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Abstract

Most existing Content-based Information Retrieval (CBIR) systems using semantic annotation, either annotate all

the objects in a database (full annotation) or a manually selected subset (partial annotation) in order to increase

the system’s performance. As databases become larger, the manual effort needed for full annotation becomes un-

affordable. In this paper, a fully automatic framework for partial annotation and annotation propagation, applied

to 3D content, is presented. A part of the available 3D objects is automatically selected for manually annotation,

based on their "information content". For the non-annotated objects, the annotation is automatically propagated

using a neurofuzzy model, which is trained during the manual annotation process and takes into account the infor-

mation hidden into the already annotated objects. Experimental results show that the proposed method is effective,

fast and robust to outliers. The framework can be seen as another step towards bridging the semantic gap between

low-level geometric characteristics (content) and intuitive semantics (context).

Categories and Subject Descriptors (according to ACM CCS): I.5.2 [Pattern Recognition]: Design Methodology

1. Introduction

During the last years significant progress has been achieved

to all steps of the media chain, concerning the media cre-

ation, storage, transmission and general use of big quanti-

ties of multimedia data, such as sound, video, texts, draw-

ings and 3D objects and scenes. Among these, 3D data is of

particular interest because of the existence of new, improved

digitization hardware tools, more efficient 3D reconstruction

techniques and also their exploitation prospects in the scien-

tific and industrial sectors, in fields as object recognition,

scene analysis, bioinformatics, medicine, etc.

Also, the need for knowledge exploitation and reuse in

modern multimedia database systems creates an imperative

need for retrieval of objects semantically similar to some

query objects that the user provides. Most of the methods

that have been presented in the literature are focused on the

improvement of the geometrical feature extraction process

(descriptor extraction). Despite that fact, the awareness that

no geometrical method can provide enough discriminative

power has led to the research on other preprocessing tech-

niques for classification and improved retrieval performance

of multimedia content. The more powerful technique in this

area is the use of semantic annotation. The annotation of

database objects lies on the "attachment" of information on

each object. This information can be constructional (e.g. de-

signer information or date of scanning, in case of 3D mod-

els), structural (e.g. geometrical descriptor vector) or seman-

tical (e.g. vector of probabilities, where each component ex-

presses the probability that the object has a predetermined

attribute). An annotation example could be the following: If

the attributes of interest for the characterization of an object

are [is it an animal? is it a mammal? does it have four legs?],

then a probability vector with semantic information could be

[1 1 0], which could partially describe a dolphin.

In traditional database systems, the user-annotator manu-

ally annotates all database objects, a work that requires sig-

nificant labour. Database objects are presented to the anno-

tator, one after the other, and s/he decides whether the object

possesses or not a specific attribute. In modern database sys-

tems, where continuous renewal and management of contin-
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uously increasing volume of information is crucial, manu-

ally annotation becomes non-functional. The process of an-

notation propagation focuses on this problem. The key ques-

tion to better understand the nature of annotation propaga-

tion is: "how can we automatically expand annotations of

certain already manually annotated objects to other objects

that have the same or similar attributes without presenting

them to the user for manual annotation?".

The scientific field of annotation propagation is an open

research topic, since only a few of the proposed methods

offer an acceptable and realistic solution to the problem.

In the following paragraphs, annotation propagation meth-

ods that have been introduced by the scientific community

are presented. Firstly, the methods that define object classes

and propagate the probability for each object to belong to

a concrete class, and secondly methods that propagate key-

words, which are attached to the objects and describe their

attributes.

Annotation Propagation and Relevance Feedback meth-

ods are usually used in combination. A unified frame for log-

based feedback and classification is presented in [LJH06].

When feedback log data is unavailable, the log-based rele-

vance feedback algorithm behaves exactly like a regular rel-

evance feedback algorithm, which learns the correlation be-

tween low-level features and user’s subjectivity. When feed-

back log data is available, the algorithm computes such a

correlation using both the feedback log data and the on-

line feedback from the users. In [HMK∗02], a method is

presented, which uses spectral methods to infer a seman-

tic space from user’s relevance feedback, so that the sys-

tem will gradually improve its retrieval performance through

accumulated user interactions. In addition to the long-term

learning process, the traditional approach to query refine-

ment using relevance feedback as a short-term learning pro-

cess, is modeled. The proposed short and long-term learning

frameworks have been integrated into an image retrieval sys-

tem. In [ZC02], an active learning framework for content-

based information retrieval is proposed. For each object in

the database, a list of probabilities is maintained, each in-

dicating the probability of this object having one of the at-

tributes. Knowledge gain is defined to determine, among the

objects that have not been annotated, which one the sys-

tem is the most uncertain of. The system then presents it

as the next sample to the annotator to which it is assigned

attributes. During retrieval, the list of probabilities serves as

an additional feature vector for calculating the semantic dis-

tance between two objects, or between the user query and an

object in the database. In [ZS01], a classification-based, key-

word propagation method is presented. The proposed frame-

work consists of an image database that links images to se-

mantic annotations, a similarity measure that integrates both

semantic features and image features, and a machine learn-

ing algorithm to iteratively update the semantic network and

to improve the system’s performance over time. The seman-

tic network is represented by a set of keywords having links

to the images in the database. Weights are assigned to each

individual link. The degree of relevance of the keywords to

the associated images’ semantic content is represented as the

weight on each link. While the user is interacting with the

system by providing feedbacks in a query session, a progres-

sive learning process is activated to propagate the keyword

annotation from the labeled images to un-labeled images so

that more and more images are implicitly labeled by key-

words. In [JM04], the use of the maximum entropy approach

for the task of automatic image annotation is proposed. Max-

imum entropy allows one to predict the probability of a la-

bel in the test data, when labeled training data is available.

The technique allows for the effective capturing of relation-

ships between features. Features are computed over rectan-

gular regions of the images, generated by partitioning the

image into a grid. The regions are clustered across images.

These clusters are called visterms (visual terms) to acknowl-

edge that they are similar to terms in language. In [SS03], an

attempt is made to propagate semantics of the annotations,

by using WordNet, a lexicographic arrangement of words,

and low-level features extracted from the images. The hi-

erarchical organization of WordNet leads to the concept of

implication/likelihood among words.

In the present paper a new framework for annotation and

annotation propagation in 3D model databases is proposed,

based on propagation of probabilities through neurofuzzy

controllers, using a combination of low-level geometric and

high-level semantic information. The system automatically

selects the most informative training examples and presents

them to the annotator for manual annotation. These exam-

ples serve as training data for the neurofuzzy controllers to

learn the relationship between the low-level information and

the attributes that an object has. The proposed framework is

a complete and efficient solution for the automatic annota-

tion of 3D databases.

The rest of the paper is organized as follows: In the sec-

ond section, the concept of the proposed framework is intro-

duced. Experimental results are given in the third section. In

the fourth section, conclusions are drawn based on the re-

sults and finally, limitations of the concept and future work

are presented in the fifth section.

2. Concept

The central idea behind the proposed framework is the train-

ing of the annotation system, using the information given

from the user during the manual annotation, so that it can be

later used for the automatic annotation. The system operates,

therefore, in two distinct modes: The training mode and the

on-line mode. Before describing the two modes, some infor-

mation is given about the features (geometrical and seman-

tic) used and also the operating principles of the neurofuzzy

controller.

c© The Eurographics Association 2008.

50



Michalis Lazaridis & Petros Daras / Annotation Propagation

2.1. Features

Every 3D object Oi, i ∈ {1, ...,N}, where N is the number

of 3D objects in the database, is represented by two vec-

tors: The first one is the feature (descriptor) vector, Gi =
〈gi1, ...,giT 〉, where T is the number of the features, which

expresses the low-level geometrical features extracted from

the object; the second one is the probability vector, Pi =
〈pi1, ..., piK〉, where K is the number of all possible attributes

in the database, consisting of the probabilities pik for an ob-

ject i to have a specific attribute Ak,k ∈ {1, ...,K}. Every

database object belongs to certain categories or has certain

attributes. The attributes form a tree structure with multiple

levels. Each node (leaf or internal) represents an attribute.

The root node can be seen as a generic entity attribute that all

objects have. Attributes that are closer to the root are more

general so that when an object has a specific attribute it also

has its parent attribute (inheritance). In the current imple-

mentation it is also assumed that an object can have maxi-

mum one attribute per attribute tree level. An example of a

two-level attribute tree structure can be seen in Figure 1.

Figure 1: Attribute tree structure with two levels

2.1.1. Low-Level Features and Geometrical Distance

3D-objects are pre-processed to obtain a so-called low-level

feature vector which is a numerical vector representing an

abstraction of the 3D object.

The geometrical distance between two objects Oi and O j

is defined as the Minkowski distance (Ln) between the de-

scriptor vectors Gi and G j of the objects, as follows:

dg(i, j) = n

√

√

√

√

T

∑
t=1

|git −g jt |n (1)

where n ∈ N+, t ∈ {1, ...,T}.

The distances can be normalized and converted to similar-

ities as follows:

similarity(i, j) = 1−
distance(i, j)

distancemax
(2)

where distancemax is the maximum distance between two

database objects.

2.1.2. Semantic Features and Semantic Distance

The semantic features for each object i are the elements of

the probability vector Pi.

The semantic distance between two objects Oi and O j is

defined as:

ds(i, j) =
K

∑
k=1

wsk

[

pik(1− p jk)+ p jk(1− pik)
]

(3)

where wsk is the semantic weight of attribute Ak, k ∈
{1, ...,K}. The semantic weights of attributes depend on the

level on which the specific attribute lies in the attribute tree

and can be calculated as follows:

wsk = αlk−1
,α ∈ [0,1] ⊂ R (4)

where lk ∈ N
+ is the attribute level.

The overall distance between two models can be calcu-

lated as the weighted sum of the geometrical and the seman-

tic distance between the models:

d(i, j) = wg ·dg(i, j)+ws ·ds(i, j) (5)

with wg +ws = 1.

2.2. Neurofuzzy Controllers

A neurofuzzy controller is a neural network based fuzzy sys-

tem, capable of learning its own internal parameters through

the use of training examples. Neurofuzzy systems com-

bine the learning capabilities of neural networks with the

transparency of Fuzzy systems ( [Jan93], [Cal99], [Kra03],

[CP04], [KBLP07]). In Figure 2 the distinct steps of a Fuzzy

Figure 2: Distinct steps of a Fuzzy Logic system

Logic system are shown. In the fuzzification step, a quali-

tative description of the numerical input variables through

linguistic variables takes place. Every linguistic variable’s

domain is covered by fuzzy sets, called linguistic terms. A

membership function, defined for every linguistic term, esti-

mates a membership value for every numerical input value.

The knowledge base (rulebase) encodes the Expert knowl-

edge over the system with fuzzy rules in the following form:

IF x is X AND y is Y THEN z is Z

where x and y are the input variables, z is the output vari-

able, X, Y and Z are terms of the corresponding linguistic

variables.

By inference based on the rulebase, a qualitative output

value is calculated, in the form of a linguistic variable. Fi-

nally, during the defuzzification, the linguistic output vari-

ables are mapped to exact numerical values.
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The fuzzy logic steps of a neurofuzzy controller are im-

plemented as a multi-level structure of coupled neurons.

Back-propagation of the error (difference between actual

and target value) allows for the adjustment of the neural

weights and the fuzzy logic parameters during the training

mode. In order to achieve the latter the activation function of

the neurons must be differentiable, thus various changes to

the classic Fuzzy System are needed.

In Figure 3, a neural network for implementing a Fuzzy

Logic system is shown. The network has a five layer struc-

ture. The neurons of the first layer represent the input vari-

Figure 3: Neurofuzzy model layers

ables and simply propagate the input values to the next layer.

The second layer is the fuzzification layer. The third and

fourth layers implement the rulebase and inference mech-

anism of the Fuzzy Logic System. The fifth layer represents

the defuzzification. Therefore, regarding the i-th linguistic

output variable:

yi =

n

∑
j=1

mi jx j

n

∑
j=1

x j

(6)

where mi j are the weights of this layer (abscissas of the sin-

gletons), which are adjusted during the training and x j are

the outputs of the fourth layer.

The goal of training the network is to find a set of weights

such that the error between the desired output and the actual

output is minimized. The Delta rule ( [RHW86]) is based

on the gradient descent algorithm. The error measurement is

defined as:

E =
1

2
(t −o)2

(7)

where t is the desired (target) output and o the real output

for the actual session. E is positive and becomes smaller as

the performance of the network becomes higher. The gradi-

ent descent algorithm proposes the change of the weights wi

by an amount ∆wi, proportional to the gradient of E at the

present location:

∆wi = −η
∂E

∂wi
(8)

where η is the learning rate. A trained neurofuzzy model

is able to describe well the input-output mapping for any

arbitrary non-linear function.

2.3. Training mode

In Figure 4, the components that are active during the train-

ing mode are shown. There are three main components

Figure 4: Training mode

which are active during the training mode:

• The NeuroFuzzy Unit

• The Knowledge Gain Estimator

• The Annotation Interface

In the next sections each component is explained in detail.

2.3.1. The NeuroFuzzy Unit

The Neurofuzzy Unit serves as a classifier. A neurofuzzy

controller is generated for each attribute of the attribute tree.

The objective of each neurofuzzy controller is to estimate

the probability for an object to have a specific attribute by

comparing its low-level features with those of other objects

known to have the attribute.

Each neurofuzzy controller NFk, dedicated to an attribute

k, is a two input-one output system. The input variables are:

Lmin
1 : The L1 (Manhattan) distance of object i to its closest

neighbor with the attribute k.
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Lmin
2 : The L2 (Euclidean) distance of object i to its closest

neighbor with the attribute k.

The output variable probk
i represents the probability pik of

object i to have the attribute k.

For each newly annotated object i, all K neurofuzzy con-

trollers are trained with the above mentioned distances from

the corresponding sets of the already annotated objects as

input. This implies that one annotated object per attribute

must be available during system’s initialization. For object

i ∈ {1, ...,N} and a specific attribute Ak with k ∈ {1, ...,K},

the target output of the corresponding neurofuzzy controller

is computed as:

tik =

{

1.0 if object i has the attribute Ak

0.0 otherwise
(9)

The success of the neurofuzzy controllers depends on the

assumption that objects close to each other in the geometri-

cal feature space are considered semantically similar up to a

degree.

The use of other classification learning techniques is also

possible. The advantages of the neurofuzzy approach are

readability of the acquired knowledge and great perfor-

mance, which was essential for the real time operation.

2.3.2. The Knowledge Gain Estimator

It is crucial for the proposed annotation system and espe-

cially for its learning ability, to choose the "right" training

examples for manual annotation. The procedure of pick-

ing the objects that contain the most valuable information

for training, is referred to as Active Learning ( [FSST93],

[CMM∗00]). The objective of such an action is to reduce the

amount of data (and thus the required time) that is necessary

for the system to be optimally trained, which is, in our case,

the number of manually annotated objects. The criterion for

selection of the examples is, therefore, the maximization of

the knowledge that will be gained through the selection of an

object for manual annotation. The knowledge gain (KG(i))
for an object i can be estimated as follows:

KG(i) =
1

min
1≤l≤L

{ max
level(k)=l

pik}
(10)

where level(k) is the level of attribute k in the attribute tree

and L the number of levels. That means that objects with a

low dominant probability per attribute level are favoured.

2.3.3. The Annotation Interface

The Annotation Interface (Figure 5) provides annotation, an-

notation propagation and annotation validation capabilities.

It consists of four main frames:

• The attribute tree area, where the attribute tree structure

is shown, with all its attributes in a clickable form. The

annotator can check/uncheck the corresponding attributes.

• The screenshot area, where a 2D screenshot of the exam-

ple object is shown.

• The results area, where results and statistics concerning

the annotation process are presented.

• The controls area, for initializing and controlling the sys-

tem, as well as setting various system parameters.

Figure 5: Annotation Interface

During an annotation session, the knowledge estimator

selects a non-annotated object for manual annotation. A

screenshot of the object is presented to the annotator along

with the attribute tree structure, where s/he can select by

checking the appropriate checkboxes which attributes the

object has. For all checked attributes the corresponding value

of the probability vector is set to 1.0. For all other attributes

the probability is set to 0.0. The user then applies the anno-

tation and the neurofuzzy unit recomputes all the probabili-

ties of all other non-annotated objects, based on the updated

annotated set. This procedure is repeated until all database

objects are annotated or until the user breaks up.

2.4. On-line mode

As depicted in Figure 6, during the on-line mode, the trained

Neurofuzzy Unit classifies the non-annotated database ob-

jects without external help. As in training mode, for every

non-annotated object i, whose probability vector needs to be

estimated, all K neurofuzzy controllers are involved, with

the set of the already annotated objects as input. The object

is considered to have a specific attribute if the correspond-

ing probability is the highest among the probabilities of all

other attributes of the same level (dominant attribute). The

resulting attributes can then serve as suggested values if the

annotator wishes to continue with the manual annotation, or

they are stored directly in the database.

3. Experimental Results

The annotation propagation framework was tested on two

3D model databases:
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Figure 6: On-line mode

• The ITI database (http://www.iti.gr) with 441 models and

17 attributes

• The VICTORY database (http://www.victory-eu.org)

with 164 models and 16 attributes

The geometrical descriptors used, were produced through

the Spherical Trace Transform with Krawtchouk moments

as initial functional [DPA∗07]. The dimension of the geo-

metrical descriptor space is 4320.

The descriptor vectors were normalized into the interval

[0,1] using the following scheme:

norm(〈gi1, ...,giT 〉) =

〈

gi1

max
n∈{1,...,N}

gn1
, ...,

giT

max
n∈{1,...,N}

gnT

〉

(11)

for object i, where T is the number of the geometric features

(4320) and N the number of database models.

The geometrical distances were also normalized into the

interval [0,100].

In Table 1 the linguistic terms for both input linguistic

variables are shown: The weights of the fifth layer were ini-

tialized with the value 0.5.

In order for the weights to reach rapidly the region around

their optimal values and then just finetune in that region, the

learning rate η for the gradient descent algorithm was set

Table 1: Linguistic terms of input variables

Variable Term Mean Spread

L1/L2 Very Close 5.0 4.0

L1/L2 Close 15.0 4.0

L1/L2 Medium 25.0 4.0

L1/L2 Far 35.0 4.0

L1/L2 Very Far 45.0 4.0

variable, using the following scheme:

η = max{ηmax −
rannot

ηdiv

,ηmin} (12)

where

rannot =
number of annotated objects

number of database objects
(13)

Experimentally, the following values were selected: ηmax =
0.2, ηmin = 0.001, ηdiv = 5.

Two metrics were used in order to observe the system’s

performance and state:

• the Mean Squared Error (MSE) and

• the Average Matching Error (AME).

The Mean Squared Error of an estimator is one of many

ways to quantify the amount by which an estimator differs

from the true value of the quantity being estimated:

MSE =
1

N

N

∑
n=1

K

∑
k=1

1

2
(pnk − pnk)

2
(14)

where N is the number of database objects, K the number of

attributes and pnk, pnk the desired and actual output proba-

bility for object n having the attribute k, respectively.

The Average Matching Error is defined as follows: Ev-

ery database object i is selected as a query in a Search &

Retrieval session. For the set R = {r1, ...,rJ} of the top J re-

trieved results a matching error is calculated using:

MEi =
1

J
∑
j∈R

ds(i, j) (15)

where ds(i, j) is the semantic distance between the query i

and the j-th retrieved result. The parameter J is fixed as the

number of occurrences of the rarest attribute. The Average

Matching Error is then calculated by:

AME =
1

N

N

∑
i=1

MEi (16)

Both metrics decrease as the performance increases.

During a Search & Retrieval session, the overall distance

(Equation 5) between two models is needed. The semantic

weight is proportional to the percentage of the annotated

models. That means that on system start, searches are based
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mainly on content. As more and more annotations occur, the

system changes the balance towards semantics.

The following figures show the performance of the au-

tomatic annotation process on all test databases, compared

to the manual annotation process. Figure 7 shows the re-

Figure 7: Performance of the system for the ITI database

Figure 8: Error metrics for the ITI database

sults for the ITI database. The horizontal axis of the figure

is the percentage of annotated objects. The vertical axis is

the percentage of objects that are properly annotated. The

black curve shows the performance of the manual annotation

(identity function), while the red curve indicates the perfor-

mance of the automatic annotation system. After the manual

annotation of 40.82 % of the database, all models are prop-

erly annotated. Figure 8 shows the MSE (green curve) and

AME (blue curve) error metrics for the ITI database, respec-

tively. Figures 9 and 10 depict the performance and the error

metrics for the VICTORY database. After the manual anno-

tation of 45.12 % of the database, all models are properly

Figure 9: Performance of the system for the VDB database

Figure 10: Error metrics for the VDB Database

annotated. The results show a similar system behaviour for

both databases. As one can easily notice in the figures, the

system starts operating after a number of objects has been

annotated. This is due to the requirement, that minimum

one object per attribute must be manually annotated, before

the system can operate. After this, the system starts learning

with great speed. After a number of characteristic models per

attribute has been annotated, the system can easily recognize

the majority of the models and the learning speed decreases.

At this point, the outliers become more "interesting" for the

system, thus they are selected for annotation.

4. Conclusions

In this paper a neurofuzzy approach for active learning-

based annotation propagation was proposed. A neurofuzzy

controller set was used to estimate the attributes of each

database model using knowledge obtained from manual an-

notations of objects suggested by the system. The selec-
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tion of the training examples was based on the informa-

tion content of the models. Although the proposed frame-

work induced a substantial acceleration of the annotation

process, one cannot neglect the fact that the whole process

still depends on the quality of the geometrical information.

A workaround for this unwanted property would be the inte-

gration of other techniques, such as Relevance Feedback.

Another interesting perspective for the effectiveness of

the current concept is scalability. From the experimental re-

sults it is obvious that in databases of a few hundred objects

roughly 25 % of the objects have to be manually annotated

so that annotation is effectively propagated to 90 % of the

total objects in the database. To get a 100 % correct propa-

gation, more than 40 % of the objects need to be annotated

manually. For large databases this might still be prohibitive

regarding manual annotation effort. The implementation of

the concept in a distributed manner would be a significant

help in this direction. While the 3D data set and the acquired

knowledge can be kept in a central location, multiple annota-

tors can work on this dataset over a distributed user interface.

5. Future Work

As mentioned above, in the current concept it is assumed

that each object has maximum one attribute per attribute

tree level. This limitation is not acceptable in a real an-

notation system, since an object can be described in many

different contexts (e.g. a marble statue can be described

as an artefact, a material, a time period, a human, etc.).

Furthermore, the attribute tree is a static structure. No at-

tribute creation/deletion/editing is currently supported. An-

other known limitation is the minimum size of the categories

(minimum number of objects having a specific attribute) in

order for each neurofuzzy controller to have enough input

to be trained properly. This size depends on the diversity

of the objects of each category. Finally, the integration of

a Relevance Feedback scheme in the current concept would

noticeably accelerate the automatic annotation process and

also reduce the dependency on the geometrical information.
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