

Presenters

Will Chang University of California at San Diego, USA wychang@cs.ucsd.edu

Hao Li
ETH Zürich, EPFL Lausanne
Switzerland
hao@inf.ethz.ch

Mark Pauly EPFL Lausanne Switzerland mark.pauly@epfl.ch

rographics 2011 Course — Computing Correspondences in Geometric Data Set

Tutorial Outline

Overview

- Introduction
- Problem Samples
 - Local Shape Matching
 - Global Shape Matching
 - Symmetry
- Conclusions and Wrap up

rographics 2011 Course — Computing Correspondences in Geometric Data Sets

Part I: Introduction

Introduction

- Problem statement and motivation
- Example data sets and characteristics
- Overview: problem matrix

Eurographics 2011 Course - Computing Correspondences in Geometric Data Se

Local Shape Matching

Rigid Local Matching

• Rigid ICP, variants, convergence

Deformation Models

- Deformation modeling and regularizers
- Elastic deformation models, differential geometry background
- Thin shell models vs. volumetric deformation

Local Deformable Shape Matching

- Variational models for deformable matching
- Animation reconstruction
- Advanced animation reconstruction

Global Shape matching

Feature Detection and Description

- Extrinsic features
- Intrinsic features

Rigid, Global

• Branch-and-bound and 4PCS

Global, Articulated, Pairwise

Graph cut based articulated matching

prographics 2011 Course - Computing Correspondences in Geometric Data Sets

Global Shape matching (cont.)

Global, Isometric, Pairwise

- Isometric matching and quadratic assignment
- Spectral matching and applications
- Finding a solution using RANSAC and "PLANSAC" techniques

rographics 2011 Course - Computing Correspondences in Geometric Data Sets

Symmetry

Symmetry in Shapes

- Detection
- Voting methods and alternatives
- Structural regularity
- Applications

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Conclusions and Wrap-up

Conclusions and Wrap-up

- Conclusions
- Future work and open problems

In the end

- Q&A session with all speakers
- But feel free to ask questions at any time

prographics 2011 Course — Computing Correspondences in Geometric Data Sets

Problem Statement and Motivation

Deformable Shape Matching

What is the problem?

Settings:

- We have two or more shapes
- The same object, but deformed

Deformable Shape Matching

What is the problem?

Settings:

- We have two or more shapes
- The same object, but deformed

Question:

• What points correspond?

Applications

Why is this an interesting problem?

Building Block:

 Correspondences are a building block for higher level geometry processing algorithms

Example Applications:

- Scanner data registration
- Animation reconstruction & 3D video
- Statistical shape analysis (shape spaces)

graphics 2011 Course — Computing Correspondences in Geometric Data Sets

Applications

Why is this an interesting problem?

Building Block:

• Correspondences are a building block for higher level geometry processing algorithms

Example Applications:

- Scanner data registration
- Animation reconstruction & 3D video
- Statistical shape analysis (shape spaces)

Eurographics 2011 Course — Computing Correspondences in Geometric Data Set

Deformable Scan Registration

Scan registration

• Rigid registration is standard

Why deformation?

- Scanner miscalibrations
 - Sometimes unavoidable, esp. for large acquisition volumes
- Scanned Object might be deformable
 - Elastic / plastic objects
- In particular: Scanning people, animals
 - Need multiple scans
 - Impossible to maintain constant pose

rographics 2011 Course — Computing Correspondences in Geometric Data Sets

1

Full Body Scanner Full Body Scanning

Applications

Why is this an interesting problem?

Building Block:

• Correspondences are a building block for higher level geometry processing algorithms

Example Applications:

- Scanner data registration
- Animation reconstruction & 3D video
- Statistical shape analysis (shape spaces)

rographics 2011 Course — Computing Correspondences in Geometric Data Sets

3

Applications

Why is this an interesting problem?

Building Block:

• Correspondences are a building block for higher level geometry processing algorithms

Example Applications:

- Scanner data registration
- Animation reconstruction & 3D video
- Statistical shape analysis (shape spaces)

prographics 2011 Course — Computing Correspondences in Geometric Data Sets

Statistical Shape Spaces

Morphable Shape Models

- Scan a large number of individuals
 - Different pose
 - Different people
- Compute correspondences
- Build shape statistics (PCA, non-linear embedding)

ographics 2011 Course — Computing Correspondences in Geometric Data Sets

Statistical Shape Spaces

Numerous Applications:

- Fitting to ambiguous data (prior knowledge)
- Constraint-based editing
- Recognition, classification, regression

Building such models requires correspondences

rographics 2011 Course — Computing Correspondences in Geometric Data Se

Data Characteristics

Scanner Data - Challenges

"Real world data" is more challenging

• 3D Scanners have artifacts

Rules of thumb:

- The faster the worse (real time vs. static scans)
- Active techniques are more accurate (passive stereo is more difficult than laser triangulation)
- There is more than just "Gaussian noise"...

Eurographics 2011 Course — Computing Correspondences in Geometric Data Set

Challanges

"Noise"

- "Standard" noise types:
 - Gaussian noise (analog signal processing)
 - Quantization noise
- More problematic: Structured noise
 - Structured noise (spatio-temporally correlated)
 - Structured outliers
 - Reflective / transparent surfaces
- Incomplete Acquisition
 - Missing parts
 - Topological noise

Outlook

This Tutorial Different aspects of the problem: • Shape deformation and matching • How to quantify deformation? • How to define deformable shape matching? • Local matching • Known initialization • Global matching • No initialization • Animation Reconstruction • Matching temporal sequences of scans

Problem Statement:

Pairwise Deformable Matching

Problem Statement

Given:

- Two surfaces S_1 , $S_2 \subseteq \mathbb{R}^3$
- Discretization:
 - Point clouds $S = \{s_1,...,s_n\}, \ s_i \in \mathbb{R}^3$ or Triangle meshes

We are looking for:

• A deformation function $f_{1,2} \colon S_1 \to \mathbb{R}^3$ that brings S_1 close to S_2

the same of the sa

Problem Statement

We are looking for:

• A deformation function $f_{1,2} \colon S_1 \to \mathbb{R}^3$ that brings S_1 close to S_2

Open Questions:

- What does "close" mean?
- What properties should *f* have?

Next part:

• We will now look at these questions more in detail

Computing Correspondences in Geometric Datasets

ICP + Tangent Space optimization for Rigid Motions

Notations

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Registration Problem

Given

Two point cloud data sets **P** (*model*) and **Q** (*data*) sampled from surfaces $\Phi_{\rm P}$ and $\Phi_{\rm Q}$ respectively.

Assume $\Phi_{\mathbf{Q}}$ is a part of $\Phi_{\mathbf{P}}$.

Registration with known Correspondence

 $\{p_i\}$ and $\{q_i\}$ such that $p_i \rightarrow q_i$

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Registration Problem

Given

Two point cloud data sets P and Q.

Goal

Register ${\bf Q}$ against ${\bf P}$ by minimizing the squared distance between the underlying surfaces using only \emph{rigid} $\emph{transforms}.$

Registration with known Correspondence

 $\{p_i\}$ and $\{q_i\}$ such that $p_i \rightarrow q_i$

$$p_i \rightarrow Rp_i + t \implies \min_{R,t} \sum_i ||Rp_i + t - q_i||^2$$

R obtained using SVD of covariance matrix.

Registration with known Correspondence

Squared Distance Function (F)

 $\{p_i\}$ and $\{q_i\}$ such that $p_i \rightarrow q_i$

$$p_i \rightarrow Rp_i + t \implies \min_{R,t} \sum_i ||Rp_i + t - q_i||^2$$

R obtained using SVD of covariance matrix.

$$t = \overline{q} - R\overline{p}$$

jurgaranhies 2011 Course — Computing Correspondences in Goome

ICP (Iterated Closest Point)

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Iterative minimization algorithms (ICP)

Build a set of corresponding
 points

2. Align corresponding point

[Besl 92, Chen 92]

Properties

- Dense correspondence sets
- Converges if starting positions are "close"

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Squared Distance Function (F)

$$F(x,\Phi_P) = d^2$$

Eurographics 2011 Course – Computing Correspondences in Geometric Data Sets

No (explicit) Correspondence

Registration Problem

Rigid transform α that takes points $q_i \rightarrow \alpha(q_i)$

Our goal is to solve for,

$$\min_{\alpha} \sum_{q_i \in Q} F(\alpha(q_i), \Phi_P)$$

An optimization problem in the squared distance field of ${\bf P}$, the model PCD.

Registration Problem

 $\alpha = \text{rotation}(R) + \text{translation}(t)$

Our goal is to solve for,

$$\min_{R,t} \sum_{q_i \in Q} F(Rq_i + t, \Phi_P)$$

Optimize for R and t.

ICP in Our Framework

• Point-to-point ICP (good for large d)

$$F(\mathbf{x}, \Phi_{\mathbf{p}}) = (\mathbf{x} - \mathbf{p})^2 \implies \delta_{\mathbf{j}} = 1$$

• Point-to-plane ICP (good for small d)

$$F(\mathbf{x}, \Phi_{\mathbf{p}}) = (\vec{\mathbf{n}} \cdot (\mathbf{x} - \mathbf{p}))^2 \implies \delta_{\mathbf{i}} = 0$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Registration in 2D

ullet Minimize residual error $egin{aligned} arepsilon(heta, t_{_{
m V}}, t_{_{
m V}}) \end{aligned}$

Example d2trees

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Approximate Squared Distance

For a curve Ψ,

$$\mathbf{F}(\mathbf{x}, \Psi) = \frac{d}{d-\rho_1} \mathbf{x}_1^2 + \mathbf{x}_2^2 = \delta_1 \mathbf{x}_1^2 + \mathbf{x}_2^2$$

[Pottmann and Hofer 2003]

Convergence Funnel

Translation in x-z plane. Rotation about y-axis.

Conv

Does not converge

Convergence Funnel

Plane-to-plane ICP distance-field formulation

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

(Invariant) Descriptors

$$P = \{p_i\}$$

• closest point → based on Euclidean distance

$$P = \{p_i, a_i, b_i, ...\}$$

• closest point → based on Euclidean distance between point + descriptors (attributes)

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

าา

Descriptors

$$P = \{p_i\}$$

• closest point → based on Euclidean distance

Integral Volume Descriptor

Relation to mean curvature

$$V_r(\mathbf{p}) = \frac{2\pi}{3}r^3 - \frac{\pi H}{4}r^4 + O(r^5)$$

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

20

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Descriptors

$$P = \{p_i\}$$

• closest point → based on Euclidean distance

$$P = \{p_i, a_i, b_i, ...\}$$

• closest point → based on Euclidean distance between point + descriptors (attributes)

When Objects are Poorly Aligned

• Use descriptors for global registrations

global alignment \rightarrow refinement with local (e.g., ICP)

Computing Correspondences in Geometric Datasets

Aligning 3D Data

If correct correspondences are known, can find correct relative rotation/translation

Local, Rigid, Pairwise

The ICP algorithm and its extensions

Pairwise Rigid Registration Goal

Aligning 3D Data

Align two partiallyoverlapping meshes given initial guess for relative transform

How to find correspondences: User input? Feature detection? Signatures?

Alternative: assume closest points correspond

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Outline

ICP: Iterative Closest Points

Classification of ICP variants

- Faster alignment
- Better robustness

ICP as function minimization

Aligning 3D Data

... and iterate to find alignment

• Iterative Closest Points (ICP) [Besl & McKay 92]

Converges if starting position "close enough"

Basic ICP

Select e.g. 1000 random points

Match each to closest point on other scan, using data structure such as *k*-d tree

Reject pairs with distance > k times median

Construct error function:

$$E = \sum \left| Rp_i + t - q_i \right|^2$$

Minimize (closed form solution in [Horn 87])

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

ICP Variants

- 1. Selecting source points (from one or both meshes)
- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
 - 6. Minimizing the error metric w.r.t. transformation

Eurographics 2011 Course – Computing Correspondences in Geometric Data Sets

ICP Variants

Variants on the following stages of ICP have been proposed:

- 1. Selecting source points (from one or both meshes)
- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Eurographics 2011 Course – Computing Correspondences in Geometric Data Sets

Point-to-Plane Error Metric

Using point-to-plane distance instead of point-to-point lets flat regions slide along each other [Chen & Medioni 91]

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Performance of Variants

Can analyze various aspects of performance:

- Speed
- Stability
- Tolerance of noise and/or outliers
- Maximum initial misalignment

Comparisons of many variants in

[Rusinkiewicz & Levoy, 3DIM 2001]

Point-to-Plane Error Metric

Error function:

$$E = \sum ((Rp_i + t - q_i) \cdot n_i)^2$$

where R is a rotation matrix, t is translation vector

Linearize (i.e. assume that $\sin \theta \approx \theta$, $\cos \theta \approx 1$):

$$E \approx \sum ((p_i - q_i) \cdot n_i + r \cdot (p_i \times n_i) + t \cdot n_i)^2, \quad \text{where } r = \begin{pmatrix} r_x \\ r_y \\ r_z \end{pmatrix}$$

Result: overconstrained linear system

Point-to-Plane Error Metric

Closest Compatible Point

Overconstrained linear system

$$\mathbf{A}x = b$$

$$\mathbf{A} = \begin{pmatrix} \leftarrow & p_1 \times n_1 & \rightarrow & \leftarrow & n_1 & \rightarrow \\ \leftarrow & p_2 \times n_2 & \rightarrow & \leftarrow & n_2 & \rightarrow \\ \vdots & & & \vdots & & \vdots \end{pmatrix}, \qquad \mathbf{x} = \begin{pmatrix} r_x \\ r_y \\ r_z \\ t_x \\ t_y \end{pmatrix}, \qquad b = \begin{pmatrix} -(p_1 - q_1) \cdot n_1 \\ -(p_2 - q_2) \cdot n_2 \\ \vdots \\ \vdots \\ r_y \end{pmatrix}$$

Solve using least squares

$$\mathbf{A}^{\mathsf{T}} \mathbf{A} x = \mathbf{A}^{\mathsf{T}} b$$
$$x = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} b$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Closest point often a bad approximation to corresponding point

Can improve matching effectiveness by restricting match to compatible points

- Compatibility of colors [Godin et al. 94]
- Compatibility of normals [Pulli 99]
- Other possibilities: curvatures, higher-order derivatives, and other local features

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Improving ICP Stability

Closest compatible point

Stable sampling

- 1. Selecting source points (from one or both meshes)
- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

ICP Variants

- 1. Selecting source points (from one or both meshes)
- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Selecting Source Points

Use all points

Uniform subsampling

Random sampling

Stable sampling [Gelfand et al. 2003]

 Select samples that constrain all degrees of freedom of the rigid-body transformation

Stable Sampling

Stability Analysis

Uniform Sampling

Stable Sampling

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Covariance Matrix

Aligning transform is given by $A^{T}Ax = A^{T}b$, where

$$\mathbf{A} = \begin{pmatrix} \leftarrow & p_1 \times n_1 & \rightarrow & \leftarrow & n_1 & \rightarrow \\ \leftarrow & p_2 \times n_2 & \rightarrow & \leftarrow & n_2 & \rightarrow \\ \vdots & & \vdots & & \vdots \end{pmatrix}, \qquad \mathbf{x} = \begin{pmatrix} r_x \\ r_y \\ r_z \\ t_x \\ t_y \\ t_z \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} -(p_1 - q_1) \cdot n_1 \\ -(p_2 - q_2) \cdot n_2 \\ \vdots \\ \vdots \end{pmatrix}$$

Covariance matrix $C = A^T A$ determines the change in error when surfaces are moved from optimal alignment

Sample Selection

Select points to prevent small eigenvalues

• Based on C obtained from sparse sampling

Simpler variant: normal-space sampling

- Select points with uniform distribution of normals
- Pro: faster, does not require eigenanalysis
- Con: only constrains translation

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Sliding Directions

Eigenvectors of \boldsymbol{C} with small eigenvalues correspond to sliding transformations

3 small eigenvalues 2 translation 1 rotation

3 small eigenvalues 3 rotation

2 small eigenvalue 1 translation 1 rotation

1 small eigenvalue 1 rotation

1 small eigenvalue

Result

Stability-based or normal-space sampling important for smooth areas with small features

Random sampling

Normal-space sampling

Selection vs. Weighting

Projection to Find Correspondences

Could achieve same effect with weighting

Hard to ensure enough samples in features except at high sampling rates

However, have to build special data structure

Preprocessing / run-time cost tradeoff

Idea: use a simpler algorithm to find correspondences

For range images, can simply project point [Blais 95]

- · Constant-time
- Does not require precomputing a spatial data structure

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Improving ICP Speed

Projection-based matching

- 1. Selecting source points (from one or both meshes)
- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Projection-Based Matching

Slightly worse performance per iteration

Each iteration is one to two orders of magnitude faster than closest-point

Result: can align two range images in a few milliseconds, vs. a few seconds

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Finding Corresponding Points

Finding closest point is most expensive stage of the ICP algorithm

- Brute force search O(n)
- Spatial data structure (e.g., k-d tree) O(log n)

Application

Given:

- · A scanner that returns range images in real time
- Fast ICF
- · Real-time merging and rendering

Result: 3D model acquisition

- Tight feedback loop with user
- · Can see and fill holes while scanning

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Scanner Layout

Theoretical Analysis of ICP Variants

One way of studying performance is via empirical tests on various scenes

How to analyze performance analytically?

For example, when does point-to-plane help? Under what conditions does projection-based matching work?

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Photograph

What Does ICP Do?

Two ways of thinking about ICP:

- Solving the correspondence problem
- Minimizing point-to-surface squared distance

ICP is like (Gauss-) Newton method on an approximation of the distance function

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Real-Time Result

What Does ICP Do?

- Two ways of thinking about ICP:
 - Solving the correspondence problem
 - Minimizing point-to-surface squared distance

ICP is like Newton's method on an approximation of the distance function

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

What Does ICP Do?

Point-to-Plane Distance

Two ways of thinking about ICP:

- Solving the correspondence problem
- Minimizing point-to-surface squared distance

ICP is like Newton's method on an approximation of the distance function

• ICP variants affect shape of global error function or local approximation

Point-to-Surface Distance

Point-to-Multiple-Point Distance

Point-to-Point Distance

Point-to-Multiple-Point Distance

Soft Matching and Distance Functions

Convergence Funnel

Soft matching equivalent to standard ICP on (some) filtered surface

Produces filtered version of distance function ⇒ fewer local minima

Multiresolution minimization [Turk & Levoy 94] or softassign with simulated annealing (good description in [Chui 03])

Translation in x-z plane. Rotation about y-axis.

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Mitra et al.'s Optimization

Precompute piecewise-quadratic approximation to distance field throughout space

Store in "d2tree" data structure

Correspondences in Geometric Data Sets Mitra et a

Convergence Funnel

Vitra et al. 2004 Eurographics 2011 Course – Computing Correspondences in Geometric Data Sets

Mitra et al.'s Optimization

Precompute piecewise-quadratic approximation to distance field throughout space

Store in "d2tree" data structure

At run time, look up quadratic approximants and optimize using Newton's method

- More robust, wider basin of convergence
- Often fewer iterations, but more precomputation

Mesh Deformation Reconstruction of deforming objects

Eurographics 2011 Course - Computing Correspondences in Geometric Data Set

Spline Surfaces

- Tensor product surfaces ("curves of curves")
 - Rectangular grid of control points
 - Rectangular surface patch

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Overview

- Surface-Based Deformation
- Space Deformation
- · Multiresolution Deformation
- · Differential Coordinates
- · Outlook: Nonlinear Methods

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Spline Surfaces

- Tensor product surfaces ("curves of curves")
 - Rectangular grid of control points
 - Rectangular surface patch

- · Problems:
 - Many patches for complex models
 - Smoothness across patch boundaries
 - Trimming for non-rectangular patches

urographics 2011 Course - Computing Correspondences in Geometric Data Sets

11

Spline Surfaces

- Tensor product surfaces ("curves of curves")
 - Rectangular grid of control points

$$\mathbf{s}(u,v) = \sum_{i=0}^{k} \sum_{j=0}^{l} \mathbf{d}_{i,j} N_{i}^{n}(u) N_{j}^{n}(v)$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Subdivision Surfaces

- · Generalization of spline curves / surfaces
 - Arbitrary control meshes
 - Successive refinement (subdivision)
 - Converges to smooth limit surface
 - Connection between splines and meshes

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

12

Subdivision Surfaces

- · Generalization of spline curves / surfaces
 - Arbitrary control meshes
 - Successive refinement (subdivision)
 - Converges to smooth limit surface
 - Connection between splines and meshes

Eurographics 2011 Course - Computing Correspondences in Geometric Data

Modeling Metaphor

- · Mesh deformation by displacement function d
 - Interpolate prescribed constraints
 - Smooth, intuitive deformation
 - ⇒Physically-based principles

Spline & Subdivision Surfaces

- · Basis functions are smooth bumps
 - Fixed support
 - Fixed control grid
- · Bound to control points
 - Initial patch layout is crucial
 - Requires experts!
- · Decouple deformation from surface representation!

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Physically-Based Deformation

· Non-linear stretching & bending energies

$$\int_{\Omega} k_s \frac{\|\mathbf{I} - \mathbf{I}'\|^2}{\text{stretching}} + k_b \frac{\|\mathbf{I} - \mathbf{I}'\|^2}{\text{bending}} \, \mathrm{d}u \mathrm{d}v$$

· Linearize energies

$$\int_{\Omega} k_s \underbrace{\left(\left\|\mathbf{d}_u\right\|^2 + \left\|\mathbf{d}_v\right\|^2\right)}_{\text{Stretching}} + k_b \underbrace{\left(\left\|\mathbf{d}_{uu}\right\|^2 + 2\left\|\mathbf{d}_{uv}\right\|^2 + \left\|\mathbf{d}_{vv}\right\|^2\right)}_{\text{bending}} \text{d}u \text{d}v$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Modeling Metaphor

Physically-Based Deformation

· Minimize linearized bending energy

$$E(\mathbf{d}) = \int_{\mathcal{S}} \|\mathbf{d}_{uu}\|^2 + 2\|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 d\mathcal{S} \underbrace{f(x) \to \min}$$

· Variational calculus, Euler-Lagrange PDE

$$\Delta^2 \mathbf{d} := \mathbf{d}_{uuuu} + 2\mathbf{d}_{uuvv} + \mathbf{d}_{vvvv} = 0 \qquad \bigg($$

⇒ "Best" deformation that satisfies constraints

Literature

- Botsch & Kobbelt, "An intuitive framework for real-time freeform modeling", SIGGRAPH 2004
- Botsch & Sorkine, "On linear variational surface deformation methods", TVCG 2007
- Botsch et al, "Efficient linear system solvers for mesh processing", IMA Math. of Surfaces 2005

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

22

Discretization

· Laplace discretization

$$\Delta \mathbf{d}_{i} = \frac{1}{2A_{i}} \sum_{j \in \mathcal{N}_{i}} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{d}_{j} - \mathbf{d}_{i})$$
$$\Delta^{2} \mathbf{d}_{i} = \Delta(\Delta \mathbf{d}_{i})$$

· Sparse linear system

$$\underbrace{\begin{pmatrix}
\Delta^{2} \\
\mathbf{0} & \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{I}
\end{pmatrix}}_{=:\mathbf{M}} \begin{pmatrix}
\vdots \\
\mathbf{d}_{i} \\
\vdots \end{pmatrix} = \begin{pmatrix}
\mathbf{0} \\
\mathbf{d}_{i} \\
\delta \mathbf{h}_{i}
\end{pmatrix}$$

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Overview

- Surface-Based Deformation
- Space Deformation
- Multiresolution Deformation
- Differential Coordinates
- · Outlook: Nonlinear Methods

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

23

Discretization

• Sparse linear system (19 nz/row)

$$\begin{pmatrix}
\Delta^2 \\
0 & \mathbf{I} & 0 \\
0 & 0 & \mathbf{I}
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\mathbf{d}_i \\
\vdots
\end{pmatrix} = \begin{pmatrix}
0 \\
\delta \mathbf{h}_i
\end{pmatrix}$$

- · Can be turned into symm. pos. def. system
 - Right hand sides changes each frame!
 - Use efficient linear solvers...

Surface-Based Deformation

- · Problems with
 - Highly complex models
 - Topological inconsistencies
 - Geometric degeneracies

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

24

Freeform Deformation

Deform object's bounding box
 Implicitly deforms embedded objects

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Freeform Deformation

- · Deform object's bounding box
 - Implicitly deforms embedded objects
- Tri-variate tensor-product spline
 - Aliasing artifacts
- · Interpolate deformation constraints?
 - Only in least squares sense

 $\mathbf{d}\left(\mathbf{p}_{i}\right)=\mathbf{d}_{i}$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Freeform Deformation

- Deform object's bounding box
 - Implicitly deforms embedded objects
- Tri-variate tensor-product spline

$$\mathbf{d}(u, v, w) = \sum_{i=0}^{l} \sum_{j=0}^{m} \sum_{k=0}^{n} \mathbf{d}_{ijk} N_i(u) N_j(v) N_k(w)$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Modeling Metaphor

- Mesh deformation by displacement function d
 - Interpolate prescribed constraints
 - Smooth, intuitive deformation
 - ⇒Physically-based principles

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Freeform Deformation

- Deform object's bounding box
 Implicitly deforms embedded objects
- · Tri-variate tensor-product spline

Eurographics 2011 Course — Computing Correspondences in Geometric Data Set

Volumetric Energy Minimization

· Minimize similar energies to surface case

$$\int_{\mathbb{R}^3} \|\mathbf{d}_{uu}\|^2 + \|\mathbf{d}_{uv}\|^2 + \ldots + \|\mathbf{d}_{ww}\|^2 \, dV \to \min$$

- · But displacements function lives in 3D...
 - Need a volumetric space tessellation?
 - No, same functionality provided by RBFs

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

3

Radial Basis Functions

· Represent deformation by RBFs

$$\mathbf{d}\left(\mathbf{x}\right) = \sum_{j} \mathbf{w}_{j} \cdot \varphi\left(\left\|\mathbf{c}_{j} - \mathbf{x}\right\|\right) + \mathbf{p}\left(\mathbf{x}\right)$$

- Triharmonic basis function $\varphi\left(r\right)=r^{3}$
 - C2 boundary constraints
 - Highly smooth / fair interpolation

$$\int_{{\rm I\!R}^3} \left\| {\bf d}_{uuu} \right\|^2 + \left\| {\bf d}_{vuu} \right\|^2 + \ldots + \left\| {\bf d}_{www} \right\|^2 \, \mathrm{d}u \, \mathrm{d}v \, \mathrm{d}w \ \to \ \min$$

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

RBF Deformation

IM vertices

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

34

RBF Fitting

· Represent deformation by RBFs

$$\mathbf{d}\left(\mathbf{x}\right) = \sum_{j} \mathbf{w}_{j} \cdot \varphi\left(\left\|\mathbf{c}_{j} - \mathbf{x}\right\|\right) + \mathbf{p}\left(\mathbf{x}\right)$$

- · RBF fitting
 - Interpolate displacement constraints
 - Solve linear system for \mathbf{w}_i and \mathbf{p}

Eurographics 2011 Course – Computing Correspondences in Geometric Data Sets

"Bad Meshes" • 3M triangles • 10k components • Not oriented • Not manifold Eurographics 2011 Course – Computing Correspondences in Geometric Data Sets 55

RBF Fitting

· Represent deformation by RBFs

$$\mathbf{d}\left(\mathbf{x}\right) = \sum_{j} \mathbf{w}_{j} \cdot \varphi\left(\left\|\mathbf{c}_{j} - \mathbf{x}\right\|\right) + \mathbf{p}\left(\mathbf{x}\right)$$

- · RBF evaluation
 - Function d transforms points
 - Jacobian ∇d transforms normals
 - Precompute basis functions
 - Evaluate on the GPU!

Local & Global Deformations

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets 36

Literature

- Sederberg & Parry, "Free-Form Deformation of Solid Geometric Models", SIGGRAPH 1986
- Botsch & Kobbelt, "Real-time shape editing using radial basis functions", Eurographics 2005

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Surface-Based Deformation Space Deformation Multiresolution Deformation Differential Coordinates Outlook: Nonlinear Methods

Local Frame Details • S and B have identical connectivity • Vertices \mathbf{p}_i and \mathbf{b}_i are corresponding • Detail vector \mathbf{h}_i represented in local coordinate system (normal & tangent vectors) • Details rotate

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets 43

Neighboring displacements are not coupled Surface bending changes their angle Leads to volume changes or self-intersections Multiresolution hierarchy difficult to compute for meshes of complex topology / geometry Might require more hierarchy levels

Overview

- · Surface-Based Deformation
- Space Deformation
- Multiresolution Deformation
- · Differential Coordinates
- · Outlook: Nonlinear Methods

Eurographics 2011 Course - Computing Correspondences in Geometric Data Set

Gradient-Based Editing

· Use piecewise linear coordinate function

$$\mathbf{p}(u,v) = \sum_{v_i} \mathbf{p}_i \cdot \phi_i(u,v)$$

· Its gradient is

$$\nabla \mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \nabla \phi_i(u, v)$$

prographics 2011 Course — Computing Correspondences in Geometric Data Sets

Differential Coordinates

- Manipulate <u>differential coordinates</u> instead of spatial coordinates
 - Gradients, Laplacians, ...
- · Then find mesh with desired differential coords
 - Basically an integration step

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Gradient-Based Editing

 $\mathbf{g} = \nabla \mathbf{f}$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

• Find function whose gradient is (close to) g'

· Manipulate gradient field of a function (surface)

 $\mathbf{f}' = \underset{\mathbf{f}}{\operatorname{argmin}} \int_{\Omega} \|\nabla \mathbf{f} - \mathbf{g}'\|^2 du dv$

· Variational calculus yields Euler-Lagrange PDE

 $\Delta \mathbf{f}' = \operatorname{div} \mathbf{g}'$

 $\mathbf{g}\mapsto\mathbf{g}'$

Gradient-Based Editing

· Use piecewise linear coordinate function

$$\mathbf{p}(u,v) = \sum_{v_i} \mathbf{p}_i \cdot \phi_i(u,v)$$

· Its gradient is

$$\nabla \mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \nabla \phi_i(u, v)$$

· It is constant per triangle

$$\nabla \mathbf{p}|_{f_j} =: \mathbf{G}_j \in \mathbb{R}^{3 \times 3}$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Gradient-Based Editing

- · Gradient of coordinate function p
 - Constant per triangle $\left.
 abla \mathbf{p} \right|_{f_i} =: \mathbf{G}_j \in \mathbb{R}^{3 imes 3}$

$$\left(egin{array}{c} \mathbf{G}_1 \ dots \ \mathbf{G}_F \end{array}
ight) \ = \underbrace{\mathbf{G}}_{\in \mathbb{R}^{3F imes V}} \cdot \left(egin{array}{c} \mathbf{p}_1^T \ dots \ \mathbf{p}_V^T \end{array}
ight)$$

· Manipulate per-face gradients

$$G_j \mapsto G'_i$$

Gradient-Based Editing

- · Reconstruct mesh from changed gradients
 - Overdetermined problem $\mathbf{G} \in \mathbb{R}^{3F \times V}$

$$\mathbf{G} \cdot \left(egin{array}{c} \mathbf{p'_1}^T \ dots \ \mathbf{p'_V}^T \end{array}
ight) = \left(egin{array}{c} \mathbf{G'_1} \ dots \ \mathbf{G'_F} \end{array}
ight)$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Deformation Gradient

· Handle has been transformed affinely

$$\mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{t}$$

Deformation gradient is

$$\nabla \mathbf{T}(\mathbf{x}) = \mathbf{A}$$

 Polar decomposition gives rotation and scale/ shear components R and S

$$\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^T \quad \rightarrow \quad \mathbf{A} = \mathbf{R}\mathbf{S} \,,\; \mathbf{R} = \mathbf{U}\mathbf{V}^T \,,\; \mathbf{S} = \mathbf{V}\boldsymbol{\Sigma}\mathbf{V}^T$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

-

Gradient-Based Editing

- · Reconstruct mesh from changed gradients
 - Overdetermined problem $\mathbf{G} \in \mathbb{R}^{3F \times V}$
 - Weighted least squares system
 - Linear Laplace system

$$\begin{array}{c} \mathbf{G}^T \mathbf{D} \mathbf{G} \cdot \left(\begin{array}{c} \mathbf{p}_1'^T \\ \vdots \\ \mathbf{p}_V'^T \end{array} \right) \ = \mathbf{G}^T \mathbf{D} \cdot \left(\begin{array}{c} \mathbf{G}_1' \\ \vdots \\ \mathbf{G}_F' \end{array} \right) \end{array}$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Construct Scalar Field

- · Construct smooth scalar field [0,1]
 - $s(\mathbf{x})=1$: Full deformation (handle)
 - $s(\mathbf{x})=0$: No deformation (fixed part)
 - $s(\mathbf{x}) \in (0,1)$: Damp handle transformation (in between)

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

59

Manipulate Gradients

- Manipulate per-face gradients $G_j \mapsto G'_i$
 - 1. Compute gradient of handle deformation
 - 2. Extract rotation and scale/shear components
 - 3. Compute smooth scalar blending field
 - 4. Apply damped rotations to gradients

Construct Scalar Field

- · How to construct scalar field?
 - Either use Euclidean/geodesic distance

$$s(\mathbf{p}) = \frac{\operatorname{dist}_0(\mathbf{p})}{\operatorname{dist}_0(\mathbf{p}) + \operatorname{dist}_1(\mathbf{p})}$$

- Or use harmonic field
 - Solve $\Delta(s) = 0$
 - with $s(\mathbf{p}) = \begin{cases} 1 & \mathbf{p} \in \text{handle} \\ 0 & \mathbf{p} \in \text{fixed} \end{cases}$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

57

Damp Handle Transformation

· Original gradient of handle transformation

 $\begin{array}{ll} \text{- Rotation:} & R(\boldsymbol{c},\boldsymbol{a},\alpha) \\ \text{- Scaling:} & S(\sigma) \end{array}$

• Damping for triangle (v_i, v_j, v_k) is $\lambda = s((\mathbf{p}_i + \mathbf{p}_j + \mathbf{p}_k)/3)$

• Gradient damped by scalar λ

 $\begin{array}{ll} - \mbox{ Rotation: } & R(\boldsymbol{c},\boldsymbol{a},\lambda\cdot\boldsymbol{\alpha}) \\ - \mbox{ Scaling: } & S(\lambda\cdot\boldsymbol{\sigma}+(1-\lambda)\cdot\boldsymbol{1}) \end{array}$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Limitations

- · Differential coordinates work well for rotations
 - Represented by deformation gradient
- Translations don't change deformation gradient
 - Translations don't change surface gradients / Lapl.
 - "Translation insensitivity"

rographics 2011 Course - Computing Correspondences in Geometric Data Sets

Gradient-Based Editing

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Overview

- Surface-Based Deformation
- Space Deformation
- Multiresolution Deformation
- · Differential Coordinates
- · Outlook: Nonlinear Methods

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Laplacian-Based Editing

· Manipulate Laplacians field of a surface

$$\delta_i = \Delta_{\mathcal{S}}(\mathbf{p}_i) , \quad \delta_i \mapsto \delta_i'$$

- Find surface whose Laplacian is (close to) δ^{\prime}

$$\mathbf{p}' = \underset{\mathbf{p}}{\operatorname{argmin}} \int_{\Omega} \left\| \Delta_{\mathcal{S}} \mathbf{p} - \boldsymbol{\delta}' \right\|^2 du dv$$

· Variational calculus yields Euler-Lagrange PDE

$$\Delta_{\mathcal{S}}^2 \mathbf{p}' = \Delta_{\mathcal{S}} \boldsymbol{\delta}'$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets 65

Comparison

PriMo

- · Qualitatively emulate thin-shell behavior
- · Thin volumetric layer around center surface
- Extrude polygonal cell per mesh face

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

PriMo

- 1. Extrude Prisms
- 2. Prescribes position/orientation for cells
- 3. Find optimal rigid motions per cell
- 4. Update vertices by average cell transformations

urographics 2011 Course - Computing Correspondences in Geometric Data Sets

PriMo

- · How to deform cells?
 - FEM has problems if elements degenerate...
- · Prevent cells from degenerating
 - → Keep them <u>rigid</u>

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

PriMo

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

PriMo

- · Connect cells along their faces
 - Nonlinear elastic energy
 - Measures bending, stretching, twisting, ...

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Space PriMo Volumetric Discretization Cell-Based Deformation Space Deformation Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets 72

Literature

- Botsch, Pauly, Kobbelt, Alliez, Levy, Geometric Modeling Based on Polygonal Meshes, Chapter 11 on Shape Deformation, SIGGRAPH 2007 Course Notes
- Botsch, Pauly, Gross, Kobbelt: PriMo: Coupled Prisms for Intuitive Surface Modeling, SGP 2006
- Botsch, Pauly, Wicke, Gross: Adaptive Space Deformations Based on Rigid Cells, Eurographics 2007
- Sumner, Schmid, Pauly: Embedded Deformation for Shape Manipulation, SIGGRAPH 2007

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

70

Variational Model What is deformable shape matching?

Part 1: Shape Matching

Assume:

Objective Function:

$$E^{(match)}(f) = dist(f_{1,2}(S_1), S_2)$$

Example: least squares distance

$$E^{(match)}(f) = \int_{x_1 \in S_1} dist(\mathbf{x}_1, S_2)^2 d\mathbf{x}_1$$

- Other distance measures: Hausdorf distance, L_n-distances, etc.
- L₂ measure is frequently used (models Gaussian noise)

Eurographics 2011 Course — Computing Correspondences in Geometric Data Set

Point Cloud Matching

Implementation example: Scan matching

• Given: S_1 , S_2 as point clouds

•
$$S_1 = \{\mathbf{s}_1^{(1)}, ..., \mathbf{s}_n^{(1)}\}$$

• $S_2 = \{\mathbf{s}_1^{(2)}, ..., \mathbf{s}_m^{(2)}\}$

• Energy function:

$$E^{(match)}(f) = \frac{|S_1|}{m} \sum_{i=1}^m dist(S_1, \mathbf{s}_i^{(2)})^2$$

- How to measure $dist(S_1, \mathbf{x})$?
 - Estimate distance to a point sampled surface

urographics 2011 Course — Computing Correspondences in Geometric Data Sets

Surface approximation

Solution #1: Closest point matching

• "Point-to-point" energy

$$E^{(match)}(f) = \frac{|S_1|}{m} \sum_{i=1}^{m} dist(s_i^{(2)}, NN_{inS_1}(s_i^{(2)}))^2$$

Surgaraphies 2011 Course - Computing Correspondences in Geometric Data Sets

Surface approximation

Solution #2: Linear approximation

- "Point-to-plane" energy
- Fit plane to k-nearest neighbors
- k proportional to noise level, typically $k \approx 6...20$

Example Implementation

Example: approximate thin shell model

- Keep locally rigid
 - Will preserve metric & curvature implicitly
- Idea
 - Associate local *rigid* transformation with surface points
 - Keep as similar as possible
 - Optimize simultaneously with deformed surface
- Transformation is *implicitly defined* by deformed surface (and vice versa)

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Parameterization of S₁ • Surfel graph • This could be a mesh, but does not need to edges encode topology surfel graph Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets 22

Unconstrained Optimization

Orthonormal matrices

• Local, 1st order, non-degenerate parametrization:

$$\mathbf{C}_{\mathbf{X}_{i}}^{(t)} = \begin{pmatrix} 0 & \alpha & \beta \\ -\alpha & 0 & \gamma \\ -\beta & -\gamma & 0 \end{pmatrix} \qquad \mathbf{A}_{i} = \mathbf{A}_{0} \exp(\mathbf{C}_{\mathbf{X}_{i}}) \\ & \dot{=} \mathbf{A}_{0}(I + \mathbf{C}_{\mathbf{X}_{i}}^{(t)})$$

- Optimize parameters α , β , γ , then recompute A_0
- Compute initial estimate using [Horn 87]

Furgeraphics 2011 Course - Computing Correspondences in Geometric Data Sets

Deformable ICP

Deformable ICP

How to build a deformable ICP algorithm

- Pick a surface distance measure
- Pick an deformation model / regularizer
- Initialize $f(S_1)$ with S_1 (i.e., f = id)
- Pick a non-linear optimization algorithm
 - Gradient decent (easy, but bad performance)
 - Preconditioned conjugate gradients (better)
 - Newton or Gauss Newton (recommended, but more work)
 - Always use analytical derivatives!
- Run optimization

Eurographics 2011 Course — Computing Correspondences in Geometric Data Set

Example • Elastic model • Local rigid coordinate frames • Align A→B, B→A

Computing Correspondences in Geometric Datasets Local, Deformable, Sequences Animation Reconstruction Eurographics 2011 LLANDUDNO UK Bargor University 11-15 Figorit 2011

Overview & Problem Statement

Two Parallel Topics Basic algorithms Two systems as a case study Animation Reconstruction Problem Statement Basic algorithm (original system) Variational surface reconstruction Adding dynamics Iterative Assembly Results Improved algorithm (revised system)

Animation Reconstruction Surface Reconstruction

Point-based Model

Simple Smoothness Priors:

• Similar surfel normals:

$$E_{smooth}^{(1)}(S) = \sum_{surfels\ neighbors} \left(n_i - n_{i_j}\right)^2, \ \|n_i\| = 1$$

 $conth(G) = \sum_{surfels \ neighbors} \left(|v_i - v_{i_j}| \right), ||v_i|| = 1$

• Surfel positions – flat surface:

$$E_{smooth}^{(2)}(S) = \sum_{surfels} \sum_{neighbors} \left\langle \mathbf{s}_{i} - \mathbf{s}_{i,j} \, \mathbf{n}(\mathbf{s}_{i}) \right\rangle^{2}$$

• Uniform density: $E_{Laplace}(S) = \sum_{s} \sum_{i=1}^{n} (\mathbf{s}_i - average)^2$

Nasty Normals

Optimizing Normals

- Problem: $E_{smooth}^{(1)}(S) = \sum_{supple superblows} \sum_{n_i \in bbook} \left(n_i n_{i_j}\right)^2, \ s.t. \ \left\|n_i\right\| = 1$
- Need unit normals: constraint optimization
- Unconstraint: trivial solution (all zeros)

ographics 2011 Course - Computing Correspondences in Geometric Data Sets

Nasty Normals

Solution: Local Parameterization

- Current normal estimate
- Tangent parameterization
- New variables *u*, *v*
- Renormalize
- Non-linear optimization
- No degeneracies

 $+ \, v \cdot tangent_v$

[Hoffer et al. 04]

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Neighborhoods?

Topology estimation

- Domain of S, base shape (topology)
- Here, we assume this is easy to get
- In the following
 - k-nearest neighborhood graph
 - Typically: *k* = 6..20

Limitations

- This requires dense enough sampling
- Does not work for undersampled data

urographics 2011 Course — Computing Correspondences in Geometric Data Sets

Numerical Optimization

Task:

- \bullet Compute most likely "original scene" S
- Nonlinear optimization problem

Solution:

- ullet Create initial guess for S
 - Close to measured data
 - Use original data
- Find local optimum
 - (Conjugate) gradient descent
 - (Gauss-) Newton descent

urographics 2011 Course — Computing Correspondences in Geometric Data S

3D Examples

3D reconstruction results:

(With discontinuity lines, not used here):

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Animation Reconstruction • Not just a 4D version • Moving geometry, not just a smooth hypersurface • Key component: correspondences • Intuition for "good correspondences": • Match target shape • Little deformation

Animations Refined parametrization of reconstruction S • Surfel graph (3D) • Trajectory graph (4D)

For optimization, we need to know: • The surfel graph • A (rough) initialization close to correct solution Optimization: • Non-linear continuous optimization problem • Gauss-Newton solver (fast & stable) How do we get the initialization? • Iterative assembly heuristic to build & init graph

Iterative Assembly

Global Assembly Assumption: Adjacent frames are similar • Every frame is a good initialization for the next one • Solve for frame pairs frame 11 frame 12 frame 13 frame 14 frame 15 frame 16 [data set courtesy of C. Theobald, MPI-Inf]

Improved Algorithm
Urshape Factorization

Factorization Model: Solving for the geometry in every frame wastes resources Store one urshape and a deformation field High resolution geometry Low resolution deformation (adaptive) Less memory, faster, and much more stable Streaming computation (constant working set)

Components Variational Model • Given an initial estimate, improve urshape and deformation Numerical Discretization • Shape • Deformation Domain Assembly • Getting an initial estimate • Urshape assembly

Discretization

Sampling:

- Full resolution geometry
 - High frequency, stored once
- Subsample *deformation*
 - Low frequency, all frames ⇒ more costly

Shape Representation

Shape Representation:

- Graph of *surfels* (point + normal + local connectivity)
- E_{smooth} neighboring planes should be similar
- Same as before...

Deformation

Volumetric Deformation Model

- Surfaces embedded in "stiff" volumes
- Easier to handle than "thin-shell models"
- General works for non-manifold data

Deformation

Deformation Energy

- Keep deformation gradients $\nabla \mathbf{f}$ as-rigid-as-possible
- This means: $\nabla \mathbf{f}^T \nabla \mathbf{f} = \mathbf{I}$
- Minimize: $E_{deform} = \int_{T} \int_{V} ||\nabla \mathbf{f}(\mathbf{x},t)|^{\mathsf{T}} \nabla \mathbf{f}(\mathbf{x},t) \mathbf{I}||^{2} d\mathbf{x} dt$

Additional Terms

More Regularization

- Volume preservation: $E_{vol} = \int_{T} \int_{V} ||\det(\nabla \mathbf{f}) 1||^{2}$
 - Stability
- Acceleration: $E_{acc} = \int_{T} \int_{V} ||\partial_{t}^{2} \mathbf{f}||^{2}$ Smooth trajectories Velocity (weak): $E_{vel} = \int_{T} \int_{V} ||\partial_{t} \mathbf{f}||^{2}$ Damping
 - Damping

Discretization

How to represent the deformation?

- Goal: efficiency
- Finite basis:

As few basis functions as possible

Computing Correspondences in Geometric Datasets

Kinematic Surfaces

Time Ordered Scans

$$\widetilde{P}^{j} \equiv \{\widetilde{\mathbf{p}}_{i}^{j}\} := \{(\mathbf{p}_{i}^{j}, t^{j}), \mathbf{p}_{i}^{j} \in \mathbb{R}^{d}, t^{j} \in \mathbb{R}\}$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Rigid Transformation

$$R^T R = I$$

Time Ordered Scans

$$\widetilde{P}^{j} \equiv \{\widetilde{\mathbf{p}}_{i}^{j}\} := \{(\mathbf{p}_{i}^{j}, \mathbf{t}^{j}), \mathbf{p}_{i}^{j} \in \mathbb{R}^{d}, t^{j} \in \mathbb{R}\}$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Set

Scanning (Moving) Objects

Space-time Surface

Kinematic Surfaces

 ${\sf Space-time\ registration} \to {\sf kinematic\ surface\ estimation}$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

7

Computing Correspondences in Geometric Datasets

Dynamic Registration

Scan Registration

Solve for inter-frame motion: $\alpha_j := (\mathbf{R}_j, \mathbf{t}_j)$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Scan Registration

The Setup

Given:

A set of frames $\{P_0, P_1, \dots P_n\}$

Goal:

Recover rigid motion $\{\alpha_{\text{1}},\,\alpha_{\text{2}},\,...\,\,\alpha_{\text{n}}\}$ between adjacent frames

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Scan Registration

Solve for inter-frame motion: $\alpha := (R, t)$

The Setup

Smoothly varying object motion

Unknown correspondence between scans

Fast acquisition → motion happens between frames

Insights

Rigid registration → kinematic property of spacetime surface (locally exact)

Registration → surface normal estimation

Extension to deformable/articulated bodies

Space-time Surface

$$\widetilde{\mathbf{p}}_{i}^{j}$$
 \rightarrow $\widetilde{\alpha}_{i}(\widetilde{\mathbf{p}}_{i}^{j}) = \left(\mathbf{R}_{j}\mathbf{p}_{i}^{j} + \mathbf{t}_{j}, t^{j} + \Delta t^{j}\right)$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Time Ordered Scans

$$\widetilde{P}^{j} \equiv \{\widetilde{\mathbf{p}}_{i}^{j}\} := \{(\mathbf{p}_{i}^{j}, \mathbf{t}^{j}), \mathbf{p}_{i}^{j} \in \mathbb{R}^{d}, t^{j} \in \mathbb{R}\}$$

Space-time Surface

$$\widetilde{\mathbf{p}}_{i}^{j} \longrightarrow \widetilde{\alpha_{j}}(\widetilde{\mathbf{p}}_{i}^{j}) = \left(\mathbf{R}_{j}\mathbf{p}_{i}^{j} + \mathbf{t}_{j}, t^{j} + \Delta t^{j}\right)$$

$$\widetilde{\alpha_{j}} = \operatorname{argmin} \sum_{i=1}^{|P^{j}|} d^{2}(\widetilde{\alpha_{j}}(\widetilde{\mathbf{p}}_{i}^{j}), S)$$

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Space-time Surface

Spacetime Velocity Vectors

Tangential point movement \rightarrow velocity vectors orthogonal to surface normals

$$\widetilde{\alpha_j} = \operatorname{argmin} \sum_{i=1}^{|P^j|} d^2(\widetilde{\alpha_j}(\widetilde{\mathbf{p}}_i^j), S)$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Spacetime Velocity Vectors

Tangential point movement → velocity vectors orthogonal to surface normals

$$v(\stackrel{\sim}{p_i}).n(\stackrel{\sim}{p_i})=0$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Registration Algorithm

- 1. Compute time coordinate spacing (σ), and form space-time surface.
- 2. Compute space time neighborhood using ANN, and locally estimate space-time surface normals.
- 3. Solve linear system to estimate $(c_i, \overline{c_i})$.
- 4. Convert velocity vectors to rotation matrix + translation vector using Plücker coordinates and quarternions.

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Final Steps

(rigid) velocity vectors
$$ightarrow \widetilde{\mathbf{v}}(\widetilde{\mathbf{p}}_i^j) = (\mathbf{c}_j imes \mathbf{p}_i^j + \overline{\mathbf{c}}_j, 1)$$

$$\min_{\mathbf{c}_{j}, \overline{\mathbf{c}}_{j}} \sum_{i=1}^{|P^{j}|} w_{i}^{j} \left[(\mathbf{c}_{j} \times \mathbf{p}_{i}^{j} + \overline{\mathbf{c}}_{j}, 1) \cdot \widetilde{\mathbf{n}}_{i}^{j} \right]^{2}$$

Normal Estimation: PCA Based

Plane fitting using PCA using chosen neighborhood points.

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Final Steps

(rigid) velocity vectors!

$$\widetilde{\mathbf{v}}(\widetilde{\mathbf{p}}_i^j) = (\mathbf{c}_j \times \mathbf{p}_i^j + \overline{\mathbf{c}}_j, 1)$$

$$\min_{\mathbf{c}_j, \overline{\mathbf{c}}_j} \sum_{i=1}^{|P^j|} w_i^j \left[(\mathbf{c}_j \times \mathbf{p}_i^j + \overline{\mathbf{c}}_j, 1) \cdot \widetilde{\mathbf{n}}_i^j \right]^2$$

$$A\mathbf{x} + \mathbf{b} = 0$$

$$\begin{split} A &= \sum_{i=1}^{|P^{j}|} w_{i}^{j} \left[\begin{array}{c} \tilde{\mathbf{n}}_{i}^{j} \\ \mathbf{p}_{i}^{j} \times \tilde{\mathbf{n}}_{i}^{j} \end{array} \right] \left[\begin{array}{c} \tilde{\mathbf{n}}_{i}^{j} & (\mathbf{p}_{i}^{j} \times \tilde{\mathbf{n}}_{i}^{j})^{T} \end{array} \right] \\ \mathbf{b} &= \sum_{i=1}^{|P^{j}|} w_{i}^{j} n_{i}^{j} \left[\begin{array}{c} \tilde{\mathbf{n}}_{i}^{j} \\ \mathbf{p}_{i}^{j} \times \tilde{\mathbf{n}}_{i}^{j} \end{array} \right] \qquad \mathbf{x} = \left[\begin{array}{c} \tilde{\mathbf{c}}_{j} \\ \mathbf{c}_{j} \end{array} \right] \end{split}$$

Normal Estimation: Iterative Refinement

Update neighborhood with current velocity estimate.

Normal Refinement: Effect of Noise

Comparison with ICP

ICP point-plane

Dynamic registration

Stable, but more expensive.

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Normal Estimation: Local Triangulation

Rigid: Bee Sequence (2,200 frames)

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Normal Estimation

Timescale (times σ)

Stable, but more expensive.

Rigid: Coati Sequence (2,200 frames)

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Handling Large Number of Frames

Deformable: Hand (100 frames)

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Rigid/Deformable: Teapot Sequence

(2,200 frames)

Deformable: Hand (100 frames)

scan #1 : scan #50

scan #1 : scan #100

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Deformation + scanner motion: Skeleton (100 frames)

Deformable Bodies

 $\min_{\mathbf{c}_j, \overline{\mathbf{c}}_j} \sum_{i=1}^{|P^j|} w_i^j \left[(\mathbf{c}_j \times \mathbf{p}_i^j + \overline{\mathbf{c}}_j, 1) \cdot \widetilde{\mathbf{n}}_i^j \right]^2$

Cluster points, and solve smaller systems.

Propagate solutions with regularization.

input frames

registered result

Deformation + scanner motion: Skeleton (100 frames)

Conclusion

Simple algorithm using kinematic properties of space-time surface.

Easy modification for deformable bodies.

Suitable for use with fast scanners.

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Deformation + scanner motion: Skeleton (100 frames)

rigid components

Limitations

Need more scans, dense scans, ...

Sampling condition → time and space

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Performance (on 2.4GHz Athlon Dual Core, 2GB RAM)

Model	# scans	# points/scan	Time (mins)
bunny (simulated)	314	33.8	13
bee	2,200	20.7	51
coati	2,200	28.1	71
teapot (rigid)	2,200	27.2	68
skeleton (simulated)	100	55.9	11
hand	100	40.1	17

thank you


```
E_{\rm tot} = \alpha_{\rm rigid} E_{\rm rigid} + \alpha_{\rm smooth} E_{\rm smooth} + \alpha_{\rm fit} E_{\rm fit}^* + \alpha_{\rm conf} E_{\rm conf} \alpha_{\rm rigid} = 1000 \to 1 \qquad \alpha_{\rm fit} = 0.1 \alpha_{\rm smooth} = 100 \to 0.1 \qquad \alpha_{\rm conf} = 100 \to 1 stiffness reduction confidence adaptation
```


The story so far

Problem statement

• Given pair of shapes/scans, find correspondences between the shapes

Local shape matching

- Solves for an alignment assuming that pose is similar or motion is small between shapes / scans
- Like "tracking" of motion in this respect

In this session: Global Shape Matching

ographics 2011 Course - Computing Correspondences in Geometric Data Sets

What is Global Matching?

Problem statement

- Find the globally optimal correspondences between a pair of shapes
- Search space = set of all possible correspondences
- Same sense as local minimum vs global minimum in optimization
- Don't get confused with **global registration**
 - "Global registration" is commonly used to refer to aligning multiple scans together to make a single shape

Eurographics 2011 Course — Computing Correspondences in Geometric Data Set

Local vs Global

Local Matching

- Search in space of transformations, minimize alignment energy
- Relatively small search space... relatively easy

Global Matching

- Search in the space of all possible correspondences, minimize alignment energy
- Incredibly large search space... nearly impossible?
- → Features to the rescue!

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Our eyes recognize features Face ≠ Arm • Why? It looks different! • Can dramatically reduce space of possible solutions • How can we directly compare the geometric content to recognize similarity/dissimilarity?

An Example: Spin Images

One of the earliest feature descriptors

- Established, simple, well analyzed
- Clearly illustrates the process of how this type of recognition works
- Also illustrates potential problems & drawbacks common to any type of feature descriptor

prographics 2011 Course - Computing Correspondences in Geometric Data Sets

Spin Image Matching Compare images directly to obtain similarity score • Linear correlation coefficient → Similarity measure • Compute only in "overlap": when both bins have a value Match points by matching spin-images Match points by matching spin-images Images from [Johnson 97]

False positive • Saying that two points match when in fact they don't False negative • Saying that two points don't match when in fact they do Aka "noise" or "outliers" • Occurs with any type of descriptor

Problem #2: Parameter Selection

Examples of parameters in spin images

- Bin size
- Image width
- Support angle
- Mesh resolution

How to pick the best parameters?

- Fortunately well analyzed for spin images
- Others are studied/analyzed to varying degrees

urggraphics 2011 Course - Computing Correspondences in Geometric Data Sets

Problem #3: Non-unique patches

What to do in flat/spherical/cylindrical regions?

- In this case, the region is not "unique" or distinctive
- Doesn't make sense to compare such regions..
- Or does it?
 - Increasing the scale/support
- Multi-scale features, select scale automatically
- "Global" features ex) heat diffusion signature

ographics 2011 Course — Computing Correspondences in Geometric Data Sets

Conclusion

Feature descriptors

- Very useful for narrowing down search space
- Does not solve the problem completely
- Additional optimization in the (reduced) search space is needed → explored in the next few talks!

Eurographics 2011 Course — Computing Correspondences in Geometric Data Set

How can we simplify the problem?

- Before: Optimizing correspondences of individual points
- Articulated: Optimizing correspondence of groups of points
- Q) What are the groups?
 - Generally: don't know in advance.
 - If we know in advance: [PG08]
- Q) What is the motion for each group?
 - We can guess well
 - ICP based search, feature based search

Eurographics 2011 Course — Computing Correspondences in Geometric Data Set

How to find transformations?

Global search / feature matching strategy [CZ08]

- Sample transformations in advance by feature matching
- Inspired by partial symmetry detection [MGP06]
 - Covered later in the course!

Local search / refinement strategy [CZ09]

- Start with initial part labeling, keep refining transformations of each part via ICP
- Refine part labels using transformations, repeat alternation

prographics 2011 Course — Computing Correspondences in Geometric Data Sets

Performance

Dataset	#Points	# Labels	Matching	Clustering	Pruning	Graph Cuts
Horse	8431	1500	2.1 min	3.0 sec	(skip) 1.6 sec	1.1 hr
Arm	11865	1000	55.0 sec	0.9 sec	12.4 min	1.2 hr
Hand (Front)	8339	1500	14.5 sec	0.7 sec	7.4 min	1.2 hr
Hand (Back)	6773	1500	17.3 sec	0.9 sec	9.4 min	1.6 hr

Graph cuts optimization is most time-consuming step

- Symmetric optimization doubles variable count
- Symmetric consistency term introduces many edges

Performance improved by subsampling

• Use k-nearest neighbors for connectivity

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Pros/Cons Feature matching: Insensitive to initial pose • May fail to sample properly when too much missing data, non-rigid motion • Hard assignment of transformations Source Target Registration

Conclusions

We can simplify the problem for articulated shapes

- Instead of searching for corresponding points, search for an assignment of transformations
- Explicitly sample a discrete set of transformations
- Refine the transformations via local search
- Optimize the assignment using graph cuts
- No marker, template, segmentation information needed
- Robust to occlusion & missing data

Thank you for listening!

Eurographics 2011 Course - Computing Correspondences in Geometric Data Set

Computing Correspondences in Geometric Datasets Global, Isometric, Pairwise: Isometric Matching and Quadratic Assignment Eurographics 2011 LL PNDUDNO UK Brigger University 11-15 Phorit 2011

Overview and Motivation

Global Isometric Matching

Goal

- We want to compute correspondences between deformable shape
- Global algorithm, no initilization

Eurographics 2011 Course — Computing Correspondences in Geometric Data Se

Global Isometric Matching

Approach & Problems

• Consistency criterion: global isometry

Problem

• How to find globally consistent matches?

Model

- Quadratic assignment problem
 - General QA-problem is NP-hard
 - But it turns out: solution can usually be computed in polynomial time (more later)

urographics 2011 Course - Computing Correspondences in Geometric Data Sets

Isometric Matching

(vs. extrinsic matching)

Rigid Matching • Invariants: All Euclidean distances are preserved

Quadratic Assignment Model

Quadratic Assignment

• Matrix notation:

$$P^{(match)}(X_1,...,X_n) = \prod_{i=1}^n P_i^{(single)} \prod_{i,j=1}^n P_{i,j}^{(compatible)}$$

$$\log P^{(match)}(X_1,...,X_n) = \sum_{i=1}^n \log P_i^{(single)} + \sum_{i,j=1}^n \log P_{i,j}^{(compatible)}$$

$$= \mathbf{x} \mathbf{s} + \mathbf{x}^T \mathbf{D} \mathbf{x}$$

- Quadratic scores are encoded in Matrix D
- \bullet Linear scores are encoded in Vector \boldsymbol{s}
- ullet Task: find optimal binary vector ${f x}$

urographics 2011 Course — Computing Correspondences in Geometric Data Sets

Computing Correspondences in Geometric Datasets Global Shape Matching Section 3.4b: Global, Isometric, Pairwise Spectral Matching and Applications

Quadratic Assignment Model

Quadratic Assignment

Matrix notation:

$$\begin{split} P^{(match)}(x_1,...,x_n) &= \prod_{i=1}^n P_i^{(single)} \prod_{i,j=1}^n P_{i,j-1}^{(compatible)} \\ &\log P^{(match)}(x_1,...,x_n) = \sum_{i=1}^n \log P_i^{(single)} + \sum_{i,j=1}^n \log P_{i,j}^{(compatible)} \\ &= \mathbf{xs} + \mathbf{x}^T \mathbf{D} \mathbf{x} \end{split}$$

- Quadratic scores are encoded in Matrix D
- Linear scores are encoded in Vector s
- Task: find optimal binary vector x

Spectral Matching

Simple & Effective Approximation:

- Spectral matching [Leordeanu & Hebert 05]
- Form compatibility matrix:

All entries within [0..1] = [no match...perfect match]

Spectral Matching

Approximate largest clique:

- Compute eigenvector with largest eigenvalue
- Maximizes Rayleigh quotient:

$$\arg\max\frac{\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x}}{\left\|\mathbf{x}\right\|^{2}}$$

- "Best yield" for bounded norm
 - The more consistent pairs (rows of 1s), the better
 - Approximates largest clique
- Implementation
 - For example: power iteration

Spectral Matching

Post-processing

- Greedy quantization
 - Select largest remaining entry, set it to 1
 - Set all entries to 0 that are not pairwise consistent with current set
 - Iterate until all entries are quantized

In practice...

- This algorithm turns out to work quite well.
- Very easy to implement
- Limited to (approx.) quadratic assignment model

Spectral Matching Example

Application to Animations

- Feature points: Geometric MLS-SIFT
- features [Li et al. 2005] • Descriptors:
- Curvature & color ring histograms
- Global Filtering: Spectral matching
- · Pairwise animation matching: Low precision passive stereo data

Application In Detail: [HAW*08] Combines the spectral matching with a deformation system to perform registration • A good illustration of how a matching method fits into a real registration pipeline A pairwise method • Deform the source shape to match the target shape Source + Target Source Source Source Source Source Source - Computing Correspondences Rigid Clusters Registration Result Furnaraphics 2011 Course - Computing Correspondences in Geometric Data Sets

Detailed Overview Sampling • Whole process works with reduced sample set Correspondence & Deformation • Examine each step in more detail Discussion • Discuss pros/cons

Sample for robustness & efficiency Coarse to fine approach• Use uniform subsampling of the surface and its normals • Improve efficiency, can improve robustness to local minima Source * Target* Source Samples Let's make it more concrete • Sample set denoted S_i • In correspondence: for each S_i , find corresponding target points t_i • In deformation: given t_i , find deformed sample positions S_i' that match t_i while preserving local shape detail

Correspondence Step #1

Find closest points

- For each source sample, find the closest target sample
 - s = sample point on source
 - t = sample point on target

$$\underset{t \in \hat{T}}{\operatorname{arg\,min}} \ \left\| s - t \right\|^2$$

• Usually pretty bad

Correspondence Step #2

Improve by feature matching

- Search target's neighbors to see if there's better feature match, replace target
 - Let f(s) be feature value of s

$$t \leftarrow \underset{t' \in N(t)}{\operatorname{arg \, min}} \ \left\| f(s) - f(t') \right\|^2$$

- · Iterate until we stop moving
- If we move too much, discard correspondence
- Much better, but still outliers

Correspondence Step #3

Filter by spectral matching

- (First some preprocessing)
- Construct k-nn graph on both src & tgt sample set (k = 15)
- Length of shortest path on graph gives approx. geodesic distances on src & tgt

$$d_g(s_i, s_j)$$
 $d_g(t_i, t_j)$

• Goal is to filter these ---and keep a subset which is geodesically consistent

Correspondence Step #3

Filter by spectral matching

- Construct affinity matrix M using these shortest path distances
- Consistency term & matrix

$$\begin{split} c_{ij} &= \min\{\frac{d_g(s_i, s_j)}{d_g(t_i, t_j)}, \frac{d_g(t_i, t_j)}{d_g(s_i, s_j)}\}, \ c_{ii} = 1\\ \mathbf{M}_{ij} &= \left\{ \begin{array}{cc} \left(\frac{C_{ij} - C_0}{1 - C_0}\right)^2 & c_{ij} > c_0, \\ 0 & \text{otherwise}, \end{array} \right. \end{split}$$

• Threshold c_0 = 0.7 gives how much error in consistency we are willing to accept

Target (yellow) ← Source (gray)

Correspondence Step #3

Filter by spectral matching

- · Apply spectral matching: find eigenvector with largest eigenvalue → score for each correspondence
- Iteratively add corresp. with largest score while consistency with the rest is above c 0
- Gives kernel correspondences
- Filtered matches usually sparse

Target (yellow) ← Source (gray)

Correspondence Step #4

Expand sparse set

- Lots of samples have no target
- For these, find best target position that respects geodesic distances to kernel set

$$\mathbf{t}_{i} = \arg\min_{\mathbf{t} \in N_{g}(\mathbf{t}_{i}, \overline{T})} e_{K}(\mathbf{s}_{i}, \mathbf{t})$$

$$e_K(\mathbf{s}, \mathbf{t}) = \sum_{(\mathbf{s}_k, \mathbf{t}_k) \in K} \left[d_g(\mathbf{s}, \mathbf{s}_k) - d_g(\mathbf{t}, \mathbf{t}_k) \right]^2$$

3

Expand sparse set • Lots of samples have no target position • Compute confidence weight based only how well it respects geodesic distances to kernel set $w_i = \exp(-\frac{e_K(\mathbf{s}_i, \mathbf{t}_i)}{2e})$ $e = \frac{1}{|K|} \sum_{(\mathbf{s}_i, \mathbf{t}_i) \in K} e_K(\mathbf{s}_k, \mathbf{t}_k)$ Red = not consistent ----> Blue = very consistent

Deformation

Solved by energy minimization (least squares)

- Last step gave target positions t_i
- Now find deformed sample positions $\ s_i'$ that match target positions $\ t_i$

Two basic criteria:

- ullet Match correspondences: S_i should be close to t_i
- Shape should preserve detail (as-rigid-as-possible)
- Combine to give energy term:

$$E = \lambda_{corr} E_{corr} + \lambda_{rigid} E_{rigid}$$

Eurographics 2011 Course — Computing Correspondences in Geometric Data Set

Correspondence matching term

Combination of point-to-point (α =0.6) and point-to-plane (β =0.4) metrics

• Weighted by confidence weight w_i of the target position

$$E_{corr} = \sum_{\mathbf{s}_i \in S} \mathbf{w}_i \left[\alpha \left\| \mathbf{s}_i^{'} - \mathbf{t}_i \right\|^2 + \beta ((\mathbf{s}_i^{'} - \mathbf{t}_i^{'})^T \mathbf{n}_i^{'})^2 \right]$$
Point-to-point

urographics 2011 Course — Computing Correspondences in Geometric Data Sets

Shape preservation term

Deformed positions should preserve shape detail

- \bullet Form an extended cluster \widetilde{C}_k for each sample point: the sample itself and its neighbors
- For each $\,\widetilde{C}_k$ find the rigid transformation (R,T) from sample positions to their deformed locations

$$E_k = \sum_{s \in C_k} \left\| \mathbf{R}_k \mathbf{s}_i + \mathbf{T}_k - \dot{\mathbf{s}}_i \right\|^2$$

• When solving for s_i' , constrain them to move rigidly according to each cluster that it's associated with

$$E_{\text{rigid}} = \sum_{k} E_{k} = \sum_{k} \sum_{\mathbf{s}_{i} \in \tilde{\mathcal{C}}_{k}} \|\mathbf{R}_{k} \mathbf{s}_{i} + \mathbf{T}_{k} - \mathbf{s}'_{i}\|^{2}$$

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Clusters for local rigidity

- Initially each cluster contains a single sample point
- Every 10 iterations (of correspondence & deformation), combine clusters that have similar rigid transformations (forming larger rigid parts)

ographics 2011 Course - Computing Correspondences in Geometric Data Sets

Conclusion

Non-rigid registration under isometric deformations

- Improve closest point correspondences using features and spectral matching
- Deform shape while preserving local rigidity of clusters
- Iteratively estimate correspondences and deformation until convergence
- Robust, efficient method
- Relies on geodesic distances (problematic when holes are too large)

urographics 2011 Course — Computing Correspondences in Geometric Data Sets

Ransac and Forward Search The Basic Idea

Random Sampling Algorithms Estimation subject to outliers: • We have candidate correspondences • But most of them are bad • Standard vision problem • Standard tools: Ransac & forward search

Ransac-Based
Correspondence Estimation

RANSAC/FWS Algorithm

ldea

- Starting correspondence
- Add more that are consistent
 - Preserve intrinsic distances
- Importance sampling algorithm

Advantages

- Efficient (small initial set)
- General (arbitrary criteria)

rographics 2011 Course - Computing Correspondences in Geometric Data Set

Ransac/FWS Details

Algorithm: Simple Idea

- Select correspondences with probability proportional to their plausibility
- First correspondence: Descriptors
- Second: Preserve distance (distribution peaks)
- Third: Preserve distance (even fewer choices)

...

- Rapidly becomes deterministic
- Repeat multiple times (typ.: 100x)
 - Choose the largest solution (larges #correspondences)

ographics 2011 Course — Computing Correspondences in Geometric Data Sets

Ransac/FWS Details

Provably Efficient:

- Theoretically efficient (details later)
- Faster in practice (using descriptors)

Flexible

- In later iterations (> 3 correspondences), allow for outlier geodesics
- Can handle topological noise

Eurographics 2011 Course — Computing Correspondences in Geometric Data Se

Foreward Search Algorithm

Forward Search

- Add correspondences incrementally
- Compute match probabilities given the information already decided on
- Iterate until no more matches can found that meet a certain error threshold
- Outer Loop:
 - Iterate the algorithm with random choices
 - Pick the best (i.e., largest) solution

urographics 2011 Course — Computing Correspondences in Geometric Data Sets

Foreward Search Algorithm

Step 1:

- Start with one correspondence
 - Target side importance sampling: prefer good descriptor matches
 - Optional source side imp. sampl: prefer unique descriptors

Eurographics 2011 Course - Computing Correspondences in Geometric Data Set

Foreward Search Algorithm

(distance)

Step 2

- Compute "posterior" incorporating geodesic distance
 - Target side importance sampling: sample according to descriptor match × distance score
 - Again: optional source side imp. sampl: prefer unique descriptors

rographics 2011 Course - Computing Correspondences in Geometric Data Sets

Complexity

How expensive is all of this?

Cost analysis

· How many rounds of sampling are necessary?

Constraints [Lipman et al. 2009]:

- Assume disc or sphere topology
- An isometric mapping is in particular a conformal mapping
- A conformal mapping is determined by 3 point-to-point correspondences

rographics 2011 Course - Computing Correspondences in Geometric Data Sets

ographics 2011 course — Computing Correspondences in Geometric Data Sets

How expensive is it..?

First correspondence:

- Worst case: *n* trials (*n* feature points)
- In practice: k ≪ n good descriptor matches (typically k ≈ 5-20)

Second correspondence:

- Worst case: *n* trials, expected: \sqrt{n} trials
- In practice: very few (due to descriptor matching, maybe 1-3)

Last match:

• At most two matches

urographics 2011 Course - Computing Correspondences in Geometric Data Sets

Costs...

Overall costs:

- Worst case: O(n²) matches to explore
- Typical: $O(n^{1.5})$ matches to explore

Randomization:

- Exploring m items costs expected $O(m \log m)$ trials
- Worst case bound of O(n2 log n) trials
- Asymptotically sharp: O(c)-times more trials for shrinking failure probability to $O(\exp(-c^2))$

rographics 2011 Course — Computing Correspondences in Geometric Data Sets

Costs...

Surface discretization:

- Assume ε -sampling of the manifold (no features): $O(\varepsilon^{-2})$ sample points
- Worst case $O(\varepsilon^{-4} \log \varepsilon^{-1})$ sample correspondences for finding a match with accuracy ε .
- Expected: $O(\varepsilon^{-3} \log \varepsilon^{-1})$.

In practice:

- Importance sampling by descriptors is very effective
- Typically: Good results after 100 iterations

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

General Case

Numerical errors:

 Noise surfaces, imprecise features: reflected in probability maps (we know how little we might know)

Topological noise:

- Use robust constraint potentials
- For example: account for 5 best matches only

Topologically complex cases:

- No analysis beyond disc/spherical topology
- However: the algorithm will work in the general case (potentially, at additional costs)

rographics 2011 Course — Computing Correspondences in Geometric Data Sets

Partial Symmetry Detection

Given

Shape model (represented as point cloud, mesh, ...)

Identify and extract similar (symmetric) patches of different size across different resolutions

Partial and Approximate Symmetry Detection for 3D Geometry

Symmetry in Nature

"Symmetry is a complexity-reducing concept $[\ldots]$; seek it everywhere."

"Females of several species, including [...] humans, prefer symmetrical males." - Chris Evan

Related Work

[Loy and Eklundh '06]

[Gal and Cohen-Or `05]

Hough transform on feature points

tradeoff memory for speed

Symmetry for Geometry Processing

[Katz and Tal `04]

[Funkhouser et al. '05]

[Khazdan et al. '04]

[Sharf et al. '04]

Types of Symmetry

Transform Types:

Reflection

Rotation + 1

Uniform Scaling

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Contributions

Automatic detection of discrete symmetries! reflection, rigid transform, uniform scaling

Symmetry graphs! high level structural information about object

Output sensitive algorithms! low memory requirements

Reflective Symmetry: A Pair Votes

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

urographics 2011 Course — Computing Correspondences in Geometric Data Sets

Problem Characteristics

Difficulties

- Which parts are symmetric! objects not pre-segmented
- Space of transforms: rotation + translation
- Brute force search is not feasible

Easy

• Proposed symmetries! easy to validate

Reflective Symmetry: Voting Continues

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course – Computing Correspondences in Geometric Data Sets

Reflective Symmetry

Reflective Symmetry: Voting Continues

Reflective Symmetry: Largest Cluster

Pruning: Local Signatures

He

Spi

Local signature! invariant under transforms

Signatures disagree! points don't correspond

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

rographics 2011 Course — Computing Correspondences in Geometric Data Sets

Pipeline

Reflection: Normal-based Pruning

Eurographics 2011 Course – Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Pipeline

Point Pair Pruning

Transformations

Reflection! point-pairs

Rigid transform! more information

Robust estimation of principal curvature frames [Cohen-Steiner et al. `03]

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Random Sampling

Height of clusters related to symmetric region size

Random samples! larger regions likely to be detected earlier

Output sensitive

Surgeraphics 2011 Course — Computing Correspondences in Geometric Data Sets

Mean-Shift Clustering

Kernel:

Radially symmetric

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Model Reduction: Chambord

urographics 2011 Course — Computing Correspondences in Geometric Data Sets

Verification

Clustering gives a good guess

Verify! build symmetric patches

Locally refine solution using ICP algorithm [Besl and McKay `92]

Model Reduction: Chambord

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Model Reduction: Chambord

Approximate Symmetry: Dragon

detected symmetries

correction field
UNITS: fraction of bounding box diagona

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

urographics 2011 Course — Computing Correspondences in Geometric Data Sets

Sydney Opera House

Limitations

Cannot differentiate between small sized symmetries and com

[Castro et al. '06]

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Sydney Opera House

Articulated Motion: Horses

'symmetry' detection between two objects! registration

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Discovering Structural Regularity in 3D Geometry

Mark Pauly ETH Zurich

Niloy J. Mitra

Johannes Wallner TU Graz

Helmut Pottmann TU Vienna

Leonidas Guibas Stanford University

Regular Structure

Niloy J. Mit

Discovering Structural Regularity in 3D Geometry

Regular Structures

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Regular Structure

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Regular Structures

SIGGRAPH2008

Regular Structure

Niloy J. Mitra Discovering Structural Regularity in 3D Geometry

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Discovering Structural Regularity in 3D Geometry

Niloy J. Mitra

Motivation

• Regularity — form, semantics

- · Scan cleaning, completion
- Compression
- · Geometric edits, synthesis

Related Work

Motivation

Regularity → form, semantics

- · Scan cleaning, completion
- Compression
- · Geometric edits, synthesis
- · Growth laws or design principles

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Related Work

[Podolak et al. '06]

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Inspiration

On Growth and Form [Thompson 1917]

Related Work

[Lov. Eklundh `06]

Discovering Structural Regularity in 3D Geometry

SIGGRAPH2008

Niloy J. Mitra

Invariance under transformations

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Repetitive Structures

Invariance under transformations

Rotation + Scaling

iscovering Structural Regularity in 3D Geometr

Repetitive Structures

· Invariance under transformations

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Repetitive Structures

· Invariance under transformations

Translation + Rotation

Rotation + Scaling

1-parameter patterns

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Repetitive Structures

Invariance under transformations

Translation + Rotation

Repetitive Structures

Invariance under transformations

Translation × Translation

Repetitive Structures

· Invariance under transformations

Translation × Rotation

Repetitive Structures

1-parameter groups

Discovering Structural Regularity in 3D Geometry

Repetitive Structures

· Invariance under transformations

Translation × Rotation

Rotation × Scaling

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

SIGGRAPH2008

Structure Discovery

Repetitive Structures

Invariance under transformations

Translation × Translation

Translation × Rotation

Rotation × Scaling

2-parameter commutative patterns

Niloy J. Mitra Discovering Structural Regularity in 3D Geometry SIGGRAPH2008

Structure Discovery

Model Estimation

Transform Mapping

$$\mathbf{G}_1^i.\mathbf{G}_1^j \rightarrow \{i\mathbf{g}_1 + j\mathbf{g}_2\}$$

Nilov J. Mitra

Discovering Structural Regularity in 3D Geometr

Model Estimation

Transform Mapping

$$\mathbf{G}_1^i.\mathbf{G}_1^j \to \{i\mathbf{g}_1 + j\mathbf{g}_2\}$$
$$\mathbf{I} \to \{\mathbf{0}\}$$

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Transform Mapping

Transform Mapping

$$\mathbf{G}_1^i.\mathbf{G}_1^j \to \{i\mathbf{g}_1 + j\mathbf{g}_2\}$$

$$\mathbf{I} \to \{\mathbf{0}\}$$

Translation x Translation

 $T \rightarrow (t_1, t_2)$

Rotation x Scaling

 $T \to (\theta, \log s)$

Translation x Rotation

 $T \to (t, \theta)$

Niloy J. Mitra Discovering Structural Regularity in 3D Geometry

SIGGRAPH2008

Niloy J. Mitra Discovering Structural Regularity in 3D Geometry

Model Estimation

Model Estimation

- Grid fitting
 - input: cluster centers

$$C = {\mathbf{c}_1, \dots, \mathbf{c}_n}$$

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

SIGGRAPH2008

lilov I Mitra

iscovering Structural Regularity in 3D Geometr

Model Estimation

· Global, non-linear optimization

Model Estimation

- · Grid fitting
 - input: cluster centers

$$C = {\mathbf{c}_1, \dots, \mathbf{c}_n}$$

- unknowns: grid generators

$$\mathbf{x}_{ij} = i\mathbf{g}_1 + j\mathbf{g}_2$$
 grid location generating vectors

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

SIGGRAPH2008

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Model Estimation

- · Global, non-linear optimization
 - simultaneously detects outliers and grid structure

Model Estimation

- Grid fitting
 - input: cluster centers

$$C = {\mathbf{c}_1, \dots, \mathbf{c}_n}$$

- unknowns: grid generators

$$\mathbf{x}_{ij} = i\mathbf{g_1} + j\mathbf{g_2} \qquad \qquad i \in [-n,n]$$
 grid location
$$j \in [-m,m]$$
 generating vectors

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

SIGGRAPH2008

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Model Estimation

· Fitting terms

$$E_{C \to X} = \sum_{k=1}^{|C|} \|\mathbf{c}_k - \mathbf{x}(k)\|^2$$
 cluster center closest grid point

$$E_{X \to C} = \sum\nolimits_i \sum\nolimits_j \|\mathbf{x}_{ij} - \mathbf{c}(i,j)\|^2$$
 grid point closest cluster center

Discovering Structural Regularity in 3D Geometry

Model Estimation

- · Global, non-linear optimization
 - simultaneously detects outliers and grid structure

Model Estimation

· Fitting terms

data confidence
$$E_{C \to X} = \sum_{k=1}^{|C|} \frac{\beta_k^2 \|\mathbf{c}_k - \mathbf{x}(k)\|^2}{\sqrt{}}$$
 cluster center closest grid point

$$E_{X \to C} = \sum\nolimits_i \sum\nolimits_j \frac{\alpha_{ij}^2 \|\mathbf{x}_{ij} - \mathbf{c}(i,j)\|^2}{\sum\nolimits_j \mathbf{c}(i,j)}$$
 grid point closest cluster center

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Model Estimation

- · Global, non-linear optimization
 - simultaneously detects outliers and grid structure

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

SIGGRAPH2008

Model Estimation

Fitting terms

$$E_{C \to X} = \sum_{k=1}^{|C|} \beta_k^2 \|\mathbf{c}_k - \mathbf{x}(k)\|^2$$

$$E_{X\to C} = \sum_{i} \sum_{j} \alpha_{ij}^2 \|\mathbf{x}_{ij} - \mathbf{c}(i,j)\|^2$$

· Data and grid confidence terms

$$E_{\alpha} = \sum_{i} \sum_{j} (1 - \alpha_{ij}^2)^2 \qquad E_{\beta} = \sum_{k} (1 - \beta_k^2)^2$$

$$E_{\beta} = \sum_{k} (1 - \beta_k^2)^2$$

Niloy J. Mitra Discovering Structural Regularity in 3D Geometry

Structure Discovery

Aggregation

· Region-growing to extract repetitive elements

Niloy J. Mitra Discovering Structural Regularity in 3D Geometry

Aggregation

- · Region-growing to extract repetitive elements
- · Simultaneous registration

$$\begin{aligned} \mathbf{H}_{+} &\approx \mathbf{H} + \epsilon \mathbf{D} \cdot \mathbf{H} \\ T_{+}^{k} &\approx (\mathbf{H} + \epsilon \mathbf{D} \cdot \mathbf{H})^{k} \end{aligned}$$

Niloy J. Mitra

iscovering Structural Regularity in 3D Geometi

Aggregation

- · Region-growing to extract repetitive elements
- · Simultaneous registration

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

SIGGRAPH2008

Structure Discovery

Aggregation

- · Region-growing to extract repetitive elements
- Simultaneous registration

$$\mathbf{H}_{+} \approx \mathbf{H} + \epsilon \mathbf{D} \cdot \mathbf{H}$$

Niloy J. Mitra Discovering Structural Regularity in 3D Geometry

Structure Discovery

Chambord Castle

Chambord Castle

Chambord Castle

Chambord Castle

Chambord Castle [Mitra et al. `06]

Chambord Castle

Observations

· Warped structures

Structure Discovery

Niloy J. Mitra

Discovering Structural Regularity in 3D Geomet

SIGGRAPH2008

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Observations

- · Warped structures
- · Size of grid vs accuracy

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Structure Discovery

· Algorithm is fully automatic

Observations

SIGGRAPH2008

- · Warped structures
- · Size of grid vs accuracy
- · Choice of parameters

Structure Discovery

- · Algorithm is fully automatic
- Requires no prior information on size, shape, or location of repetitive elements

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Structure Discovery

- · Algorithm is fully automatic
- · Requires no prior information on size, shape, or location of repetitive elements
- Robust, efficient, independent of dimension
 - → general tool for scientific data analysis

SIGGRAPH2008

SIGGRAPH2008

SIGGRAPH2008

Acknowledgements

• Funding Agencies: Austrian Science Fund (FWF) Darpa HR0011-05-1-0007 NIH GM-072970 NSF FRG-0354543

Data Source:

TCS

Institute of Cartography and Geoinformatics, Leibniz University, Germany

Acknowledgements

Acknowledgements

· Funding Agencies: Austrian Science Fund (FWF) Darpa HR0011-05-1-0007 NIH GM-072970 NSF FRG-0354543 **TCS**

Data Source:

Institute of Cartography and Geoinformatics, Leibniz University, Germany

Scanning, code snippets:

Michael Eigensatz Balint Miklos Heinz Schmiedhofer

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Acknowledgements

Funding Agencies: Austrian Science Fund (FWF) Darpa HR0011-05-1-0007 NIH GM-072970 NSF FRG-0354543 TCS

Thank You

Niloy J. Mitra

Discovering Structural Regularity in 3D Geometry

Computing Correspondences in Geometric Datasets

Symmetry is everywhere

Motivation

Symmetry

Symmetry Transforms

Local Symmetry

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Motivation

Symmetry is everywhere

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Motivation

Symmetry is everywhere

Partial Symmetry

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Motivation

Symmetry is everywhere

Perfect Symmetry

Goal

A computational representation that describes all planar symmetries of a shape

Symmetry Transform

A computational representation that describes all planar symmetries of a shape

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Symmetry Transform

A computational representation that describes all planar symmetries of a shape

Partial Symmetry

Symmetry = 0.2

Symmetry Transform

A computational representation that describes all planar symmetries of a shape

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Symmetry Measure

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Symmetry of a shape is measured by correlation with its reflection

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Symmetry Transform

A computational representation that describes all planar symmetries of a shape

Local Symmetry

Symmetry = 0.3

Symmetry Measure

Symmetry of a shape is measured by correlation with its reflection

Symmetry = 0.7

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Symmetry Measure

Symmetry of a shape is measured by correlation with its reflection

Symmetry = 0.3

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Previous Work

Zabrodsky '95

Kazhdan '03

Martinet '05

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Symmetry Measure

Symmetry of a shape is measured by correlation with its reflection

Symmetry Distance

Define the *Symmetry Distance* of a function f with respect to any transformation γ as the L^2 distance between f and the nearest function invariant to γ

Can show that Symmetry Measure $D(f,\gamma) = f \cdot \gamma(f)$ is related to symmetry distance by

$$D(f, \gamma) = -2SD^2 + ||f||^2$$

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Symmetry Measure

Symmetry of a shape is measured by correlation with its reflection

Symmetry = 0.1

Previous Work

Zabrodsky '95

Kazhdan '03

Thrun '05

Martinet '05

Previous Work

Zabrodsky '95

Kazhdan '03

Thrun '05

Martinet '05

Computing Discrete Transform

O(n⁶)

Brute Force

Convolution O(n⁵Log n)

Monte-Carlo

O(n²) normal directions

Χ

O(n³Log n) per direction

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Previous Work

Zabrodsky '95

Kazhdan '03

Thrun '05

Martinet '05

Computing Discrete Transform

Brute Force O(n⁶)

Convolution O(n⁵Log n)

Monte-Carlo O(n⁴) For 3D meshes

- Most of the dot product contains zeros.
- Use Monte-Carlo Importance Sampling.

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Set

Computing Discrete Transform

Brute Force O(n⁶)

Convolution

Monte-Carlo

O(n³) planes

X
O(n³) dot product

Monte Carlo

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Monte Carlo

Monte Carlo

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Monte Carlo

Monte Carlo

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Monte Carlo

Monte Carlo

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Eurographics 2011 Course – Computing Correspondences in Geometric Data Sets

Weighting Samples

Need to weight sample pairs by the inverse of the distance between them

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Application: Alignment

Motivation:

Composition of range scans

Morphing

PCA Alignment

Weighting Samples

Need to weight sample pairs by the inverse of the distance between them

Application: Alignment

Approach:

Perpendicular planes with the greatest symmetries create a symmetry-based coordinate system.

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Weighting Samples

Need to weight sample pairs by the inverse of the distance between them

Application: Alignment

Approach:

Perpendicular planes with the greatest symmetries create a symmetry-based coordinate system.

Eurographics 2011 Course - Computing Correspondences in Geometric Data Set

Application: Alignment

Approach:

Perpendicular planes with the greatest symmetries create a symmetry-based coordinate system.

Eurographics 2011 Course - Computing Correspondences eometric Data Sets

Application: Matching

Motivation:

Database searching

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Application: Alignment

Approach:

Perpendicular planes with the greatest symmetries create a symmetry-based coordinate system.

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Application: Matching

Observation:

All chairs display similar principal symmetries

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

Application: Alignment

Results:

Application: Matching

Approach:

Use Symmetry transform as shape descriptor

Eurograp

Eurographics 2011 Course — Computing Correspondences in Geometric Data Sets

Application: Matching

Results:

Symmetry provides orthogonal information about models and can therefore be combined with other descriptors

Eurographics 2011 Course - Computing Correspondences in Geometric Data Sets

RELATED WORK

Related Work

- Procedural Modeling
 - Plants [Prusinkiewicz and Lindenmayer 1990], [Deussen et al. 1998]
 - Cities & buildings [Parish and Müller 2001], [Wonka et al. 2003], [Müller et al. 2006] User specifies grammar

Related Work

- Inverse Procedural Modeling
 - Vector graphics [Hart et al. 1997], [Yeh et al. 2009], [Št'ava et al 2010] No continuous surfaces
 - From images [Aliaga et al. 2007], [Müller et al. 2007], [Neubert et al. 2007], [Tan et al. 2007], [Xiao et al. 2009]

Predefined class of grammars

Related Work

- Texture Synthesis
 - [Efros and Leung 1999], [Wei and Levoy 2000], [Kwatra et al. 2003], [Kwatra et al. 2005] • 2D texture synthesis
 - [Lai et al. 2005], [Nguyen et al. 2005], [Chen and Meng 2009], [Zhou et al. 2006], [Zelinka and Garland 2006], [Bhat et al. 2004], [Sharf et al. 2004], [Lagae et al. 2005] 3D geometry

 - Example-based model synthesis [Merrel et al. 2007], [Merrel and Manocha 2008]

Hard optimization problem, no procedural description

Related Work

- Symmetry Detection
- [Thrun and Wegbreit 2005], [Mitra et al. 2006], [Podolak et al. 2006], [Gal and Cohen-Or 2006], [Mitra et al. 2007], [Pauly et al. 2008], [Bokeloh et al. 2009]

We build upon this work

CONCLUSIONS / FUTURE WORK

Conclusions

- Compute modeling rules from a single exemplar
- Strong formal guarantees
 - Provably r-similar
 - Maintains manifolds, closed surfaces, etc...
- Robust
 - Only one important parameter (radius r)
 - General geometry (incl. triangle soup, point clouds)
- A first step to data driven high-level modeling

Limitations / Future Work

- Limitations
 - Rigid symmetries only
 - Context-free grammars (+grids)
- Future Work
 - Address limitations
 - Find models for user specified boundary conditions
 - Machine learning for semantics

Acknowledgements

- We would like to thank
 - Alexander Berner, Qi-Xing Huang, Matthias Hullin, Leonidas Guibas, Gerd Wolf, Ivo Ihrke, Tobias Ritschel, Thorsten Thormählen, Qing Fang, and the anonymous reviewers
 - This work has been partially supported by the Cluster of Excellence "Multi-Modal Computing and Interaction".

