
Texture Tile Visibility Determination
For Dynamic Texture Loading

Michael E. Goss * and Kei Yuasa’
Hewlett-Packard Laboratories

ABSTRACT

Three-dimensional scenes have become an important form of
content deliverable through the Internet. Standard formats such as
Virtual Reality Modeling Language (VRML) make it possible to
dynamically download complex scenes from a server directly to a
web browser. However, limited bandwidth between servers and
clients presents an obstacle to the availability of more complex
scenes, since geometry and texture maps for a reasonably
complex scene may take many minutes to transfer over a typical
telephone modem link.

This paper addresses one part of the bandwidth bottleneck, texture
transmission. Current display methods transmit an entire texture
to the client before it can be used for rendering. We present an
alternative method which subdivides each texture into tiles, and
dynamically determines on the client which tiles are visible to the
user. Texture tiles are requested by the client in an order
determined by the number of screen pixels affected by the texture
tile, so that texture tiles which affect the greatest number of screen
pixels are transmitted first. The client can render images during
texture loading using tiles which have already been loaded. The
tile visibility calculations take full account of occlusion and
multiple texture image resolution levels, and are dynamically
recalculated each time a new frame is rendered. We show how a
few additions to the standard graphics hardware pipeline can add
this capability without radical architecture changes, and with only
moderate hardware cost. The addition of this capability makes it
practical to use large textures even over relatively slow network
connections.

Categories and Subject Descriptors: 1.3.1 [Computer
Graphics] Hardware Architecture-gruphi processors; 1.3.2
[Computer Graphics] Graphics Systems-distributed/network
graphics; 1.3.7 [Computer Graphics] Three-Dimensional
Graphics and Realism-Color. shading, shadowing, and texture;
C.2.4 [Computer-Communication Networks] Distributed
Systems-distributed applications

* goss@hpl.hp.com
ky@jp.hpl.hp.com

1. INTRODUCTION

Images in the form of texture maps are frequently used to add
detail to surfaces of geometric models used in computer
graphics[2]. This allows the addition of considerable perceived
surface detail without an increase in actual geometric data size or
complexity. The most commonly used form of texture map stores
the texture image as a multiple resolution image pyramid, called a
MIP map [13]. For a typical image rendered from a scene data
base, only a portion of the texture map elements are required,
since not all resolution levels of the MIP map are required, and
not all surfaces are visible in the image.

In a complex scene with many texture maps, the texture image
data may represent a substantial percentage of the storage required
for the database, often exceeding the size of the geometric
information. In some cases, such as VRML [12] scenes used to
display panoramas, the geometry is almost incidental, and the
texture imagery is the important content (the NASA Mars
Pathfinder VRML panoramas are an example of this type of use
[9]). When the scene database to be rendered must be loaded over
a relatively slow network connection, it is desirable to minimize
the amount of data transmitted by sending only the texture data
required for the requested view, and then incrementally loading
additional data as required. For many applications, it is even
acceptable to display the scene using lower resolution textures
while loading additional images. No matter how large the textures
used for the scene, the number of texture pixels which have any
effect on the rendered image is closely related to the size of that
image, so the amount of texture data actually required may be
considerably less than the full texture data specified.

If the scene geometry and the texture map sizes and
transformation parameters are known, it is possible to determine
which texture tiles are required for a particular view. The
information required is generated during the rendering of a scene,
but current graphics pipeline architectures do not provide a way
for an application to recover this information. In this paper we
describe extensions to a conventional graphics pipeline
architecture (such as the OpenGL pipeline [IO]) which allow
efficient gathering of this data. By dividing each resolution layer
of each texture into tiles, and counting the number of visible
pixels which reference each unloaded tile, we can determine
which tiles have the greatest effect on the current view. Tiles can
then be fetched from the server based on tile visibility in the
scene.

1.1 Related Work

Prior work has been done by other researchers using recovery of
surface visibility information from the frame buffer of a graphics

55

pipeline. An unmodified graphics pipeline can be easily used to
determine surface visibility in a scene by assigning a unique color
to each scene element, rendering the scene using these colors, and
then examining the frame buffer pixels. For example, this method
has been used to compute surface visibility for Hemi-Cube
radiosity form factors [I,3]. A similar technique could be used to
determine texture tile visibility by filling each tile with a unique
color. This would, however, require rendering each frame an extra
time with different texture images, and would also require a
search of the frame buffer afterwards. In an interactive system, the
reduction of the frame rate by a factor of two would usually be
unacceptable. The method we present in this paper avoids this
overhead by modifying the hardware pipeline so that neither re-
rendering nor searching the frame buffer is required.

Deferred shading [5,8] is another area related to the work we
present. A conventional graphics pipeline shades each pixel as it is
rasterized. Even if the shading operation is performed after the
depth test, another object closer to the viewer may later overwrite
the earlier shading results. Deferred shading techniques postpone
shading calculations for a pixel until the visibility of the pixel is
completely decided (usually at the completion of rasterization). At
the point where the pixel is shaded, visibility has been completely
determined, and so final texture references for the pixel are also
known. Full deferred shading requires sufficient storage per pixel
for full shading information (lighting, texturing, etc.), and so
requires a large increase in frame buffer size, or rendering of the
scene in several pieces using a tiled frame buffer. The work we
describe in this paper implements a lower cost solution than
deferred shading, suitable for implementation in consumer-level
graphics accelerators. We have described elsewhere a different
texture tile loading method more suitable for use in a deferred
shading architecture [141.

2. THE TILED TEXTURE IMAGE
PYRAMID

In order to avoid waiting for a complete texture to be loaded, the
texture must be subdivided into sections which can be loaded
independently. In addition, if a portion of a texture or an entire
texture is visible in a scene but at reduced resolution, it may be
desirable to load a smaller, lower resolution version of the texture
initially, and load the full resolution version later or not at all.
Little extra overhead would be involved if a progressive image
format were used, such as a tiled version of progressive JPEG or a
wavelet-based method. Without a progressive format, however,
the worst case (loading rather than synthesizing all MIP resolution
levels) involves loading only 33% more data than just the full
resolution image, much of which can usually be done in the
background.

We base our texture tiling scheme on the existing MIP map image
pyramid. Each level of the MIP map pyramid is a rectangular
image. The size in each direction is equal to some power of two.
Tiles are square, and each image in the pyramid is divided equally
into tiles. Some tiles may be partially empty for image levels
which are smaller than one tile in either dimension.

The texture tiling scheme used here is intended to be compatible
with the F1ashPi.x image format [6] and Internet fmaging Protocol
(IIP) standards maintained by the Digital Imaging Group (DIG)

consortium [7]. FlashPix stores an image as a tiled multi-
resolution pyramid. Tiles are compressed using the JPEG
compression standard. IIP allows image tiles to be downloaded on
demand from a server by a client.

2.1 Tiled Pyramid Initialization

To initialize the tiled pyramid structure for a texture, we need to
know only the size of the full resolution image and the top (1x1
pixel) level of the pyramid. With this information, a skeleton
texture pyramid can be constructed. This pyramid contains the
storage for the texture tile image pixels, which have not yet been
loaded. A single bit tile-present flag is stored for each tile. These
flags are initialized to false for all tiles except for the top level. At
the top level, the single pixel value is stored, the tile-present flag
is set true, and the “tile loading and synthesis” procedure
described below is performed for the top level tile.

2.2 Tile Loading and Synthesis

Until all tiles are present in a texture map pyramid, there will be
some gaps. These gaps will gradually be filled by tiles loaded
from the server system, and also by synthesis of low resolution
tiles from multiple high resolution tiles (a miniature version of the
current synthesis of MIP map levels from the entire texture
image).

Whenever a new tile is loaded into a texture map pyramid, tiles at
other resolutions which cover overlapping areas (with regard to
the base image) are potentially updated. Whenever the tile-present
flag changes from false to true for a tile (the “current” tile), the
following procedure is applied:

1. If the current tile is not at the highest resolution level, and if
any of the (usually) four tiles covering the same area at the
next higher resolution level (the “children” of the current tile)
have a tile-present value of false, till those child tiles with
interpolated or pixel-replicated values from the current tile
(do not mark those tiles as present). Recursively repeat this
step for any child tiles which are filled.

2. If not at the lowest resolution (Ix1 pixel) level of the
pyramid, and if the lower resolution parent tile has tile-present
value of false, examine the siblings of the current tile (the
other tiles at the current level which are children of the same
parent). If all other siblings have tile-present set to true, set
the parent tile-present value to true and synthesize the lower-
resolution parent from the children (similar to the normal MIP
map synthesis). Then recursively execute this step for the
parent.

In order to have some texture detail present in the initial rendered
image, an application may wish to pre-load one tile for each
texture at the lowest resolution which has a full tile present. The
steps above will then synthesize all the lower resolution levels in
the pyramid and mark them present, and will till the higher
resolution levels with usable interpolated or replicated texture
pixel values without marking them as present.

The filling of absent higher resolution tiles (step I above) requires
some overhead during initialization and whenever a tile is loaded

56

Tile Reference Counter Array

Tiled MIP maps (shaded tiles are already present)

Figure 1 - Tile Reference Counter Array

over the network. No additional hardware is required, since this
process can be performed easily by software. The alternative to
this data extrapolation would be to add a mechanism to the texture
mapping process to redirect texture pixel fetches from an absent
tile to the next lower resolution tile which is present. This per-
pixel overhead would require additional hardware complexity and
would slow the texture mapping process.

3. TEXTURE TILE VISIBILITY
DETERMINATION

When a textured surface A is invisible in a scene due to occlusion
by another surface B, it is still possible that A will be rasterized
(and the associated texture tiles used) if A is sent through the
graphics pipeline before B. Some or all of the texture pixels (and
tiles) used by A may have no effect on the final rendered image.

It is possible to take occlusion into account when gathering
information on texture tile usage by keeping some simple
information in the frame buffer for each pixel while rendering a
scene, and also storing a small amount of information with each
texture tile in addition to the tile-present bit discussed above. To
keep track of which tiles are needed for a full-resolution rendering
of a scene, we add a tile reference counter array, and a reference
counter index for each pixel.

3.1 The Tile Reference Counter Array

This array contains one counter for each possible texture tile
being tracked. Each reference counter must have sufficient bits to
count up to the number of pixels in the frame buffer (20 to 22 bits
for most current systems). Each tile which has not yet been loaded
is assigned a non-zero tile-index number, which uniquely
identifies the tile across all tiles of all texture images in use, and is
the index into the reference counter array. This index is stored
with the tile in the texture memory. Tiles which have already been
loaded (tile-present set to true) are assigned a 0 index, as are tiles

for which an index is not available yet (if the reference counter
array is full). Strategies to deal with situations when too many
texture tiles need to be tracked are presented later (section 3.6).
These strategies will not change the basic method.

Figure 1 shows the relationship of unloaded tiles to entries in the
tile reference counter array. Shaded tiles have already been
loaded.

3.2 The Pixel Texture Tile Index

Each pixel in the frame buffer will have the usual R, G, B, and Z
(depth) values, and in addition will also have an unsigned integer
index into the counter array (Figure 2). During rasterization, this
texture tile index will be set to the index value of a texture tile
used to color the pixel. If the pixel is filled by an untextured
object, the index is set to 0. A non-zero index will therefore
indicate that a not-yet-loaded texture tile was used to color the
pixel. For the moment assume that only one tile index per pixel is
required, corresponding to OpenGL texture sampling mode
“GL-NEAREST-MIPMAP-NEAREST” or “GL~NEAREST”
(see section 3.7 below for interpolated or multi-texture cases).

R G B : Z(Depth)

Figure 2 - Frame Buffer Pixel Format

At the start of rendering of a frame (when the Z buffer clear is
performed), all the pixel texture tile index values are set to 0,
which indicates the pixel does not reference any texture tile being
tracked. All the reference counters in the array are set to zero (the
value of the counter at index 0 can be set to the number of pixels
in the frame buffer for later use as a consistency check).

57

Some graphics architectures have resorted to the subdivision of
the screen into relatively small, separately rendered “buckets” or
“chunks” in order to reduce the size of the frame buffer [4]. The
method we describe here is completely compatible with such a
screen subdivision. When using buckets, the tile reference counter
array is zeroed only at the start of the frame, while the pixel
texture tile indices are reset with the Z buffer at the start of
rendering of each bucket.

3.3 Per-Pixel Rendering Operations

The image is rendered using a standard Z-buffered rasterizer, with
a modification to the pixel storage operation at each pixel. The
texture sampling operation will supply the texture tile index
number along with the sampled texture value (an index of 0 is
used for untextured pixels). When a new pixel value is stored as
the result of a successful Z test (and any stencil test, stippling,
etc.), additional operations are performed:

1. The tile reference counter indicated by the index previously
stored in the pixel (old index) is decremented by one.

2. The tile reference counter indicated by the index supplied by
the rasterizer (new index) is incremented by one.

3. The new index is stored for the pixel.

These steps can be skipped if the old index and new index are
equal.

This procedure in effect maintains a count of the number of
visible pixels which are affected by each non-loaded texture tile.
Whenever a pixel affected by a tile is written into the frame
buffer, the count for that tile is incremented. If the pixel is later
overwritten by a pixel associated with another tile (or no tile), that
counter is decremented, and the counter for the new tile is
incremented.

3.4 Per-Frame Rendering Operations

As mentioned above, the reference counter array and the pixel tile
index values must be initialized at the start of a frame. When
rendering of the image is complete, the frame buffer contains the
best quality version of the image using the currently available
texture tiles. The reference counters indicate how many pixels
would be affected by each tile which has not yet been loaded,
using the most desirable resolutions (rather than the resolutions
actually used to generate the image). The reference counts can be
used to influence the order in which tiles are loaded in order to
best improve the quality of frames rendered later, since the tiles
having the highest reference counts will affect the most pixels.’

A scan of the reference counter array at the end of a frame will
yield the indices of one or several non-loaded texture tiles which
affect the most pixels on the screen. The application would
typically request these tiles next from the server. While waiting
for these tiles, the application can continue rendering frames for
the user and responding to user inputs. As tiles arrive and are

’ If counter 0 was initialized to the number of pixels in the frame buffer
and the other counters were initialized to 0, the sum of all the counters
after rendering should be the number of pixels in the frame buffer, a
useful consistency check during hardware or software development.

loaded into the texture image pyramids, the scene can be re-
rendered to get an updated set of tile reference counters to
determine subsequent tiles to be loaded. Since rendering and tile
loading proceed in parallel, changing view parameters may
change the set of tiles used, so the queue of tiles to be loaded
should be updated each time a request is to be made to the server.

Notice that the number of reference counter array entries to be
scanned becomes smaller as more tiles are loaded. Whenever a
tile is loaded, its tile index is set to zero. At that time, the tile with
the largest index can be reassigned to the index of the loaded tile,
decreasing the size of the array to be scanned by one entry. Also
notice that the size of the array is normally much smaller than the
frame buffer, and so this part of the operation is more efftcient
than methods which require the application to gather visibility
statistics by scanning all of the frame buffer pixels.

3.5 Hardware/Software Task Subdivision

This entire algorithm can, of course, be implemented in software,
in which case the use of an index array can be supplanted by the
use of pointers to possibly gain some simplicity (this was done in
the test implementation used to generated the images in the
figures). The main motivation behind this design, however, was a
system which could be added to existing rendering hardware
without greatly increasing the complexity. The additional
hardware components required are the following:

I. Tile reference counter array (with capability to transfer entries
to main memory)

2. Tile index stored in each pixel (no path to main memory
required)

3. Tile index and tile-present bit stored in texture memory for
each tile

4. Rasterizer hardware to perform per-pixel operations

3.6 Tile Index Management

As mentioned above, it is possible that there will not be sufftcient
entries in the tile reference counter array for all non-loaded tiles.
This can be dealt with during index assignment in a variety of
ways which involve retaining counter information over multiple
frames. One simple method is to render multiple frames, with a
different group of tiles assigned non-zero counter indices each
frame, until all tiles have been processed. The counts from the
sequence of frames are retained, and are searched for the largest
values only after all tiles are processed. The sequence is then
repeated with any updated tile indices due to loaded tiles.

For example, assume that the highest possible counter index is 3,
and that 5 texture tiles (A, B, C, D, E) are currently not present
(unrealistically small numbers are used for clarity of the
example). The tile reference counts can be accumulated over two
frames. In the first frame, the tile indices assigned are A=l, B=2,
C=3, D=O, E=O. After rendering, the counter values are saved, and
the second frame is rendered with tile index assignments A=O,
B=O, C=O, D=l, E=2. This results in a reference count for each
tile.

58

This method has the advantage of working with a relatively small
reference counter array, minimizing hardware costs. It does,
however, provide data which may be slightly out of date if the
viewing parameters change over the frames used, and it may
result in slower tile loading or a less optimal tile loading order.

3.7 Multiple Texture Samples Per Pixel

If texture pixel interpolation is used, or if multiple textures are
used per pixel, several texture tile indices may be generated for a
single pixel. In this case, the texture sampling hardware must
select only one of the indices for the pixel out of all non-zero
values generated. This will result in some texture tiles not having
all their affected pixels counted. This is only a temporary
problem, since eventually the tile that does get counted at a pixel
will be loaded and its index will become zero, allowing another of
the tiles to be counted, etc. The main observable result will be a
possible sub-optimal order of tile loading. It would be possible to
calculate a more accurate count by other methods such as storing
multiple tile indices per pixel, but this would greatly increase
hardware cost.

The multi-frame method described in the previous section could
also be adapted for the multiple texture per-pixel case. If multiple
textures are mapped to the same surface, a non-zero index would
only be assigned to one of those textures at a time, a different one
each frame. Over a number of frames equal to the number of
textures per surface, all the tile references would be counted.

4. TIMING AND DEPENDENCY ANALYSIS

We do not at this point have a sufficiently low level hardware
design to perform a detailed timing analysis. It is possible,
however, to analyze the interactions of the architectural changes
with the standard graphics pipeline and determine where the
additional functions can be performed in parallel with standard
functions. This analysis is divided into two parts, per-pixel effects
and per-frame effects.

4.1 Per-Pixel Effects

Each time a pixel (whether textured or not) passes the Z-buffer
depth test during rasterization of a polygon, the following
additional operations must be performed for texture tile visibility
determination:

1. Fetch (old) texture tile index for the pixel from the frame
buffer.

2. Decrement (old) indexed counter.

3. Fetch (new) texture tile index for replacement pixel from the
texture memory.

4. Increment (new) indexed counter.

5. Store (new) texture tile index for the pixel.

These steps must be performed for untextured as well as textured
pixels, since an untextured pixel may overwrite a textured pixel.
We assume for this analysis that texture image access is not
performed until aAer the depth test.

If sufficient frame buffer memory bandwidth is available, step (I)
can be performed in parallel with the fetch of the stored depth (Z)
value at the pixel (the tile index is simply discarded if the depth
test fails). Step (2) can be performed in parallel with the texture
image access, since it does not require the new tile index. The
time required should be less than the texture access time, since the
complexity is far less.

For non-textured pixels, step (3) involves merely supplying a new
tile index of zero. For textured pixels, step (3) requires fetching a
texture tile index stored with the texture tile pixels being accessed.
This may require time for an additional memory access, or it
could be done in parallel with the fetch of the texture pixel RGB
values if memory bandwidth allows.

Steps (4) and (5) can be performed simultaneously once step (3) is
complete, and require relatively little time. Given sufficient
memory bandwidth for steps 1-3, the additional time required for
the entire per-pixel process would be the longer of the times for
steps 4 and 5.

4.2 Per-Frame Effects

Before every frame, the reference counter array and the pixel
texture tile indices must be cleared. It is possible to perform these
steps in parallel with the Z-buffer clear operation if the memory
architecture allows, in which case no additional time is required.

4.3 Tile Loading Effects

Whenever the application is ready to request a tile from the server,
it must read the reference counter array from the hardware at the
conclusion of a frame (since tile load times may span several
frames, this would not necessarily be done every frame). The
application would then scan the array to choose a tile or tiles to
request. In a multi-threaded application, once the array has been
read the other processing can occur interleaved with or in parallel
with sending data for the next frame to the graphics accelerator.

Whenever a tile arrives from the server, the application must
perform the tile loading and synthesis procedure (section 2.2). In a
multithreaded application, any interpolation, replication, and
synthesis can occur interleaved with or in parallel with the
rendering of the current frame. Loading of pixels into texture
memory and changing tile indices would typically occur at the
end of the current frame.

5. RESULTS

Texture tile visibility determination has been implemented in
software in order to test the algorithms and simulate the visual
effects. The test implementation was built as a set of
modifications to Mesa, a freely-available, unofficial
implementation of the OpenGL graphics pipeline [I 11. Plate I
shows a sequence of images generated using the software
implementation. The bright yellow areas show pixels affected by
the latest tile Ioaded. The video accompanying this paper shows
the algorithm in operation over a longer sequence of frames.

59

These images were generated using a tile size of 32x32 pixels, at
a frame buffer resolution of 512x384 pixels. To make the yellow
highlights clearly visible, a single texture sample was used per
pixel, using nearest neighbor sampling at the texture level closest
to the calculated level (OpenGL texture sampling mode
“GL-NEAREST-MIPMAP-NEAREST”).

For the software implementation, tile loading was simulated to
simplify implementation. Actual performance measurements
would not have been possible even if tiles were loaded over the
network, since the software implementation is not optimized, and
variations in network traffic would make consistent results hard to
achieve without a dedicated network. A hardware implementation
or more extensive, optimized software implementation would be
necessary to gather performance data.

The accompanying video tape shows two animation sequences,
“Cubes,” a simple scene with two cubes each having one texture
map, and “Home,” a more complex environment. All images were
rendered off-line using the software test implementation. Each
sequence is shown first with yellow highlights for pixels shaded
by the most recently loaded tile, and then again without the
highlights as a user would actually view the scene. At each
change of view point (every half second in the videos), one tile is
loaded (3KB uncompressed).

The Cubes scene database contains only two cubes (12 polygons)
and two texture maps. The mandrill is a 512x512 image, the
garage is a 1024x512 image. Notice that as the cubes rotate and
the field of view changes, the MIP map levels in use change and
the texture tile loading adapts to the tiles used in the last frame.

The Home scene database contains 50538 polygons, the vast
majority of which are textured, using 22 RGB texture images with
total size approximately l7MB (uncompressed). The initial scene
has loaded one 32x32 pixel tile for each of the 22 textures, for a
total of about 67KB, about 0.4% of the total pixels. At the last
frame, 100 additional tiles have been loaded (300KB), for a total
of only about 2.2% of the size of the entire texture data. The
image quality is reasonably good and the wait time is drastically
shorter than the time required to load the entire texture database.
Plate 2 shows some sample frames from the Home video.

6. CONCLUSIONS

We have described additions to the standard computer graphics
hardware pipeline which would allow dramatic decreases in the
time a user waits to see rendered images of complex textured
scenes when the scene textures must be downloaded over a
network. The initial textured image of the scene will be displayed
with minimal waiting time by initially loading only one tile per
texture. If the majority of the polygons in the scene do not use the
maximum texture resolution levels or if many textured surfaces
are occluded (quite possibly the normal case), the final image at
best resolution will also be displayed much more quickly. The
user is also able to interact normally with a scene while additional
texture tiles are loaded, and viewpoint and occlusion changes are
taken into account dynamically as tiles are loaded.

The hardware modifications we describe could be incorporated
into a consumer-level graphics card without major cost increases,

and would afford great benefits even in an optimized software
renderer. The addition of this capability makes it practical to use
large textures even over relatively slow network connections.

7. ACKNOWLEDGEMENTS

Brian Paul (and other Mesa contributors) contributed greatly to
this work by writing and making available to the public the Mesa
graphics library, which was an excellent base for the software
implementation of the texture tile reference counting method.

REFERENCES

I.

2.

3.

4.

5.

6.

7.

8.

9.

10.

II.

12.

13.

Daniel R. Baum, Holly E. Rushmeier, and James M. Winget,
“Improved Radiosity Solutions Through the Use of
Analytically Determined Form-Factors,” Computer Graphics,
Vol. 23, No. 3, July 1989 (Proceedings of SIGGRAI’H ‘89),
pp. 325-334.

James F. Blinn and Martin E. Newell, “Texture and Reflection
in Computer Generated Images,” Communications ofthe
ACM, Vol. 19, No. 10, Oct. 1976, pp. 542-546.

Michael F. Cohen and Donald P. Greenberg, “The Hemi-
Cube: A Radiosity Solution for Complex Environments,”
Computer Graphics, Vol. 19, No. 3, July 1985 (Proceedings of
SIGGRAPH ‘85), pp. 3 l-40.

Michael Cox and Narendra Bhandari, “Architectural
Implications of Hardware-Accelerated Bucket Rendering on
the PC,” Proceedings: 1997 SIGGRAPH/Eurographics
Workshop on Graphics Hardware, August 1997, pp. 25-34.

Michael Deering et al., “The Triangle Processor and Normal
Vector Shader: A VLSI System for High Performance
Graphics,” Computer Graphics, Vol. 22, NO. 4, August 1988
(Proceedings of SIGGRAPH ‘88), pp. 21-30.

Eastman Kodak Co., FIashPix Format Specification, version
1 .O. 1, July 1997 (http://www.digitalimaging.org).

Hewlett-Packard Co., Live Picture Inc. and Eastman Kodak
Co., Internet Imaging Protocol, version 1.0.5, October 1997
(http:Nwww.digitalimaging.org).

Steven Molnar, John Eyles, and John Poulton, “PixelFlow:
High-Speed Rendering Using Image Composition,” Computer
Graphics, Vol. 26, No. 2, July 1992 (Proceedings of
SIGGRAPH ‘92), pp. 23 l-240.

NASA, Mars Pathfinder Virtual Real@ Models and
Animations of the Pathfinder Mission,
http://mars.jpl.nasa.gov/vrml/vrmI.html

OpenGL ARB, OpenGL Reference Manual, 2”* ed., R. Kempf
and C. Frazier eds., Addison-Wesley, 1997.

Brian Paul, The Mesa 3-D Graphics Library,
http://www.ssec.wisc.edu/-brianp/Mesa.html

VRML Consortium, The Virtual Reality Modeling Language,
International Standard ISO/IEC 14772-l : 1997.

Lance Williams, “Pyramidal Parametrics,” Computer
Graphics, Vol. 17, No. 3, July 1983 (Proceedings of
SIGGRAPH ‘83), pp. l-l I.

14. Kei Yuasa and Michael E. Goss, “Lazy Texture Loading for
Network Graphics Objects” (unpublished manuscript),
January 1998.

60

