
Eurographics Symposium on Virtual Environments (2004)
S. Coquillart, M. Göbel (Editors)

MANDALA: A Reconfigurable VR Environment for Studying
Spatial Navigation in Humans Using EEG

Pierre Boulanger, Daniel Torres and Walter Bischof

Department of Computing Science
University of Alberta

2-21 Athabasca Hall, Edmonton, Alberta, Canada, T6G 2E8

Abstract
This paper describes a reconfigurable VR environment and a markup language for creating experiments aimed
at understanding human spatial navigation. It permits the creation of high-quality virtual environments and the
recording of behavioral and brain activity measures while observers navigate these environments. The system is
used in studies where the electroencephalographic activity is recorded while observers navigate virtual environ-
ments. The results of the study reported here confirmed previous finding that theta oscillations (electroencephalo-
graphic activity in the 4-8 Hz band) are linked to the difficulty of spatial navigation. Further, it showed that this
activity is likely to occur at points where new rooms come into view, or after navigational mistakes have been
realized and are being corrected. This indicates that theta oscillations in humans are related to the encoding and
retrieval of spatial information.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Virtual Reality

1. Introduction

As we navigate through the environment, real or virtual,
we rely on a multitude of cues for planning large-scale
movements, for combining trajectories of previously trav-
elled paths into a mental representations, and for determin-
ing heading. These cues include both static cues (e.g. land-
marks, displacement information, depth information, etc.)
as well as dynamic cues (e.g. optic flow patterns). Recent
behavioral studies indicate that the difficulty of navigating
through virtual environments is closely related to the number
and types of visual cues that are available for guiding naviga-
tion. For example, Kirschen et al. [KIR00] found that land-
mark information and optic flow information significantly
reduced the time participants take to navigate through a vir-
tual maze. These studies suggest that rendering of perceptu-
ally rich VR worlds may make navigation much easier than
perceptually impoverished renderings, and thus can help to
reduce the cognitive load in navigation tasks. However, per-
ceptual enrichment of VR worlds may not necessarily lead to
easier navigation. In a perceptually impoverished VR world,
we may rely much more on internally represented, cognitive

maps of the environment, whereas in perceptually rich en-
vironments one can rely more on landmark-based guidance
only. This, in turn, may prevent the building of an efficient
and easily accessible mental representation of the environ-
ment. Many of the past EEG studies on navigation in VR
worlds have imposed fairly severe constraints on the move-
ments that could be made. In the studies of Kahana et al.
[KAH99] and Nishiyama & Yamaguchi [NIS01], for exam-
ple, participants were transported at fixed velocity through
maze of hallways and viewpoint changes were instantaneous
and limited to 90 degrees. This permitted equating move-
ment patterns across different participants, but it also lead to
highly artificial movement patterns that were not under con-
trol of the observers. The present study was aimed at over-
coming these limitations by studying navigation with more
natural movement patterns.

A maze is an excellent test-bed to address these questions.
A virtual maze can be designed to explicitly test certain nav-
igation abilities of the human user inside a controlled en-
vironment. Features like wall color and texture, topological
structure and pattern, noise and navigation aids can be strate-

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org
http://www.eg.org
http://diglib.eg.org


P. Boulanger, D. Torres, and W. Bischof / MANDALA System

gically placed and varied to analyze the behavioral response.
At the same time, different recordings like the user’s naviga-
tion pattern, time to find the exit and the number and type of
committed errors, (such as reaching a dead-end corridor on
a previously walked section) can provide information about
the processes that take place in our natural navigation system
(See Figure 1).

For this purpose a reconfigurable Virtual Reality tool
named MANDALA, and its markup authoring language, was
created. This paper describes the architecture, features and
overall characteristics of this system.

The paper is organized as follows: A general overview of
the spatial navigation experiment is described in order to il-
lustrate the requirements of the system. The architecture of
MANDALA is then shown and a more detailed description
of its elements and features is provided. Some illustrative
examples are shown along with their code. The general dy-
namics of a typical navigation experiment from the point of
view of the tool is also described. Finally, we describe the
current state of the MANDALA project and some recent ex-
perimental results obtained using this system.

Figure 1: An observer navigating the maze with an EEG cap
to monitor brain activities.

2. The Spatial Navigation Experiment

Given the requirements outlined in the previous section, the
VR software environment must be able to perform the fol-
lowing tasks:

1. Allow the construction of virtual environments in a sim-
ple way, so that there is not need for complicated data
structure or CAD modelling packages to the setup of the
maze geometry.

2. Present the user with a simple, clean, and realistic inter-
face that behaves in a believable way, in real-time (60Hz),
using a variety of input devices like a keyboard or a joy-
stick.

3. Offer a flexible authoring and scripting language so that
mazes geometry can be made interactive, including the
parameters that need to be measured during the experi-
mentation.

4. Provide means for automating usage of external hardware
devices like the electroencephalographic reader when
certain events inside the virtual world are triggered.

5. Provide the ability to keep a log of events and track the
navigation of the user for off-line analysis.

6. Allow real time communication with external agents so
that other systems can react to the events during maze
navigation, review the navigation of the user and eval-
uate his performance, design new mazes on-the-go and
present them to the user without suspending execution of
the simulation.

7. Work with conventional computer monitors as well as
with specialized VR hardware display devices such as an
auto-stereo displays or a CAVE like environment.

With these constraints, the available options are greatly
reduced. Languages like VRML cannot provide all the re-
quired flexibility with the expected performance, and adapt-
ing some existing graphic engine would have implied ad-
ditional time to understand and restructure (when possible)
other architectures that are frequently unfinished and un-
supported. Buying a commercial product would imply addi-
tional economic resources and would still have to be adapted
to the requirements of the experiment.

3. MANDALA: A Virtual Reality Tool

The two main objectives of the MANDALA project are:

1. To create a flexible markup language that will:

• Allow the definition of virtual worlds while encapsu-
lating all complex 3D details so that experimentors
without prior experience in computing science or Vir-
tual Reality would be able to design and put their own
experimental scenarios to work

• Allow the definition and inclusion of libraries for sim-
plifying the process of constructing the virtual envi-
ronment.

• Allow straightforward scripting for defining interac-
tivity.

• Allow communication routines so that attached de-
vices can be controlled from within the maze without
the need of implementing other modules.

• Provide all required resources to build simple worlds,
without restraining the possibility of building more
complex one.

• Although inspired by the requirements of this spa-
tial navigation experiment, this toolkit is domain-
independent and can be seamlessly adapted to differ-
ent experiments.

2. To provide an architecture (and its implementation) that:

• Is compatible with the MANDALA Markup Lan-
guage (MML) definition and implements all of its fea-
tures

• Provides all the advantages and essential characteris-
tics of a modern graphic engine

c© The Eurographics Association 2004.

62



P. Boulanger, D. Torres, and W. Bischof / MANDALA System

• Immediately works with conventional and advanced
VR hardware like auto-stereo displays

• Allows concurrent operation and communication with
other specialized agents

3.1. Overview of the MANDALA Architecture

The MANDALA general architecture is composed of five
layers and two external managers. At the base, we have the
world definition layer, which contains one or more simple
text files written in MML specifying the objects, structures
and interactivity of the virtual world. These files may also
contain links to various multimedia resources like sounds,
textures and other geometric models in different 3D for-
mats. In the next layer an interface that reads, parses and
validates the world definition file(s) and converts them into
MANDALA Objects. In addition there is a series of special-
ized data structures that actually load external multimedia
elements, organize the virtual world resources and keep and
optimize the information for quick access from the real time
agents. In this layer, a collection of agents that handle the
realtime logistic of the world is found. Aspects like colli-
sion detection, script execution, avatar movement, naviga-
tion logging and other dynamic tasks are performed. This
layer also administrates information circulating to and from
two important external managers, one dedicated to admin-
istrate the input and output devices, and another that keeps
several kinds of communication channels open with the re-
mote agents.

Figure 2: The components of the MANDALA architecture.

The external devices manager reads input from the phys-
ical navigation controls utilized by the user to navigate
through the maze. This abstraction makes it possible to adapt
the application to work with simple or advanced input de-
vices without having to change other systems. Output fea-
tures include communication with hardware devices con-
trolled by the realtime agents. The remote agents manager
allow to abstract cooperation and communication with other
research-specific agents that do not necessarily reside on the
same computer. Numerous external agents can be interacting
with the MANDALA environment at the same time, sending
and receiving messages to supervise the experiment in many
forms. This abstraction layer provide the architecture with a
great flexibility for implementing domain-specific modules
without having to modify the MANDALA architecture. Fi-
nally, the rendering layer maintains and updates a graphical
representation of the state of the virtual world. It is in this

layer where some particular graphic library must be used to
render the information contained in the MANDALA objects
as it is affected by the realtime agents, the external devices
and the remote agents.

3.2. The MANDALA Markup Language (MML)

Let us analyze the structure of a MANDALA file. As men-
tioned before, all information pertinent to the creation of a
virtual world resides in simple text files, just like in html.
The structure of a MANDALA file is shown in Figure 3.

Figure 3: Structure of a MANDALA file.

The two main parts of any MANDALA file are:

1. The Definition Section: Here all the building blocks re-
quired to assemble our world will be defined. All ma-
terials, meshes, multimedia elements, included libraries,
basic and predefined structures are declared.

2. The Construction Section: In this section, we take the
building block defined in the Definition Section and use
them to define the VR world. It contains two important
elements:

• The world topology: This structure define how pieces
are to be arranged in order to construct the virtual
world.

• Scripts: Define a simple pieces of code that indicate
actions to be taken when certain events happen some-
where in our virtual world.

Let’s analyze in more detail each element of this format.

3.2.1. Definition Section

The basic construction element for a MANDALA virtual
world is a plain unitary cube. Imagine an invisible cube in
space, an abstract box that occupies an area and waits for
things to be placed inside. One can place anything in these
boxes and, as they are abstract elements, only what is put

c© The Eurographics Association 2004.

63



P. Boulanger, D. Torres, and W. Bischof / MANDALA System

inside will actually exist. In the MANDALA language this
is known as a cell. Once a cell is defined many instances of
itself can be put together to form a bigger space. As the cell
itself was only defined once, the elements it contains are also
declared once. In other words, the cell as an object is defined
and instances are connected on the construction section to
assemble the virtual world.

Figure 4: Using one cell to build a simple corridor.

Many things can be put inside a cell. Two basic elements
are a floor and a ceiling. Additionally one can put walls, fur-
niture and objects designed in some 3D modelling program,
sprites and billboards. The object used for this purpose is
called a panel. A panel is a link to an external image that
will be used as a "wallpaper" for any surface in the world,
be it a wall, a ceiling or a floor. Like the cells, once a panel
is defined its instances can be used anywhere. In Figure 4,
a simple cell is created by specifying a panel to use as the
floor. Then, four instances of the same cell are concatenated
to create a corridor.

The definition of a panel requires at least a unique id and
the name of the external file. Additionally one can specify
uv texture coordinates and RGBA values. As for the cell, an
id is also required, and the floor and ceiling correspond to
the id’s of the desired panels. Note that the cell is actually
empty as the floor and the ceiling are definition parameters,
but do not contained objects. Walls, on the other hand, are
to be contained because they can be put anywhere inside the
cell. Let us analyze a cell with a single wall as shown in
Figure 5.

Walls are defined by two 3D coordinates, the lower-
left (p1) and the upper-right (p2) corners. The wall of
left cell in Figure 5 would have the pair p1(0,0,1) and
p2(1,1,1) (remember that we are working with unitary
cells) while the wall on the right cell would be approximately
p1(0,0,0.75), p2(0.25,1,1). Following this method, vertical
walls can be positioned anywhere in the cell.

The wall entry needs a panel to decorate it and both 3D co-
ordinates. A cell can hold as many walls as necessary. There

Figure 5: Two different placements of a wall. Axis and origin
shown on left cell.

are more optional parameters like visibility set to default val-
ues. During the simulation walls cause automatic collision
response, so if a mesh object is put in the cell, collision can
be simplified by putting invisible walls around it.

3.2.2. Construction Section

Cells declared in the definition section will be used to actu-
ally construct a maze. We have already seen in Figure 4 how
a single cell can allow the creation of a whole corridor. It is
now necessary to explain how cells are put together. Again,
a simple method was considered. In order to create a maze,
we use the metaphor of the watchman. Imagine a watchman
standing at the center of the first cell and deciding where to
put the next one, he clearly has four options: north, south,
east and west. Let assume that he places the next cell west
of the current cell and he now walks to it. He is left with
three options since the previous cell remains east. The next
cell is placed and he moves again. The watchman can place
cells in all available directions at each point and walk to the
newly placed cells to put more until the world is finished. To
illustrate this concept look at Figure 6.

Figure 6: Two cells building a simple ’T’ segment for the
maze.

Assuming we defined cells ’a’ and ’b’, the MML code to
construct the ’T’ maze segment is straightforward. Begin-
ning in the dot-marked cell:

<!- a simple T-like maze segment ->
<root cell=’a’>

<north cell=’b’>
<east cell=’a’></east>
<west cell=’a’></west>
</north>

</root>

c© The Eurographics Association 2004.

64



P. Boulanger, D. Torres, and W. Bischof / MANDALA System

It is important to note that the ’a’ cells placed east
and west are automatically rotated so that walls fall in its
correct position. Notice also that the nesting capabilities
of the markup language allows simplicity when designing
the maze. This metaphor also relates to known online text
games, where at a given point one might choose to look
around and describe objects standing at the four cardinal
points. Now imagine that it is desired to reference our ’T’
object as if it was a single entity, in fact, in MML this is
called a sector and can be declared with a unique id at the
definition section. It will look like this:

<!- assuming cells ’a’ and ’b’ exist ->
<!- this is our simple ’T’ sector ->
<sector id=’simpleT’>

<draw cell=’a’ direction=’root’>
<draw cell=’b’ direction=’north’>

<draw cell=’a’ direction=’east’>
<endpoint tag=’east’/>

</draw>
<draw cell=’a’ direction=’west’>

<endpoint tag=’west’/>
</draw>

</draw>
</draw>

</sector>

Notice the endpoint tag. It tells MANDALA where to in-
sert new cells or sectors when indicated to place them with
respect to our ’T’. Using just simple T sectors, it is possible
to define bigger sectors and reach very high levels of com-
plexity while maintaining simplicity of design. The com-
plete MML file to generate the mandala-like maze shown
in Figure 8 is listed in Figure 7. Sectors provide a way for
defining complete areas in the virtual world, one can cre-
ate a sector containing a house and then put several houses
to form a street with ease. It is possible to concatenate any
number and combination of sectors and cells to create an
adequate virtual world.In the navigation experiment, special
building sets are contained in files to be included in the maze
definition file. Including them and putting them together is
completely trivial using this framework.

3.2.3. Scripting

Loading a file like the one shown in Figure 7 will immedi-
ately put us inside the 3D maze and let us navigate through it,
but since this is a domain for investigation and the maze must
be interactive, a scripting system was developed. The chosen
approach was, once again, very simple. This can be demon-
strated with a couple of examples. Suppose we wanted to set
some flag to TRUE if the user goes through a certain cell.
Later we want to play a sound if the user successfully set the
mentioned flag by the time he reached the exit cell. As every
cell or sector put in the maze is an instance of the original,
it is necessary to identify some special places where some-
thing is to happen. This is done by assigning a label when
placing them in the maze.

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE maze SYSTEM"mandala.dtd">

<mandala> <!- the definition section ->
<definition>
<!include some files with all the cell>
<!declarations>
<include file=’myCells.xml’/>

</definition>

<!- the construction section ->
<construction>
<root cell=’a’>
<putsector sector=’lotsOfT’
direction=’north’>
</putsector>
<putsector sector=’lotsOfT’
direction=’south’>
</putsector>
</root>
</construction>

</mandala>

Figure 7: The code to produce the maze illustrated in Fig-
ure 8.

Figure 8: A more complex maze using repeating patterns.

Normally the as tag would not be needed. Now it is put to
exactly reference these two places. We write two instructions
after the topology creation of the maze:

<action id=’action1’ at=’checkpoint’
event=’avatar_enter’>
<execute function=’setVariable’
params=’flag,1’/>
</action>

<!- check the flag and play some sound ->

<action id=’action2’ at=’exit’

c© The Eurographics Association 2004.

65



P. Boulanger, D. Torres, and W. Bischof / MANDALA System

event=’avatar_enter’>
<condition>

<require param=’flag’ value=’1’/>
</condition>

<execute function=’soundStart’
params=’finale’/>
</action>

The first action executes at the cell with label checkpoint
when the avatar leaves that place, creating a variable called
flag with value equal to 1. The second action triggers when
the user enters the ’exit’ cell. If there exists the flag value
and its value equals TRUE, then a sound with id=’finale’
will start playing (sounds are created in a similar way than
panels, by specifying a file and some unique id in the defi-
nition section). The condition tag tests for several premises
required for executing the list of actions. More complicated
structures involving AND’s and OR’s can be also declared.
Finally, avatar_enter and avatar_leave are events that tell
when the actions are to be triggered.

3.3. The MANDALA Objects

When the MANDALA application starts, some the virtual
world file is read and transformed into MANDALA objects, a
group of data structures that hold the necessary information
for conducting the simulation. This parsing, implemented
with help from Xerces [APCH], reads all the definitions and
instructions in the MML file and loads into memory all exter-
nal dependencies like graphics and 3D models. It also gener-
ates geometry for supporting the environment and its cells.
Many resources like textures and meshes are optimized by
keeping just one instance in memory and using it whenever
required. At the end of the process the realtime agents find in
this layer all the required information to work. The transition
from the MML file to the MANDALA objects is shown in
Figure 9. Each type of data object is stored in a specialized
structure that facilitates the work of agents in the upper lay-
ers. Collision geometry, for example, is kept on a dynamic
plane shifting using BSP threes[MEL00].

3.4. RealTime Agents: Bringing the Simulation to Life

The fourth layer of the architecture holds a group of dedi-
cated agents that work with the data maintained in the third
layer for various dynamic purposes. This control center is
where the real mechanics of the engine take place and where
the environment is set in motion. Several agents sometimes
work with common information but each one is completely
independent of each other. Some examples of these agents
are:

• Avatar Agent: moves the user across the world, reads in-
put from the external control devices (like a mouse or a
keyboard) and updates the position of the avatar. It also
control factors like pace speed and camera settings.

Figure 9: Process of data generation for the RealTime en-
gine.

• Collision Detection Agent: reviews the position of moving
objects at each time frame and calculates collisions. Sends
update messages to agents controlling moving objects to
rectify position when a collision is detected (avoiding ob-
jects to go through walls, for example).

• Navigation Agent: this entity is like an invisible character
observing everything that happens in the simulation. It is
mainly designed to take notes and produce certain reports
with data collected during each experiment.

• Actions Agent: constantly monitors events in the maze.
Should a documented event trigger some action (specified
in the MML file), this agent produces a message, reviews
the action and takes pertinent measures.

• Message Agent: performs callbacks for certain messages
and distributes information across other modules.

• Remote Communications Agent: establishes and main-
tains connections with remote agents so that interaction
between MANDALA and other domain-specific agents
can take place.

• Rendering Agent: provides an interface with the fifth layer
of the architecture, orchestrating and optimizing the ren-
dering process. This agent is independent from the chosen
graphic environment and library.

This architecture allows the complete replacement or ad-
dition of agents without altering other elements. Consequen-
tially, it allows scalability and enhancement of functionality.

4. Experimental Setup

This section describes a typical spatial navigation test using
the MANDALA system and the EEG recorder. The general
structure of the experiment is shown in Figure 10.

The observer sits in front of a stereo display with an elec-
troencephalographic (EEG) cap as illustrated in Figure 1.
When the experiment begins, all operations are automated.

c© The Eurographics Association 2004.

66



P. Boulanger, D. Torres, and W. Bischof / MANDALA System

Figure 10: Structure of a typical setup for the spatial navi-
gation experiment.

An agent specialized for this experiment opens a communi-
cation channel with MANDALA and orders the selection of
an initial maze for the user. From now on this specialized
external agent will be simply referred as the agent and un-
less otherwise noted all operations are performed by MAN-
DALA. The required maze is loaded and the observer can
begin the navigation. When the observer reaches the exit a
notification is sent to the agent, which analyze the naviga-
tion log. Based on certain rules and the user’s performance a
new maze can be selected from a collection or created in re-
altime, the old maze is terminated and the new one is loaded
and presented to the user, who continues navigation. During
navigation, the EEG is continuously recorded. These EEG
measurements are then saved with their respective position,
type of actions, and time stamp for further analysis.

This experimental cycle (the user navigates the maze,
MANDALA keeps a record, communicates with the agent
and controls the eeg machine, the agent evaluates the user
and creates/selects a new maze) repeats until the last maze is
unloaded and MANDALA is instructed to close.

All mazes consisted of a set of T-junctions arranged in
such a way that the goal position could be reached from the
starting position in a sequence of 10 left or right turns. The
layout of one maze is shown in Figure 11, with cell S (on
the right hand side) indicating the starting position and cell
G (at the top) indicating the goal position. In this case, a
sequence of left/right turns LLRRLRLRRL leads from the
starting position to the goal position. A set of 10 different
mazes was created, and random subsets of these mazes were
presented in the experiments.

Several maze views are shown in Figure 12. Depending on
the experimental condition, the maze walls could be either
plain (Figure 12a) or colored (Figure 12b), and could either
have an arrow indicating the correct direction (Figure 12c)

Figure 11: Layout of the maze used in the experiments.

or not (Figure 12b). Finally, a message on the wall at the end
of a hallway indicated the goal position (Figure 12d). Upon
entering a new maze, a participant started in the starting cell
(cell S in Figure 11) facing the first intersection. As soon as
the goal cell (cell G in Figure 11) was entered, the maze was
exited and a new maze was entered.

Figure 12: Four different maze views: (a) view of a hallway
in a ’plain’ maze, (b) view of a hallway in a ’color’ maze,
(c) view of a hallway in a ’plain’ training maze, with arrows
indicating the correct direction of navigation, and (d) view
of the goal position in a ’color’ maze.

Two different types of mazes were used, plain mazes and
colored mazes. In plain mazes, all walls had the same color
(see Figure 12a), whereas in the color mazes, the color of
each T-junction was chosen randomly from the set blue,
cyan, green, red, magenta, yellow. All walls of a single T-

c© The Eurographics Association 2004.

67



P. Boulanger, D. Torres, and W. Bischof / MANDALA System

maze had the same color (see Figure 12b). The texture of all
walls, as well as ceilings and floors did not change.

All mazes were generated in two versions, as training
mazes and as test mazes. In training mazes, a large yel-
low arrow indicated the correct direction at each intersection
(see Figure 12c), whereas the arrows were absent in the test
mazes.

Fifteen observers (12 male and 3 female) participated in
the study. EEG signals were collected from 38 gold elec-
trodes embedded in an electrode cap and amplified using
a Neuroscan NuAmp amplifier. Recording locations were
based on the electrode placement system of the Ameri-
can Electroencephalographic Society. Horizontal eye move-
ments were monitored with bipolar electrodes on the outer
canthus of each eye, and vertical movements were moni-
tored from electrodes placed above and below the left eye.
EEG and EOG were recorded at a sampling rate of 500 Hz
for the duration of the whole experiment.

Each participant traversed five different mazes, once with
arrows in a training trial, followed by (at most eight) test
trials, so each participant traversed at least 10 and most
45 mazes. These conditions were presented in a between-
subject design, i.e. each participant traversed either plain or
colored mazes.

An EEG was recorded continuously for a complete exper-
imental session. These data were segmented into episodes
corresponding to the traversal of a single maze, beginning at
the time the starting position (e.g. cell S in Figure 11) was
left, and ending at the time the goal position (e.g. cell G in
Figure 11) was entered. Each of these maze episodes was
analyzed independently.

For a given EEG channel, short-term spectrograms were
computed for each maze episode. To this end, discrete
Fourier transforms were computed for Hanning weighted
windows of 1000 ms duration, with successive windows
overlapping by 900 ms. The spectrograms for one maze
traversal is shown in Figure 13a. Brightness in each spectro-
gram is inversely related to the log power of the short-term
Fourier spectrum, normalized over a whole episode, i.e. the
darker a spectrogram at a given time point and frequency,
the higher is the power of the corresponding Fourier compo-
nent. Episode with strong activity in the theta (4-8 Hz) band
should thus show as dark bands.

The analysis of the EEG spectra related theta-episodes
during a maze traversal to locations in a maze. An example
of this analysis is shown in Figures 13. In this spectrogram,
10 theta episodes are identifiable if one ignores the very last
episode that may be related to exiting the maze. Figure 13b
shows the corresponding average power of the theta-band (4
- 8 Hz) over time. The time points of the theta episodes al-
low determining where in the maze the participant was at
the time. As in Figure 11, cell S is the starting position, and
cell G is the goal position, hence the goal position could be

reached from the starting position in a sequence of turns LL-
RRLRLRRL. In Figure 14, the arrows indicate the positions
in the maze where a theta-episode occurred. The first five
episodes are indicated by single arrows immediately after
the participant had turned into one arm of a T-junction and
saw a new hallway segment. The last theta-episode occurred,
shortly before the last T-junction of the maze. The other four
theta-episodes occurred when the participant had made an
incorrect navigational decision and walked into an invisible
barrier. In each pair, the first theta episode occurred at the
barrier, and the second episode occurred in the neighboring
cell on the way out from the incorrect T-junction arm, and
with the correct T-junction arm in view.

The example in Figures 13 indicates that theta episodes
are more likely to occur when a new hallway gets into view
or, after a participant has realized that a navigational error
has been made (after walking into a barrier). If this is so,
then the average power of theta episodes should be higher
immediately after a turn in a T-junction than immediately
before the junction. In Figures 13c, a T-junction is shown to-
gether with a definition of cell types (cells 1/2 immediately
before a junction, cell 3 the junction, cells 4/5 immediately
after a junction in the correct direction, and cells 7/8 imme-
diately after a junction in the incorrect direction). Figure 13d
shows the average power of the theta-band for each of these
cell types, for the spectrogram in Figure 13a. It can be seen
that the power in the theta-band is higher in cells 4-6, imme-
diately after a turn in a junction.

Figure 13: The top panel shows a magnified view of the
spectrogram of a single maze traversal, namely the last one
in Figure 12. The middle panel shows the power of the theta
band (integrated over the range 4 - 8 Hz) of the spectrogram
in the top panel. The bottom panel shows a T-junction on the
left, with the direction of correct navigation indicated by the
arrow. The histogram on the right shows the average power
of the theta components for each of the cell types.

c© The Eurographics Association 2004.

68



P. Boulanger, D. Torres, and W. Bischof / MANDALA System

Figure 14: Layout of the maze that was traversed by the
observer. The arrows indicate where in the maze each of the
10 theta episodes in Figure 13 occurred.

5. Conclusion

The behavioral results show that participants who traversed
the colored mazes, spent more time on traversing the mazes,
and, at least in tendency, made more navigation errors and
required more attempts before managing to traverse a maze
without error, than did the participants who traversed the
plain mazes. This result stands in contrast to the fact that the
participants in the ’color’ condition had actually more in-
formation available for guiding their navigation than did the
participants in the ’plain’ condition. This result is consistent
with navigation strategies reported by the participants. In the
’plain’ condition, all hallways looked the same, and the only
way to remember a path was to rely on learning a sequence
of left-right turns. Once participants realized and used this
strategy, the number of navigation errors dropped sharply. In
contrast, only few of the participants in the ’color’ condition
reported adopting this strategy. Instead, they relied on navi-
gation rules that took color cues into account and appeared to
encode a number of local navigational decision rules (e.g. to
turn left at the second magenta intersection, or to turn right
after to green intersections in a row). As the behavioral re-
sults show, this strategy turned out to take more time and
to be more prone to errors. The EEG results were consis-
tent with the behavioral results: The power of theta episodes
tended to be higher in the in the ’color’ condition than in the
’plain’ condition.

The most interesting results were obtained in the detailed
analysis of the maze points where theta episodes occurred. It
was found that these episodes did not occur either uniformly
or at random points in the mazes. Rather, theta episodes
occurred more likely and the power of these episodes was
higher immediately after participants had made a turn in a
junction and a new hallway came into view. Second, they
were also more likely and more powerful after participants
had walked into an invisible barrier and had to revise their
navigational rules. In contrast, theta episodes were less likely
when the participants were simply moving down a hall-
way. In the first case, participants were probably retrieving

a stored view that could guide their further navigation. In
the second case, participants were most likely storing the
view with a revised navigation rule. These results provide
further evidence on the relation between theta waves and
spatial navigation in humans: Theta waves may be directly
related to the storage and retrieval of spatial information for
navigation, not just in rodents, but also in humans.

These results demonstrate that VR in combination with
EEG measurements and some behavioral analysis can be
used as a powerful tool for understanding human brain activ-
ities as it interact with these world. MANDALA has shown
to be a powerful tool to configure rapidly experiments and to
perform synchronized recording of EGG with interaction in
the virtual world. This is an essential tool to study the type
of signals the brain produce in synchronization with various
tasks associated to various actions in the VR world. A good
understanding of these signals is key for their use in an even-
tual feedback loop where on day EEG signals can be used to
control navigation.

References

[APCH] THE APACHE XML PROJECT xml.apache.org

[MEL00] MELAX S. Dynamic Plane Shifting BSP Traversal
Graphics Interfase proceedings, 2000.

[BIS02] BISCHOF, W.F. AND BOULANGER P. Spatial
Navigation in Virtual Reality Worlds: An EEG
Analysis Cyberpsychology and Behavior 2003.

[BOU02] BOURG M. P. Physics for Game Developers
O’Reilly, 2002.

[KIR00] KIRSCHEN M.P., KAHANA M.J., SEKULER R.,
AND BURACK B. Optic flow helps human learn to
navigate through synthetic environments Percep-
tion, Vol 29, pp. 801-818, 2000.

[KAH99]KAHANA M.J., SEKULER R., AND CAPLAN J.B.
Human theta oscillations exhibit task dependence
during virtual maze navigation Nature , Vol 399,
pp. 781-784, 1999.

[NIS01] NISHIYAMA N AND YAMAGUCHI Y. Human
EEG theta in the spatial recognition task. Pro-
ceedings of the 5th World Multi-Conference on
Systemics Cybernetics and Informatics, Orlando,
Florida, July 22-25, 2001.

[HOW95]HOWARD, I.P. AND ROGERS, B.J. Binocular vi-
sion and stereopsis New York: Oxford University
Press, 1995.

[EVE99] EBERLY D.H. 3D Game Engine Design Morgan
Kaufman, 1999.

c© The Eurographics Association 2004.

69




