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ABSTRACT 

Three-dimensional scenes have become an important form of 
content deliverable through the Internet. Standard formats such as 
Virtual Reality Modeling Language (VRML) make it possible to 
dynamically download complex scenes from a server directly to a 
web browser. However, limited bandwidth between servers and 
clients presents an obstacle to the availability of more complex 
scenes, since geometry and texture maps for a reasonably 
complex scene may take many minutes to transfer over a typical 
telephone modem link. 

This paper addresses one part of the bandwidth bottleneck, texture 
transmission. Current display methods transmit an entire texture 
to the client before it can be used for rendering. We present an 
alternative method which subdivides each texture into tiles, and 
dynamically determines on the client which tiles are visible to the 
user. Texture tiles are requested by the client in an order 
determined by the number of screen pixels affected by the texture 
tile, so that texture tiles which affect the greatest number of screen 
pixels are transmitted first. The client can render images during 
texture loading using tiles which have already been loaded. The 
tile visibility calculations take full account of occlusion and 
multiple texture image resolution levels, and are dynamically 
recalculated each time a new frame is rendered. We show how a 
few additions to the standard graphics hardware pipeline can add 
this capability without radical architecture changes, and with only 
moderate hardware cost. The addition of this capability makes it 
practical to use large textures even over relatively slow network 
connections. 

Categories and Subject Descriptors: 1.3.1 [Computer 
Graphics] Hardware Architecture-gruphi processors; 1.3.2 
[Computer Graphics] Graphics Systems-distributed/network 
graphics; 1.3.7 [Computer Graphics] Three-Dimensional 
Graphics and Realism-Color. shading, shadowing, and texture; 
C.2.4 [Computer-Communication Networks] Distributed 
Systems-distributed applications 

* goss@hpl.hp.com 
ky@jp.hpl.hp.com 

1. INTRODUCTION 

Images in the form of texture maps are frequently used to add 
detail to surfaces of geometric models used in computer 
graphics[2]. This allows the addition of considerable perceived 
surface detail without an increase in actual geometric data size or 
complexity. The most commonly used form of texture map stores 
the texture image as a multiple resolution image pyramid, called a 
MIP map [13]. For a typical image rendered from a scene data 
base, only a portion of the texture map elements are required, 
since not all resolution levels of the MIP map are required, and 
not all surfaces are visible in the image. 

In a complex scene with many texture maps, the texture image 
data may represent a substantial percentage of the storage required 
for the database, often exceeding the size of the geometric 
information. In some cases, such as VRML [12] scenes used to 
display panoramas, the geometry is almost incidental, and the 
texture imagery is the important content (the NASA Mars 
Pathfinder VRML panoramas are an example of this type of use 
[9]). When the scene database to be rendered must be loaded over 
a relatively slow network connection, it is desirable to minimize 
the amount of data transmitted by sending only the texture data 
required for the requested view, and then incrementally loading 
additional data as required. For many applications, it is even 
acceptable to display the scene using lower resolution textures 
while loading additional images. No matter how large the textures 
used for the scene, the number of texture pixels which have any 
effect on the rendered image is closely related to the size of that 
image, so the amount of texture data actually required may be 
considerably less than the full texture data specified. 

If the scene geometry and the texture map sizes and 
transformation parameters are known, it is possible to determine 
which texture tiles are required for a particular view. The 
information required is generated during the rendering of a scene, 
but current graphics pipeline architectures do not provide a way 
for an application to recover this information. In this paper we 
describe extensions to a conventional graphics pipeline 
architecture (such as the OpenGL pipeline [IO]) which allow 
efficient gathering of this data. By dividing each resolution layer 
of each texture into tiles, and counting the number of visible 
pixels which reference each unloaded tile, we can determine 
which tiles have the greatest effect on the current view. Tiles can 
then be fetched from the server based on tile visibility in the 
scene. 

1.1 Related Work 

Prior work has been done by other researchers using recovery of 
surface visibility information from the frame buffer of a graphics 
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pipeline. An unmodified graphics pipeline can be easily used to 
determine surface visibility in a scene by assigning a unique color 
to each scene element, rendering the scene using these colors, and 
then examining the frame buffer pixels. For example, this method 
has been used to compute surface visibility for Hemi-Cube 
radiosity form factors [I,3]. A similar technique could be used to 
determine texture tile visibility by filling each tile with a unique 
color. This would, however, require rendering each frame an extra 
time with different texture images, and would also require a 
search of the frame buffer afterwards. In an interactive system, the 
reduction of the frame rate by a factor of two would usually be 
unacceptable. The method we present in this paper avoids this 
overhead by modifying the hardware pipeline so that neither re- 
rendering nor searching the frame buffer is required. 

Deferred shading [5,8] is another area related to the work we 
present. A conventional graphics pipeline shades each pixel as it is 
rasterized. Even if the shading operation is performed after the 
depth test, another object closer to the viewer may later overwrite 
the earlier shading results. Deferred shading techniques postpone 
shading calculations for a pixel until the visibility of the pixel is 
completely decided (usually at the completion of rasterization). At 
the point where the pixel is shaded, visibility has been completely 
determined, and so final texture references for the pixel are also 
known. Full deferred shading requires sufficient storage per pixel 
for full shading information (lighting, texturing, etc.), and so 
requires a large increase in frame buffer size, or rendering of the 
scene in several pieces using a tiled frame buffer. The work we 
describe in this paper implements a lower cost solution than 
deferred shading, suitable for implementation in consumer-level 
graphics accelerators. We have described elsewhere a different 
texture tile loading method more suitable for use in a deferred 
shading architecture [ 141. 

2. THE TILED TEXTURE IMAGE 
PYRAMID 

In order to avoid waiting for a complete texture to be loaded, the 
texture must be subdivided into sections which can be loaded 
independently. In addition, if a portion of a texture or an entire 
texture is visible in a scene but at reduced resolution, it may be 
desirable to load a smaller, lower resolution version of the texture 
initially, and load the full resolution version later or not at all. 
Little extra overhead would be involved if a progressive image 
format were used, such as a tiled version of progressive JPEG or a 
wavelet-based method. Without a progressive format, however, 
the worst case (loading rather than synthesizing all MIP resolution 
levels) involves loading only 33% more data than just the full 
resolution image, much of which can usually be done in the 
background. 

We base our texture tiling scheme on the existing MIP map image 
pyramid. Each level of the MIP map pyramid is a rectangular 
image. The size in each direction is equal to some power of two. 
Tiles are square, and each image in the pyramid is divided equally 
into tiles. Some tiles may be partially empty for image levels 
which are smaller than one tile in either dimension. 

The texture tiling scheme used here is intended to be compatible 
with the F1ashPi.x image format [6] and Internet fmaging Protocol 
(IIP) standards maintained by the Digital Imaging Group (DIG) 

consortium [7]. FlashPix stores an image as a tiled multi- 
resolution pyramid. Tiles are compressed using the JPEG 
compression standard. IIP allows image tiles to be downloaded on 
demand from a server by a client. 

2.1 Tiled Pyramid Initialization 

To initialize the tiled pyramid structure for a texture, we need to 
know only the size of the full resolution image and the top (1x1 
pixel) level of the pyramid. With this information, a skeleton 
texture pyramid can be constructed. This pyramid contains the 
storage for the texture tile image pixels, which have not yet been 
loaded. A single bit tile-present flag is stored for each tile. These 
flags are initialized to false for all tiles except for the top level. At 
the top level, the single pixel value is stored, the tile-present flag 
is set true, and the “tile loading and synthesis” procedure 
described below is performed for the top level tile. 

2.2 Tile Loading and Synthesis 

Until all tiles are present in a texture map pyramid, there will be 
some gaps. These gaps will gradually be filled by tiles loaded 
from the server system, and also by synthesis of low resolution 
tiles from multiple high resolution tiles (a miniature version of the 
current synthesis of MIP map levels from the entire texture 
image). 

Whenever a new tile is loaded into a texture map pyramid, tiles at 
other resolutions which cover overlapping areas (with regard to 
the base image) are potentially updated. Whenever the tile-present 
flag changes from false to true for a tile (the “current” tile), the 
following procedure is applied: 

1. If the current tile is not at the highest resolution level, and if 
any of the (usually) four tiles covering the same area at the 
next higher resolution level (the “children” of the current tile) 
have a tile-present value of false, till those child tiles with 
interpolated or pixel-replicated values from the current tile 
(do not mark those tiles as present). Recursively repeat this 
step for any child tiles which are filled. 

2. If not at the lowest resolution (Ix1 pixel) level of the 
pyramid, and if the lower resolution parent tile has tile-present 
value of false, examine the siblings of the current tile (the 
other tiles at the current level which are children of the same 
parent). If all other siblings have tile-present set to true, set 
the parent tile-present value to true and synthesize the lower- 
resolution parent from the children (similar to the normal MIP 
map synthesis). Then recursively execute this step for the 
parent. 

In order to have some texture detail present in the initial rendered 
image, an application may wish to pre-load one tile for each 
texture at the lowest resolution which has a full tile present. The 
steps above will then synthesize all the lower resolution levels in 
the pyramid and mark them present, and will till the higher 
resolution levels with usable interpolated or replicated texture 
pixel values without marking them as present. 

The filling of absent higher resolution tiles (step I above) requires 
some overhead during initialization and whenever a tile is loaded 
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Tile Reference Counter Array 

Tiled MIP maps (shaded tiles are already present) 

Figure 1 - Tile Reference Counter Array 

over the network. No additional hardware is required, since this 
process can be performed easily by software. The alternative to 
this data extrapolation would be to add a mechanism to the texture 
mapping process to redirect texture pixel fetches from an absent 
tile to the next lower resolution tile which is present. This per- 
pixel overhead would require additional hardware complexity and 
would slow the texture mapping process. 

3. TEXTURE TILE VISIBILITY 
DETERMINATION 

When a textured surface A is invisible in a scene due to occlusion 
by another surface B, it is still possible that A will be rasterized 
(and the associated texture tiles used) if A is sent through the 
graphics pipeline before B. Some or all of the texture pixels (and 
tiles) used by A may have no effect on the final rendered image. 

It is possible to take occlusion into account when gathering 
information on texture tile usage by keeping some simple 
information in the frame buffer for each pixel while rendering a 
scene, and also storing a small amount of information with each 
texture tile in addition to the tile-present bit discussed above. To 
keep track of which tiles are needed for a full-resolution rendering 
of a scene, we add a tile reference counter array, and a reference 
counter index for each pixel. 

3.1 The Tile Reference Counter Array 

This array contains one counter for each possible texture tile 
being tracked. Each reference counter must have sufficient bits to 
count up to the number of pixels in the frame buffer (20 to 22 bits 
for most current systems). Each tile which has not yet been loaded 
is assigned a non-zero tile-index number, which uniquely 
identifies the tile across all tiles of all texture images in use, and is 
the index into the reference counter array. This index is stored 
with the tile in the texture memory. Tiles which have already been 
loaded (tile-present set to true) are assigned a 0 index, as are tiles 

for which an index is not available yet (if the reference counter 
array is full). Strategies to deal with situations when too many 
texture tiles need to be tracked are presented later (section 3.6). 
These strategies will not change the basic method. 

Figure 1 shows the relationship of unloaded tiles to entries in the 
tile reference counter array. Shaded tiles have already been 
loaded. 

3.2 The Pixel Texture Tile Index 

Each pixel in the frame buffer will have the usual R, G, B, and Z 
(depth) values, and in addition will also have an unsigned integer 
index into the counter array (Figure 2). During rasterization, this 
texture tile index will be set to the index value of a texture tile 
used to color the pixel. If the pixel is filled by an untextured 
object, the index is set to 0. A non-zero index will therefore 
indicate that a not-yet-loaded texture tile was used to color the 
pixel. For the moment assume that only one tile index per pixel is 
required, corresponding to OpenGL texture sampling mode 
“GL-NEAREST-MIPMAP-NEAREST” or “GL~NEAREST” 
(see section 3.7 below for interpolated or multi-texture cases). 

R G B : Z(Depth) 

Figure 2 - Frame Buffer Pixel Format 

At the start of rendering of a frame (when the Z buffer clear is 
performed), all the pixel texture tile index values are set to 0, 
which indicates the pixel does not reference any texture tile being 
tracked. All the reference counters in the array are set to zero (the 
value of the counter at index 0 can be set to the number of pixels 
in the frame buffer for later use as a consistency check). 

57 



Some graphics architectures have resorted to the subdivision of 
the screen into relatively small, separately rendered “buckets” or 
“chunks” in order to reduce the size of the frame buffer [4]. The 
method we describe here is completely compatible with such a 
screen subdivision. When using buckets, the tile reference counter 
array is zeroed only at the start of the frame, while the pixel 
texture tile indices are reset with the Z buffer at the start of 
rendering of each bucket. 

3.3 Per-Pixel Rendering Operations 

The image is rendered using a standard Z-buffered rasterizer, with 
a modification to the pixel storage operation at each pixel. The 
texture sampling operation will supply the texture tile index 
number along with the sampled texture value (an index of 0 is 
used for untextured pixels). When a new pixel value is stored as 
the result of a successful Z test (and any stencil test, stippling, 
etc.), additional operations are performed: 

1. The tile reference counter indicated by the index previously 
stored in the pixel (old index) is decremented by one. 

2. The tile reference counter indicated by the index supplied by 
the rasterizer (new index) is incremented by one. 

3. The new index is stored for the pixel. 

These steps can be skipped if the old index and new index are 
equal. 

This procedure in effect maintains a count of the number of 
visible pixels which are affected by each non-loaded texture tile. 
Whenever a pixel affected by a tile is written into the frame 
buffer, the count for that tile is incremented. If the pixel is later 
overwritten by a pixel associated with another tile (or no tile), that 
counter is decremented, and the counter for the new tile is 
incremented. 

3.4 Per-Frame Rendering Operations 

As mentioned above, the reference counter array and the pixel tile 
index values must be initialized at the start of a frame. When 
rendering of the image is complete, the frame buffer contains the 
best quality version of the image using the currently available 
texture tiles. The reference counters indicate how many pixels 
would be affected by each tile which has not yet been loaded, 
using the most desirable resolutions (rather than the resolutions 
actually used to generate the image). The reference counts can be 
used to influence the order in which tiles are loaded in order to 
best improve the quality of frames rendered later, since the tiles 
having the highest reference counts will affect the most pixels.’ 

A scan of the reference counter array at the end of a frame will 
yield the indices of one or several non-loaded texture tiles which 
affect the most pixels on the screen. The application would 
typically request these tiles next from the server. While waiting 
for these tiles, the application can continue rendering frames for 
the user and responding to user inputs. As tiles arrive and are 

’ If counter 0 was initialized to the number of pixels in the frame buffer 
and the other counters were initialized to 0, the sum of all the counters 
after rendering should be the number of pixels in the frame buffer, a 
useful consistency check during hardware or software development. 

loaded into the texture image pyramids, the scene can be re- 
rendered to get an updated set of tile reference counters to 
determine subsequent tiles to be loaded. Since rendering and tile 
loading proceed in parallel, changing view parameters may 
change the set of tiles used, so the queue of tiles to be loaded 
should be updated each time a request is to be made to the server. 

Notice that the number of reference counter array entries to be 
scanned becomes smaller as more tiles are loaded. Whenever a 
tile is loaded, its tile index is set to zero. At that time, the tile with 
the largest index can be reassigned to the index of the loaded tile, 
decreasing the size of the array to be scanned by one entry. Also 
notice that the size of the array is normally much smaller than the 
frame buffer, and so this part of the operation is more efftcient 
than methods which require the application to gather visibility 
statistics by scanning all of the frame buffer pixels. 

3.5 Hardware/Software Task Subdivision 

This entire algorithm can, of course, be implemented in software, 
in which case the use of an index array can be supplanted by the 
use of pointers to possibly gain some simplicity (this was done in 
the test implementation used to generated the images in the 
figures). The main motivation behind this design, however, was a 
system which could be added to existing rendering hardware 
without greatly increasing the complexity. The additional 
hardware components required are the following: 

I. Tile reference counter array (with capability to transfer entries 
to main memory) 

2. Tile index stored in each pixel (no path to main memory 
required) 

3. Tile index and tile-present bit stored in texture memory for 
each tile 

4. Rasterizer hardware to perform per-pixel operations 

3.6 Tile Index Management 

As mentioned above, it is possible that there will not be sufftcient 
entries in the tile reference counter array for all non-loaded tiles. 
This can be dealt with during index assignment in a variety of 
ways which involve retaining counter information over multiple 
frames. One simple method is to render multiple frames, with a 
different group of tiles assigned non-zero counter indices each 
frame, until all tiles have been processed. The counts from the 
sequence of frames are retained, and are searched for the largest 
values only after all tiles are processed. The sequence is then 
repeated with any updated tile indices due to loaded tiles. 

For example, assume that the highest possible counter index is 3, 
and that 5 texture tiles (A, B, C, D, E) are currently not present 
(unrealistically small numbers are used for clarity of the 
example). The tile reference counts can be accumulated over two 
frames. In the first frame, the tile indices assigned are A=l, B=2, 
C=3, D=O, E=O. After rendering, the counter values are saved, and 
the second frame is rendered with tile index assignments A=O, 
B=O, C=O, D=l, E=2. This results in a reference count for each 
tile. 
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This method has the advantage of working with a relatively small 
reference counter array, minimizing hardware costs. It does, 
however, provide data which may be slightly out of date if the 
viewing parameters change over the frames used, and it may 
result in slower tile loading or a less optimal tile loading order. 

3.7 Multiple Texture Samples Per Pixel 

If texture pixel interpolation is used, or if multiple textures are 
used per pixel, several texture tile indices may be generated for a 
single pixel. In this case, the texture sampling hardware must 
select only one of the indices for the pixel out of all non-zero 
values generated. This will result in some texture tiles not having 
all their affected pixels counted. This is only a temporary 
problem, since eventually the tile that does get counted at a pixel 
will be loaded and its index will become zero, allowing another of 
the tiles to be counted, etc. The main observable result will be a 
possible sub-optimal order of tile loading. It would be possible to 
calculate a more accurate count by other methods such as storing 
multiple tile indices per pixel, but this would greatly increase 
hardware cost. 

The multi-frame method described in the previous section could 
also be adapted for the multiple texture per-pixel case. If multiple 
textures are mapped to the same surface, a non-zero index would 
only be assigned to one of those textures at a time, a different one 
each frame. Over a number of frames equal to the number of 
textures per surface, all the tile references would be counted. 

4. TIMING AND DEPENDENCY ANALYSIS 

We do not at this point have a sufficiently low level hardware 
design to perform a detailed timing analysis. It is possible, 
however, to analyze the interactions of the architectural changes 
with the standard graphics pipeline and determine where the 
additional functions can be performed in parallel with standard 
functions. This analysis is divided into two parts, per-pixel effects 
and per-frame effects. 

4.1 Per-Pixel Effects 

Each time a pixel (whether textured or not) passes the Z-buffer 
depth test during rasterization of a polygon, the following 
additional operations must be performed for texture tile visibility 
determination: 

1. Fetch (old) texture tile index for the pixel from the frame 
buffer. 

2. Decrement (old) indexed counter. 

3. Fetch (new) texture tile index for replacement pixel from the 
texture memory. 

4. Increment (new) indexed counter. 

5. Store (new) texture tile index for the pixel. 

These steps must be performed for untextured as well as textured 
pixels, since an untextured pixel may overwrite a textured pixel. 
We assume for this analysis that texture image access is not 
performed until aAer the depth test. 

If sufficient frame buffer memory bandwidth is available, step (I) 
can be performed in parallel with the fetch of the stored depth (Z) 
value at the pixel (the tile index is simply discarded if the depth 
test fails). Step (2) can be performed in parallel with the texture 
image access, since it does not require the new tile index. The 
time required should be less than the texture access time, since the 
complexity is far less. 

For non-textured pixels, step (3) involves merely supplying a new 
tile index of zero. For textured pixels, step (3) requires fetching a 
texture tile index stored with the texture tile pixels being accessed. 
This may require time for an additional memory access, or it 
could be done in parallel with the fetch of the texture pixel RGB 
values if memory bandwidth allows. 

Steps (4) and (5) can be performed simultaneously once step (3) is 
complete, and require relatively little time. Given sufficient 
memory bandwidth for steps 1-3, the additional time required for 
the entire per-pixel process would be the longer of the times for 
steps 4 and 5. 

4.2 Per-Frame Effects 

Before every frame, the reference counter array and the pixel 
texture tile indices must be cleared. It is possible to perform these 
steps in parallel with the Z-buffer clear operation if the memory 
architecture allows, in which case no additional time is required. 

4.3 Tile Loading Effects 

Whenever the application is ready to request a tile from the server, 
it must read the reference counter array from the hardware at the 
conclusion of a frame (since tile load times may span several 
frames, this would not necessarily be done every frame). The 
application would then scan the array to choose a tile or tiles to 
request. In a multi-threaded application, once the array has been 
read the other processing can occur interleaved with or in parallel 
with sending data for the next frame to the graphics accelerator. 

Whenever a tile arrives from the server, the application must 
perform the tile loading and synthesis procedure (section 2.2). In a 
multithreaded application, any interpolation, replication, and 
synthesis can occur interleaved with or in parallel with the 
rendering of the current frame. Loading of pixels into texture 
memory and changing tile indices would typically occur at the 
end of the current frame. 

5. RESULTS 

Texture tile visibility determination has been implemented in 
software in order to test the algorithms and simulate the visual 
effects. The test implementation was built as a set of 
modifications to Mesa, a freely-available, unofficial 
implementation of the OpenGL graphics pipeline [I 11. Plate I 
shows a sequence of images generated using the software 
implementation. The bright yellow areas show pixels affected by 
the latest tile Ioaded. The video accompanying this paper shows 
the algorithm in operation over a longer sequence of frames. 
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These images were generated using a tile size of 32x32 pixels, at 
a frame buffer resolution of 512x384 pixels. To make the yellow 
highlights clearly visible, a single texture sample was used per 
pixel, using nearest neighbor sampling at the texture level closest 
to the calculated level (OpenGL texture sampling mode 
“GL-NEAREST-MIPMAP-NEAREST”). 

For the software implementation, tile loading was simulated to 
simplify implementation. Actual performance measurements 
would not have been possible even if tiles were loaded over the 
network, since the software implementation is not optimized, and 
variations in network traffic would make consistent results hard to 
achieve without a dedicated network. A hardware implementation 
or more extensive, optimized software implementation would be 
necessary to gather performance data. 

The accompanying video tape shows two animation sequences, 
“Cubes,” a simple scene with two cubes each having one texture 
map, and “Home,” a more complex environment. All images were 
rendered off-line using the software test implementation. Each 
sequence is shown first with yellow highlights for pixels shaded 
by the most recently loaded tile, and then again without the 
highlights as a user would actually view the scene. At each 
change of view point (every half second in the videos), one tile is 
loaded (3KB uncompressed). 

The Cubes scene database contains only two cubes (12 polygons) 
and two texture maps. The mandrill is a 512x512 image, the 
garage is a 1024x512 image. Notice that as the cubes rotate and 
the field of view changes, the MIP map levels in use change and 
the texture tile loading adapts to the tiles used in the last frame. 

The Home scene database contains 50538 polygons, the vast 
majority of which are textured, using 22 RGB texture images with 
total size approximately l7MB (uncompressed). The initial scene 
has loaded one 32x32 pixel tile for each of the 22 textures, for a 
total of about 67KB, about 0.4% of the total pixels. At the last 
frame, 100 additional tiles have been loaded (300KB), for a total 
of only about 2.2% of the size of the entire texture data. The 
image quality is reasonably good and the wait time is drastically 
shorter than the time required to load the entire texture database. 
Plate 2 shows some sample frames from the Home video. 

6. CONCLUSIONS 

We have described additions to the standard computer graphics 
hardware pipeline which would allow dramatic decreases in the 
time a user waits to see rendered images of complex textured 
scenes when the scene textures must be downloaded over a 
network. The initial textured image of the scene will be displayed 
with minimal waiting time by initially loading only one tile per 
texture. If the majority of the polygons in the scene do not use the 
maximum texture resolution levels or if many textured surfaces 
are occluded (quite possibly the normal case), the final image at 
best resolution will also be displayed much more quickly. The 
user is also able to interact normally with a scene while additional 
texture tiles are loaded, and viewpoint and occlusion changes are 
taken into account dynamically as tiles are loaded. 

The hardware modifications we describe could be incorporated 
into a consumer-level graphics card without major cost increases, 

and would afford great benefits even in an optimized software 
renderer. The addition of this capability makes it practical to use 
large textures even over relatively slow network connections. 
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