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Abstract

Unbiased diffeomorphic atlas construction has proven to be a powerful technique for medical image analysis,
particularly in brain imaging. The method operates on a large set of images, mapping them all into a common
coordinate system, and creating an unbiased common template for studying intra-population variability and inter-
population differences. The technique has also proven effective in tissue and object segmentation via registration
of anatomical labels. However, a major barrier to the use of this approach is its high computational cost. Es-
pecially with the increasing number of inputs and data size, it becomes impractical even with a fully optimized
implementation on CPUs. Fortunately, the highly element-wise independence of the problem makes it well suited
for parallel processing. This paper presents an efficient implementation of unbiased diffeomorphic atlas construc-
tion on the new parallel processing architecture based on Multi-Graphics Processing Units (Multi-GPUs). Our
results show that the GPU implementation gives a substantial performance gain on the order of twenty to sixty
times faster than a single CPU and provides an inexpensive alternative to large distributed-memory CPU clusters.

Categories and Subject Descriptors (according to ACM CCS): GPGPU applications, Parallel programming

1. Introduction

Construction of atlases is a key procedure in population-
based medical image analysis. In the paradigm of compu-
tational anatomy, the atlas serves as a deformable template
[Gre94], which is mapped to each individual anatomy. The
deformable template provides a common coordinate sys-
tem for individual or group analysis of detailed imaging
data, including structural, biochemical, functional, or vascu-
lar information. The transformations mapping each individ-
ual anatomy to the atlas encode the anatomical variability of
the population under study. Recently, this concept has also
been extended to study anatomical change as a function of
age in a population by generalizing non-parametric regres-
sion [DFBJO7]. A major barrier to the use of such methods
is the high cost associated with the atlas construction.

Efficient and scalable solutions for the atlas construction
are becoming critical to the analysis of large brain imag-
ing studies due to the ever expanding size of the input
data. Advances in magnetic resonance imaging (MRI) are
resulting in increasingly higher resolution images. Further-
more, the trend in neuroimaging studies is towards multi-
site collection of large numbers of images, including lon-
gitudinal data. For instance, the Alzheimer’s Disease Neu-
roimaging Initiative currently includes over 900 subjects,
most imaged at multiple time-points. Consequently, fast de-
formable atlas construction has become a subject of consid-
erable interests [CMVG96,BNG96]. However, current CPU-
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based solutions depend on expensive parallel systems, either
shared memory symmetric multiprocessor machines or dis-
tributed memory clusters. Furthermore, there is only a mod-
est amount of parallelism within a single processing core
and communication between processing units is expensive.
Thus, parallel CPU implementations are still time consum-
ing and do not exhibit well-behaved scalability.

In this paper we present a multiple GPU atlas construction

framework based on the unbiased diffeomorphic atlas for-
mulation [JDJG04]. Our method achieves both high qual-
ity and extremely fast processing time by exploiting the
parallel hardware architecture of multi-GPUs. Our frame-
work includes an optimized 3D image processing library,
a hardware supported nonlinear ordinary differential equa-
tion (ODE) integration, and a multiscale successive over-
relaxation (SOR) solver for Helmholtz-like partial differ-
ential equations (PDEs). Our system also exploits the co-
herency of the vector fields, the massive parallelization of
GPU hardware, the scalability of multi-GPU architectures,
and the efficiency and robustness of multiscale techniques.
The system builds atlases with comparable quality to those
constructed by CPU algorithms [JDJG04, LDJOS]. Our sys-
tem is 20-60 times faster than a well-optimized single core
CPU algorithm, and still an order of magnitude faster than
optimized multi-core CPU algorithms, while demonstrating
a linear scalability curve. In designing an efficient parallel
atlas construction, we overcame three challenging issues:
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e Mapping the data structures and algorithms from the
CPU domain to the GPU domain. This is particularly
important to exploit the massively parallel GPU hard-
ware and the limited fast internal on-chip shared graphics
memory as modern GPUs have massively parallel compu-
tational power devoted to algorithmic logic units (ALUs)
with the instant context switching capability; in contrast
the main or global memory has a high latency without any
caching mechanism. By carefully laying out the 3D vol-
ume input data with an aligned flat 2D representation, we
take advantage of multi-block threaded and memory coa-
lesced access to hide the memory latency completely and
optimize the bandwidth. We exploit hardware supported
trilinear interpolation, to resolve the main bottleneck of
the ODE integration. We utilize the fast shared memory
to achieve maximum bandwidth with our SOR approach.
In our algorithm we apply the idea of the arithmetic inten-
sity technique to achieve the highest possible speed gain.

o Efficiently solving PDEs. The fastest existing CPU im-
plementation exploits the optimized “FFTW” transforma-
tion to solve the PDE explicitly. Although novel GPU ar-
chitectures make a parallel FFT implementation nearly
five times faster than the CPU version, the PDE solver is
still the major bottleneck, taking almost 90% of the pro-
cessing time. To overcome this bottleneck we employ an
implicit approach using the SOR framework. While SOR
theoretically has a slower convergence rate, it exhibits less
pixel-wise dependency and maps extremely well to GPUs.
We further exploit the fact that only small changes occur
in the vector field at each iteration causing the SOR ap-
proach to have a near constant convergence rate which is
faster than the FFT approaches and comparable to multi-
grid schemes.

e Design of a scalable system that can handle large num-
bers of inputs and maintain the performance with dif-
ferent input sizes. We propose a hybrid model: a multiple
inputs, multi-GPUs framework that utilizes all the avail-
able GPU memory and maximizes the arithmetic inten-
sity, providing the fastest rate and lowest processing cost
per volume element. We significantly improve the over-
all quality and efficiency of the system with the multi-
scale framework. The techniques presented in this paper
can also be used for other highly computationally intense
image processing applications.

2. Related work

2.1. Diffeomorphism

Deformable image registration is an extremely useful but
computationally intensive task. Different forms of paral-
lel processing have been applied to this problem since the
mid 1990s. In 1996, Christensen et al. [CMVG96] devel-
oped an elastic and fluid deformation algorithm based on the
Finite Difference Method to perform individualized, pair-
wise matching, neuroanatomical atlas construction on 128-
by-128-by-100 voxel datasets. On a MasPar MP-2, a mas-
sive parallel computer containing more than sixteen thou-
sand four-bit processors, it took almost two hours to com-
plete a single matching pair. Also in 1996 Bro-Nielsen et
al. [BNGO6] proposed a convolution filter approach for lin-
ear elasticity, based on the assumption of small deforma-
tions. Their algorithm ran on a DECmmp 1200 Sx/Model
200 massive computer, and the performance was compara-

ble to Christensen et al.’s approach. Recently, Dandekar et
al. [DSO7] developed a special purpose solution based on
the field-programmable gate array (FPGA), providing a 40
times speed up, but still took about 6 minutes for a one pair
registration with 128-by-128-by-154 inputs (200 iterations).

Multi-resolution techniques significantly reduce the reg-
istration time. Zikic et al. [ZWK*06] proposed a multilevel
framework for deformable registration of 3D ultrasound data
that brought down the registration time to the average of
half a minute for 256-by-256-by-256 volume inputs. How-
ever, their registration method used a variational deformable
approach, which is much simpler and less robust than our
diffeomorphism based system.

Davis et al. [DFBJO7] reported that a fully optimized
multi-resolution and multi-core CPU version of diffeomor-
phism registration on an 8 dual-core processor 3GHz system
with 64 GB of RAM took 14 minutes for one pair registra-
tion with 256-by-256-by-256 volume inputs. Our GPU im-
plementation on an NVIDIA Quadro FX5600 is about 50
times faster than all of these approaches taking only about
12 seconds for a pair registration of the same data.

2.2. GPU Algorithms

The increasing programmability of graphics processing units
(GPUs) coupled with their extremely powerful floating point
units, and superior memory bandwidth make them suitable
for a variety of computational tasks. Rumpf et al. [RS01]
proposed to use GPUs as fast vector coprocessors to solve
Finite Element Method (FEM) problems. They used multi-
ple textures and buffers as inputs and outputs to communi-
cate between the CPU and the GPU, and they mapped ma-
trix computations to the Graphic APIs. Kriiger and Wester-
mann [KWO03] built a general framework for efficient linear
algebra operators on GPUs. Recently, Hagen et al. [HLNOG6]
exploited GPUs to solve the Euler equation in 3D on high-
resolution input data. They also proposed a computational
scheme to use the GPU as a data stream processing unit
to solve systems of Conservation Laws [HHHLO7]. Jeong
et al. [JFTWO7] used GPUs to develop a Hamilton-Jacobi
solver for iterative visualization of volumetric white matter
connectivity in DT-MRI. Strzodka et al. [SDR04] exploited
DirectX 9 graphics hardware features to develop a 2D image
registration framework using streaming gradient flow and a
multigrid PDE solver approach. All of these methods have
in common that they successfully exploit the computational
processing power of modern GPUs. Our work is along the
same lines, but hardware and software advances have in-
creased the flexibility of the new GPU architectures, and also
enable us to exploit multiple GPUs.

3. Diffeomorphic Atlas Construction

In the template construction framework of the diffeomor-
phic atlas construction we define the statistical average of
the population as the minimizer of the sum-square-distance
to each of the data points. In other words, the representative
template requires least deformation energy to match input
images. To solve the problem, we use the Greedy Iterative
framework (Algorithm 1) based on greedy fluid flow algo-
rithm, for more details, see [JDJGO04].

Figure 1 illustrates the pair-wise diffeomorphism that de-
fines the transformation deforming a small part the letter *’C’
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. C

Figure 1: Small part of the letter 'C’ deforming into a full C’ using 2D Greedy Iterative Diffeomorphism. From left to right:
1. Input and Target Image 2. Deformed template. 3. Grid showing the deformation applied to template

Algorithm 1 Compute the average representation

1: Input: N input volume images /; , N > 0
2: Ouput: [ average template estimation
: Initialize the time step k < 0, maxNumberO fIteration < 200,
and v{-‘ « 0 with all volume inputs
: while k < maxNumberO flteration do
Compute the global template estimate [*(x) = & TV | I*(x)

4

5 i=1"i
6:  for all Transform images I¥ i = 0,---N do

7

8

(5]

Compute the force F¥ = — [IF(x) — * (x)] 7 I* (x)
Solve the PDE Lv¥ (x) = F}(x) where L= aV? +BVV +7y

9: Update the transformation h;‘“ = hi.‘ (x+ Svf-‘ (x))
10: Update the immediate transform images I¥ = I; (1 (x))
11:  end for
120 k—k+1

13: end while
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Figure 2: Greedy Iterative Diffeomorphic framework

into the target full ’C’” image. The smoothly changing curve
in Figure 1 is the minimal transformation energy path, and
thus, the optimal deforming path.

4. GPU Diffeomorphic Atlas Construction

The Greedy Iterative method directly maps to the parallel
computing architecture, as shown in Figure 2. We perform
independent operations on each image inside the loop. We
assume that the number of processing nodes equals the num-
ber of inputs. For each iteration, we send the ith image to the
ith node together with the common average template image,
and then perform a greedy step on each node independently.
The overall processing time is primarily constrained by the
processing time of a single node, exactly the time of a sin-
gle CPU implementation. We address two main bottlenecks
in the CPU implementation: the PDE solver (Algorithm 2:8)
and the ODE integration (Algorithm 2:10).
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4.1. ODE integration

The ODE integration takes 40% of the processing time in
the CPU implementation, performing composition using the
reverse mapping technique. Reverse mapping is a general
strategy in image processing to perform nonlinear integra-
tion to handle the hole and missing value issues with for-
ward mapping. The method computes the destination grid
value as the interpolation over grid neighbor points from the
source. In 3D, trilinear interpolation (trilerp) is commonly
used because of its simplicity and satisfactory results, how-
ever, it is still an expensive operation. The trilerp requires
at least 14 multiplications and 8 additions per scalar com-
ponent. It is up to 3 times more expensive with a 3D vector
field. Moreover, the random access pattern makes it cache
unfriendly with the linear CPU cache. Fortunately, this chal-
lenging problem has a hardware-assisted solution on GPUs.
The interpolation process is fully hardware accelerated with
3D texture volume support from CUDA 2.0 APIs. This opti-
mization greatly reduces the computational cost of the ODE
integration. The timing result of the optimized version based
on the FFT approach (see Table 2) shows only 9% of overall
time spent on ODE integration. The 3D texture can also be
used to compute the gradient effectively, also giving a per-
formance boost of 50 to 120 times.

All basic 3D image operations can be efficiently imple-
mented using the 3D flat-array data layout. The 2D multi-
threaded block architecture of CUDA matches with this 2D
representation, giving performance gains over CPU imple-
mentations for these functions from 20 to 50 times. These
performance results are shown in Table 1.

The other bottleneck is the PDE solver, which takes the re-
maining 60% processing time with the optimized CPU ver-
sion, and 90% in the optimized FFT GPU version.

4.2. PDE solver

PDE solvers have long been studied in the literature. The
two most common and efficient ways to solve the problem
are explicit solvers in the Fourier domain using FFT transfor-
mation and implicit solvers using iterative refinement meth-
ods such as Jacobi, Gaussian, SOR or multigrid methods.
Demmel [Dem97] summarizes these different approaches
and gives a thorough comparison.

It is well known that the FFT solver is among the most
efficient methods, and generally preferred on CPU, the oth-
ers are block cyclic reduction and multigrid. Currently the
fastest implementation of the Greedy Iterative Diffeomor-
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phism on CPU builds on the FFTW3 library, the most ef-
ficient FFT implementation using general processing units.
With their high level of parallelization GPUs enable us
to perform the FFT faster than their FFTW-based counter
part. The current CUDA FFT [NVIO7] running on the
G80 architecture from NVIDIA is about 5 to 8 times faster
than FFTW3, especially with larger volume size. Our result
is compared with the GPUs optimized FFT version using
CUDA FFT.

Successive over-relaxation (SOR) is an iterative algo-
rithm proposed by Young for solving a linear system [?]. As
showed by Demmel [Dem97], the 3D FFT solver has a com-
plexity of O(nlog(n)) versus 0(n>/3) for SOR. However, the
complexity analysis does not count the fact that SOR is an it-
erative refinement method whose convergence speed largely
depends on the initial guess. With a close approximation
of the result as the initial value, it normally requires only
a few iterations to converge. We observe that in the elastic
deformable framework with steady fluid, the changes in the
velocity field are quite small between greedy steps. The com-
puted velocity field of the previous step is inherently a good
approximation for the current one. In practice, we typically
need 50 to 100 SOR iterations for the first greedy step, but
only 4 to 6 iterations for each following step.

The SOR and multigrid solvers are generally used in par-
allel super computing models using SIMD machines. The re-
sults of a similar approach running on MasPar 128x128 have
been reported by Christensen et al. [CMVG96]. The prob-
lem of the multi-CPU system is that it is expensive and only
suitable for complex problems that require a general comput-
ing model, massive computational power, and process very
large databases. It is not an economical solution in general.
Our framework, based on the CUDA GPU platform, shows
an affordable and efficient solution for the problem. The new
parallel computational capability of G80 GPUs enables us to
perform 32 operations in parallel, like SIMD machines but
in a simpler and more efficient way. Our GPU SOR imple-
mentation is 2.5 to 3 times faster than the most recent paral-
lel optimized FFT implementation on GPUs [NVIO7], hence
14-18 times faster than the well known optimal FFTW3 run-
ning on an 8-core 2.33 GHz Intel Core2 Xeon system [FJOS5].

4.3. GPU Implementation of SOR
As shown in Algorithm 1, velocity is computed from the
force function using the Navier-Stokes equation

aV2y(x) 4+ BV Vv(x) + yv(x) = F(x) (1)

Often B is negligible and (1) simplifies to the Helmholtz
equation

aV2v(x) +v(x) = F(x) )

In practice we chose o = 1.0 and y = 0.02. We solve
the Helmholtz equation on the grid using the SOR (Algo-
rithm 3). The computations are constrained to the interior
grid region. On the boundary we use Dirichlet condition with
values 0. The convergence rate of SOR is controlled by the
overrelaxation factor @ that is optimally defined in 3D as

0= 2 3)

1
1+\/1—§ [cos%+c0s%+cos§]2

Figure 3: Parallel block SOR, we assign each CUDA thread
block a block of data to compute the black points inside the
blue boundary, and use that result to compute the red point
inside the red boundary. Two neighboring compute blocks
share a four grid point-wide region.

where w, h, [ are the input dimensions. We employ Red-
Black ordering, as shown in Figure 3, to update the result. In
this configuration we only update points of the same color
based on their neighbors, which have different color. Red-
Black decoupling is proved to have a well-behaved conver-
gence rate [Dem97], but more importantly, allows us to up-
date points independently and efficiently in parallel.

The color of a grid point (i, j,k) (red or black) is simply
defined by the odd/even value of the total indices i+ j + k.
Although similar, the red/black updating function is much
more expensive than computing the gradient. Moreover,
SOR iterations need to update the results to use as the inputs
of the next steps synchronously between red and black itera-
tions, preventing us from using texture memory as effective
inputs to exploit the fast cache and neighbor coherence, as is
seen in the gradient operator.

In our first version of the CUDA implementation, we used
two separated kernels to perform the red/black update. Al-
though it exploited the parallel power, it did not give us the
performance we need. Even with only 4 iterations, the per-
formance was only about as fast as the FFT. The speed of the
algorithm was limited by the GPU DRAM bandwidth rather
than the computation. To improve performance for band-
width limited applications on GPUs, Buck [Buc05] recom-
mended to increase the efficiency by increasing arithmetic
intensity, the ratio of the computation performed in an al-
gorithm relative to the amount of memory read and writ-
ten. We improve arithmetic intensity of the GPU SOR by
merging the red and black update steps. We read the red
point value from the global memory to the shared memory,
compute the value of the black points, write out the result
to global memory and also the shared memory, then use
the new updated black point values in the shared memory
to compute the red point values of the next iteration. This
strategy doubles the arithmetic intensity, consequently dou-
bling the speed of the SOR solver. However, this approach is
limited by the amount of shared memory available per pro-
cessing block which is 16Kb on the G80 architecture. To
overcome this limitation, we propose the block-SOR method.
We divide the input volume into blocks, each fitting onto
one CUDA execution block. We exploit the available shared

(© The Eurographics Association 2009.



Linh K. Ha / Fast Parallel Unbiased Diffeomorphic Atlas Construction on Multi-Graphics Processing Units 45

memory to perform the merged black/red updating step lo-
cally on the block. Figure 3(a) shows the updating boundary
in the Block-SOR approach. For simplicity, we illustrate the
idea in 2D, but it is generalized to arbitrary dimensions. We
can see that the actual updated volume is two-cells smaller in
each dimension than the processing block. The reduction in
size explains why we can not merge an arbitrary number of
update iterations in one kernel call. To update the whole vol-
ume, we allow a data overlap among processing blocks, as
shown in Figure 3(b), so the remaining red points inside the
blue boundary of the current block will be computed from
the neighbor blocks. In this approach we allow data redun-
dancy to increase memory usage. The configuration shown
in Figure 3(b), having a 4 point-wide boundary overlap, al-
lows us to do the update of one merging step entirely over the
M? block using (M +4)? data block input, while the tradi-
tional SOR needs a data block size of (M + 1)2. If we want
to perform k red/black update iterations in a single kernel
call, we need the input data block of size (M + 4 xk)2. To
quantify the benefit of warping multiple SOR steps in one
kernel, we define a trade-off factor o such that:

_ Minimum needed data size
" Actual processing data size

*Speed up factor (4)

To update the volume block M3, we need (M + 4k)3 volume
inputs, the trade-off factor is o = (%)3 *k, o is larger
when M increases, however we need to satisfy the memory
constraint so that we can fit the entire data block into the lim-
ited shared memory. Typically M = 12 is the maximum size
that we can fit in 16KB shared memory. The trade off factor
with M = 12 is less than 1 if we try to merge more than k =2
iterations. In practice, we see benefits only if we merge one
black & red update step per kernel call. Algorithm 2 shows
the pseudocode of our efficient block-SOR implementation
on CUDA. We further leverage the trade-off requirement by
limiting block-SOR in the 2D plane only, and exploit the co-
herence between consecutive layers in the third dimension to
minimize data redundancy. Our results show that the block-
SOR method is optimal because it yields equivalent band-
width to the gradient computation.

4.4. Multi-scale Greedy Iterative Algorithm

By design the Greedy Iterative Algorithm has the capabil-
ity to process data in a hierarchical multi-scale manner. The
idea is derived from the multi-grid technique in PDE solvers.
We perform the greedy algorithm on a coarse grid, compute
the approximate solution of the transformation, and then in-
terpolate the transformation onto the finer level grid. This
solution for the coarse grid generates a good initial guess
of the deformation on the fine grid. This strategy dramati-
cally reduces the number of iterations from 200 iterations
to only 25 iterations to achieve adequate results. The results
show significant improvements on the speed due to smaller
processing sizes. The system is more robust to the high fre-
quency noise of the scanned input data, due to the damping
high frequencies during grid down-sampling.

4.5. Computational model for multiple inputs

Handling multiple inputs efficiently is a critical problem.
The atlas construction yields meaningful results with a sig-
nificant number of inputs. Processing a large population re-
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Algorithm 2 Fast 3D parallel SOR step (SOR_Helmhotz3D)

Input : Old velocity field v and new force function F
Output: Compute new velocity field v
Allocate 4 shared mem array to store 4 slices of data
Load v, F of the 1/, 2" and 3" slice to shared-mem
k—1
Update the black point of the k" slice
while k < number_of_slice —2 do
Load the next slice to free shared mem array slice
Update the black point of the (k+ 1)™ slice
Update the red point of the k' slice
Circulate shifting the shared mem array pointers the shared
mem of (k— 1) slice becomes free
Load the next slice to free shared mem array
Update the black point of the (k+2)™ slice
Update the red point of the (k+ 1) slice
Circulate shifting the shared mem array pointers, the shared
mem of k" slice become free
k—k+2
end while
Update the red points on the last slice close to boundary

Algorithm 3 Efficient SOR solver

if first iteration then
Initialize velocity field v =10
numlters = 100

else
Keep value v from previous iteration
numlters =4

end if

for iter = 0 to numlters — 1 do
call SOR_Helmhotz3D(v,F)

end for

quires large amount of memory and computational power,
resulting in a significant amount of processing time; days or
even months. In this section, we analyze two common mod-
els to deal with the problem and present our solution.

4.5.1. One GPU - multiple inputs model

Nowadays, the amount of GPU memory is comparable to the
system’s main memory, thus we are able to handle multiples
inputs locally on the GPU. In our system, a Quadro FX 5600
with 1.5 GB of memory was used. Thus, we should be able
to process at least two 256> inputs separately. We observed
that, when we process multiple inputs in the same GPU con-
text, we can reuse a large amount of memory used during the
computation. Thus we can manage up to six 256> inputs on
the Quadro FX 5600. Further more, as shown in Figure 5(a),
all inputs share the same GPU memory space, we can com-
pute the common average template directly on the GPU and
shared among inputs. The GPU average function is 20 times
faster than the CPU version. The common average template
is updated automatically among inputs. Because the updat-
ing cost is negligible, the runtime grows linearly over the
number of inputs, as shown in Figure 4.

4.5.2. One-to-one multi-GPUs model

While the one-GPU-multiple-inputs-model processes multi-
ple inputs sequentially, a simple one-to-one multi-GPUs sys-
tem can process multiple inputs fully in parallel (see Fig-
ure 2). To each GPU we assign an input image and run
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Total runtime with multiple inputs
(volume size 192x192x192)

Time(s)
]

2 3 8 9

4 5 3 7
Number of volume inputs

Figure 4: Overall runtime for multiple inputs with 1923 vol-
umes

the greedy step independently. Since each GPU has a sep-
arate context, we need a central processing entity to dis-
tribute the average template and to collect results from all
GPU nodes. The central processing node, as shown in Fig-
ure 2, also performs template averaging. Ideally, if the col-
lecting/averaging/updating time on the server is negligible
in comparison to clients’ processing time, the speed gain of
the whole system will increase linearly with the number of
processing nodes.

We tested this hypothesis on a dual-GPU system having
two Quadro FX 5600 cards, connected by a PCI 16x bus on
the same motherboard. The server in this case is simply the
CPU. The processing time with a 160-by-192-by-160 vol-
ume input is 20s on the dual-GPU system versus 30s on the
single GPU dual-input version. The actual improvement is
only 75%, mainly due to the limitation of bandwidth be-
tween the CPU and the GPUs. In addition, the averaging
function is also 20 times slower on the CPU than on the
GPU. These two effects in combination result in the aver-
aging cost being about 30 times more than on one GPU. On
the one GPU model, the averaging cost accounts for only 1%
of the processing time. The multi-GPUs model will be more
efficient with higher CPU-GPU bandwidth, however, a high
bandwidth media between CPU-multi-GPUs is expensive.

The cost of memory, computational power, and process-
ing time make up the total cost of the parallel system. We
want to design a low cost parallel system while maintaining
the capability to handle a large number of inputs. In practice,
the number of inputs is larger than the maximum capability
of a single processing node, and also bigger than the number
of processing nodes in a multi-processor system. Because
the inputs may have different sizes, we estimate the cost ef-
ficiency of the system on average, per volume element. In
terms of efficiency cost, the simple multi-GPU configuration
is cost inefficient because the input volume size is normally
smaller than the GPU memory; an one-to-one configuration
costs the most per volume element. It also wastes processing
power as during the synchronization the processors are idle.
As the number of processing nodes increases the amount of
data transfer between server and clients increases linearly
while the processing cost on each GPU remains constant.
Consequently, the processors spend more time in the idle
state and the collecting/updating process becomes the main
bottleneck of the algorithm. To increase the cost efficiency of
the system with a large number of inputs, we propose a hy-
brid model, Multiple Inputs-Multi-GPUs, where each GPU
handles multiple inputs.

GPU-Multiple Inputs Multiple Inputs - Multi GPUs

GPU/CPUo

Figure 5: Multiple Inputs - Multi-GPUs configuration (a)
Multiple-Inputs processing node (b) Multi-GPUs configura-
tion

4.5.3. Multiple Inputs - Multi-GPUs model

The key idea to improve the efficiency is to maximize the
total volume of inputs that the system can handle, in other
words, we increase the arithmetic intensity of each process-
ing node by maximizing the number of inputs per node. We
divide the inputs between nodes. At each processing node,
we exploit the one-GPU-multiple-inputs strategy to com-
pute and share a GPU’s local template average among inputs
of the same context. We send this template average with a
weight proportional to the number of inputs of the node to
the server to compute the global average, then we send the
new average back to GPUs to update it in the local average
memory. While retaining the benefits of the former model,
this strategy minimizes data transfer to and from the GPUs to
the volume of a local common average. This hybrid model,
as shown in Figure 5, minimizes both the overall cost per
volume element and the data transfer over the low bandwidth
channel. Thus, it maximizes the cost efficiency. Our results
show that the updating cost on dual-GPU drops from 25% of
the overall processing time with the one-to-one input map-
ping down to only 5% with the 6 inputs per GPU. It gives
us the ability to process one hundred inputs with a typical
size of 100-by-100-by-80 on the dual Quadro FX 5600 sys-
tem. This extension allows us to perform several meaningful
randomized statistical tests (i.e., Monte-Carlo simulations or
permutation tests) which are infeasible with the one-GPU-
multiple-inputs or one-to-one Multi-GPUs model.

5. Results

To demonstrate our system’s capabilities, we applied the al-
gorithm to a database of 36 MR brain image volumes with
2563 volume size. The database contains T1-FLASH images
from 36 healthy adults at different ages. The images were ac-
quired at a spatial resolution of Immx Immx Imm, and the
tissue around to the brain was removed. All images were in-
tensity normalized and aligned using affine registration.

We further pre-process the inputs to improve the per-
formance by removing the redundant zero-data outside the
bounding box region. Typical 3D brain volume images have
high redundancy ratios, the data volume is about one third to
one fourth the unprocessed input volume. As a result, we ex-
perienced 3 to 4 times speed up just by tightly clipping the
volume to the non-zero data bounding box. However, this
optimization could be used with the SOR method only, as the
FFT PDE solver requires a power of two input volume size
to be computationally efficient, hence it runs slower with non
power of two inputs, as shown on Figure 8, the processing
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Figure 6: Atlas results with 3, 5, 7, 9, 11 and 13 inputs
constructed by (a) arithmetically averaging rigidly aligned
images (top row) and (b) Greedy Iterative Average template
construction (bottom row)

time of 96-by-96-by-96 inputs is equal to that of 128-by-
128-by-128 inputs with FFT-based approach.

5.1. Atlas Stability Test

To evaluate the robustness and stability of the atlases, Loren-
zen et al. [LDJO5] used a random permutation test on 14
brain images to estimate the minimum number of inputs re-
quired to construct a stable atlas, proving the stability of
greedy iterative diffeomorphism in 2D by analyzing mean
entropy and variance of the average template. However, this
work is limited to 2D atlas building on mid-axial slices, due
to the high computational complexity of the problem in 3D.
In our work, we are able to perform similar tests in full 3D in
reasonable time even with a larger input data set and a larger
number of cohorts. We generated 13 atlas cohorts, C; j—»...14,
each including 100 atlases constructed from / input images
chosen randomly from the original 36 brain volumes. The
2D mid-axial slices of the atlases are shown in Figure 6.
The normal average atlases are blurry, ghosting is evident
around the lateral ventricles and near the boundary of the
brain, while the Greedy Iterative Average template appears
to be much sharper and anatomical structures are preserved.

The quality of the atlas construction is visibly better than
the least MSE normal average. The entropy results on Fig-
ure 7 also confirm the stability of our implementation. As the
number of inputs increases, the average atlas entropy of the
simple averaging intensity increase while the Greedy Itera-
tive Average template decrease due to much higher individ-
ual’s sharpness. This quantitatively asserts the visible qual-
ity improvement in Figure 6. The atlases become more sta-
ble with respect to the entropy as the standard deviation de-
creases with increasing number of inputs. After cohort Cg the
atlas entropy mean appears to converge. So we need at least
8 images to create a stable atlas representing neuroanatomy,
this number is already over the capability of one GPU. Once
again this shows the benefit of our proposed framework.

5.2. Performance result

In the GPU processing framework, we build a CUDA image
processing library, which is optimized to give the best per-
formance with each image processing function and on spe-
cific range of input sizes. To achieve this, we apply the C++
template design and the parallel unrolling technique to re-
duce the loop overhead. We employ the Structure of Arrays
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Figure 7: Mean entropy and variance of atlases constructed
by arithmetically averaging and the Greedy Iterative Aver-
age template

Table 1: Speed up factor of the GPU and optimized-GPU
functions over the reference CPU version. Note that the non-
optimized GPU reduction is slower than that of the CPU

N Basic Opers Gradient Reduction  Rev. Map
05M 23 24 18 104 .78 17 5 61
1M 23 24 18 109 86 23 9 56
2M 23 24 18 117 91 26 5 62
4M 24 25 20 120 93 30 10 o6l
8M 24 25 21 126 94 31 4 58
16M 24 26 21 129 95 32 10 54

instead of Array Of Structures, and utilize the CUDA Visual
Profiler to analyze the performance and guarantee that the
global memory access is coalesced. Table 1 shows the speed
gain comparison of a trivial non-optimized GPU implemen-
tation and the optimized GPU version over a optimized CPU
implementation. The results show that we only gain perfor-
mance when the size of inputs is big enough, so that we effi-
ciently hide the memory latency in the GPU implementation.
We experienced a typical 20-50 time speedup over CPU ver-
sion with optimized GPU function in image processing ap-
plications that yields an overall speed up factor of 20 with
image diffeomorphism problem. Together with tightly trim-
ming volume redundancy, an overall 30-60 performance gain
over optimized CPU FFT version can be seen.

Table 2 shows the runtime contribution of each step in
the algorithm using FFT and the SOR PDE solver with 1923
inputs over 100 iterations. In our optimized SOR version,
PDE solver accounts only 50 to 64% overall processing
time while it took 90% with FFT-based PDE solver. Fig-
ure 8 shows the overall runtime per 100 iterations of pair-

Table 2: Runtime contribution of FFT and SOR method

Diff Grad Force PDE ODE Total
FFT 32% 18% .72% 88% 8.75% 59.6s
SOR 1% 56% 23% 64% 268%  20.5s
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Pairwise matching time per a hundred iterations
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Figure 8: Overall runtime of the SOR and FFT implemen-
tations over 100 iteration with different volume size

wise matching using FFT, SOR, and the multiscale SOR ap-
proach. It is clear that the SOR implementation is a magni-
tude faster than the FFT, and the multiscale SOR is a mag-
nitude faster still. The linear growing curves also shows the
scalability of the SOR approaches.

6. Conclusion and Future work

We have presented a multi-GPUs framework for unbiased
diffeomorphic atlas construction. This framework gives a
substantial performance increase over previous implementa-
tions. We were able to perform expensive tasks like random
permutation tests over a large number of input volumes.

Atlas building on the GPU provides an inexpensive and fast
alternative for many applications, such as 3D volume seg-
mentation, anatomical labeling, and robust image registra-
tion. We can see many potential applications for this frame-
work in many other image processing problems that require
huge computational power and massive input data set, es-
pecially in brain image processing. We optimized all opera-
tions involved in the computational process, it is necessary
when we have to process thousands of inputs where small
optimizations would yield hours less in the running time.

In the future, we want to investigate the scenarios with even
a larger scale multi-GPUs supercomputing systems, provid-
ing petaflop processing power at an affordable price. With
these multi-GPUs systems, we can perform very large popu-
lation tests. We believe that our GPU framework can be gen-
eralized to a dataflow parallel processing model, providing
a replacement for the existing sequential general computing
model.
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