
EUROGRAPHICS 2000 / A. de Sousa, J.C. Torres Short Presentations

Interactive Modelling of Convolution Surfaces with an
Extendable User Interface

Yuichiro Goto�, Alexander Pasko&

(�) Graduate School, University of Aizu, Aizu–Wakamatsu, 965–85–80 Japan.
m5041110@u-aizu.ac.jp

(&)Department of Digital Media, Hosei University, Koganei, 184–8584 Japan.
pasko@k.hosei.ac.jp

Abstract
Convolution surfaces enable the user to model complex free-form shapes. Due to analytical solutions for some

kernel functions and skeletal elements, it is possible to model convolution surfaces interactively. An extendable
user interface allows the user to design models using different types of convolution surfaces. New primitives can
be easily bound to the modeller using the proposed binding technique. Models generated in HyperFun language
can be exchanged between modelling tools on several platforms.

1. Introduction

Convolution surfaces are a class of implicit surfaces defined
using integration of a kernel function over a skeleton con-
sisting of different geometric elements. Properties of convo-
lution, such as superposition, make control of smooth im-
plicit surfaces using skeletal elements quite intuitive. How-
ever, since introduction of them in 1991 by Bloomenthal
and Shoemake 1, convolution surfaces were considered an
elegant but not practical solution because of the problems
with slow and not precise numerical integration. Analyti-
cal solutions for some kernel functions and skeletal elements
were found by Sherstyuk 2; 3. Analytically defined convolu-
tion surfaces can be polygonized in near real-time rate and
can be used for interactive modelling.

In this paper, interactive modelling of convolution sur-
faces with an extendable user interface is presented. Using
an extendable user interface, the modeller is not bound by
limited types of convolution surfaces. The user can intro-
duce new primitives in the modeller without a system source
code level extension. Since there are different types of ker-
nel functions and skeletal elements, many various types of
convolution surfaces exist. For this reason, an extensibility
of the modeller is very useful.

The modeller exports created models in the form of Hy-
perFun programs 4; 6. HyperFun is a high-level language
used for describing F-rep models 5. F-rep is a model, which

defines geometry of objects in the form of F(x1;x2; :::;xn)�
0. F-rep is more general than traditional implicit surfaces.
There are several advantages of using HyperFun as the out-
put. HyperFun serves as an exchange protocol: the models in
HyperFun can be transfered between different tools. Various
modelling systems supporting HyperFun have been devel-
oped on several computer platforms such as Unix, Linux and
Windows. Since HyperFun is designed to be very simple, the
user can easily master it.

2. Convolution Surfaces

An implicit surface is defined by a field function or a poten-
tial function f :

fp 2 R3
j f (p) = Tg

where T is the isopotential value of the surface. A con-
volution surface is a specific implicit surface. A convolution
surface 2 is defined by a convolution of a skeletal element s
and a kernel function h:

Z
R3

s(r)h(p� r)dr� c

A skeletal element defines a shape of an object. Points,

c
 The Eurographics Association 2000.

Goto, Pasko / Interactive Modelling of Convolution Surfaces with an Extendable User Interface

lines, arcs, and triangles are used as skeletal elements. A
kernel function defines a distribution of a potential value
for each point of the skeleton element. As a kernel function,
Cauchy, Gaussian, inverse, and inverse square functions are
used for our primitives. The sophisticated features of convo-
lution surfaces are that free-form soft objects can be easily
generated, and skeleton-based design is allowed.

3. HyperFun Language

HyperFun is a high-level language designed for specifica-
tion of functionally based models (F-rep) in the form of
F(x1;x2; :::;xn) � 0. HyperFun is simple, but has enough
facilities for creating complex F-rep models 4. A function
defining an F-rep object can be constructed using assign-
ment, conditional selection, and iteration statements. Con-
ventional arithmetic and relational operators, standard math-
ematical functions, built-in set-theoretic operators, and sys-
tem F-rep library functions are available. The user can ex-
tend the library on different language levels (HyperFun, C,
Java). The convolution surface primitives are examples of F-
rep library extensions on C level. The subject of this work
is the interactive modeller extension without its reprogram-
ming.

4. Modeller with an Extendable User Interface

MAM/VRS 7 is used for implementing the modeller.
MAM/VRS is a multi-platform C++ graphics library. The li-
brary uses OpenGL or Mesa for rendering and supports sev-
eral toolkits for constructing GUIs. We choose Tcl/Tk 8 as a
toolkit, because Tcl/Tk is free and available on Unix, Linux,
and Windows.

The screenshot of the modeller is shown in Figure 1. The
modeller has four windows. The upper two windows and
lower left window have orthogonal views. The lower right
window has perspective view. The user interacts with the
modeller using four windows, but an operation such as mov-
ing vertex are not allowed in the perspective window.

The modeller is extendable by convolution surface prim-
itives, which become built-in primitives of the modeller. If
convolution surfaces using new kernels are added to the F-
rep library, it is possible to use those primitives without
rewriting the source code of the modeller. The modeller
is different from usual modellers in this aspect. Primitive
bindings are specified in an initialization file. The modeller
should be invoked with this file. Available built-in primi-
tives of the modeller are points, lines, cylinders, and meshes.
Cylinders can be used as offset surfaces that represent an
approximation of polygonized convolution surfaces. Meshes
mean indexed triangles, that is triangles are represented in a
mesh by a vertex array and an index array.

Figure 1: Screenshot of the modeller

Figure 2: Polygonized surface

Now, we give an outline of modelling procedures using
the modeller. First, a file for binding convolution surface
primitives should be prepared. Next, the modeller should be
invoked with the file. If the file has no syntax error, the mod-
eller’s interface appears on the screen. If default values are
used, some objects may be put on the working areas of the
modeller. Then, the user interacts with the modeller to cre-
ate and manipulate the objects. During the interaction, the
user can obtain a polygonized surface for the current model.
Figure 2 shows a polygonized surface. Finally, the modeller
generates a HyperFun program for the created model.

4.1. Binding primitives

This section describes an initialization format for primi-
tives binding. This file is important to inform the mod-
eller what F-rep primitives of convolution surfaces are used,
the way to display them during interactive modelling and
how to generate HyperFun programs for them. Primitives

c
 The Eurographics Association 2000.

Goto, Pasko / Interactive Modelling of Convolution Surfaces with an Extendable User Interface

are specified in a function form, that is like h f < name >

(par1; par2; :::; park). The function form is the same as one
used in HyperFun. The binding is achieved by passing pa-
rameters of convolution surface primitives to built-in primi-
tives of the modeller. If bindings are successful, the modeller
can change the value of parameters. The parameters can have
textual information and default values. Textual information
explains the meaning of a parameter. The file consists of four
blocks specifying bindings:

� HFModel
� Parameters
� Defaults
� Visual

These blocks can be placed in any order. In the file, com-
ments are allowed after “—”. Let us explain each block with
examples. Figure 3 is an example of the initialization file.

HFModel {
 "mesh primitive"
 primitive
 hfConvMeshR(x, v, i, 1.5)
}

Parameters {
 {"vector" array v[]}
 {"index" array i[]}
}

Visual {
 "triangle skeleton"
 shape
 Mesh(v, i)
}

Figure 3: Initialization file example

4.1.1. HFModel

A HyperFun model of the convolution surface primitive is
specified in this block. Textual information of a primitive,
type of the F-rep element, and F-rep library function for
the primitive are declared. The type of the F-rep element
is “primitive” or “operation”, but now only “primitive” can
be specified. Operations are such as blending union, scaling,
and so on. An F-rep primitive is declared with its function
used in HyperFun. Parameter “x” is reserved in HyperFun

HFModel {
-- textual information --
"my primitive"
-- type --
primitive

-- F-rep primitive --
hf<name>(x, center, b, c, d);

}

4.1.2. Parameters

Declarations of primitive parameters are presented in this
block. Textual information of a parameter, type of a parame-
ter, and parameter name are needed. The textual information
explains the meaning of the parameter. This information is
specified by a string. The types of parameters are “real” and
“array”. The words “x,” and “a” should not be declared, be-
cause such words are reserved in HyperFun and lead to syn-
tax error during the interpretation of generated programs by
the modeller. Also, “If,” “while,” and other reserved words
should not be used. The form “name[size]” is used, if a pa-
rameter is an array. Size of the parameter is an option: an
empty size array is allowed, but it can not have default val-
ues.

Parameters {
{

"point coordinates"
array
center[3]

}
{"half-axes along x" real b}
{"half-axes along y" real c}
{"half-axes along z" real d}

}

4.1.3. Defaults

Each parameter can have a default value. Default values of
parameters are given in this block. Values are assigned to
parameters using assignment operator “=”. If a parameter is
an array type, there are two ways to assign values. The first
way is to assign values to each element. The second way is
to assign all values at once. Assignment between parameters
is not allowed.

Defaults {
-- assign values to each element --
-- center[0] = 0.0
-- center[1] = 0.0
-- center[2] = 0.0

-- assign all values at once --
center = [0.0, 0.0, 0.0]
b = 1.0
c = 1.0
d = 1.0

-- b = center[0] is not allowed. --
}

4.1.4. Visual

In this block, a built-in primitive of the modeller is specified
as a visual representation of a convolution surface primitive.
Same as in the HFModel block, textural information of a

c
 The Eurographics Association 2000.

Goto, Pasko / Interactive Modelling of Convolution Surfaces with an Extendable User Interface

primitive, primitive type, and primitive in a function form
are given. Now the only available type is “shape”, which
means the use of built-in primitives. We plan to use other
types such as “vrml” and “dxf” for externally produced poly-
gon models. The modeller will import those files and use
them like built-in primitives. Parameters of F-rep primitives
are passed to built-in primitives. Available built-in primitives
are “Point,” “Line,” “Cylinder,” and “Mesh”. For each built-
in primitive we check types of parameters, array size, rela-
tions between arrays. For example, built-in Line primitive
has two array parameters (start points and end points of each
segment), each array size should be multiple of 3, and arrays
should have the same size.

Visual {
"Point Skeleton"
shape
Point(center)

}

HFModel {
 "mesh primitive"
 primitive
 hfConvMeshR(x, v, i, r)
}

Parameters {
 {"vector" array v[]}
 {"index" array i[]}
 {"radius" real r}
}

Defaults {
 r = 3.0
}

Visual {
 "triangle skeleton"
 shape
 Mesh(v, i)
}

Figure 4: Initialization file for the body of the fish

5. Example

In this section, an example is given using the modeller. Fig-
ure 9 is the final image of the example. This fish’s skeleton
consists of lines and triangles. HyperFun function “hfCon-
vLineR” is used for lines, “hfConvMeshR” is used for tri-
angles. Both primitives utilize Cauchy kernel 2; 3. The im-
age is ray-traced by the Pov-Ray system. First of all, to deal

with convolution surface primitives, the initialization file for
binding primitives has to be prepared.

Figure 5: The modeller with some triangles

Figure 4 is an initialization file for the body of the fish.
Only triangles are used for the body. Figure 5 is a screenshot
of the modeller invoked with the file in Figure 4. Triangles
are added on the working area of the modeller. To see a pre-
cise shape of a current model, polygonization is useful. Fig-
ure 6 is the result of polygonization of the model in Figure 5.
Figure 7 shows the bones of the fish. To construct the bones,
lines and triangles are used. The complete model of the fish
is shown in Figure 8. The model contains 13 triangles and
10 lines. Polygonization is done on a SGI O2 workstation
with 180 MHz MIPS R5000 processor. Table 1 shows poly-
gonization time for single line and triangle, and fish model
in Figure 8.

single line 4.97 sec
single triangle 6.43 sec
fish model 77.01 sec

Table 1: Polygonization time

6. Conclusions

In this paper, interactive modelling of convolution surfaces
with an extendable user interface was presented. Now, ex-
tensibility of the modeller is limited by convolution surface
primitives. However, based on this modeller’s features, more
powerful modellers can be developed to extend the list of
primitives and operations with arbitrary types. The complete

c
 The Eurographics Association 2000.

Goto, Pasko / Interactive Modelling of Convolution Surfaces with an Extendable User Interface

fish model in HyperFun is only a 2.3K file. Using Hyper-
Fun as a lightweight protocol between the interactive mod-
eller and the visualization software (polygonization or ray–
tracing) will allow us to implement a Java version of the
modeller running under a Web browser at the client side.

Acknowledgments

The authors would like to thank Ken Yoshikawa, Eric
Fausett, Carl and Jody Vilbrandt for their help and support.

Appendix

-- The HyperFun code of the bone --

head(x[3], a[1])
{

array vertex[9];
array index[3];

vertex = [0, 7, -14, 0, 0, -21, 0, -7, -
14];

index = [1, 2, 3];
r = 1.5;

head = hfConvMeshR(x, vertex, index, r);
}

body(x[3], a[1])
{

array begin[27];
array end[27];

begin = [0, 0, -15, 0, -7, -11, 0, -
9, -5, 0, -7, 1, 0, -3, 7, 0, 8, -
2, 0, 5, 4, 0, 8, -8, 0, 2, 10];

end = [0, 0, 15, 0, 7, -11, 0, 9, -
5, 0, 7, 1, 0, 3, 7, 0, -8, -2, 0, -
6, 4, 0, -8, -8, 0, -2, 10];

r = 0.6;

body = hfConvLineR(x, begin, end, r);
}

eye(x[3], a[1])
{

array begin[3];
array end[3];

begin = [5, 0, -17];
end = [-5, 0, -17];
r = 0.75;

eye = hfConvLineR(x, begin, end, r);
}

my_model(x[3], a[1])
{

my_model = head(x, a) | body(x, a) \ eye(x, a);
}

References

1. J. Bloomenthal and K. Shoemake. Convolution Sur-
faces. Computer Graphics (Proceedings of SIGGRAPH
’91), 25(4):251–256, 1991 1

2. A. Sherstyuk. Convolution Surfaces in Computer
Graphics. Ph.D. thesis, Monash University, Australia,
1999, 123 pp. 1, 4

3. J. McCormack and A. Sherstyuk. Creating and render-
ing convolution surfaces. Computer Graphics Forum,
17(2):113–120, 1998. 1, 4

4. V. Adzhiev, R Cartwright, E. Fausett, A. Ossipov, A.
Pasko and V. Savchenko. HyperFun project: a frame-
work for collaborative multidimensional F–rep mod-
elling. Implicit Surfaces ’99, Eurographics/ACM SIG-
GRAPH Workshop, J. Hughes and C. Schlick (Eds.),
pages 59–69, 1999. 1, 2

5. A. A. Pasko, V. Adzhiev, A. Sourin and V. Savchenko.
Function representation in geometric modelling: Con-
cepts, implementation and application. The Visual
Computer, 11(8):429-446, 1995. 1

6. HyperFun, http://www.hyperfun.org 1

7. MAM/VRS,
http://wwwmath.uni–muenster.de/informatik/u/mam/
2

8. Tcl/Tk, http://www.scriptics.com 2

c
 The Eurographics Association 2000.

Goto, Pasko / Interactive Modelling of Convolution Surfaces with an Extendable User Interface

Figure 6: Polygonized model of the body of the fish

Figure 7: Polygonized model of the bones of the fish

Figure 8: Fish image

Figure 9: Ray-traced fish image

c
 The Eurographics Association 2000.

