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Abstract
We present a method to reconstruct simplified mesh surfaces from large unstructured point sets, extending recent
work on dynamic surface reconstruction. The method consists of two core components: an efficient selective re-
construction algorithm, based on geometric convection, that simplifies the input point set while reconstructing a
surface, and a local update algorithm that dynamically refines or coarsens the reconstructed surface according to
specific local sampling constraints.
We introduce a new data-structure that significantly accelerates the original selective reconstruction algorithm
and makes it possible to handle point set models with millions of sample points. Our data-structure mixes a kd-tree
with the Delaunay triangulation of the selected points enriched with a sparse subset of landmark sample points.
This design efficiently responds to the specific spatial location issues of the geometric convection algorithm. We
also develop an out-of-core implementation of the method, that permits to seamlessly reconstruct and interactively
update simplified mesh surfaces from point sets that do not fit into main memory.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

Keywords: Surface reconstruction, geometric convection, point set simplification, dynamic level of detail update,
out-of-core reconstruction.

1. Introduction

The recent advances in 3D scanning technologies have led
to an increasing need for techniques capable of processing
massive discrete geometric data. In the last years, a great
deal of work has been carried out on surface reconstruction
from datasets with millions of sample points, including un-
organized points sets [BMR∗99,DGH01b,OBA∗03,OBS05]
and sets of range images [LPC∗00, RCG∗04]. These meth-
ods are often used to produce a triangulated mesh surface,
which is a standard representation for fast visualization and
geometry processing algorithms. However, the data used to
generate these meshes are generally overly dense, due to uni-
form grid sampling patterns, and a mesh simplification step
is required for use in common applications.

Point set simplification techniques offer an alternative to
the standard pipeline by introducing a simplification step
before the reconstruction process. The former aim at re-
ducing the redundancy of the input data in order to accel-

erate subsequent reconstruction or visualization. Subsam-
pling algorithms decimate the point set [DGH01a, Lin01,
WK04] while resampling algorithms compute new point lo-
cations [DGH01c,PGK02,MD04]. These techniques rely ei-
ther on oriented normals and local connectivity information
obtained from k-neighborhoods, or on a global Delaunay tri-
angulation or Voronoï diagram, which represents a signifi-
cant part of a surface reconstruction process that would take
all the points into account.

Several algorithms that perform reconstruction and sim-
plification in a single framework have been recently studied.
Boissonnat and Cazals [BC01] have proposed a Delaunay-
based coarse-to-fine reconstruction algorithm controlled by
a signed distance function to an implicit surface. Ohtake et
al. [OBS05] have developed an algorithm that resamples a
point set using a quadric error metric, coupled with a specific
fast local triangulation procedure. In both cases, the resulting
sampling remains static, and the reconstructed surface can-
not be easily updated, especially if the level of detail needs
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to be modified afterwards, or if additional data become avail-
able later (e.g. when streaming data on a network, or during
a digital acquisition project). Allègre et al. [ACA05] have
tackled this limitation by devising a dynamic surface recon-
struction framework in which the reconstruction becomes
selective and evolutive. The originality of their approach is to
integrate surface reconstruction, data simplification and dy-
namic level of detail update into a single framework. Start-
ing from a dense unorganized input point set, the authors
reconstruct a simplified triangulated surface by means of a
Delaunay-based surface reconstruction algorithm called ge-
ometric convection [Cha03] coupled with a local point set
subsampling procedure. The Delaunay triangulation is con-
structed only for the retained sample points in order to main-
tain some history of the reconstruction process. The recon-
structed surface can then be easily updated by inserting or re-
moving sample points without restarting the reconstruction
process from scratch. However, the method lacks an efficient
data-structure to handle large data.

In this paper, we extend the dynamic surface reconstruc-
tion framework proposed in [ACA05] to handle large data
efficiently (Fig. 1). We introduce a new data-structure that
significantly accelerates the original selective reconstruction
algorithm and makes it possible to handle point set models
with millions of sample points. Our data-structure mixes a
kd-tree with the Delaunay triangulation of the selected points
enriched with a subset of landmark sample points obtained
from the kd-tree. This design efficiently responds to the spe-
cific spatial location issues of the geometric convection algo-
rithm, while being much less expensive than maintaining a
global Delaunay triangulation. We also develop an out-of-
core implementation of the method to reconstruct simpli-
fied mesh surfaces from point sets that do not fit into main
memory. Our method involves neither stitching nor consis-
tent orientation issues. We demonstrate the effectiveness of
our framework on various detailed scanned statues with sev-
eral millions of sample points. Our method can reconstruct
high-quality simplified triangulated surfaces in a few min-
utes. Geometric detail can then be recovered or reduced lo-
cally whenever needed in a few seconds. The method can be
useful for viewpoint-dependent surface reconstruction.

2. Background

In this section, we briefly review the classic geometric con-
vection algorithm described in [Cha03] and its embedding
into a dynamic framework with simplification and update
abilities, as developed in [ACA05]. We focus on the geo-
metric predicates and queries involved in the surface recon-
struction algorithm, as well as on their evaluation.

2.1. Geometric convection

The geometric convection algorithm is a surface reconstruc-
tion algorithm that proceeds by filtering the Delaunay trian-
gulation of an input point set sampled from a smooth sur-
face [CG04]. This method has some similarities with the

Figure 1: Dynamic surface reconstruction from a large point
set model: the DAVID (3.6M points). A simplified mesh has
been first reconstructed (left, 137k points, 4 minutes on Pen-
tium IV 3GHz). Then, the result has been locally refined on
the right temple and hand (right, 175k points, 28 seconds).

Wrap [Ede02] and Flow Complex [GJ03] techniques. The
filtration is guided by a convection scheme related to level
set methods [ZOF01] that consists in shrinking an enclosing
surface under the influence of the gradient field of a distance
function to the closest sample point. This process results in
a closed, oriented triangulated surface embedded in the De-
launay triangulation of the point set, and characterized by an
oriented Gabriel property [Cha03]. This means that for ev-
ery facet, the diametral half-ball located inside the surface,
or Gabriel half-ball, contains no sample point.

Let P ⊂ R3 denote the input point set and Ŝ the surface
in convection. The convection scheme can be completely
achieved through the Delaunay triangulation of P by remov-
ing the facets that do not meet the oriented Gabriel property
through an iterative sculpting process that starts from the
convex hull. The Ŝ surface is a closed triangulated surface
is maintained at every step, all the facets oriented inwards,
and two self-intersecting facets can collapse locally, which
may change its topology. A local study (or a more global so-
lution) is required to dig into pockets that may locally block
the convection scheme, e.g. based on local granularity. The
algorithm is illustrated on a 2D point set in Figure 2.

The geometric evolution of Ŝ along the convection pro-
cess is locally guided by a geometric predicate Pog and a
geometric query Qdt defined as follows:

(Pog) Given an oriented Delaunay facet pqr, test whether it
satisfies the oriented Gabriel property.

(Qdt) Given an oriented Delaunay facet pqr, find the point
s ∈ P such that pqrs forms a Delaunay tetrahedron enclosed
in the half-space above the facet.
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(a) (b) (c) (d)

Figure 2: Geometric convection towards a 2D point set. In (a), an enclosing curve is initialized on the convex hull of the point
set. The current edge, enclosed by a non-empty Gabriel half-ball, forms a Delaunay triangle (dark gray) with the square point.
This triangle becomes external, the curve is updated (b), and it continues to shrink. In (c), an edge is found to block a pocket; it
will be forced. The final result is shown in (d) with some empty Gabriel half-balls.

Assuming that the Delaunay triangulation of the input
point set has been constructed, Pog and Qdt are both eval-
uated in constant time, and the overall complexity of the al-
gorithm is linear in the number of Delaunay cells traversed
by the surface.

2.2. Selective reconstruction

In presence of an overly dense input point set, the purpose
of selective reconstruction is to produce a simplified trian-
gulated surface that remains close from the sampled one. An
interesting property of the geometric convection algorithm is
that it induces a breadth-first discovery of neighboring sam-
ple points on the sampled surface. Exploiting this property,
the algorithm described in [ACA05] associates the geomet-
ric convection algorithm with a local subsampling procedure
that removes sample points that are not geometrically sig-
nificant, up to an error tolerance, while reconstructing. This
process results in a sampling distribution that is locally uni-
form almost everywhere.

Each time a new sample point p ∈ P is incorporated into
the surface in convection Ŝ, its nearest neighbors in P that do
not already belong to Ŝ are successively removed while their
distance to p does not exceed a radius min(rgeom,α.rtopo)
with rgeom and rtopo defined as follows:

• rgeom is the distance from p to its first nearest neighbor pi
in P that does not satisfy:

|n(pi) ·n(p)|> ρgeom ρgeom ∈ [0,1]

• rtopo is the distance from p to its first nearest neighbor p j
in P that does not satisfy:

|n(p j) ·
p−p j

‖p−p j‖
|< ρtopo ρtopo ∈ [0,1]

where n(x) denotes the unit normal vector at a point x ∈ P.
The ρgeom value limits the normal deviation from n(p) and
controls the level of detail of the reconstruction, whereas
the ρtopo value restricts the decimated neighborhood to a
topological disk. Note that only the normal directions are
required, not their orientation. If they are not supplied as
part of the input data, these normal directions can be lo-
cally estimated by covariance analysis. We introduce the α

factor, that was not present in [ACA05], in order to achieve
high-quality simplification without a fairing step. Decimat-
ing with α = 1 results in skinny triangles near sharp features,
where the sampling density increases too rapidly. To obtain
a smooth density gradient, we multiply the rgeom radius by a
factor α = 0.5, which reflects the distance to the medial axis.

In addition to the previously defined Pog predicate and
Qdt query, the selective reconstruction algorithm requires a
query Qnn that returns the nearest neighbors of a sample
point. If R̂⊂ P denotes the set of removed sample points at a
given time, then Pog, Qdt, and Qnn are evaluated within P\ R̂
at that time. Since many sample points may be discarded,
constructing the Delaunay triangulation of the whole input
point set may be uselessly expensive. The authors instead
rely on a triangulated surface data-structure that is initialized
by computing a simplified convex hull based on the above
subsampling procedure. The Pog predicate and the Qdt query
are evaluated on-the-fly during the reconstruction process,
but not in a direct manner. Evaluating Pog now involves an
additional query Qhb that reports the points in P \ R̂ located
inside the Gabriel half-ball of the facet. The Qdt query also
needs a predicate Pct to test whether a point in P \ R̂ enters
in conflict with a Delaunay tetrahedron.

The question of how to efficiently evaluate Pog, Qdt, and
Qnn arises. A kd-tree data-structure is well-suited to report
the sample points located inside the Gabriel half-ball of a
facet and to search the nearest neighbors of a sample point.
For a facet that does not satisfy Pog, the search space for
Qdt can be reduced to its Gabriel half-ball. However, these
half-balls may contain a great part of the input point set, es-
pecially at the beginning of the reconstruction process (see
Figure 2(a) for example). Moreover, when Pog is satisfied
and that a pocket is detected, the search space for Qdt can
extend to the whole half-space above the facet.

The main limitation of the algorithm regarding perfor-
mance is the lack of visibility of "what lies ahead" in the
unexplored domain during the convection process. To han-
dle large data efficiently, a better localization of geometric
queries is required. In Section 3, we show that performance
can be considerably improved by maintaining a partial De-
launay triangulation of the data in a dynamic fashion.
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2.3. Local update

During the reconstruction process, constructing the Delau-
nay triangulation of the retained sample points makes it pos-
sible to locally update the reconstructed surface by adding or
removing sample points in a dynamic fashion. This function-
ality takes advantage of the discovering relation induced by
the convection scheme on the set of Delaunay cells traversed
by the surface. This relation is stored in the cells that have
been visited. When inserting sample points, these points en-
ter in conflict with a set of Delaunay cells that form a con-
flict region. This region is retriangulated and the discovering
relation between Delaunay cells is restored by restarting the
reconstruction process from its boundary parts located out of
the current surface. The surface can backtrack locally when
some cells cannot be discovered anymore. When removing
sample points, the cells of the conflict region are the cells
attached to the points to be removed.

To locally change the level of detail of a reconstructed
surface, a region of interest and a local ρgeom value are first
defined. All the removed sample points in this region are re-
habilitated, and the Delaunay cells whose circumsphere in-
tersects the region of interest form the conflict region. The
internal Delaunay vertices are removed and the selective re-
construction process restarts as described above, by taking
account of the local simplification parameter.

3. Selective reconstruction from large point sets

This section describes our extensions to the selective recon-
struction algorithm presented in [ACA05], that improve its
performance and makes it appropriate for large datasets. Our
first goal is to accelerate the evaluation of the previously
mentioned Pog predicate and Qdt query. This is achieved
by first structuring and reducing the search space covered
by these operations, based on a partial Delaunay triangu-
lation of the input point set. Spatial search is then per-
formed through a kd-tree data-structure with an optimized
algorithm. At the end of the section, we describe an out-
of-core selective reconstruction algorithm that mixes the in-
core technique with the local update algorithm to handle
point sets that do not fit into memory.

3.1. Data-structure and accelerated algorithm

Data-structure In Section 2.2, we highlighted a front visi-
bility issue when running the reconstruction process without
a global Delaunay triangulation. Suppose now that we incre-
mentally construct the Delaunay triangulation of the retained
sample points while reconstructing, as it is done in anticipa-
tion of local update. Every facet of the shrinking surface is
the interface between two cells; we call front cell the one
that is enclosed in the surface. Front cells are connected to
opposite vertices on the surface and give information about
the extent of the unexplored domain. However, the part of
their circumsphere located inside the surface generally en-
closes a larger spatial domain than the Gabriel half-balls.

The Delaunay triangulation of the retained sample points is
therefore not sufficient to reduce the search space for the spa-
tial queries involved in the convection algorithm: additional
sample points are required to "break" big front cells.

We begin with a set of landmark sample points obtained
from a kd-tree structure with a threshold on the maximum
number of points per leaf. In every leaf cell, the point that is
the closest from the centroid is retained as a landmark (their
density will be discussed later). The Delaunay triangulation
D̂ of these points is then built, and enriched with the corners
of an axis-aligned bounding box. The surface is initialized
on the convex hull, the bounding box here, and is directly
supported by the Delaunay triangulation D̂. The reconstruc-
tion process can then be run benefiting from smaller front
cells that will help to accelerate the evaluation of both Pog

and Qdt. In parallel, spatial search is delegated to a kd-tree
data-structure that stores the whole input point set, with a
specific algorithm that will be described later.

Accelerated algorithm The accelerated algorithm dynami-
cally updates the Delaunay triangulation D̂ all along the re-
construction process by inserting retained sample points and
removing unretained landmarks so that the latter do not af-
fect the final result. We exploit here the property that the
Delaunay cells that become external to the surface remain
until the end of the process, which is not the case for internal
cells. External cells are naturally protected from any subse-
quent vertex insertion or removal.

We continue with the notations of Section 2 to describe
the algorithm. An illustration in 2D is provided in Figure 3.
To check whether an oriented facet pqr of the surface Ŝ sat-
isfies Pog, we consider its front cell σ in the current Delau-
nay triangulation; its circumsphere is denoted as S. We call
front vertex the vertex of σ that is opposite to the facet; its
location is denoted as s. The Gabriel half-ball of the facet is
finally denoted as B, and the half-space above the plane that
supports it as H. The first step to evaluate Pog is to check
whether s lies inside or outside B.

1. If s ∈ B, then the Pog predicate is not satisfied. The Qdt
query is then performed in (P\ R̂)∩S∩H, that corresponds
to the set of points that enter in conflict with σ. If this set is
empty, then pqrs forms a Delaunay tetrahedron in P\ R̂.

2. If s /∈ B, it it not guaranteed that Pog is satisfied. To
evaluate the predicate, we first get all the points in the set
(P\ R̂)∩B through Qhb. If this set is not empty, then Pog is
not satisfied and Qdt is next performed in the set (P\ R̂)∩B.

In the case where Pog is satisfied but that a pocket is detected,
then Qdt is performed in the set of points (P\ R̂)∩S∩H that
enter in conflict with σ. If this set is empty, then pqrs forms
a Delaunay tetrahedron in P\ R̂.

Each time a new Delaunay tetrahedron is formed from a
facet pqr and a point x, then x is inserted into the Delau-
nay triangulation provided x 6= s, and the surface is updated.
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(a) (b) (c)

Figure 3: Accelerated selective reconstruction towards a 2D point set. In (a), an enclosing curve is initialized on a bounding
box. A Delaunay triangulation has been built from its corners and a set of landmarks (filled square points). The current edge is
enclosed by a non-empty Gabriel half-ball: the front vertex lies inside. Then, the point that forms a Delaunay triangle with the
edge is searched within the disk that circumscribes the front cell (the square-dot point). The point set is then locally decimated
around the retained point (cross points). In (b), the retained point has been inserted in the triangulation and the curve continues
to shrink. The facets attached to the corners of the bounding box are forced. The final result is shown in (c).

Note that any facet attached to some vertices of the bound-
ing box should be opened, i.e. the query Qdt performed, even
when the predicate Pog is satisfied.

We now discuss the choice of the landmark points. The
main benefit of these points is at the beginning of the pro-
cess, where Gabriel half-balls may contain a lot of sam-
ple points. As their size decreases, this benefit also dimin-
ishes, because the density of these points becomes insuffi-
cient. However, small Gabriel half-balls can be processed
more efficiently. If this density is too high, then much time
may be spent to remove undesired landmarks. As the final
simplification rate highly depends on the shape and on the
ρgeom value, the optimal number of landmarks is not easy
to determine. In practice, choosing one landmark for a few
thousands points (between 1k and 10k) is sufficient to limit
the spheres that circumscribe front cells to a few hundreds
points in the worst case, and get a significant acceleration of
the selective reconstruction process.

3.2. Accelerated spatial search

In the accelerated selective reconstruction algorithm, the Pog

predicate is first evaluated by localizing subsets of sample
points that enter in conflict with front cells or that fall into
Gabriel half-spheres. When the returned set of points is not
empty for a given facet, then the point that forms a Delau-
nay tetrahedron with the facet has to be found (Qdt). Without
information about the structure of the input point set, every
point in this set is a potential candidate and thus needs to be
tested. To reduce the number of tests, we rely on a kd-tree
data-structure.

We first focus on the simple case where a facet of the sur-
face is such that its front vertex is located inside the Gabriel
half-ball of the facet. We start by searching for the non-
empty leaves of the kd-tree that are likely to contain points
that fall into the region bounded by the circumsphere of the
front cell, restricted to the half-space defined by the facet;
we call C this region. This is achieved through a depth-first

traversal of the kd-tree. If a kd-tree cell completely lies inside
C, then the leaves of the corresponding sub-tree are returned.
The leaves that intersect C only partially are also returned.
Testing whether a kd-tree cell intersects C involves two pred-
icates: a sphere/box overlap test and an half-space/box over-
lap test [AM01]. A counter that gives the number of remain-
ing points in a leaf avoids testing empty kd-tree cells.

When non-empty leaves are reported, the next goal is to
obtain the point that forms a Delaunay tetrahedron with the
facet, with an average complexity better than linear in the
number of points contained in the leaves. Our algorithm pro-
ceeds incrementally, starting with the sample point that maps
to the front vertex of the facet as candidate. The set of leaves
reported for the facet are stored in a queue denoted as L, and
the facet is denoted as pqr.

1. While L contains more than one element:

a. Get one point in each kd-tree leaf of L that falls into
C, if existing. Let M denote this set of points.

b. Search M for the best point candidate c, that is the
point such that the circumsphere of pqrc contains no
other point of M, based on Pct.

c. Remove from L the empty cells and the cells that do
not enter in conflict with tetrahedron pqrc.

2. Search for the best candidate from the remaining points.

The case where the facet has its opposite vertex outside
its Gabriel half-ball is treated in a similar fashion, except
that conflicts are first tested within the reported leaves that
intersect the Gabriel half-ball in order to determine whether
the facet satisfies Pog. As soon as the predicate is found to
be unsatisfied or if a pocket is detected, then the search is
pursued in order to find the Delaunay candidate.

The method rapidly discards outlier leaves, i.e. that are
the least likely to contain the good candidate. However, it is
often difficult to decide between the remaining leaves, since
the candidates can "jump" from a leaf cell to the other. When
the number of remaining leaves stagnates, we stop the pro-
cess and switch to linear search among the remaining points
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in order to avoid any computational overhead of testing con-
flicts between leaf cells and triangulation cells. In practice,
the overall gain per facet is typically 10% to 20% of conflict
tests between a point and a tetrahedron (Pct).

3.3. Out-of-core reconstruction algorithm

Starting from a large and dense input point set that cannot be
stored in main memory, our goal is to produce a simplified
triangulated surface that fits into memory. A common
strategy to simplify large unstructured meshes that cannot
be entirely loaded into memory consists in partitioning
the input data into clusters and then processing each one
independently in-core [Lin00, CMRS03, CGG∗04]. This
strategy does not extend easily to surface reconstruction
from large unorganized point sets. Since no connectivity in-
formation between the different parts is available, stitching
and orientation issues arise [DGH01b]. In our framework,
we propose to circumvent this problem by maintaining
some kind of global connectivity information based on the
Delaunay triangulation of a subset of representative points,
and process each cluster independently through the local
update algorithm. Our algorithm proceeds in three steps:

1. We filter the input point set P through a regular grid to
obtain a subset of representative sample points Prep and
a partition of P into clusters P1∪P2∪ . . .∪Pn = P.

2. We build the Delaunay triangulation of Prep and run the
classic geometric convection algorithm on this point set.

3. For every subset Pi, we load the points that it contains
into memory and then locally refine the reconstruction in
the corresponding region of space using the local update
and selective reconstruction algorithms.

While partitioning the input point set in the first step, we
want to quickly extract a reduced set of representative points
giving an approximate idea of the global shape. This sample
is then used in the second step to produce a coarse recon-
struction. We do not need a precise downsampling because
the interest is not for the reconstruction itself, but rather for
the discovering relation between Delaunay cells that parti-
tion the whole data domain. This relation will be the basis

(a) (b) (c)

Figure 4: Accessible new data vs. inaccessible new data in
2D. We consider the input point set (a). In (b) and (c), the two
new points in the rectangle are loaded. In (b), these points
cannot be reached with the reconstruction (bold curve) from
Prep (bold points), whereas they can be reached in (c) where
the reconstruction is finer.

for subsequent local reconstruction updates. Even if the ini-
tial reconstruction is not topologically correct and misses
some small features, this will not affect the quality of the
final result; errors will be automatically fixed by local up-
dates. However, from a computational point of view, it is
preferable to start these updates with a sufficiently precise
reconstruction. Indeed, some major revisions of the surface
may be expensive, both in time and memory. In order to limit
them, the final surface should be accessible from the surface
reconstructed from Prep in the sense it should be enclosed
in the union of Gabriel half-balls of the shrinking surface
(Fig. 4). Note that this condition is not mandatory to get a
correct reconstruction. In practice, we simply filter the input
point set on a grid with a fixed resolution.

The initial filtering and partition step is achieved by read-
ing the input point set three times. During the first pass, we
compute the smallest axis-aligned bounding box, that we
next subdivide into a regular grid. In the second pass, we
compute for each non-empty grid cell the sample point that
is the closest from the center. This set of sample points forms
the set Prep. During this pass, we also count how many points
fall into each grid cell. We next define a recursive binary par-
tition of the grid structure with a user-specified maximum
number of sample points per leaf; each leaf cell represents a
cluster Pi. The maximum population threshold for each clus-
ter should be set according to the amount of memory avail-
able on the target machine. During the third pass, the points
are distributed among the different leaf cells. Depending on
their number, the content of the clusters may be written in
separate files on disk, or they may be filled and processed
one at a time, which requires additional reading passes.

In Step 3, we have to determine for each cluster Pi the
set of cells of the current Delaunay triangulation that enter
in conflict with its points. To avoid multiple point locations
in the Delaunay triangulation, conflicts are tested against the
smallest axis-aligned bounding box of the points in Pi. We
search for the Delaunay cells whose circumsphere intersects
this bounding box. This is achieved by first locating the De-
launay cell that contains the center of the box and then ex-
tending the conflict region by recursively testing the neigh-
boring cells. The result is a connected set of Delaunay cells
that is used to initialize the local reconstruction update pro-
cess. For spatial search queries, we construct a kd-tree from
all the points inside the conflict region. This set includes Pi
and may also include some points outside Pi attached to De-
launay cells in conflict with the bounding box of Pi, which
guarantees that the different refined parts correctly merge
together. The local update process is then achieved as de-
scribed in Section 2.3.

Two steps of the reconstruction process are illustrated on
the LUCY model (14M points) in Figure 5. The boundaries
of the different parts may be slightly perceivable in the final
result. However, the method produces no discontinuity in the
sampling density. These boundaries can be completely elim-
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inated by simply enlarging the clusters so that they contain
neighboring sample points up to a distance that depends on
the simplification parameter ρgeom.

(a) (b)

Figure 5: Two reconstruction steps for the LUCY model.
In (a), the initial surface has been reconstructed from the
representative points (25k) and a first local update step has
been performed (bottom-left). In (b), two more clusters have
been loaded and the reconstruction has been updated.

4. Experimental results and performance

We have implemented our extended dynamic surface recon-
struction framework in C++ on a Linux platform using the
Computational Geometry Algorithm Library, CGAL [CGA].
We make use of CGAL for constructing Delaunay triangula-
tions and rely on filtered predicates for robust conflict tests.

We demonstrate the effectiveness of our framework on
several large point set models that were obtained from laser
range scanning (Figs. 1, 7, 8, 9, 10, 11). The LUCY and ST.
MATTHEW models were reconstructed through our out-of-
core selective algorithm. For both in-core and out-of-core
reconstruction, the user has to provide a value for the er-
ror tolerance ρgeom, that determines the level of detail. An
initial selective reconstruction is performed, and the result
can be next customized through local update features. We
have developed a graphic user interface (Fig. 6) to load a
reconstructed simplified model from disk and interactively

(a) (b)

(c)(d)

Figure 6: Some screenshots of our dynamic reconstruction
interface. In this session, the face of the ST. MATTHEW

model (original: 26M points) was refined. In (a), the result of
an initial reconstruction has been loaded (time: 4 seconds).
In (b), an update region has been selected and the recon-
struction is shown refined in (c) and (d) (time: 11 seconds).

change its level of detail locally using the tool described
in [ACA05]. Timings and memory usage for initial selec-
tive reconstructions as well as for local updates are reported
in Table 1. All the results presented here were obtained on
a Pentium IV 3.0GHz, 2GB RAM workstation. These tim-
ings include the preprocessing time required to build the kd-
tree data-structure(s), select the representative and landmark
sample points, and construct the initial Delaunay triangula-
tion(s). Table 2 summarizes the overall execution profile for
different in-core reconstructions.

Simplification performance The size of our initial simpli-
fied models is typically between 1% and 5% of the size of the
original point set, which often suffices to preserve the shape
of scanned objects at a mid-scale level, and even at fine scale
if the point set is very redundant. The method is capable of
producing high-quality simplified models directly, without
the need of a subsequent mesh fairing step. The majority of
the mesh vertices have valences between five and seven, and
most facets have good aspect ratios.

Computational performance For in-core selective recon-
structions, we set the number of landmark points to 1 for
2k sample points. The preprocessing time was less than 12
seconds in all our tests. According to our experiments, our
accelerated selective reconstruction method runs up to 20
times faster than the original one. The computational over-
head due to update operations in the Delaunay triangulation
is largely amortized by the reduction of spatial search do-
mains. For out-of-core reconstructions, the LUCY model and
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ST. MATTHEW MODEL were split so that each cluster con-
tains less than 3.5M points; the resulting number of clusters
was respectively 8 and 15. The number of initial representa-
tive points was set to 1 for 1k sample points and the initial
reconstruction took less than 10 seconds in both cases. For
each part, the refinement then took less than 2.5 minutes.

Execution profiles show that evaluating Pog and Qdt is by
far the most expensive task in the selective reconstruction
algorithm. While we have reduced spatial search domains,
the overall cost of spatial search queries still remains pro-
portional to the number of facets through which the sur-
face passes, which represents the bottleneck of the current
method. Memory usage is also relatively high due to the stor-
age of both a kd-tree and a Delaunay triangulation.

In the initial selective reconstruction step, our method
runs slower than the surface reconstruction techniques with
simplification proposed in [OBS05], and is also more mem-
ory demanding. However, our method can then perform lo-
calized updates at interactive rates, while the reconstructions
in [OBS05] cannot evolve so easily. Our method does not in-
volve stitching, and our results are guaranteed to be combi-
natorial manifolds. The dynamic approach is also powerful
because it does not require to start from a well-behaved point
sample, which is an advantage for out-of-core surface recon-
struction, or even for streaming surface reconstruction.

Model name BIMBA ASIAN THAI

DRAGON STATUE

ρgeom 0.8 0.65 0.65
Preprocessing 8.7 6.5 4.2
Evaluation of Pog and Qdt 54.9 66.8 74.0
Evaluation of Qnn 30.7 20.2 13.3
Vertex insertion/removal 5.7 6.5 8.5

Table 2: Execution profile for three selective reconstruc-
tions. For each model, the column reports the percentages of
overall time spent to accomplish the tasks listed on the left.

5. Conclusions and future work

We have proposed a new data-structure with a selective re-
construction algorithm that permits to efficiently reconstruct
simplified mesh surfaces from millions of sample points in
a dynamic framework. The reconstructed surfaces can be
dynamically refined or coarsened benefiting from the same
data-structure. We have also proposed an out-of-core selec-
tive reconstruction algorithm scalable for input point sets
that do not fit into memory.

Our method makes dynamic surface reconstruction prac-
ticable for large datasets obtained from laser range scan-
ning, which may represent an alternative to the standard sur-
face reconstruction-mesh simplification pipeline. The user
can also completely customize the reconstruction in order to
emphasize some particular details. When visualizing a large

object, the precision of the reconstruction can be adapted to
the viewpoint or to another region of interest at interactive
rate. An efficient dynamic surface reconstruction framework
may be also useful for processing point set streams on a net-
work, since it does not require random access to the data.

In a near future, we plan to further improve the computa-
tional performance of our accelerated framework by reduc-
ing the number of spatial queries. Some information about
conflicts could be shared between several facets in order to
save some spatial queries. Another research direction would
be to locally relax the global Delaunay property by choos-
ing approximate candidates and repairing errors on-the-fly
when needed. We are also investigating a way to extend the
dynamic framework to reconstruct simplified surfaces in a
streaming fashion.
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Figure 7: Reconstruction of the BIMBA model (1.9M points)
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0.8 (right, 97% of points removed).
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