
Eurographics/ IEEE-VGTC Symposium on Visualization (2007)
Ken Museth, Torsten Möller, and Anders Ynnerman (Editors)

Grouse: Feature-Based, Steerable

Graph Hierarchy Exploration

Daniel Archambault†1, Tamara Munzner†1 and David Auber‡2

1University of British Columbia, Canada.
2University of Bordeaux, France.

Abstract

Grouse is a feature-based approach to steerable exploration of a graph and an associated hierarchy. Steerability

allows exploration to begin immediately, rather than requiring a costly layout of the entire graph as an initial

step. In a feature-based approach, the subgraph inside a metanode of the graph hierarchy is laid out with a well-

chosen algorithm appropriate for its topological structure. Grouse preserves the input hierarchy, which provides

meaningful information to the user when its metanodes correspond to features of interest. When a metanode in the

hierarchy is opened, a limited number of metanodes are laid out again along the path between the opened node

and the root. We demonstrate the effectiveness of Grouse on datasets from IMDB, the Internet Movie Database,

where nodes are actors and cliques represent movies. The combination of feature-based layout and limited relayout

computation does not fragment features in the hierarchy and improves the number of levels in the hierarchy that

can be seen at once over previous approaches.

Categories and Subject Descriptors (according to ACM CCS): H.5.0 [Information Systems]: Information Interfaces
and Presentation: General; G.2.2 [Discrete Mathematics]: Graph Theory: Graph Algorithms

1. Introduction

Grouse is a tool for the interactive exploration of a graph
and an associated hierarchy. It is an acronym for Graph hier-
archy On-line User Steered Exploration and is named after a
mountain near Vancouver. A hierarchy is defined as a recur-
sive grouping placed on the nodes in this graph. For example,
in a social network, where nodes represent people and edges
represent relationships between them, a graph hierarchy may
group these people into departments on the small scale and
into universities on a larger scale.

Metanodes are the interior nodes of this hierarchy that
contain a grouping of nodes in the graph. In our social net-
work example, metanodes are nodes representing universi-
ties and departments. The leaves in the hierarchy are the
nodes of the input graph. In our social network example,
these are the people. For large graphs, a detailed layout of
the entire graph may not provide a useful level of abstraction

† Email: {archam,tmm}@cs.ubc.ca
‡ Email: auber@labri.fr

for users, and can be visually overwhelming. In interactive
systems used to explore this data, users open or close metan-
odes to adjust the complexity of the view. This interaction
specifies a cut of the graph hierarchy, namely the boundary
between the visible and hidden metanodes and leaves.

Multilevel graph drawing algorithms compute graph hier-
archies automatically to accelerate and improve the layout
process. These hierarchies can also provide meaningful in-
formation to the user. For instance, subsets of the Internet
Movie Database (IMDB) where nodes are actors and two ac-
tors in the same movie are linked by an edge. A decomposi-
tion that finds cliques, or complete subgraphs, shows useful
information because each movie is itself a clique [AMA07].

Many of the interactive systems used to explore these hi-
erarchies require a precomputed layout of the entire graph
as input. Computing the layout of a large graph is an expen-
sive proposition, and the time needed can range from min-
utes to hours. In a steerable interactive system, the layout
is computed progressively, on demand, as the user explores
the graph hierarchy. We distinguish between progressive lay-
out and progressive rendering, as provided by several previ-

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org


D. Archambault, T. Munzner & D. Auber / Grouse: Feature-Based Steerable Graph Hierarchy Exploration

ous systems [Mun98, JKM03, Aub03], where precomputed
layouts are drawn in order of importance so that the render-
ing is interruptible in response to user action. In contrast,
steerable layout provides an abstraction of the graph hierar-
chy to users so that computational effort can be directed to
regions of interest. Very few existing systems provide this
benefit [EH00, AvHK06].

The principal contribution of Grouse is to combine steer-
able exploration with feature-based layout, where the algo-
rithm used to lay out each metanode is tuned to its topolog-
ical structure. For example, we use specialized approaches
for drawing trees, cliques, and meshes that are faster than
and provide more understandable layouts than force-directed
placement. We preserve the input hierarchy, which provides
meaningful information to the user when its metanodes cor-
respond to features of interest. When a metanode in the hi-
erarchy is opened, we perform a relayout calculation whose
complexity depends only on the limited number of visible
metanodes on the path between the opened node and the root
of the hierarchy. One of the major challenges in showing
multi-level graphs is providing adequate information den-

sity so that structure at multiple levels of the hierarchy are si-
multaneously visible. The combination of feature-based lay-
out and limited relayout computation leads to improved in-
formation density over previous approaches.

2. Previous Work

Graph and hierarchy visualization is a very active research
area [HMM00]. We focus our discussion of previous work
on the two most related categories of multilevel algorithms
and interactive exploration systems.

2.1. Multilevel Algorithms

Multilevel graph drawing algorithms automatically compute
graph hierarchies that are used to accelerate or improve
the layout process. The hierarchy construction algorithms
of these approaches have been based on an estimates of
maximal matching [Wal03], graph filtration based on short-
est path distance in GRIP [GK02], local graph connectiv-
ity in FM3 [HJ04], and topological features in TopoLay-
out [AMA05, AMA07].

None of these systems address interactive hierarchy ex-
ploration. They use the hierarchy to accelerate lay out of
the graph and present a final layout. With Grouse, we pro-
pose separating the problem of hierarchy construction from
that of hierarchy layout, considering the former as a prepro-
cessing step and focusing on the latter. We use feature-based
hierarchies constructed by TopoLayout as input to Grouse,
and the cost of that preprocessing step is usually O(N logN)
where N is the number of leaves in the graph hierarchy.
As TopoLayout is the only previous system that provides
feature-based layout based on the metanode type, as opposed

to simply using force-directed layout for all metanodes, so
Grouse is built on that software infrastructure.

2.2. Interactive Hierarchy Exploration

Many of the systems developed to explore a graph and its as-
sociated hierarchy require precomputed layouts, while only
a few are steerable.

2.2.1. Precomputed Layout Required

Several techniques have been developed to visualize graphs
and their associated hierarchies when a layout of the graph
is given as input. Eades and Feng [EF96] display the entire
graph hierarchy across all levels at once by placing hierar-
chy levels onto parallel planes in three-dimensional space.
Schaffer et al. [S∗96] have a multifocal fisheye approach
where metanodes can be expanded and viewed in the con-
text of the entire graph using fisheye techniques. Gansner et

al. [GKN05] provide a topological fisheye view of a graph
hierarchy, where coarser approximations of graph structure
are shown at increasing Euclidean distances from a focus
point. Abello et al. [AKY04] also define a compound fisheye
view for large graphs that shows cuts, with the addition of a
linked treemap view showing the graph hierarchy. Strongly
connected clusters of nodes are visualized by van Ham and
van Wijk [vHvW04], using a hierarchy computed from Eu-
clidean and graph theoretic distance between nodes.

All of these approaches require the full layout of the entire
graph to be computed before exploration can begin, whereas
with steerable approaches it can begin immediately.

2.2.2. Steerable Exploration

Two previous systems do provide steerable exploration. The
DA-TU system [EH00] uses force-directed placement on a
clustered graph drawn in two dimensions. Metanodes of the
graph can be opened and closed and the graph hierarchy
can be modified interactively. After any of these operations,
a specialized force-directed algorithm, which has forces to
keep child subgraphs of the hierarchy together, is run on
the entire cut. However, since every operation causes force-
directed placement to be run on the entire cut, this approach
does not scale past small cut sizes.

ASK-GraphView [AvHK06] is a powerful steerable sys-
tem that addresses both hierarchy creation and exploration
through multiple linked views. One notable feature of ASK-
GraphView is handling out-of-core computations on huge
graphs with a client/server architecture, but Grouse only ad-
dresses the common case where the graph fits into main
memory. It computes hierarchies using a feature-based de-
composition, detecting trees, biconnected components, and
clusters, but uses force-directed placement for all metan-
odes rather than supporting feature-based layout as we do
with Grouse. After the base decomposition, it modifies the

c© The Eurographics Association 2007.

68



D. Archambault, T. Munzner & D. Auber / Grouse: Feature-Based Steerable Graph Hierarchy Exploration

Figure 1: The Grouse interface has two linked views, showing the selected node in both in red. On the left, all metanodes

and leaves in the graph hierarchy in the tree view. On the right, the graph view shows closed metanodes on the cut with

hexagons, and the open metanodes above them in the hierarchy as circles. The hierarchy structure is shown in the graph view

by containment within nested circles, while graph structure is shown with connecting edges and metaedges. Metanodes are

colored by the feature they contain, with leaves shown as grey boxes.

feature-based hierarchy by imposing thresholds on hierar-
chy depth and the number of children in each metanode.
While these modifications make force-directed placement
tractable, they can mask interesting topological structures. In
contrast, Grouse preserves the given input hierarchy because
it may provide meaningful information such as the IMDB
cliques described above. In ASK-GraphView, subgraphs are
shrunk down to fit inside their parent metanode when it is
opened, whereas in Grouse we achieve a more information-
dense layout by performing a relayout calculation for the
metanodes on the path up to the hierarchy root.

3. Interface

The Grouse interface consists of two linked views, as shown
in Figure 1. On the left is the tree view window showing all
metanodes and leaves in the graph hierarchy. It supports tree
browsing with standard interaction of expanding or collaps-
ing items and vertical scrolling. On the right is the graph

view window, showing the current graph cut with a node-
link diagram. It supports standard pan and zoom through the
two-dimensional view.

Metanodes can be in one of three states: open, where they
show the subgraph beneath the metanode in the hierarchy
contained within its enclosing circle; on the cut, visible and
drawn as an opaque hexagon without further detail; or hid-

den, not visible in the graph view. Containment is used to
show the structure of the graph hierarchy. We show the graph
relationships by drawing edges from leaf nodes in the usual
way, and drawing metaedges between two cut metanodes
or a cut metanode and a leaf node if there is an edge be-
tween any leaves beneath the metanodes in the graph hierar-
chy. Leaf nodes are drawn as grey boxes in the graph view.

We color metanodes by the feature type they contain, in-
spired by Stone’s Tableau Software color scheme [Sto06].
Nodes which contain biconnected components trees are
brown, trees are blue, sets of clusters are yellow, cliques

c© The Eurographics Association 2007.

69



D. Archambault, T. Munzner & D. Auber / Grouse: Feature-Based Steerable Graph Hierarchy Exploration

are cyan, meshes are purple, and all other components are
green. The saturation of the base color represents the depth
in the hierarchy, so that the large disks are less saturated and
the smaller ones are more brightly colored. Grouse supports
linked highlighting between views. In the tree view, the cur-
rent cut of the graph is shown within the context of the entire
hierarchy by coloring the label backgrounds of open metan-
odes according to their feature type. Nodes are selectable in
either view, and are highlighted with a red perimeter in the
graph view and a red background label in the tree view.

The main interaction operation is the opening of a metan-
ode. The subgraph beneath it appears at the location of the
metanode, and the nodes of the subgraph move in a smooth
transition to their locations in the new layout. Their enclos-
ing metanode appears at a depth proportional to its depth
in the hierarchy. A cut metanode can be opened by clicking
within its hexagon in the graph view or by clicking on its
name in the tree view. A hidden metanode can be opened by
clicking in the tree view, which triggers a multi-stage ani-
mation of successively opening up all enclosing metanodes
on the path from its ancestor in the cut down to the desired
node. All the metanodes present in a subtree below a metan-
ode in the graph view can be opened by holding down the
shift key and clicking a closed metanode.

4. Algorithms

Grouse is built on the Tulip framework libraries [Aub03]. We
use many of its data structures, graph drawing algorithms,
and rendering capabilities for our steerable exploration sys-
tem. In this section, we first describe feature-based layout
and how the crossing minimization phase is generalized to
work with hierarchy cuts. We then present the core algo-
rithm used to support the animated metanode opening op-
eration. We also discuss two other algorithmic issues: mini-
mizing change during relayout and morphing node locations
and sizes during animated transitions.

4.1. Layout and Crossing Reduction

In Grouse, we adapt the feature-based layout originally in-
troduced in TopoLayout [AMA05,AMA07] to make it steer-
able. As discussed in that paper, providing good drawing
density that allows structure at as many levels as possible
to be seen simultaneously is a difficult challenge. To obtain
high visual quality, we must have some idea of the size of the
graph layout at each level and set a corresponding size for
each metanode in the hierarchy. Thus, the best results come
from generalizing algorithms to be area-aware; that is, to
take varying node size into account. After this initial lay-
out step, we execute passes to eliminate overlaps between
metanodes, and then a final post-processing pass reduces
edge-edge and edge-metanode crossings.

We briefly summarize the TopoLayout layout algorithms

and their complexity. N is the number of nodes in a sub-
graph and E is the number of edges at a level in the hierar-
chy. Cliques are drawn with the nodes arranged in a circu-
lar layout, at a low O(N) cost. A hub-and-spoke glyph re-
places the clutter of drawing all pairs of edges where a cen-
tral purple triangle is connected to each node of the clique.
Trees are drawn with the O(N) Buchheim-Walker algo-
rithm [BJL02] for deep trees and the O(N logN) Bubble Tree
algorithm [GADM04] for bushy trees. Decomposing a graph
into biconnected components always yields a tree in the en-
closing metanode, and we again distinguish between bushy
and deep trees. Components that perform well when the
fast High Dimensional Embedder algorithm [KH02] is used.
These graphs are often mesh-like, and they are drawn with an
area-aware version of HDE that requires O(m(N logN +E))
where m is set to fifty. For clusters, and all other sub-
graphs where a specific feature is not specified, we use
an area-aware version of the O(N3) GEM force-directed
approach [FLM95]. Finally, the complexity of the overlap
elimination pass [DMS05] is O(N logN +k) for layouts with
k overlaps. Typically, k is subquadratic.

In TopoLayout, the final crossing reduction pass reduces,
but does not completely eliminate, edge-edge and edge-
metanode crossings by rotating metanodes according to a
computed torque value. The generalization of this approach
to steerable exploration is straightforward: we simply de-
termine the forces using the cut metanodes rather than the
leaves of the hierarchy. The complexity of the generalized
crossing reduction is O(NEv), where Ev is the number of
visible edges in the current cut.

We also introduce a small improvement in the torque com-
putation to better avoid the local minimum where equal and
opposite torques average out to zero torsional force. We now
also compute the average absolute value of the torque. If this
average is larger than 90◦, we try rotating the node by 180◦.
If the average torque decreases, we keep the node flipped;
otherwise we leave it unchanged.

4.2. Changing the Cut

In Grouse, when the user opens a metanode, the cut through
the hierarchy changes and we need to update the graph view.
The selected node changes type, moving above the cut to
become an open metanode. All formerly hidden nodes in the
subgraph of the metanode are added to the cut. In Figure 2,
we show how metanodes are updated with a change in the cut
and we provide pseudocode for the algorithm in Figure 3.

In our incremental layout approach, the size of all the
metanodes in the graph hierarchy start with a diameter of√

N, where N is the number of leaves in the subtree be-
neath the metanode. This default value causes the area of the
metanode be roughly proportional to its number of leaves.
When the user opens a metanode for the first time, the sub-
graph contained within the metanode is laid out, leading to

c© The Eurographics Association 2007.

70



D. Archambault, T. Munzner & D. Auber / Grouse: Feature-Based Steerable Graph Hierarchy Exploration

A

B C

D E F G

(a)

AB

C

F G

(b)

AB

C

F G

D

E

(c)

AB

C

F G

D

E

(d)

A
B

C

F G

D

E

(e)

A

B C

D E F G

(f)

Figure 2: Example of the computations made when changing the cut by opening a metanode. Open nodes are white, cut nodes

are grey, and hidden nodes are black. (a) The initial cut shown in the context of the whole hierarchy. It has open metanodes A,

C, and F. Metanodes B and G are in the cut, as are the leaves below F. The metanodes D and E are hidden, as are their leaves.

(b) The initial cut as shown in the graph view. (c) After the selection, metanode B changes from cut to open and the two formerly

hidden metanodes D and E become cut metanodes. The subgraph containing D and E is laid out and the size of B is updated.

(d) The subgraph inside A is laid out, and the size of A is updated. (e) The metaedge to B is deleted and two edges to D and E

are added. (f) The final cut, as a tree. The animated transition seen by the user is a linear interpolation between views (b) and

(e). The intermediate stages of computation are not visible to the user.

proc ChangeCut (openedMetaNode)

metanode = openedMetaNode
while metanode != NULL do

InitialLayout(metanode)
RemoveOverlaps(metanode)
MinimizeCrossings(metanode)
RecalcBoundingCircle(metanode)
metanode← metanode.parent

RecomputeMetaEdges()

Figure 3: Pseudocode for the ChangeCut algorithm.

a change in the size of its open metanode. We have more in-
formation about the space requirements at each level because
this size estimate is further refined as metanodes inside are
opened. At a leaf node, we have perfect information about
the size required.

After a layout event, the size of a metanode is changed,
and the layout of each subgraph along the path between the
metanode and the root is updated. This cascading relayout
does not require recomputing layouts for any of the other
nodes in the cut. The worst-case number of relayouts is thus
O(d), where d is the maximum depth of the cut. When the
hierarchy is close to balanced, this depth is logarithmic in the
number of nodes. Moreover, the cut depth is small when ex-
ploration begins. The complexity of the entire relayout cas-
cade depends on which features are present in the metanodes
on the path, since the layout complexity for each metanode
ranges from linear to cubic.

After all nodes on the path up to the root are relaid out, we
must delete the metaedges leaving from the parent metanode
that is removed from the cut, and add new metaedges for the
newly laid out nodes in the child subgraph that have been
added to the cut. A metaedge exists between cut metanodes

if there is an edge between leaves which they contain. We
use an interactive refinement approach [AJ05] to compute
these metaedges on the fly in linear time.

4.3. Minimizing Change During Relayout

The relayout phase discussed above is one example of the
dynamic or incremental layout problem, where we would
like a new layout of a graph to be as close as possible to the
old layout of a similar graph with node size and connectivity
changes. For most of the algorithms, we can eliminate un-
necessary change by preserving the order in which the nodes
and edges of each child subgraph are processed.

However, simply preserving order does not solve this
problem with GEM force-directed placement. We seed the
algorithm by using the old layout as a initial guess for the
new one. This approach works well when the size change
of the opened metanode is small, but the new layout might
be quite different from the old when the sizes differ signifi-
cantly, which is currently a limitation of our system.

4.4. Animating Transitions

Opening a metanode can lead to size and position changes
in many metanodes. It would be difficult to understand those
changes if they were made abruptly. Grouse linearly inter-
polates the positions of the changed nodes from old to new
locations while preserving containment relationships. Dur-
ing this transition, the sizes of the open metanodes are mor-
phed as well. In the Figure 2 example, the animated transi-
tion changes the graph view from Figure 2(b) to Figure 2(e).
The intermediate stages between these views are not shown
in the animation.

c© The Eurographics Association 2007.

71



D. Archambault, T. Munzner & D. Auber / Grouse: Feature-Based Steerable Graph Hierarchy Exploration

5. Results and Discussion

We present several layouts showing stages in the steerable
exploration process. The datasets are subsets of the Internet
Movie Database (IMDB) in Figures 4, 5, and 6. We discuss
the benefits of preserving the input hierarchy. We validate
the Grouse approach by analyzing the information density
of the resulting layouts, comparing scaling to relayout and
force-directed layout to feature-based layout.

5.1. Steerable Exploration

The input graph for Figure 5 is all the reachable movies in
1999 from the actor Sharon Stone. It has 7,640 nodes and
277,029 edges. In the left two columns, we show a sequence
of snapshots of the graph view as metanodes are opened. In
the final image on the right, the cut includes a large high-
level tree, containing a clique representing a movie in cyan
near the bottom. The inset shows a close-up view of the
clique with node labels.

5.2. Preserving Hierarchy Features

In the IMDB datasets shown in Figures 4 and 5, cliques
represent movies. If we allowed hierarchy modifications in
the style of ASK-GraphView [AvHK06], movies with many
actors would be split up between multiple metanodes, and
thus difficult to recognize. In Grouse, these features are pre-
served and laid out in contiguous regions and depicted using
a glyph. We can do this effectively since appropriate lay-
out algorithms are used depending on the topological feature
present in the subgraph. Our system shows the hierarchical
structure above the cut explicitly by using containment. The
bounding circles drawn below open metanodes help users to
understand the hierarchical structure above the cut.

5.3. Scaling vs. Relayout Along Path

In Grouse, we recompute part of the layout during explo-
ration, at most d metanodes where d is the depth of the
graph hierarchy. As the user steers the layout, our metan-
ode size estimates improve and the cascading relayout prop-
agates this information up toward the hierarchy root. This
approach represents a quality-for-time tradeoff compared to
the ASK-GraphView method, where layout of any subgraph
only occurs once and it is scaled so that it fits into the open
metanode on the previous level. Although the scaling ap-
proach is fast, major features can be difficult to perceive.
Figure 4 compares these two approaches. In the scaling ex-
ample of Figure 4(a), the cyan clique is much smaller than
in the relayout example of Figure 4(b). Additionally, more
levels are visible at a single scale in the drawing using our
relayout technique.

5.4. Force-Directed vs. Feature-Based Layout

Figure 6(a) shows a layout using only force-directed place-
ment, as in previous work, compared to Figure 6(b) that

shows the feature-based layout of Grouse where appropri-
ate algorithms are chosen for the type of topology present
in the subgraph. With Grouse, it is easier to see the tree at
the center of the drawing. We know that the cliques are ac-
tually complete graphs because the circular layout indicates
it. In the force-directed drawing, the spatial layout does not
provide such explicit cues.

6. Conclusion and Future Work

We have presented Grouse, a system for steerable, feature-
based exploration of graph with associated hierarchies. As
the user opens metanodes in the hierarchy to see an arbitrary
cut, we only perform relayout computations for the metan-
odes on the path between the chosen one and the hierarchy
root. The old layout morphs into the new with a smooth tran-
sition of metanode positions and sizes. Although this limited
relayout requires additional computation than do previous
approaches that simply rescale a fixed layout, it allows for
more levels of the hierarchy to be seen at once. Moreover,
the choice of using feature-based layouts means that in many
cases the cost to lay out a metanode is low because we can
avoid an expensive force-directed placement. Also, feature
based layouts allow topological structures to be easily iden-
tified. Finally, we preserve the input hierarchy, which can be
meaningful if the subgraphs contained within the metanodes
correspond to features of interest for a user.

An interesting direction for future work would be to incor-
porate a broader range of domain-specific features based on
attributes associated with nodes and edges, beyond the topo-
logical features that we currently compute from the graph
structure alone.

We would also like to minimize change during our relay-
out process. One way would be to compute tighter estimates
for metanode size. We could possibly exploit theoretical size
bounds of the layout algorithm for the chosen feature. An-
other way would be to integrate a dynamic force-directed
placement algorithm, such as that of Frishman and Tal, into
our feature-based framework [FT07].

References

[AJ05] AUBER D., JOURDAN F.: Interactive refinement of multi-
scale network clusterings. In Proc. 9th Int. Conf. on Information

Visualisation (IV’05) (2005), pp. 703–709.

[AKY04] ABELLO J., KOBOUROV S. G., YUSUFOV R.: Visu-
alizing large graphs with compound-fisheye views and treemaps.
In Proc. Graph Drawing (GD’04) (2004), vol. 3383 of LNCS,
Springer-Verlag, pp. 431–441.

[AMA05] ARCHAMBAULT D., MUNZNER T., AUBER D.: Topo-
Layout: Graph layout by topological features. In IEEE Infor-

mation Visualization Posters Compendium (InfoVis’05) (2005),
pp. 3–4.

[AMA07] ARCHAMBAULT D., MUNZNER T., AUBER D.: Topo-
Layout: Graph layout by topological features. IEEE Trans. on

Visualization and Computer Graphics 13, 2 (2007), 305–317.

c© The Eurographics Association 2007.

72



D. Archambault, T. Munzner & D. Auber / Grouse: Feature-Based Steerable Graph Hierarchy Exploration

(a) scale

(b) relayout

Figure 4: We compare the number of levels of the hierarchy

that can be seen at once. With scaling (a), it is difficult to see

deep into the hierarchy. Using relayout (b), more levels are

distinguishable. The dataset is a subset of IMDB of 1,181

nodes and 31,527 edges centered around Jake Gyllenhaal.

[Aub03] AUBER D.: Tulip : A huge graph visualization frame-
work. In Graph Drawing Software, Mutzel P., Jünger M., (Eds.),
Mathematics and Visualization. Springer-Verlag, 2003, pp. 105–
126.

[AvHK06] ABELLO J., VAN HAM F., KRISHNAN N.: ASK-
GraphView: A large scale graph visualization system. IEEE

Trans. on Visualization and Computer Graphics (Proc.

Vis/InfoVis ’06) 12, 5 (2006), 669–676.

[BJL02] BUCHHEIM C., JÜNGER M., LEIPERT S.: Improving
Walker’s algorithm to run in linear time. In Proc. Graph Drawing

(GD’02) (2002), vol. 2528 of LNCS, Springer-Verlag, pp. 344–
353.

[DMS05] DWYER T., MARRIOTT K., STUCKEY P. J.: Fast
node overlap removal. In Proc. Graph Drawing (GD’05) (2005),
vol. 3843 of LNCS, Springer-Verlag, pp. 153–164.

[EF96] EADES P., FENG Q.: Multilevel visualization of clustered
graphs. In Proc. Graph Drawing (GD’96) (1996), vol. 1190 of
LNCS, Springer-Verlag, pp. 101–112.

[EH00] EADES P., HUANG M. L.: Navigating clustered graphs
using force-directed methods. Journal of Graph Algorithms and

Applications 4, 3 (2000), 157–181.

[FLM95] FRICK A., LUDWIG A., MEHLDAU H.: A fast adaptive
layout algorithm for undirected graphs. In Proc. Graph Drawing

(GD’94) (1995), vol. 894 of LNCS, pp. 388–403.

[FT07] FRISHMAN Y., TAL A.: Online dynamic graph drawing.
In Proc. Eurographics/IEEE VGTC Symp. on Visualization (Eu-

roVis’07) (2007). To appear.

[GADM04] GRIVET S., AUBER D., DOMENGER J., MELAN-
CON G.: Bubble tree drawing algorithm. In International Con-

ference on Computer Vision and Graphics (2004), pp. 633–641.

[GK02] GAJER P., KOBOUROV S. G.: GRIP: Graph drawing
with intelligent placement. Journal of Graph Algorithms and Ap-

plications 6, 3 (2002), 203–224.

[GKN05] GANSNER E., KOREN Y., NORTH S.: Topological fish-
eye views for visualizing large graphs. IEEE Trans. on Visualiza-

tion and Computer Graphics 11, 4 (2005), 457–468.

[HJ04] HACHUL S., JÜNGER M.: Drawing large graphs with
a potential-field-based multilevel algorithm. In Proc. Graph

Drawing (GD’04) (2004), vol. 3383 of LNCS, Springer-Verlag,
pp. 285–295.

[HMM00] HERMAN I., MELANÇON G., MARSHALL M. S.:
Graph visualization and navigation in information visualization:
A survey. IEEE Trans. on Visualization and Computer Graphics

6, 1 (2000), 24–43.

[JKM03] JANKUN-KELLY T. J., MA K.-L.: MoireGraphs: Ra-
dial focus+context visualization and interaction for graphs with
visual nodes. In Proc. IEEE Symposium on Information Visual-

ization (InfoVis’03) (2003), pp. 59–66.

[KH02] KOREN Y., HAREL D.: Graph drawing by high-
dimensional embedding. In Proc. Graph Drawing (GD’02)

(2002), vol. 2528 of LNCS, Springer-Verlag, pp. 207–219.

[Mun98] MUNZNER T.: Drawing large graphs with H3Viewer
and Site Manager. In Proc. Graph Drawing (GD’98) (1998),
vol. 1547 of LNCS, Springer-Verlag, pp. 384–393.

[S∗96] SCHAFFER D., ET AL.: Navigating hierarchically clus-
tered networks through fisheye and full-zoom methods. ACM

Trans. on Computer-Human Interaction (TOCHI) 3, 2 (1996),
162–188.

[Sto06] STONE M.: Color in information display.
IEEE Visualization 2006 Course Notes. Available as
http://www.stonesc.com/Vis06, Oct 2006.

[vHvW04] VAN HAM F., VAN WIJK J.: Interactive visualization
of small world graphs. In Proc. IEEE Symposium on Information

Visualization (InfoVis’04) (2004), pp. 199–206.

[Wal03] WALSHAW C.: A multilevel algorithm for force-directed
graph drawing. Journal of Graph Algorithms 7, 3 (2003), 253–
285.

c© The Eurographics Association 2007.

73



D. Archambault, T. Munzner & D. Auber / Grouse: Feature-Based Steerable Graph Hierarchy Exploration

Figure 5: Exploring an IMDB dataset of Sharon Stone movies from 1999, where the full input graph is 7,640 nodes and 277,029

edges. The left column shows snapshots of the graph view as the user explores by opening metanodes. On the right, the final cut

includes one small and one large tree. The cyan clique of actors in the movie Anywhere but Here is shown in the inset. Labels

have been turned on in the inset view, showing actor names.

(a) (b)

Figure 6: A comparison of information density using force-directed layout with feature-based layout. (a) In the force-directed

case, the leaf nodes in the cyan clique are so spread apart that they are tiny. (b) With feature-based layout, the clique leaves are

far larger, as are the blue cut metanodes representing trees in the open metanode at the center.

c© The Eurographics Association 2007.

(a)

(b)

(c)

(d)

74


