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Model
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Aggregation

Aggregation

» Region-growing to extract repetitive elements

* Region-growing to extract repetitive elements
+ Simultaneous registration
H,~H+eD-H
Th ~ (H+eD - H)*
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Aggregation Structure Discovery
* Region-growing to extract repetitive elements
' Transform
+ Simultaneous registration f
Input Model Transform Clusters
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Structure Model
Discovery Estimation
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Regular Structures Transform Generators
Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPHIE 03‘ Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPH 03‘
Aggregation Structure Discovery
» Region-growing to extract repetitive elements
' Transform
+ Simultaneous registration f
H+ ~ H + €D . H Input Model Transform Clusters
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Structure Model
Discovery Estimation
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Amphitheater

Results and Applications
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Amphitheater

Amphitheater

£’
=
I Rot: 72 a i-"/

M RotxTrans: 72x3
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Amphitheater Robustness
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Robustness Robustness
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Robustness Geometry Synthesis
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Robustness Geometry Synthesis
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Geometry Synthesis

Geometry Synthesis
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Geometry Synthesis

Geometry Synthesis
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Geometry Synthesis

Geometry Synthesis

L
» il

g
v sl
>

Niloy J. Mitra Discovering Structural Regularity in 3D Geometry

SIGGRAPHT |_§ Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPHT |_§



Geometry Synthesis Geometry Synthesis
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Geometry Synthesis Geometry Synthesis
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Geometry Synthesis Chambord Castle
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Chambord Castle Chambord Castle
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Chambord Castle Chambord Castle
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Chambord Castle
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Chambord Castle Outdoor Scan
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Outdoor Scan Scan Completion
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Outdoor Scan Scan Completion
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Chambered Nautilus Chambered Nautilus
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Chambered Nautilus Scan Completion
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Chambered Nautilus Geometry Synthesis
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Geometry Synthesis Geometry Synthesis
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Geometry Synthesis Observations
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Observations

Structure Discovery

* Warped structures

d Transform - Model
G- [ ) ()
Input Model Transform Clusters Transform Generators Regular Structures
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Observations

Structure Discovery

* Warped structures

* Algorithm is fully automatic

* Size of grid vs accuracy 8 I = [ ead
[ Anaysis [ ceasoo ™\ Estimation | - Aggregation | :"% 1
Input Model Transform Clusters Transform Generators Regular Structures
Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPHZI0A | /‘ Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPH " /‘

Observations

Structure Discovery

* Warped structures

* Algorithm is fully automatic

» Requires no prior information on size, shape, or
location of repetitive elements

. .
+ Size of grid vs accuracy > N ad
™ Anaysis |7 cewsoo [ Estimation [ -+{ Aggregation > it} "i‘d‘ I
° Ch0|ce Of parameters I|:|pu(M;JdeI Transform Clusters Transform Generators Regular Structures
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Structure Discovery

Acknowledgements

« Algorithm is fully automatic

» Requires no prior information on size, shape, or
location of repetitive elements

* Robust, efficient, independent of dimension
— general tool for scientific data analysis

| Aggregation |-

o 2N P i
! . ( Transform ) - o Model ),
Analysis ses Estimation
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Motivation

Computing Correspondences in
Geometric Datasets

Symmetry is everywhere

Symmetry

Symmetry Transforms

Local Symmetry

Eurographics 2011
LLAMDUDMNO LK | Banecr Unversiys & )

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Motivation Motivation

Symmetry is everywhere Symmetry is everywhere

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Motivation Goal

Symmetry is everywhere A computational representation that describes all
planar symmetries of a shape

= ?

Perfect Symmetry
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Symmetry Transform Symmetry Transform

A computational representation that describes A computational representation that describes
all planar symmetries of a shape all planar symmetries of a shape

"\ 5 "\ \

Partial Symmetry Symmetry = 0.2
Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
Symmetry Transform Symmetry Measure
A computational representation that describes Symmetry of a shape is measured by correlation with
all planar symmetries of a shape its reflection
\_ N
Perfect Symmetry Symmetry = 1.0
Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
Symmetry Transform Symmetry Measure
A computational representation that describes Symmetry of a shape is measured by correlation with
all planar symmetries of a shape its reflection
Local Symmetry Symmetry = 0.3 Symmetry = 0.7
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Symmetry Measure Previous Work

Symmetry of a shape is measured by correlation with
its reflection

Kazhdan ‘03

Thrun 05

Martinet ‘05

Symmetry = 0.3

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
Symmetry Measure Symmetry Distance
Symmetry of a shape is measured by correlation with Define the Symmetry Distance of a function f with
its reflection respect to any transformation y as the L? distance

between f and the nearest function invariant to y

_(5

Can show that Symmetry Measure D(/,y)=f-y(f)
is related to symmetry distance by

D(f,y)=-2SD*+|f|

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets
Symmetry Measure Previous Work
Symmetry of a shape is measured by correlation with Zabrodsky ‘95

its reflection
o

Nie
-l-p‘-iuu

) ot

Thrun 05

Martinet ‘05

Symmetry = 0.1
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Previous Work Computing Discrete Transform

Zabrodsky ‘95 T Brute Force 0O(n®)

.W Convolution O(n3Log n)
Kazhdan ‘03
Cpr— Monte-Carlo
X

Martinet ‘05 O(n3Log n) per direction

0(n?) normal directions

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Previous Work Computing Discrete Transform

Zabrodsky ‘95 Brute Force O(n®)
’ Convolution O(nLog n)
Kazhdan ‘03 7’ -l ”
' e : Monte-Carlo O(n?) For 3D meshes
Thrun ‘05

» Most of the dot product contains zeros.
» Use Monte-Carlo Importance Sampling.
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Computing Discrete Transform Monte Carlo

Brute Force O(n®)
Convolution

Monte-Carlo

0O(n3) planes

X
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Monte Carlo Monte Carlo

Monte Carlo Sample for
single plane

Angle
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Monte Carlo Monte Carlo
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Monte Carlo Monte Carlo
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Weighting Samples

Application: Alignment

Need to weight sample pairs by the inverse of the distance
between them

Motivation:
Composition of range scans

Morphing

) © a1

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Weighting Samples

SEA AL
Eurographics 2011 Course — C'Sr\fﬂtﬂér&'r"gslﬁ”&en:es in Geometric Data Sets

Application: Alignment

Need to weight sample pairs by the inverse of the distance
between them

Two planes of (equal)
perfect symmetry

Approach:

Perpendicular planes with the greatest symmetries create
a symmetry-based coordinate system.

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Weighting Samples

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Application: Alignment

Need to weight sample pairs by the inverse of the distance
between them

Approach:

Perpendicular planes with the greatest symmetries create
a symmetry-based coordinate system.

Eurograph;{}ib&? df:"dlsev E:'Cltjrhgjt'r{é‘%we‘spnndences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets



Application: Alignment Application: Matching

Approach: Motivation:

Perpendicular planes with the greatest symmetries create Database searching
a symmetry-based coordinate system.

()
Query Database Result
Eurographics 2011 Course — Computing Correspondences leometric Data Sets Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Application: Alignment Application: Matching

Approach: Observation:

Perpendicular planes with the greatest symmetries create All chairs display similar principal symmetries
a symmetry-based coordinate system.

- !
,;\\\ !

-
R\ 4
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Application: Alignment Application: Matching

Approach:

Results:

e Q- - -
e Q- ) 4l

Use Symmetry transform as shape descriptor

>¢->@=

Query Transform Database Result
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Application: Matching

Results:

Symmetry provides
orthogonal information
about models and can
therefore be combined
with other descriptors

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets



Computing Correspondences in
Geometric Datasets

Symmetry
Applications - Inverse Procedural Modeling

A Connection Between Partial Symmetry

and Inverse Procedural Modeling
Martin Bokeloh Michael Wand Hans-Peter Seidel

M sisciarn

Goal of this work

* Inverse procedural modeling

exemplar .

!

= Find rules describing ¥ ‘

= Given an input exemplar

the space of similar objects shape L SaB
grammar B—bB|c
= Create shape variations

ab ¢

results ' u ‘ ﬁ

Content Creation Bottleneck

.
/ 4

Rendering Result

Lots of existing
content

Scientific Problem

 Scientific question:
= What s the structure of these models?

= Can an algorithm understand it?

Definition of Similarity
exemplar . ‘

results ' ‘ i a ’
|




What are similar models?

* r-similarity
= User parameter r
= Local neighborhoods match exemplar

= Asin texture synthesis radius r

radius r

output

exemplar

RELATED WORK

Related Work

* Procedural Modeling
= Plants [Prusinkiewicz and Lindenmayer 1990], [Deussen et al. 1998]
= Cities & buildings [Parish and Miiller 2001], [Wonka et al. 2003], [Miiller et al. 2006]
User specifies grammar

Related Work

* Inverse Procedural Modeling

= Vector graphics
No continuous surfaces

[Hart et al. 1997], [Yeh et al. 2009], [$t’ava et al 2010]

= From images [Aliaga et al. 2007, [Miiller et al. 2007, [Neubert et al. 2007],
[Tan et al. 2007), [Xiao et al. 2009]

Predefined class of grammars

Related Work

¢ Texture Synthesis

= 2D texture synthesis [Efros and Leung 1999], [Wei and Levoy 2000],

[Kwatra et al. 2003], [Kwatra et al. 2005]

= 3D geometry [Lai et al. 2005], [Nguyen et al. 2005], [Chen and Meng 2009],
[Zhou et al. 2006], [Zelinka and Garland 2006], [Bhat et al. 2004],
[Sharf et al. 2004], [Lagae et al. 2005]

= Example-based model synthesis [Merrel et al. 2007], [Merrel and Manocha 2008]

Hard optimization problem,
no procedural description

Related Work

* Symmetry Detection

[Thrun and Wegbreit 2005], [Mitra et al. 2006,
[Podolak et al. 2006, [Gal and Cohen-Or 2006],
[Mitra et al. 2007], [Pauly et al. 2008], [Bokeloh et al. 2009]

We build upon this work




METHOD

Shape Operations

Shape Operations

Partial Symmetry

Shape Operations

* Approach
= Modify geometry step-by-step
= Guarantee r-similarity in each step

* Advantage: strong guarantees
= Provably correct results (r-similar to input)
= Closed manifolds stay closed manifolds
= Nevertheless: works on general geometry

Shape Operations

* Questions
= How can we find shape operations?
= What s the structure of their interdependencies?

Method Overview

* Symmetry detection
* Analyze for possible shape operations

* Combine shape operationsinto
shape grammar

= @ 2

7
7 . S—aB
B—bBlc

ampe




Part | — Symmetry Detection

* Symmetry detection

L

Symmetry Detection

¢ Detect partial symmetries
= We use [Bokeloh et al. 2009]

~

symmetry detection

Symmetry Detection

eroc

symmetry

r- symmetry

Part Il — Docking Sites

¢ Analyze for possible shape operations

Docking Sites & Dockers

Docking Sites

Docking Sites & Dockers

Docking Sites

Results are r-similar to input




Technical Details

* More details
= Canonical docking sites
= Avoid exponential complexity
= Graph clustering algorithm

* Please refer to the paper

Infinite number of Canonical docking sites
docking sites

Part Ill = Shape Grammars

* Combine shape operations into
shape grammar

A .. §—>aB
B—>bBlc

aepe—
Dependencies Dependencies
~ - S—aB
B—>bB|c
a b o

More Shape Operations

* Many partial symmetries
* Repeat for all transformations

* This creates several shape
operations

Dependencies: General Case

¢ Conflicting docking sites & c

S—-gC
Cogdleg,B
A>..

B=aw




Special Case: Grids

Special Case: Grids

Special Case: Grids

RESULTS

Results — Pipe Tree

Results — Pipe Tree Grammar




Results — Random Variation

Results — Random Variations

Results — Random Variation

Results — Interactive Editor

Results — Shape Variations

Results — 1D Grid




Results — 2D Grid Results — Point Cloud Data

~500ktriangles

£ sults — Space Grammar

T
|- b

CONCLUSIONS / FUTURE WORK

Conclusions Limitations / Future Work
¢ Compute modeling rules from a single exemplar * Limitations
* Strong formal guarantees * Rigid symmetries only

= Provably r-similar = Context-free grammars (+grids)

= Maintains manifolds, closed surfaces, etc...
! ! ¢ Future Work

* Robust = Address limitations
* Only one important parameter (radius r) = Find models for user specified
= General geometry (incl. triangle soup, point clouds) boundary conditions

* Afirst step to data driven high-level modeling = Machine learning for semantics
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