
Copyright © 2009 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.
Sketch-Based Interfaces and Modeling 2009, New Orleans, LA, August 1–2, 2009.
© 2009 ACM 978-1-60558-602-1/09/0008 $10.00

EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)

C. Grimm and J. J. LaViola Jr. (Editors)

The Effect of Task on Classification Accuracy: Using Gesture

Recognition Techniques in Free-Sketch Recognition

Martin Field1, Sam Gordon1 , Eric Peterson2, Raquel Robinson1, Thomas Stahovich2, Christine Alvarado1

1Harvey Mudd College, Claremont, CA
2University of California, Riverside

Abstract

Generating, grouping, and labeling free-sketch data is a difficult and time-consuming task for both user study
participants and researchers. To simplify this process for both parties, we would like to have users draw isolated
shapes instead of complete sketches that must be hand-labeled and grouped, and then use this data to train our
free-sketch symbol recognizer. However, it is an open question whether shapes draw in isolation accurately reflect
the way users draw shapes in a complete diagram. Furthermore, many of the simplest shape recognition algo-
rithms were designed to recognize gestures, and it is not clear that they will generalize to freely-drawn shapes.
To answer these questions, we perform experiments using three different recognizers to measure the effect of the
data collection task on recognition accuracy. We find that recognizers trained only on isolated shapes can classify
freely-sketched shapes as well as the same recognizers trained on free-sketches. We also show that user-specific
training examples significantly improve recognition rates. Finally, we introduce a variant of a popular and simple
gesture recognition algorithm that recognizes freely-drawn shapes as well as a highly-accurate but more complex
recognizer designed explicitly for free-sketch recognition.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information interfaces and presentation]: User

Interfaces—Interaction styles I.5.2 [Pattern recognition]: Design methodology—Classifier design and evaluation

I.5.5 [Pattern recognition]: Implementation—Interactive systems

1. Introduction

Having realistic training data is essential to developing ro-

bust recognition algorithms. Obtaining such data for sketch

recognition can be an arduous process. Public data sets are

emerging [OAD04,HN05,WSA07,PWJH08,BPGW08], but

these necessarily represent a limited number of domains and

often include only shapes drawn in isolation, rather than

complete sketches.

Many of the most robust and complete sketch recogni-

tion systems today (e.g. [ZBLF08] and [LdSP∗08]) focus on

gesture or isolated symbol recognition rather than the more

difficult problem of free-sketch recognition. Such systems

constrain users to draw shapes one at a time, avoiding the

considerable difficulties of finding the boundaries between

them. Gesture recognition additionally constrains the user

to draw each shape with a specific style (e.g., users might

be required to draw rectangles with a single clockwise pen

stroke), minimizing drawing style variation.

Because of these simplifications, collecting training data

for gesture recognizers is (relatively) straightforward. Users

can be prompted to draw each gesture individually, with-

out need for any manual processing or labeling. Because of

the limited variation in drawing style, a recognizer trained

on data from one set of users is likely to work well for

other users. Additionally, many gesture recognition algo-

rithms (e.g. [WWL07]) can be fine-tuned for an individual

user by simply having them draw a few examples.

Obtaining training-data for free-sketch recognition sys-

tems is considerably more difficult than for gesture-based

systems. In recent years, researchers have developed sev-

eral tools to facilitate the collection and labeling of data

[WSA07, PWJH08, BPGW08]. However, even with these

tools, processing the data is still a labor and time-intensive

task because the pen strokes must be manually grouped into

individual symbols and labeled. Furthermore, most of these

tools are designed for researchers. It would be impractical

http://www.eg.org
http://diglib.eg.org

M. Field, S. Gordon, E. Peterson, R. Robinson, T. Stahovich, C. Alvarado / The Effect of Task on Classification Accuracy

for an end-user to manually group and label the symbols in a

free-sketch to improve a system’s recognition performance.

For these reasons, researchers frequently obtain recog-

nition training data for free-sketch recognition systems us-

ing the same simplified data collection process suitable for

gesture-based systems (e.g., [KS05, HN04]). In the current

work, we seek to evaluate the soundness of this approach,

explicitly examining the usefulness of symbols drawn in iso-

lation for training shape recognizers for free-sketch recogni-

tion. The answer to this question is not obvious as drawing

isolated symbols is not the same as drawing them in the con-

text of a larger task. For instance, drawing a logic gate by

itself is substantially different from designing a digital cir-

cuit. In the former case, the user’s focus is on the drawing

task, while in the latter, the user’s focus is likely to be the

design task.

We conducted a study in which participants were asked to

perform sketching tasks of varying complexity. Specifically,

participants were asked to draw logic gates in isolation, copy

digital circuits, and synthesize and sketch new circuit de-

signs. We then examined how recognition accuracy varied

with the task used to obtain training data.

A second piece of this work explores how well simple ges-

ture recognition algorithms can be applied to more complex

recognition problems. We address the question: can existing

gesture recognition algorithms easily be modified to perform

well on shapes drawn freely?

We show that recognition accuracy is not highly depen-

dent on the task users performed when generating training

data. Simple isolated symbol data works just as well for

training symbol recognizers as symbols extracted from com-

plex sketches. We also show that including user-specific ex-

amples in the training process gives a significant boost to

accuracy, but highly accurate recognizers can be produced

even without user-specific examples. We also present a vari-

ant of the recently proposed and very popular $1 recog-

nizer [WWL07] that works on freely-drawn shapes com-

prised of any number of strokes drawn in any order. While

necessarily more complicated than the original, our variant

maintains much of the simplicity of the original algorithm,

can be implemented quickly and easily, and performs with

comparable accuracy to a more complex algorithm designed

specifically for recognizing freely-drawn shapes.

2. Background

The central focus of the present work is to determine if varia-

tions in drawing task may lead to variations in drawing style,

thus impacting symbol recognition accuracy. Relatively few

studies have examined how people draw, and no study that

we are aware of has compared drawing styles across tasks.

Oltmans et al. present some preliminary observations from

sketches from multiple domains [OAD04]. Although col-

lected in a laboratory, these sketches simulate natural draw-

ing style as users were asked to produce an original de-

sign rather than copy an existing diagram or draw specific

shapes. Alvarado and Lazzareschi analyze drawings made

by students in a circuit design class as part of their rou-

tine course work [AL07]. They find that drawing styles vary

across students and even across the sketches of a single stu-

dent. On the other hand, Sezgin and Davis find that the order

in which users draw strokes is relatively consistent across

users when they are asked to repeatedly draw military course

of action symbols in isolation [SD07]. Shilman et al. exam-

ine free-from handwritten notes in detail, specifically focus-

ing on identifying structure and handwriting within these

notes [SWR∗03], but they do not examine the diagrams

themselves. Finally Anderson et al. examine diagrams cre-

ated by professors while lecturing [AAH∗05], but again their

work does not focus on how people draw diagrams.

Researchers have developed countless shape and gesture

recognition algorithms over the last few decades. Some fo-

cus on shape (e.g. [HD04, AD04, LM05, KS05, WWL07]

to name only a few) while others extract features from the

shapes (e.g. [BPGW08,HN04,Rub91,FPJ02,LKS06], again

to name only a few).

In the field of gesture recognition, two algorithms stand

out as the most widely-used: the Rubine classifier [Rub91]

and the recently proposed $1 recognizer [WWL07]. The Ru-

bine classifier, the first widely used gesture recognizer, is a

feature-based linear classifier, while the $1 recognizer is a

nearest-neighbor classifier that compares points in the sam-

pled pen-strokes for each gesture. The $1 recognizer has the

advantage that users can easily train it to match their drawing

styles by drawing a few examples of each gesture.

In this paper we compare extensions of these two rec-

ognizers to a robust image-based recognition algorithm for

sketch recognition presented in [KS05]. This recognizer,

also a nearest neighbor classifier, has been shown to be one

of the best at recognizing symbols in the face of drawing

style variations and also can be easily adapted to an indi-

vidual user by having the user draw a few examples of each

symbol.

3. Approach

Our goal is to determine how much a user’s drawing style

varies when performing different tasks. In particular, we

want to know if data collected under one drawing task can be

used to train a recognizer to be used under a different task.

In the work surveyed above, we find three general tasks

researchers use to collect sketch data, each involving a dif-

ferent level of cognitive load: isolated shape drawing, dia-

gram copying, and diagram synthesis. In the isolated shape

drawing task, subjects are instructed to repeatedly draw iso-

lated shapes, often while looking at examples of them. For

this task, subjects likely focus primarily on how they are

drawing, rather than on the meaning of the shapes. Copying

110

M. Field, S. Gordon, E. Peterson, R. Robinson, T. Stahovich, C. Alvarado / The Effect of Task on Classification Accuracy

complete diagrams, by contrast, requires additional thought

about how the pieces of the drawing fit together. However,

users can still perform this task without thinking about the

semantics of the diagram. Finally, in the diagram synthesis

task, users are asked to draw a complete diagram that satis-

fies specific requirements, such as drawing their family tree

or designing a floor plan for their house. In this task, users

must devote thought to the design task, and likely think less

about the actual process of drawing shapes.

Collecting training data in the form of isolated shapes

is relatively inexpensive, as this can be done without need

for manual processing or labeling. Extracting training data

from copied or synthesized sketches is considerably more

difficult. Tools such as [WSA07, PWJH08, BPGW08] help,

but the process of manually grouping strokes into individual

symbols and labeling them is laborious (see [WSA07] for a

complete discussion of the labeling process). Furthermore,

ambiguities in a sketch can lead to labeling errors.

While collecting data with the isolated shape drawing task

is clearly easier than with the other two tasks, it is unclear

if such data represents the way users actually draw when

performing complex tasks. To investigate this question, we

conducted a user study in which participants were asked

to provide data using all three tasks. We then trained and

tested three different recognizers to determine the effect of

the data-collection task on classification accuracy.

3.1. Data Collection

We collected digital circuit diagram sketch data from 24 sub-

jects, all college students. We focus on digital logic diagrams

because previous work found that students tend to vary their

drawing style in this domain [AL07], and recognizing the

symbols in this domain is particularly challenging because

many symbols look similar. The participants sketched freely

on a Tablet PC; the data collection program performed no

recognition.

We asked subjects to perform the three tasks described

above: isolated shape drawing (ISO), diagram copying

(COPY), and diagram synthesis (SYNTH). In the ISO task

we asked participants to draw ten isolated instances of each

single gate: AND, OR, and NOT, the most common gates in

digital circuit design. In the COPY task, participants were

asked to copy two entire circuit diagrams (Figure 1). In the

SYNTH task, participants were shown the following logical

equations (one at a time)

Y1 = ((AB+C)⊕AC)+B+C

Y2 = (A+BC)(AB+AC+B)

and told to create a circuit that satisfies each. This task sim-

ulates a real-world activity, as it is analogous to homework

problems students typically complete in a digital circuit de-

sign class. For the copied and synthesized diagrams, we an-

alyze only the AND, OR and NOT gates because there were

Figure 1: The circuits participants copied in our study

Figure 2: One subject’s sketch for the first synthesis equa-
tion

not enough of the other gates for meaningful analysis. Fig-

ure 2 shows an example of one subject’s sketch for the first

equation above. The tasks were not necessarily performed in

this order—four students completed the tasks in each of the

six order permutations.

3.2. Recognizers

In our tests, we use three distinct recognizers: two modi-

fied gesture recognizers [Rub91,WWL07] and one standard

image-based symbol recognizer [KS05]. We chose to in-

clude the modified gesture recognizers because we wanted

to test how sensitive simple gesture recognition techniques

are to drawing style.

The Rubine classifier [Rub91] is a standard and widely-

used gesture classifier that works by extracting features from

a single-stroke gesture and then training a linear classifier.

We used a simple approach to adapt the Rubine classifier to

multi-stroke symbols: we simply join the strokes together in

temporal order. We then use the same features and the clas-

sification algorithm as in the original approach. We expect

that this adaptation will be highly sensitive to stroke order,

111

M. Field, S. Gordon, E. Peterson, R. Robinson, T. Stahovich, C. Alvarado / The Effect of Task on Classification Accuracy

and thus we expect the modified Rubine classifier to be the

least robust of our three recognizers.

We used a slightly more complex method to adapt the

$1 recognizer to handle multi-stroke symbols. The original

single-stroke $1 recognizer matches a stroke to a template in

four stages. First, it resamples the stroke to have the same

number of equally-spaced points as the template. Second, it

performs an initial rotation, using the starting point of the

stroke and its centroid to align the stroke with the template.

Third, it centers and scales the stroke to match the center

and scale of the template. Finally, optimization is used to re-

fine the angular alignment between the stroke and template.

This process finds the angular alignment that results in the

smallest path distance between the stroke and the template.

Our first modification was to the resampling step. Rather

than resampling each stroke to contain the same number of

points, we resample each shape to contain the same number

of points as the template, regardless of how many strokes it

contains (we use 48 points in our templates). We achieve

this goal by resampling each stroke to a variable number

of points based on the ratio of its stroke length to the total

length of the strokes in the shape, such that the total number

of points from all the strokes totals 48.

The initial rotation, centering, and rescaling steps remain

largely unchanged. However, instead of centering on the

centroid of one stroke, we use the centroid of the whole sym-

bol. Similarly, we resize the whole symbol to a 64×64 pixel

bounding-box.

In the final step, the rotation search remains the same,

but the distance function used to guide the search is heav-

ily modified. As in the original algorithm, we require a one-

to-one match between the points in the symbol to be classi-

fied and the points in the template, but we can no longer use

drawing order to determine this match, as we want our algo-

rithm to be robust to variations in drawing order. We instead

search for the match that minimizes the sum of the distances

between each pair of matched points. Calculating the global

minimum would be prohibitively time-consuming, so we ap-

proximate a solution using simulated annealing. We begin

the search using the simple greedy approach of matching

each point to the nearest available point. We search nearby

solutions by picking two points and swapping their matches.

More flexible methods of point-matching, such as Dy-

namic Time Warping (DTW), have been applied to gesture

recognition [WWL07, KZ04]. The main difference between

these flexible methods and our method is that they allow

multiple points in one shape to be matched to a single point

in the other. As noted in [KZ04], a flexible matching of

points introduces additional ambiguity between similar tem-

plates and degrades the quality of the recognizer.

We also used the Image-Based Trainable Symbol Rec-

ognizer in [KS05]. Because this algorithm was originally

designed to recognize multiple-stroke shapes, it provides a

good contrast to the $1 and Rubine classifiers. The image-

based recognizer is based on template matching, similar to

the $1 recognizer, so it is very easy to add user-specific train-

ing examples. Hence, it is especially well suited to both as-

pects of our testing.

3.3. Comparison of Recognizers

Since we completed this work, the authors of the original

$1 recognizer have released (but not yet published) a ver-

sion suitable for multi-stroke recognition (called the $N rec-

ognizer)†. Their approach is similar to our own, with two

differences. First, instead of using simulated annealing to

match points in the test symbol to points in the template, they

order the strokes and then use the same temporal matching

techniques as above. To guard against drawing style varia-

tion, they search over the stroke order permutations. It is not

yet clear which approach is superior (if either). A second

important difference between their method and ours is that

when they link strokes together, they also consider the ink

that was drawn “in the air” from the end of one stroke to the

beginning of the next. These virtual points then take away

from the total number of points sampled from the actual ink

drawn (because the total number of points remains fixed),

giving their approach lower resolution and higher sensitivity

to variation in shape.

Our modified $1 recognizer is actually quite similar to the

image-based recognizer. Both recognizers preprocess shapes

by rescaling and centering them, but where $1 resamples

points, the image-based recognizer rasterizes points into a

bitmap image. The next step for both is a rotation search.

However, because the image-based recognizer performs its

rotation search in polar coordinates, it must also perform

a separate distance calculation in screen coordinates once

the ideal angle has been located. To perform classification,

both recognizers compare the unknown symbol to each of

the training examples.

Although the general process is very similar for both rec-

ognizers, the small differences have implications for how

each performs. The image-based recognizer is extremely ro-

bust to noise like overstroking, touch-up strokes, or differing

numbers of strokes in the unknown symbol and the template.

The modifications we made to the $1 recognizer attempt to

address touch-up strokes or differing numbers of strokes in

each shape. However, the resampling process includes the

endpoints of all strokes, so with more strokes, the points

will be poorly distributed, leading to an increased distance

between the unknown shape and template.

The advantage that our modified $1 has over the image-

based recognizer is its simplicity. We tried to stay as much in

the spirit of the original $1 recognizer as possible. The sim-

ulated annealing step requires only a small amount of extra

† http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html

112

M. Field, S. Gordon, E. Peterson, R. Robinson, T. Stahovich, C. Alvarado / The Effect of Task on Classification Accuracy

Activity Rubine Dollar Image

(train-test)

Synth-Synth 21 93 90

Copy-Synth 39 88 84

Iso-Synth 53 88 87

Synth-Copy 39 89 90

Copy-Copy 54 91 96

Iso-Copy 48 90 93

Synth-Iso 32 88 88

Copy-Iso 43 90 90

Iso-Iso 53 95 94

Table 1: Recognition results for all three recognizers, in per-
cent.

Figure 3: Recognition results for the Rubine recognizer. Er-
ror bars show one standard deviation.

code, but adds a large amount of complexity. However, this

complexity is still much simpler than the image-based recog-

nizer, especially the rotation search in polar coordinates and

the fact that our recognizer requires only one distance metric

rather than the four the image-based recognizer requires.

4. Experiments and Results

Our goal with these experiments was threefold. First, we

wanted to examine how task affects recognition accuracy.

Second, we wanted to know how much impact user-specific

training data has on recognition accuracy. Finally, we wanted

to compare the modified versions of the simple gesture

recognition algorithms with an image-based recognition al-

gorithm for shapes drawn in the synthesis task (i.e. a task

that gesture recognition was not designed to support).

4.1. The Effect of Task

To examine the first question, we separated the data into

three categories based on task (ISO, COPY, SYNTH). We

set aside data from 80% of the users (randomly selected)

Figure 4: Recognition results for the $1 recognizer. Error
bars show one standard deviation.

for training and used the data from the remaining 20% of

the users for testing. Note that training and testing our rec-

ognizers on different user sets simulates the experience of

a “factory trained” recognizer that cannot be customized

to a particular user, which is the normal situation for most

sketch recognition systems. We trained three separate ver-

sions of each recognizer on the training data, separated by

task. That is, we trained one Rubine classifier on the ISO

training set, a separate Rubine classifier on the COPY set,

etc. The $1 and image-based recognizers are nearest neigh-

bor classifiers, hence their running time is dependent on the

number of training examples. To achieve reasonable perfor-

mance, we randomly selected a small subset of the training

set to use as templates for these recognizers.

After training, we tested each recognizer on the remaining

20% of the data in every category (i.e. three test runs for each

recognizer). For example, we ran the ISO Rubine recognizer

separately on the test data from the ISO, COPY and SYNTH

tasks, for a total of three test runs with this recognizer. This

process resulted in 9 distinct training-testing combinations

(iso-iso, iso-copy, iso-synth, copy-iso, etc.).

Table 1 presents the average classification accuracy for all

combinations over 25 trials in which we randomly selected a

new 80/20 user split for training/testing. Figures 3, 4, and 5

show these same results graphically, including their standard

deviations. For the two recognizers that perform at a reason-

able level of accuracy ($1 and image), the task used for train-

ing has little if any effect on recognition accuracy (none of

these differences are statistically significant using repeated

measures ANOVA). In particular, training on SYNTH data

does not appear to improve the accuracy, even when recog-

nizing SYNTH data.

113

M. Field, S. Gordon, E. Peterson, R. Robinson, T. Stahovich, C. Alvarado / The Effect of Task on Classification Accuracy

Figure 5: Recognition results for the image-based recog-
nizer. Error bars show one standard deviation.

4.2. The Effect of User-Specific Data

To examine the second question, we measured recognition

performance as we increased the amount of user-specific

training data used to train the recognizer.

In our first user-data experiment, our goal was to measure

the impact of easily collected user-specific data on recog-

nition accuracy in real-world tasks (i.e. the SYNTH task).

In other words, we imagine that the user has acquired a

factory-trained recognition system (such as the system pro-

duced with the training above), and now has the option of

training the system by drawing isolated shapes. We want to

know how much (if at all) this user-specific data will im-

prove classification accuracy. We focus on only the $1 and

image-based recognizers because of the Rubine classifier’s

poor performance in the first tests.

We again split the users into a training set and a testing set

as above; however, this time we use only the SYNTH data

for testing and only the ISO data for training. Again, this

choice simulates the situation where the base recognizer was

trained in the factory using ISO data from other users, and

then trained by the user’s individually-drawn symbols. Note

that we use ISO data for the “factory trained” recognizer for

consistency, but we showed above that any of the datasets

produce an equally robust recognizer.

We then generated three of each recognizer ($1 and

image-based) for each user by training the recognizers on

training sets containing different amounts of user-specific

data. All of our trials use a constant 5 training examples.

The first training set, called the GlobalSet, contains 5 train-

ing examples randomly selected from the 80% of users in the

training set. (Recall that we use only ISO data for training.)

Because the GlobalSet does not contain user-specific train-

ing examples, we used the same GlobalSet for each testing

user. Next, we created a ComboSet recognizer for each user

in the testing set by randomly selecting 2 of the GlobalSet

training examples and replacing them with 2 randomly se-

Figure 6: Recognition results for the $1 and image-based
recognizers with different training sets. Error bars show one
standard deviation.

Recognizer Comparison P - Bonf.

GlobalSet and ComboSet 0.001

$1 UserSet and ComboSet 0.001

GlobalSet and UserSet 1.000

GlobalSet and ComboSet <0.001

image-based UserSet and ComboSet 0.074

GlobalSet and UserSet 0.144

Table 2: Repeated measures ANOVA Post Hoc results com-
paring user-independent and user-dependent recognizers

lected examples from the testing user’s data. We removed

the same 2 GlobalSet examples for each user, so the Com-

boSets differed per-user only in the 2 user-specific examples.

Finally, we created a UserSet recognizer for each user com-

posed solely of 5 examples from the user in question. Hence,

the UserSet recognizers are unique to the users they were

created for.

Figure 6 shows the results of this experiment, averaged

over all runs and all users. While the ComboSet appears to

produce the best recognizer, the graph obscures the varia-

tions for each individual user and each individual trial. When

we focus on the individual trials, we find that differences in

the training sets lead to significantly different classification

accuracies. Table 2 gives the results of our repeated mea-

sures ANOVA. We tested our data to verify that it satisfies

the assumptions made by ANOVA and used the Bonferroni

correction to reduce the chance of type 1 error.

With the knowledge that user-specific ISO data does

in fact improve recognition accuracy, we then investigated

whether user-specific SYNTH data might improve recogni-

tion accuracy even more for SYNTH recognition. For this

experiment, we again focused only on the SYNTH task for

recognition and we focused on training sets that have a mix

of user-specific and generic data, as in the ComboSet above.

114

M. Field, S. Gordon, E. Peterson, R. Robinson, T. Stahovich, C. Alvarado / The Effect of Task on Classification Accuracy

Figure 7: Recognition results from the $1 and image rec-
ognizers, trained on different tasks using some user-specific
data. Error bars show one standard deviation.

Recognizer Comparison P - Bonf.

Iso train and Copy train 1.000

$1 Iso train and Synth train 0.011

Copy train and Synth train 0.019

Iso train and Copy train 0.573

image-based Iso train and Synth train 0.369

Copy train and Synth train 0.033

Table 3: Repeated measures ANOVA Post Hoc results com-
paring task for user-dependent recognizers

We generated three different training sets for each user, one

for each task. All three sets contain three generic shape

examples and two user-specific examples, as above in the

ComboSet. The sets differ only in which tasks subjects per-

formed when generating this data: in the first set we use only

SYNTH data, in the second we use only COPY data, and in

the third we use only ISO data. Note that the results from

the ISO-trained data will be identical to the results from the

ComboSet in Figure 6.

Figure 7 shows the results of this experiment for both

recognizers. This graph shows that, unlike in the “factory-

trained” case, training on the SYNTH data does in fact give a

slight but statistically significant boost to recognition perfor-

mance over training on the other tasks. For the $1 recognizer,

it improves performance over the ISO or the COPY data. For

the image-based recognizer, training on the SYNTH data im-

proves performance over training on the COPY data (but not

the ISO data). Table 3 gives the results of our repeated mea-

sures ANOVA Post Hoc tests using Bonferroni correction.

4.3. The Effect of the Recognizer

Finally, in all cases, the $1 and image-based recognizers per-

formed comparably and with reasonably high accuracy. Un-

fortunately, we ran the image-based and $1 tests over differ-

ent random samples of data, so we cannot directly compare

performance using a repeated-measures test (which would

be more sensitive to differences in accuracies). Using aggre-

gate statistics, there is no significant difference between the

results given by the two classifiers. This result illustrates the

promise of our new modified $1 recognizer for non-gesture

recognition tasks.

5. Discussion

In this section we consider the implications of our findings

on the general task of free-sketch recognition.

First, it seems clear that not all gesture recognizers will

generalize easily to non-gesture recognition tasks, as evi-

denced by the poor results of the Rubine recognizer. The

simple methods we used to generalize the Rubine classifier

to multiple-stroke shapes did not produce an effective free-

sketch recognizer likely because of variations in drawing or-

der and sensitivity of some of the Rubine features to stroke

end-points. Because the Rubine accuracy is so low, we focus

on the $1 and image-based results for the rest of our discus-

sion.

The $1 recognizer performed very well across the board.

The accuracies of the modified $1 even begin to approach

the accuracies originally presented by Wobbrock et al.

[WWL07]. The $1 recognizer was presented originally as

an easy-to-implement, highly accurate recognizer for ges-

ture recognition. Our modification has produced an easy-to-

implement, highly accurate recognizer for symbol recogni-

tion in freely-drawn sketches.

Our result that training task does not significantly af-

fect recognition performance of “factory-trained” recogniz-

ers when they are used for other tasks is very good news

for sketch recognition researchers. As discussed throughout

this paper, isolated shapes are much easier to collect and la-

bel than truly freely-drawn sketches. Researchers can use

this type of data to train their shape recognizers and these

shape recognizers can be adapted to individual users by hav-

ing them draw a few examples of each shape in isolation.

Our second experiment indicates that it is important to

include user-specific training examples whenever possible.

The ComboSet performs significantly better than the Glob-

alSet for both recognizers. Additionally, for the $1 rec-

ognizer, the ComboSet also significantly outperformed the

UserSet. This result can be explained by variation within

individual users’ drawing styles. The ComboSet contains a

wider breadth of examples (from the GlobalSet contribution)

than the UserSet, and is hence able to better accommodate

this variation. On the other hand, for the image-based recog-

nizer, we cannot safely say that the ComboSet outperformed

the UserSet. This result is likely because the image-based

recognizer is more robust than our modified $1, so there is

less benefit from the breadth of the GlobalSet.

The results of our third test indicate that, unlike in the

115

M. Field, S. Gordon, E. Peterson, R. Robinson, T. Stahovich, C. Alvarado / The Effect of Task on Classification Accuracy

“factory-trained” case, collecting task-specific user training

data can aid recognition accuracy even more than simply col-

lecting user-specific isolated shape data. While this type of

data seems difficult to collect (no user will group and la-

bel their complete sketches), we might be able to leverage

the error correction process to obtain this data. For exam-

ple, every time the user corrects a classification error in their

freely-drawn sketch, the system can record this example and

use it to train the recognizer.

The high performance of the modified $1 and image-

based classifiers shows that while drawing style may vary be-

tween tasks, drawing shape remains similar. We expect that

our task-specific results would generalize to any other shape-

based recognition algorithm, but not to algorithms that de-

pend on stroke drawing order.

Finally, our results show the importance of using easily re-

trainable recognizers for free-sketch recognition. The $1 and

image-based recognizers support online learning with very

little effort or time required. Furthermore, these recognizers

only need a small number of examples for training, requir-

ing little extra work from the user to benefit from increased

recognition accuracy. However, there are many recognizers

for which it is not feasible to incorporate user-dependence in

a user-friendly way. For example, some recognizers might

need to rerun the entire training process, requiring a long

computation. Other recognizers might need to collect many

examples from a user before any effect on recognition would

be noticed.

6. Conclusion

We have shown that it is possible to train a highly accurate

recognizer using only isolated shapes as training data. This

is important because isolated shape data is much easier to

collect than naturally drawn shapes. It is also much easier to

group and label isolated shapes than complicated diagrams.

We have also shown that whenever possible, user-specific

examples should be incorporated into training. For classifiers

like the image-based and $1 recognizers that support online

learning, user-specific examples are an easy way to improve

accuracy.

References

[AAH∗05] ANDERSON R., ANDERSON R., HOYER C., PRINCE

C., SU J., VIDEON F., WOLFMAN S.: A study of diagrammatic
Ink in lecture. Computers and Graphics: Special Issues on Pen-
based Computing (2005).

[AD04] ALVARADO C., DAVIS R.: Sketchread: A multi-domain
sketch recognition engine. In Proc. UIST (2004).

[AL07] ALVARADO C., LAZZARESCHI M.: Properties of real-
world digital logic diagrams. In Proc. of the 1st Interna-
tional Workshop on Pen-Based Learning Technologies (PLT-07)
(2007).

[BPGW08] BLAGOJEVIC R., PLIMMER B., GRUNDY J., WANG

Y.: A data collection tool for sketched diagrams. In 5th Euro-
graphics Conference on Sketch Based Interfaces and Modeling
(SBIM Š08) (2008).

[FPJ02] FONSECA M. J., PIMENTEL C., JORGE J. A.: Cali: An
online scribble recognizer for calligraphic interfaces. In Sketch
Understanding, Papers from the 2002 AAAI Spring Symposium
(2002), pp. 51–58.

[HD04] HAMMOND T., DAVIS R.: Automatically transforming
symbolic shape descriptions for use in sketch recognition. Pro-
ceedings AAAI (2004).

[HN04] HSE H., NEWTON A.: Sketched symbol recognition us-
ing zernike moments. In Pattern Recognition, 2004. ICPR 2004.
Proceedings of the 17th International Conference on (2004),
vol. 1.

[HN05] HSE H., NEWTON A. R.: Recognition and beautification
of multi-stroke symbols in digital ink. Computers and Graphics
29, 4 (2005).

[KS05] KARA L. B., STAHOVICH T. F.: An image-based, train-
able symbol recognizer for hand-drawn sketches. Computers and
Graphics: Special Issue on Pen-Based User Interfaces (2005).

[KZ04] KRISTENSSON P.-O., ZHAI S.: Shark2: a large vocabu-
lary shorthand writing system for pen-based computers. In Pro-
ceedings of UIST (2004), pp. 43–52.

[LdSP∗08] LEE W., DE SLIVA R., PETERSON E. J., CALFEE

R. C., STAHOVICH T. F.: Newton’s pen—a pen-based tutor-
ing system for statics. Computers and Graphics Special Issue
on Sketch-Based Interfaces and Modeling 32, 5 (October 2008),
511–524.

[LKS06] LEE W., KARA L. B., STAHOVICH T. F.: An efficient
graph-based symbol recognizer. In Eurographics Workshop on
Sketch-Based Interfaces and Modeling (2006).

[LM05] LEARNED-MILLER E.: Data driven image models
through continuous joint alignment. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (PAMI), 3 (2005), 236–
250.

[OAD04] OLTMANS M., ALVARADO C., DAVIS R.: Etcha
sketches: Lessons learned from collecting sketch data. In Making
Pen-Based Interaction Intelligent and Natural (2004).

[PWJH08] PAULSON B., WOLIN A., JOHNSTON J., HAMMOND

T.: Sousa: Sketch-based online user study applet. In Proceedings
SBIM (2008).

[Rub91] RUBINE D.: Specifying gestures by example. SIG-
GRAPH Comput. Graph. 25, 4 (1991), 329–337.

[SD07] SEZGIN T. M., DAVIS R.: Sketch interpretation using
multiscale models of temporal patterns. IEEE Computer Graph-
ics and Applications 27, 1 (2007), 28–37.

[SWR∗03] SHILMAN M., WEI Z., RAGHUPATHY S., SIMARD

P., JONES D.: Discerning structure from freeform handwritten
notes. In Proc. ICDAR (2003).

[WSA07] WOLIN A., SMITH D., ALVARADO C.: A pen-based
tool for efficient labeling of 2d sketches. In Proceedings of SBIM
(New York, NY, USA, 2007), ACM, pp. 67–74.

[WWL07] WOBBROCK J. O., WILSON A. D., LI Y.: Gestures
without libraries, toolkits or training: a $1 recognizer for user
interface prototypes. In UIST ’07: Proceedings of the 20th an-
nual ACM symposium on User interface software and technology
(New York, NY, USA, 2007), ACM, pp. 159–168.

[ZBLF08] ZELEZNIK R. C., BRAGDON A., LIU C.-C., FORS-
BERG A.: Lineogrammer: creating diagrams by drawing. In
UIST ’08: Proceedings of the 21st annual ACM symposium on
User interface software and technology (New York, NY, USA,
2008), ACM, pp. 161–170.

116

