
Eurographics Symposium on Parallel Graphics and Visualization (2006)
Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

Parallelization of Inverse Design of Luminaire Reflectors

J.A. Magallon1, G. Patow2, F.J. Seron1 and X. Pueyo2

1 Grupo de Informatica Grafica Avanzada (GIGA)
Dept. de Informatica e Ingenieria de Sistemas, Universidad de Zaragoza, Spain

2 Grup de Grafics de Girona (GGG)
Institut d’Informatica i Aplicacions, Universitat de Girona, Spain

Abstract

This paper presents the parallelization of techniques for the design of reflector shapes from prescribed optical
properties (far-field radiance distribution), geometrical constraints and, if available, a user-given initial guess.
This is a problem of high importance in the field of Lighting Engineering, more specifically for Luminaire Design.
Light propagation inside and outside the optical set must be computed and the resulting radiance distribution
compared to the desired one in an iterative process. Constraints on the shape imposed by industry needs must be
taken into account, bounding the set of possible shape definitions. A general approach is based on a minimization
procedure on the space of possible reflector shapes, starting from a generic or a user-provided shape.
This minimization techniques are usually known also as inverse problems, and are very expensive in computational
power, requiring a long time to reach a good solution. To reduce this high resource needs we propose a parallel
approach, based on SMP and clustering, that can bring the simulation times to a more feasible level.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based model-
ing, D.1.3 [Programming Techniques]: Parallel Programming, I.6.8 [Simulation and Modeling]: Parallel, Monte
Carlo

1. Introduction

A reflector is just a part of what is called, in Lighting En-
gineering, an optical set, which consists of a light bulb, the
reflector itself (whose shape has to be designed) and the dif-
fusor (figure 1). The reflector has a border, contained in a
plane, that limits its shape. In general, a reflector must fit in-
side a holding case, so its shape cannot be lower at any point
than the plane defined by the border nor higher than a certain
threshold defined by the case. General BRDFs for the reflec-
tor surface must be taken into account. This is a common
configuration for illumination settings at streets and general
open spaces, besides other cases.

In this paper we will focus on the parallelization of the fol-
lowing simplified problem: in view of the far-field outgoing
radiance distribution of a light bulb and a reflector border,
find the shape for the reflector whose resulting illumination
matches a given optical set outgoing radiance distribution.
Do this below an adequate user-defined threshold, and tak-
ing into account the suggested initial shape plus its confi-

Light Bulb

Case

Reflector

Border

Diffusor

Figure 1: An Optical Set.

dence values. The algorithm moves towards minimizing the
distance, in the l2 metric, between the resulting illumination
from the reflector and a prescribed, ideal optical radiance
distribution specified by the user.

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

J.A. Magallon, G. Patow et al. / Parallel Inverse Design of Reflectors

The following constraints are imposed on the surface
shape to be built:

1. The shape must satisfy certain constructive constraints
that require that the shape of the reflector be the graph
of a function with respect to the plane of the reflector’s
border.

2. The resulting shape must exactly fit the given border.
3. The shape cannot be lower than the border plane (z =
0), or higher than a certain maximum height (it must fit
inside the case).

Simulation problems are usually very hard with respect
to numerical computations. And inverse problems are even
more hungry of computing power, as numerical methods to
solve an inverse problem involve the solution of many di-
rect simulation problems. Even with the high performance
of modern computing hardware, the traditional approach of
sequential processing on a computer is not enough to bring
inverse design to a daily usage. The only way to surpass this
limitation is to spread the calculations over several proces-
sors running in parallel.

The paper is organized as follows:

• Section 2 presents a short state of the art for the solution
of inverse problems in light simulation.

• Section 3 will present an overview of the inverse problem
this paper focus on, the design of reflectors. This section
will also describe the implementation of a sequential al-
gorithm to solve the problem.

• Sections 4 and 5 will detail respectively the design and
implementation of the parallel solution that is proposed.

• And finally section 6 states the conclusions that have been
derived from this work and proposes future lines for fur-
ther investigation and development.

2. Previous Work on Inverse Problem Solution

The central problem of the paper can be put in the context of
inverse illumination problems. These include topics such as:

• Source position/orientation [PRJ97].
• Luminaire emittance [SDS∗93] [KPC93] [HMH95]
[Mar98] [RH01].

• Surface characteristics of some relevant surface elements
[DHT∗00] [BG01].

• Shape or position and orientation of the reflectors in the
scene [CSF99] [DCC99].

One common characteristic of this kind of problems is that,
in general, we know in advance the desired effect of the il-
lumination at some regions of the scene (their final radiance
distribution). Then, the algorithm has to work backwards to
establish the missing parameters. For recent surveys on in-
verse problems in rendering, refer to [PP03] and for a survey
on the sort of problems studied here, refer to [PP05].

In this paper we present a solution to the problem of find-
ing the shape of a reflector given the outgoing radiance dis-
tribution that should emanate from the resulting optical set,

without diffusor, as seen at the far-field region, i.e.: large dis-
tances from the optical set. Its main distinctive features are:

• the type of surface used to define the reflector shape
(a regular grid of heights instead of a bicubic b-spline
[Neu94]) that gives more flexibility in the range of achiev-
able surfaces (although introducing C0 continuity on the
edges joining triangles)

• the generality of the light propagation simulation step
which, in our case, is based on the well known Monte
Carlo Light Tracing algorithm that can handle all sorts of
Bidirectional Reflection Distribution Functions

• handling interreflections in an efficient and natural way.
Traditional approaches work without taking interreflec-
tions (local illumination model) or general BRDFs into
account [KO98] [Neu94].

• the global strategy used for obtaining the desired reflector
surface, taking into account user’s knowledge/experience.

To the best of our knowledge, no attempts were made to
build a parallel version of any inverse problem of any type.

3. The inverse problem: Overview

The basic solution approach was introduced in [PPV04a]
and starts by reformulating the problem in the following
manner: Starting from an initial surface (which might be
user-provided), iteratively minimize the distance between
the outgoing radiance distribution of the current reflector,
Lout(), and the desired (user specified) outgoing radiance
distribution, ̂Lout , where is a vector of dimension n and
defines the shape of the reflector.

We aim at the optimization of a function f () :: Rn → R

of the form f () = dist(Lout(),̂Lout). For the general case,
the algorithm basically works “around” the chosen starting
reflector by generating a family of new ones by iteratively
moving each original component of . Those new reflec-
tors are evaluated by the usage of a Monte Carlo light ray
tracing algorithm (in order to be able to accomodate gen-
eral non–specular BRDFs), and the ones with errors close
to the one with the best error so far are averaged to obtain
the solution of the current iteration. Actually, “close” in this
context refers to all reflectors whose evaluation gives a value
with a variance that superposes with the error and the vari-
ance of the best one. Once this new reflector is generated,
and if the user-defined tolerance has not been achieved, the
algorithm proceeds by refining the surface by adding new
control parameters, and restarts the optimization loop men-
tioned above.

In the case when the user provides an initial shape, the
process is done in two basic steps (figure 2). First, the user-
provided shape is scaled and translated in order to get a bet-
ter initial estimation of the desired shape to be found. This is
done by linearly modifying the surface in each of its three di-
mensions, in two steps: vertical accommodation, where the

c© The Eurographics Association 2006.

100

J.A. Magallon, G. Patow et al. / Parallel Inverse Design of Reflectors

1

2

8

9

Error

Reflector

Lower Error: 7

Average
1,7,8

Base Surface

. . .

Upper Bound

User−provided Surface

Lower Bound

Steps 1 & 2: Scale & Translate

Desired Surface

Step 3: Global Optimization

Figure 2: The Optimization Algorithm: an overview.

shape is modified in its height; and horizontal accommoda-
tion, where the surface is scaled and translated in its other
two dimensions. Then, in the second step, a global optimiza-
tion procedure as described above is applied, but restricted to
respect the user’s provided constraints to the desired shape.

3.1. Choice of Distance

The distance metric we have defined and tested for our out-
going radiance representation is the well known l2 norm.
Since we are using the industrial standard (C,) represen-
tation ([CM97]) for outgoing radiance, we take the error to
be given by

Error2() =
(

i j

i j|Lout()i j− L̂out
i j|2

)1/2

i.e. summing the squared modulus of the difference between
matrix entries, where the sum over indices i j must be un-
derstood over the two angular indices in the (C,) represen-
tation, and i ∈ [0,s] and j ∈ [0, t] and i j is the solid angle
subtended by the i j-th entry of the (C,) matrix.

Finally, we added penalizing terms to this error to take
into account the industry restrictions. The penalty im-
posed to the objective function is the square of the con-
straint violation. In this way inequality constraints are
handled through a penalty function that “turns on” when
the constraint is not satisfied. For example, a penalty
term fCi = Ai(UpperBound−GridVertexi)2 is added when
GridVertexi is greater than UpperBound and zero other-
wise, with Ai being a convenient weighting factor defined
as a system constant with a very large number.

Figure 3: Close up of tessellated lattice border.

3.2. Shape representation

We chose implement a grid representation scheme because:

• It allows us to avoid undesirable striations since images
(in the optical sense) are formed behind the reflector
[CM97].

• An accurate template or tool to build a physical reflector
from the resulting data can easily be made.

• As only points “inside” the boundary are suitable for op-
timization, this bounds are intersected with the grid lines
(figure 3).

3.3. Wrapping the surface

Basically, a surface wrapper is a data structure that wraps
around the basic polygonal surface to optimize, exposing
only a few parameters to the optimization algorithm. For
example, a wrapper can expose a certain region of the un-
derlying reflector for the optimizer to focus on this area, in-
terpolating the rest in a way transparent to the system. This
strategy is applied by iteratively adding only a few vertices
to the wrapper until convergence is achieved or a new change
in resolution is needed, which occurs when there are no ver-
tices left to add.

We can analyze the two components of this wrapping
strategy separately:

• The surface wrapper: this component consists of a basic
wrapper which is initialized with the vertices optimized at
the previous resolution of the reflector, and which interpo-
lates the other vertices. In our current implementation we
are using the well known Akima polynomial interpolator.

• The addition of new vertices: each time the surface needs
more flexibility, new vertices are added by sorting the
already used vertices according to their differential con-
tribution to the overall error (the regions on the C ma-
trix affected by the vertex for the current configuration
[PPV04a]), and choosing the worst N vertices. For each
of these, its surrounding vertices are selected from the list
of free vertices, and the m with maximum reflector free
area coverage are added to the wrapper ([PPV04b]).

We also use this differential vertex contribution (which
we will call delta from now on) as a measure to adapt the
number of steps each vertex spans, making worst vertices
span a bigger number of positions.

c© The Eurographics Association 2006.

101

J.A. Magallon, G. Patow et al. / Parallel Inverse Design of Reflectors

Refl := create a low-res reflector

while (not converged)

and (not userDefinedStop)

FreeVerts := all verts in Refl

WrapRefl := wrap(Refl, FreeVerts)

while (not converged)

and (FreeVerts is not empty)

addVerts(WrapRefl, FreeVerts)

optimize(WrapRefl)

if (not converged)

increaseResolution(Refl)

Figure 4: General optimization algorithm.

3.4. General Optimization

As stated above, we reformulate the problem as a global op-
timization one. The algorithm is simply described in figure
4 (see [PPV04a] for additional details).

We start with a low dimensional reflector (generally, a
2 cols × 4 rows reflector), and try to optimize its shape. In
order to both alleviate the exponential nature of the change
in reflector resolution (number of vertices to optimize), and
also to allow a more progressive reduction of the error dis-
tance, we introduce a wrapping scheme that allows a pro-
gressive introduction of vertices to optimize, see Section 3.3.

At the core of the algorithm, we conducted tests of the per-
formance of each member of a family of reflectors obtained
by iteratively adding an increment to each combination of
the vertices. For this to be practical, the size of this gener-
ated family of reflectors has to be kept manageable. Thus,
the vertices are sorted according to their relative degree of
wrongness (see below) and we put more effort where a larger
error was found.

3.5. User Guided Optimization

In this section we will describe the way optimization can be
improved by taking advantage of the user’s knowledge of
the reflector to be built. This is done in a two-fold manner:
on one side, use a user-provided shape as starting point for
the optimization procedure, and, on the other hand, use the
confidence bounds the user gave with the shape as bounds
for the optimization process. Those bounds are intended to
be used to focus the optimization on the family of possible
reflectors to the ones around the user-provided starting shape
(see figure 5 for some examples).

The procedure consists of two nested loops, the outer one
responsible of the multi-resolution changes on the shape
(See Section 3.3), and the other one consisting of two ba-
sic steps that execute until a convergence criterion has been
achieved. These two steps are: Overall Accommodation
(Section 3.5.1) and Vertex Optimization (Section 3.5.2). Of
course, both steps must preserve the user provided bounds.

A B C

A1 B1 C1

A2 B2

A3

Figure 5: Sample set of desired objective reflectors, with
their respective profiles, and schemas of initial reflectors for
user-guided optimization tests.

alpha

beta

delta

epsilon

gamma

phi

Figure 6: The usage of the variables , , , , and .

3.5.1. Overall Accommodation

This step consists of trying to modify the original surface
while trying to retain its original shape at the same time.
This is done because we consider that the user provided a
shape that is close to the desired one, so we try to take max-
imum advantage of this information. This is done by taking
the original surface, defined as a function z = f (x,y) on the
(x,y) plane, and changing it by introducing a linear modifi-
cation in each possible dimension. This way, the surface now
becomes a function of , , , , and of the form

z= f (x+ , y+)+

where and introduce linear variation in the z axis, while
the other four new variables serve as lateral/longitudinal ac-
commodation linear correction terms/factors (see figure 6).

The optimization process itself is performed by the global
optimization algorithm described before, with bounds set in
such a way that they preserve the reflector boundary.

c© The Eurographics Association 2006.

102

J.A. Magallon, G. Patow et al. / Parallel Inverse Design of Reflectors

3.5.2. Vertex Optimization

Once the overall shape was optimized as much as possible
in the previous step, and if the obtained error is not lower
than the desired error, the optimization strategy proceeds to
perform a minimization of the resulting error on a per-vertex
basis. Before doing that, the vertices that are most significant
for the optimization should be identified, in order to be able
to use a modification of the algorithms already described for
the non-user guided optimization (see Section 3.4). Here we
are in the situation where there is no previous surface to use
as a reference, and we don’t know a priori which vertices
should we start with.

In order to find the set of vertices to be used to control
the first iteration of the optimization procedure, we use a
purely geometric criterion, trying to select those that ensure
the highest control of the underlying surface. This criterion
is based on choosing the vertices i that minimize the geo-
metric distance dist(i, j) to all others, while maximizing the
distance to those already chosen by the algorithm.

The optimization must respect and preserve the user de-
fined bounds (Bhi and Blo) around the original shape. This
means that the shape must verify

f user(x,y)+Blo ≤ f (x,y) ≤ f user(x,y)+Bhi

for every point (x,y) inside the shape boundary. In most
cases, Blo is less than 0.

4. Parallel Algorithm

Designing a parallel algorithm to solve a simulation problem
can be a complex task, where subjects as sequential code de-
pendencies, data dependencies, balance between processing
and communication and others have to be accounted for.

In this section we present the need for parallelization on
inverse design of reflectors, and the algorithm and imple-
mentation that have been developed.

4.1. Need for Parallelization

As presented in previous sections, the inverse problem is
solved by performing a high number of direct simulations.
Each one is a light tracing simulation that can take from sec-
onds to minutes to compute.

For a standard inverse problem, we may need to solve
about 20000 direct simulations to reach a good design. So
the average run time for an inverse design can go up to tens
of hours – or even days – on a single computer. The need for
a parallel solution is immediate.

4.2. Task and Data Dependencies of the Sequential
Algorithm

The core of the optimization algorithm described in figure 4
is the optimize() function. The skeleton of this function
is detailed in figure 7.

optimize(base_reflector):

reflector_set: set of reflectors;

store: set of pair(reflector,value);

generate deltas

generate reflector_set from base_reflector

for each r in reflector_set

v := simulate(r)

add pair(r,v) to store

average the best values from store that overlap

with the current global best one

Figure 7: Schematic of the sequential optimize() algo-
rithm.

The analysis of the algorithm detected two main areas
where parallel processing could be useful:

• On each step of the optimization (the pass from one
known good solution to another better one), several di-
rect simulations are performed. This simulations are com-
pletely unrelated to each other, as work on top of different
geometries defined by different parameter sets, so they are
candidates to be run in parallel.

• Each simulation is solved by light tracing algorithm. This
algorithm shoots rays from the light that store illumination
information on hit points over the geometry. Tracing each
of these rays is also independent of the others, so this is
another area suitable for parallel execution.

There are also places where concurrent processing can not
be applied due to data dependencies:

• Each step of the simulation starts from the result of the
previous one. This makes impossible to parallelize the cal-
culation of two steps, and the global advance of the itera-
tive algorithm is mainly sequential.

And finally, the analysis of relations between the possible
parallel tasks detected and the data they use are also impor-
tant regarding the implementation:

• Parallel direct solutions for each step use the same base
reflector, modified by the current parameter set.

• Parallel tracing of rays on a direct simulation interact with
exactly the same reflector.

These relations force some data of the algorithm to be shared
between tasks, so a decision is needed about to store them on
a unique instance (and let the tasks access it remotely) or to
replicate them.

4.3. Global Communications and Control

Looking at the data dependencies discovered in the previous
section, the communication needs of the parallel algorithm
will depend on how much of this data is going to be shared
between parallel tasks. The points where data needs to be

c© The Eurographics Association 2006.

103

J.A. Magallon, G. Patow et al. / Parallel Inverse Design of Reflectors

spread or collected between tasks will mark points of syn-
chronization in the parallel algorithm.

Data to be shared between tasks are:

• The geometry of a reflector in the direct simulation.
• The best solution reached at a point in time, so new solu-
tions generated in parallel can be compared with it.

With this restrictions, and based on the available hardware
described below, we designed our algorithm as follows:

• Each direct simulation will be parallelized on a SMP
(shared memory multi–processing) approach. All tasks
tracing rays have access to a shared geometry database,
and store light in mutual exclusion in an also shared table.
This makes the need for communications nearly null in
this step.

• The simulations needed to get the next best solution may
be performed in parallel on a distributed memory parallel
computer. The communication needs here vary depending
on the chosen distributed scheme.

For the distributed processing, two options appeared at a
first glance:

• A master-slave (or farm) scheme, where one process
guides the simulation, and several other tasks are just
workers that perform direct simulations on behalf of the
master.

• A data-parallel approach, where all tasks are equivalent
and perform simulations of different data sets, obtaining
a set of partial results. Their results are finally merged to
get the best global solution.

Initially the first idea looked as the most promising, with
respect to optimization. Regarding implementation, one re-
quirement was the use of existing sequential optmization
code that had been alredy tested and validated. As we started
to build the master–slave approach we realized that, apart
from simple data (like global minimum after each step or
global state to begin next step), some very complex data
structures had to be transferred between tasks (reflector ge-
ometry, wrapper, etc.), which required extensive modifica-
tions to current code. This was considered harmful with re-
spect to the optimization algorithm reliability so at the end,
the implementation chosen was a data-parallel approxima-
tion, which required just some syncronisation and data inter-
change, as can be seen in figure 8.

In our case, the solution is just a floating point number,
that measures the error with respect to the desired final light
field. So the communication needs are really low. The reflec-
tor and value sets used in the algorithm are not fully built, but
created on demand depending on the number of computers
in the parallel machine. So, if we run the simulation on a N
box cluster, reflectors and values are generated and stored in
chunks of N elements. This makes the system use a static
(but interleaved) load balance.

optimize(base_reflector):

self: task-id;

reflector_set: set of reflectors;

value_set: set of values;

store: set of pair(reflector,value);

generate deltas

generate reflector_set from base_reflector

self := who-am-i

for each r in reflector_set

if (r belongs to self) // mine

v := simulate(r)

else

v := <empty>

store v in value_set

for each v in value_set

if (v is not <empty>) // I have the solution

send(v,every-other-task)

else

receive(v) // someone will send it to me

for each r in reflector_set,

v in value_set

add pair(r,v) to store

// here all tasks have all values

average the best values from store that overlap

with the current global best one

Figure 8: Schematic of the parallel optimize() algo-
rithm.

4.4. Scalability

The static load balance can look not so good in principle, but
because of the relative sizes of the reflector set to simulate
and the number of processors in the parallel computer, the
misbalancing is minimal. So this approach should work fine
for the ranges involved in our problem.

There are two parts in the algorithm that are run in paral-
lel, and present different scalability.

For the calculation of deltas, the number of problems to
solve is in the order of the parameter space dimension (usu-
ally below 10), but the number of rays used is much higher
to obtain an accurate value for the deltas. So in this case only
a small number of processors can be used to build one delta
on each one. Anyway, the time for the delta calculation is a
small fraction of the total run time.

The simulation of the reflectors in the set is much a scal-
able problem. Only if the number of processors grows to
a level similar to the number of reflectors some scalability
problems will arise. As stated previously, the number of pro-
cessors is in the range 1− 100 and the number of reflectors
to be simulated can be up to 15000.

5. Implementation and Results

In this section we present some relevant details of the imple-
mentation and the results we obtained.

c© The Eurographics Association 2006.

104

J.A. Magallon, G. Patow et al. / Parallel Inverse Design of Reflectors

5.1. Test environment: hardware and software

The parallel computer used to perform our tests was the her-
mes cluster of the Instituto de Investigacion en Ingenieria de
Aragon ([I3A]).

It is a MIMD cluster built with 50 nodes. Each node has

• 2 Pentium4 Xeon processors at 2.8 GHz
• 2 Gb of RAM
• An internal 40Gb hard drive

The cluster is accessed via a front–end node, similar to the
computation nodes but with 8Gb of RAM. The system has
a central SAN/NAS storage system, built with two SunFire
v240 servers and some StoreEdge boxes filled with SATA
disks, offering a total space of 6 Tb. The interconnection of
the nodes and the storage system is done via two parallel
GigaBit Ethernet networks and several switches.

All the nodes run Linux, actually the FedoraCore 2 dis-
tribution. The system runs some batching and parallelization
software, like GRID and Condor, but for our needs we fo-
cused on the also available LAM–7.1.1 implementation of
MPI.

The LAM–MPI [Ind] software offers a complete imple-
mentation of the MPI v2 standard [MPI], with the corre-
sponding libraries for development of MPI applications and
the utilities for management of the parallel execution envi-
ronment.

5.2. Mapping Tasks and Processors

As the nodes were also capable of SMP parallel process-
ing, we initially tested an SMP version of the code, where
each light tracing simulation was programmed on top of the
POSIX Thread library. So our full algorithm has two levels
of parallel execution: one at the simulation level, with shared
memory multiprocessing, and one between simulations, in a
distributed memory schema.

But due to restrictions in the use of the cluster (the batch
queues should also be able to execute their jobs), this code
was not used in the MPI version. Anyway, the performance
of the threaded version of the simulation was nearly perfect,
with relative efficiencies higher than 90%.

LAM-MPI allows to build a virtual parallel machine se-
lecting which nodes the user wants to include in it. For our
probes we used sets from 10 to 50 boxes, and the final test
was executed on 40 of the 50 available nodes.

5.3. Performance

To evaluate the performance of the algorithm, we ran several
sequential and parallel simulations, to average timings and
diminish the effects of other processes running in the cluster.

To compare both simulations, we used the total running
time, but as is explained in previous sections, scalability is

different in two sections of the program. The delta calcula-
tion can not go faster than a certain speedup, because it can
use only a limited number of nodes.

In table 1 we present the results for the two simulations
of one step of the algorithms (one call to optimize()),
with 100.000 rays per simulation, and a parameter space di-
mension of 7 (so there are seven deltas to calculate). The
number of reflectors was 13824, and the number of proces-
sors included in the parallel machine was 40. In the table we
show the run time (sequential and parallel), the spedup and
the relative efficiency for the two main steps of the algorith
(the delta calculation and the reflector simulation). Measures
for each step are evaluated with respect to its own use of the
processors (the delta part only runs on 7 nodes and the rest
on 40) which is also shown in the table. The last row shows
global data, looking at the program as a whole and neglect-
ing the fact that the two parts are very different.

Sequential Parallel N S Er
Deltas 00:31:19 00:04:48 7 6.5 0.93

Reflectors 15:32:30 00:40:50 40 22.8 0.57

Total 16:08:28 00:52:35 40 18.4 0.46

Table 1: Running time for sequential and parallel algo-
rithms. Also, the number of processors used N, the speedup
S and the relative efficiency Er are shown.

The delta part was calculated with a ×100 factor in the
number of rays used for the simulation, so each of them is
noticeably longer than the ones in the reflector simulation
part. Here communication times are not very important and
the efficiency obtained is very good, about the 93%. The re-
flectors part uses lower precission simulations, so the times
are very short (as we will show below, the system simulates
about 400 reflectors per minute) and the times for compu-
tation and communication become comparable. Hereof the
lower effciencies obtained, about 57%. But the speedup ob-
tained is still good, higher than 20.

Our parallel algorithm is not focused on low-latency (i.e.
calculating a direct simulation in the least possible time), but
on throughput: getting a huge number of simulations in the
lowest total time. To measure the throughput of the parallel
machine, we also stored the total running time to simulate
the reflectors at several points in time (for example, after ev-
ery 100 simulations) so we could define some kind of ’reflec-
tors per minute’ throughput metric. The values of this metric
are shown in table 2 (average) and figure 9 (evolution over
time). The system runs at an average of 338 reflectors per
minute, and the speedup matches the one obtained for run
times.

Sequential Parallel Speedup
RPM 14.8 338.5 22.8

Table 2: Reflectors per minute, average.

c© The Eurographics Association 2006.

105

J.A. Magallon, G. Patow et al. / Parallel Inverse Design of Reflectors

Figure 9: Evolution over time of the average number of re-
flectors simulated per minute. Horizontal axis shows time
with an arbitrary scale (the number of reflectors simulated
in total). Vertical axis shows the rate of reflectors simulated
per minute (in logaritmic scale).

As can be seen in the graphs, throughput stabilizes over
time, as the average over a long running time diminishes the
runtime variance due to other CPU uses. The speedup of the
algorithm is not perfect (only an efficiency about 50%); this
can be caused by two main reasons:

• Other loads in the cluster. While running our simulations,
there were other batch processes running in the cluster (a
permanent load about 40%-50% was observed).

• Relative time of communications compared with simula-
tions.

6. Conclusions and Future Work

In this work we have presented both:

• A new algorithm for the design of reflectors in luminaire
optical sets.

• A parallel design and implementation of this algorithm on
a MIMD clustered computer.

The behaviour of this implementation has been evalu-
ated and compared with the sequential one, showing a big
improvement in simulation times. Obtained speedups are
higher than 20 and efficiency can be even more than 90%
in some parts of the code.

There are some areas where analysis is still pending and
further work will be needed:

• Estimation of the balance between communication and
calculation times, and study of possible enhancements.

• Execution of the tests in a controlled environment, even
with less processing nodes, to have more precise and
undistorted timing information.

7. Acknowledgements

We would like to faithfully thank the Instituto de Investiga-
cion en Ingenieria de Aragon ([I3A]) for granting us access
to hermes, its computation cluster, and for allowing to ’over-
burn’ the cluster for a short time.

This work has been developed under the project
TIN2004-07672-C03 of the Ministerio de Ciencia y Tec-
nologia of Spain.

References

[BG01] BOIVIN S., GAGALOWICZ A.: Image-based ren-
dering of diffuse, specular and glossy surfaces from a sin-
gle image. In Computer Graphics Proceedings, Annual
Conference Series (SIGGRAPH 2001) (August 2001),
pp. 107–116.

[CM97] COATON J. R., MARSDEN A.: Lamps and Light-
ing. Ed. Arnold, London, 1997.

[CSF99] COSTA A. C., SOUSA A. A., FERREIRA F. N.:
Lighting design: A goal based approach using optimiza-
tion. In Rendering Techniques ’99 (Proceedings of the
10th Eurographics Workshop on Rendering) (New York,
NY, June 1999), Lichinski D., Larson G. W., (Eds.),
Springer-Verlag, pp. 317–328.

[DCC99] DOYLE S., CORCORAN D., CONNELL J.: Au-
tomated mirror design using an evolution strategy. Optical
Engineering 38, 2 (1999), 323–333.

[DHT∗00] DEBEVEC P., HAWKINS T., TCHOU C.,
DUIKER H.-P., SAROKIN W., SAGAR M.: Acquiring the
reflectance field of a human face. In Computer Graph-
ics Proceedings, Annual Conference Series (SIGGRAPH
2000) (2000), pp. 145–156.

[HMH95] HARUTUNIAN V., MORALES J. C., HOWELL
J. R.: Radiation exchange within an enclosure of diffuse-
gray surfaces: The inverse problem. In Inverse Problems
in Heat Transfer, ASME/AIChE National Heat Transfer
Conference (Portland, August 1995).

[I3A] I3A: INSTITUTO DE INVESTIGACIÓN EN

INGENIERÍA DE ARAGÓN: I3A Home Page.
http://i3a.unizar.es.

[Ind] INDIANA UNIVERSITY: LAM-MPI Home Page.
http://www.lam-mpi.org/.

[KO98] KOCHENGIN S. A., OLIKER V. I.: Determina-
tion of reflector surfaces from near-field scattering data ii.
numerical solution. Numer. Math. 79, 4 (1998), 553–568.

[KPC93] KAWAI J. K., PAINTER J. S., COHEN M. F.:
Radiooptimization - Goal Based Rendering. In Computer
Graphics Proceedings, Annual Conference Series, 1993
(ACM SIGGRAPH ’93 Proceedings) (1993), pp. 147–154.

[Mar98] MARSCHNER S. R.: Inverse Rendering in Com-
puter Graphics. PhD thesis, Program of Computer Graph-
ics, Cornell University, Ithaca, NY, 1998.

c© The Eurographics Association 2006.

106

J.A. Magallon, G. Patow et al. / Parallel Inverse Design of Reflectors

[MPI] MPI FORUM: MPI Standard Home Page.
http://www-unix.mcs.anl.gov/mpi/.

[Neu94] NEUBAUER A.: The iterative solution of a non-
linear inverse problem from industry: Design of reflectors.
In Curves and Surfaces in Geometric Design (Boston,
1994), Laurent P. J., Méhauté A. L., Schumaker L. L.,
(Eds.), A. K. Peters, pp. 335–342.

[PP03] PATOW G., PUEYO X.: A survey on inverse ren-
dering problems. Computer Graphics Forum 22, 4 (2003),
663–687.

[PP05] PATOW G., PUEYO X.: A survey of inverse surface
design from light transport behavior specification. ac-
cepted for publication at Computer Graphics Forum 24,
4 (2005), 773–789.

[PPV04a] PATOW G., PUEYO X., VINACUA A.: Reflector
design from radiance distributions. International Journal
of Shape Modelling 10, 2 (2004), 211–235.

[PPV04b] PATOW G., PUEYO X., VINACUA A.: User-
Guided Inverse Reflector Design. Technical Report TR-
IIiA 04-07-RR, Universitat de Girona, 2004.

[PRJ97] POULIN P., RATIB K., JACQUES M.: Sketching
shadows and highlights to position lights. In Proceed-
ings of Computer Graphics International 97 (June 1997),
IEEE Computer Society, pp. 56–63.

[RH01] RAMAMOORTHI R., HANRAHAN P.: A signal-
processing framework for inverse rendering. In Computer
Graphics Proceedings, Annual Conference Series (SIG-
GRAPH 2001) (August 2001), pp. 117–128.

[SDS∗93] SCHOENEMAN C., DORSEY J., SMITS B.,
ARVO J., GREENBERG D.: Painting With Light. In
Computer Graphics Proceedings, Annual Conference Se-
ries, 1993 (ACM SIGGRAPH ’93 Proceedings) (1993),
pp. 143–146.

c© The Eurographics Association 2006.

107

