The 5th International Symposium on Virtual Reality, Archaeology and Cultural Heritage

VAST (2004)
K. Cain, Y. Chrysanthou, F. Niccolucci, N. Silberman (Editors)

Generative Parametric Design
of Gothic Window Tracery

Sven Havemann

Dieter W. Fellner

s.havemann | d.fellner@tu-bs.de
Computer Graphics Group, TU Braunschweig, Germany

Abstract

Gothic architecture, and especially window tracery, exhibits quite complex geometric shape configurations. But
this complexity is achieved by combining only a few basic geometric patterns.

We present some principles of this long-standing domain, together with some delicate details, and show how the
constructions of some prototypic Gothic windows can be formalized using our Generative Modeling Language
(GML). The emphasis of our procedural approach is on modularization, so that complex configurations can be
obtained from combining elementary constructions. Different combinations of specific parametric features can be
grouped together, which leads to the concept of styles. They permit to differentiate between the basic shape and its

appearance, i.e., in a particular ornamental decoration.

This leads to an extremely compact representation for a whole class of shapes, which can nevertheless be quickly
evaluated to obtain a connected manifold mesh of a particular window instance. The resulting mesh may also
contain free-form surface parts, represented as subdivision surfaces.

1. Introduction

Window tracery is the very particular type of window dec-
oration found in any building of Gothic style. Gothic archi-
tecture, and especially window tracery, exhibits quite com-
plex geometric shape configurations. But this complexity is
achieved by combining only a few basic geometric patterns,
namely circles and straight lines, using a limited set of op-
erations, such as intersection, offsetting, and extrusions. The
reason for this lies in the nature of the process how these
objects have been physically realized, i.e., through construc-
tions with compass and ruler. Consequently, Gothic architec-
ture is a great, although challenging, domain for parametric
modeling.

The traditional way to communicate the construction, e.g.,
of a particular window, is by a series of drawings. Over the
centuries, these drawings have evolved into a very domain
specific, condesed code, essentially a compressed commu-
nication form between architects and stone masons (Fig. 1).
The construction process itself, however, has been based on
extensive experience. It has never been formalized in an un-
ambiguous way so that, e.g., a computer could reproduce
results of equal quality.

(© The Eurographics Association 2004.

The purpose of this paper is to (a) identify the basic op-
erations used in window construction and decoration, and
to (b) demonstrate how parameterized constructions can be
concisely expressed in a formal language. Accordingly, the
paper is structured in two parts. We consider these two steps
as an important, and novel, paradigm for cultural reconstruc-
tion. To our knowledge, this has not been attempted before in
an equally consequent manner, which makes it very hard for
us to refer to prior work. This paper is the much extended
version of a short paper that appeared on this year’s Solid
Modeling conference [HF04].

2. The construction of a Gothic Window

The basic pattern in Gothic Architecture is the pointed arch.
Its geometric construction is based on the intersection of two
circles. The circles are tangent continuous to the sides of
an arch or a window, given as two vertical line segments
(Fig. 2). Consequently the midpoints my, (left segment) and
mp (right segment) of the circles lie on the horizontal line
through the upper endpoints p; and pg of the left and right
segments, the arch basis points. The pointed arch is symmet-

delivered by

o @’m EUROGRAPHICS
= \& DiGITAL LiBrARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

194 Havemann and Fellner / Generative Parametric Design of Gothic Window Tracery

L PR PL PR DL PR

a) b) c)

Figure 2: Gothic arch with varying excess: Four-centered
(0.75), equilateral (1.0), and pointed arch (1.25)

ric, so both circles have the same radius r = dist(pr,mg) =
dist(pR, mL).

We call the ratio r/dist(pr, pr) the excess of the arch.
When the excess is 1.0, the circle midpoints coincide with
the upper segment endpoints. Together with the circle inter-
section, they form an equilateral triangle. This is the stan-
dard pointed arch, also called equilateral arch. With an ex-
cess > 1.0, the circles intersect at a sharper angle, and this
is what is actually called a pointed arch. When the excess is
< 1.0, the arch is not so high, and this is called four-centered
arch. The extreme case is the round arch with an excess of
0.5, so that my ,mg coincide in the midpoint between py , pg.

2.1. Historical Development of Window Tracery

The pointed arch is a generalization of its predecessor, the
round arch. It was a technological breakthrough that, after
its introduction around 1140, has truly revolutionized the
construction of cathedrals. It was first systematically em-
ployed by abbot Suger in the cathedral of St. Denis (near
Paris, France), and the new style spread over all Europe in
just a few decades. It has dominated the European sacral ar-
chitecture for more than two hundred years, and gave rise to
a veritable footrace between cities, with cathedrals becom-
ing ever more sophisticated and risky.

Technologically, the great advantage of the pointed arch
over the round arch lies in the fact that the distance between

b)

Figure 3: The height of a pointed arch can be kept constant
even when the width varies.

the columns could now be varied without affecting the height
of the arch (Fig. 3 a). This leaves greater flexibility for po-
sitioning the columns, and helps to solve delicate problems
with the design of the ground layout in a cathedral (Fig. 3 b).

Basically the same shape as for an arch can also be used
for a window. The idea of Gothic cathedrals is to make the
walls of the church as transparent as possible, in order to let a
maximum of light enter the room. With coloured windows,
a cathedral was flooded with light in all colors, which was
one of the manifestations of God in the perception of the
medieval christian. The size of the windows in relation to
the size of the walls increased, and the walls actually “dis-
solved” to the point where they completely lost their sup-
porting function. Gothic cathedrals get their stability almost
exclusively from columns, and not from walls [Bin02].

There is a remarkable development of the ornamental dec-
oration in the upper part of the window, the couronnement
(Fig. 4). In the Early Gothic period, starting around 1140, the
windows were created by cutting openings into large stone
plates in the wall. This premature form of window tracery
is therefore called plate tracery. In the High Gothic period,
from around 1250, the stone parts became ever thinner, and
the windows covered an increasing portion of the wall. The
glass windows were set into a network of individual stones,
the bar tracery (Fig. 4 c,d). The late Gothic period, in the
14th and 15th centuries, saw a great refinement and sophis-
tication of window tracery. The basic patterns were varied
over and over again, with recursive sub-structures and self-
similarity, to the point where the static stone appeared to be

(© The Eurographics Association 2004.

Havemann and Fellner / Generative Parametric Design of Gothic Window Tracery 195

a) b)

9] d)
//l

e) %%v | 43 [

Figure 4: Evolution of Gothic window tracery. Early period
(a,b), High Gothic (c,d), late period (e.f).

Figure 5: Geometry of the prototype window

actually flowing. An example is the French and English flam-
boyant style (Fig. 4 e,f) with its flame symbolics [Bin89].

2.2. The Prototype Window

As our prototype window, we chose a very common and ba-
sic High Gothic window type, one with two sub-windows
that are also pointed arches (Fig. 5 a). It exhibits the main
shape features, the “shape vocabulary”, that was subse-
quently refined and varied in the Late Gothic period. The
sub-windows have most often the same excess as the large
arch, which makes the excess a high-level parameter of the
window.

The window shown in 5 (a) has excess 1, so that the mid-
points of the circular arcs and the basis points p;, pg co-

(© The Eurographics Association 2004.

Figure 6: Determining the midpoint and radius of the
rosette’s circle.

incide. They are also basis points of the subwindow arches.
But it is often the case that the sub-arches are set down with
respect to the big arch, in order to create a bigger space for
the couronnement (Fig. 5 b). So the vertical distance be-
tween the basis points of the outer and inner arches is an-
other high-level parameter of the window.

2.3. Adding a Circular Rosette

The space between the outer and inner pointed arches can
be filled in many different ways. This decoration is the dis-
tinguishing feature of each individual window. In early days
of Gothic, this space was quite often filled with a circular
rosette. Geometrically, the problem is to find midpoint mc
and radius r¢ of a circle that touches the outer arch and two
segments of the inner arches. Consider the set of all points in
between a big arc and a sub-arc, for instance arcrg and arcg,
as in Fig. 6 a). The points that have the same distance to both
respective circles, (mg, rg) and (mpg, rrg), are shown as dot-
ted curve.

This curve is an ellipse, which is revealed in Fig. 6 b):
Connect a point on it, for instance m¢, with both mid-
points mg and myg. The distance from m¢ to the upper mid-
point mpg is less than the radius rg of the big circle (dot-
ted continuation), so dist(mc,mg) = rg — x for some x > 0.
Similarly, the distance from m¢ to the lower midpoint is
dist(mc,mrg) = rpg +y for some y > 0. But m¢ has the same
distance to both circles, so x = y. Then x cancels out from the
sum of both distances, and dist(mc,mg) + dist(mc,mrg) =
rr —X-+rrgr +x=rg~+rrg is constant. Since this holds for all
points on the dotted curve, it must be an ellipse, and mg and
myg its foci. The midpoint mc of the rosette can be obtained
as an intersection between this ellipse (mg,mrg, g + riR)
and the vertical axis of symmetry. This is practically com-
puted by intersecting a unit circle with an affinely trans-
formed line.

2.4. Offset Curves

The rosette circle and the sub-arches partition the window
into disjoint regions. These regions define the basic struc-
ture of the window, which is then further refined. This can

196 Havemann and Fellner / Generative Parametric Design of Gothic Window Tracery

il

Figure 7: a),b) The regions are shrunk to embed them in a
common border plane. c) The offset operation changes the
excess of a pointed arch, but keeps the circle midpoints con-
stant.

LD

Figure 8: Lying and standing trefoil and quatrefoil rosettes.

be done by simply adding a profile around the actual win-
dow holes to emphasize the shape, or, especially in the later
period, by adding sub-structures, again composed of lines
and circular arcs. It is very common that there is a thin pla-
nar border between adjacent regions, so that there is actu-
ally a connected border plane. Geometrically, this means that
the region boundaries are offset by a certain distance, as de-
picted in Fig. 7 a),b), so that a contiguous border plane re-
sults, shown in yellow.

Regarding the great variety of examples where this pattern
is used, it is reasonable to distinguish between two different
offset parameters, namely the interior offset and the offset
distance of the ensemble to the outer pointed arch: Both pa-
rameters are equal in Fig. 7 a), while in 7 b) the outer offset
is doubled.

The great thing about the circle is that it is so easy to com-
pute its offset. This applies also to curves that are created
from a sequence of several circular arcs and line segments.
But note that if the sequence contains corners, e.g. two arcs
joining in an intersection of the respective circles, the inter-
section of the offset circles must be computed for obtaining
the offset curve sequence. Simple scaling is not sufficient to
create offset curves: The offset of a pointed arch has a dif-
ferent excess than the original arch, as shown in Fig. 7 c).

2.5. Rosette Window with Multiple Foils

A very common way to fill a circular region is by an rosette
with multiple foils, for example a trefoil or a quatrefoil. We
consider two variants of rosettes, namely with round and

&,

Flgure 9: Construction of a rosette with six rounded foils, so
o=
6

a) b)

Figure 10: Construction of a rosette with pointed foils, with
a relative displacement of 1.15 to obtain m' and m" from m.

with pointed foils. A further distinction is between /ying and
standing rosettes, as shown in Fig. 8.

The geometry is fairly straightforward: Given the number
n of foils in a unit circle, the radius r of the round foils is
computed as shown in Fig. 9 b). Consider the tangent from
center c to the circle (m, r). The distance from c tomis 1 —r,
so the length of the perpendicular from m to the tangent is
(1—r)sin§, which is supposed to be r. This equation gives
r=sing /(1 +sin$). The perpendicular feet a and b are
the endpoints of the circular arc that is rotated and copied n
times to make up the rosette.

The pointed foils can be obtained from the round foils as
shown in Fig. 10. The midpoints m’,m"" are obtained from m
by displacement along the lines (a,m) and (b, m). The point-
edness, and thus the radius of the circles, is influenced by
the amount of displacement, which can be specified in rela-
tion to the original radius. Points a and b and the intersection
point ¢ then specify the arcs which make up the pointed foils.

@

2 2

>«
Sy XUz

Figure 11: Offset operation to obtain the region borders.

(© The Eurographics Association 2004.

Havemann and Fellner / Generative Parametric Design of Gothic Window Tracery 197

AL

Figure 12: Pointed trefoil arch obtained from pointed arch.

Figure 13: Windows with horizontal profile cut (above).

In order to fit into the original circle, the foils are scaled: Cir-
cles permit uniform scaling, and so do circular arcs.

Just as described in section 2.4, a connected boundary re-
gion is constructed from the network of circular arcs. Exam-
ples are shown in Fig. 11. Note that also these offset curves
also only consist of arcs and line segments.

2.6. Further Refinements

Circular arcs can be combined very flexibly. Both corners
and tangent continuous joints can be obtained from quite ele-
mentary geometric constructions. The pointed trefoil arch in
Fig. 12 for instance is easily obtained from a pointed arch:
First both arcs are symmetrically split, and then the lower
parts are replaced each by a pair of smaller arcs. Tangent
continuity is obtained by choosing the midpoint of the next
arc on the line through mid- to endpoint of the given arc.
This example shows the source of the great variability of ge-
ometric patterns in Gothic architecture.

2.7. Appearance: Profiles

So far, the structure of the window is solely defined by a few
two-dimensional regions whose boundaries are composed of
circular arcs and line segments. The fascinating and impres-
sive three-dimensionality of Gothic windows is achieved by
profiles that give depth to the two-dimensional geometric fig-
ures. In architectural illustrations, profiles can often be found
above or below a front view, like those in Fig. 13 from Egle
[VEF96]. Note that the profiles are also composed of line and
circle segments.

Technically, these profiles are swept along the region bor-
der curves, the profile plane being orthogonal to the tangent

(© The Eurographics Association 2004.

of the curve. At corner points, where the tangent is discon-
tinuous, the sweep is basically continued onto the bisector
plane. This is the plane that is spanned by the bisecting line
of the angle in the corner and the normal of the 2D construc-
tion plane. Yet this is only the case when the curve is locally
symmetric to the bisector plane. In more general cases, the
discontinuity locally follows the medial axis of the two parts
of the curve.

3. Re-Construction of Gothic Windows

The previous section gives an example for an analysis of a
rich class of complex three-dimensional shapes, in order to
understand how they were composed in principle. Cultural
reconstruction on the other hand aims at (re-)synthesizing
particular shapes based on assumptions derived from find-
ings and artifacts. To let a computer create those hypothetic
shapes, the respective class of shapes must be formalized in
an un-ambiguous way. This raises the question for a suitable
formalism. Our approach uses the GML.

The Generative Modeling Language (GML) is a simple,
stack-based, interpreted programming language for creating
polygonal meshes [Hav03]. The language core is very simi-
lar to that of Adobe’s PostScript. This core is concisely de-
scribed in the PostScript “Redbook” [Ado99], especially in
chapter 3, which to a large extent also applies to the GML.

The GML does not have PostScript’s extensive set of op-
erators for typesetting, though. Instead, it provides quite a
number of operators for three-dimensional modeling, from
low-level Euler operators for mesh editing, to higher-level
modeling tools, such as different forms of extrusions, and
operators to convert back and forth between polygons and
mesh faces.

Despite its simplicity, the GML is a full programming
language, and it can be used to efficiently exploit the strik-
ing similarity between 3D modeling and programming: Both
well-structured 3D models and good computer programs are
composed of re-usable modules. Yet of course, archeologists
are not urged to become programmers now: Methods exist to
almost completely hide the GML code from the end users.
Instead, the question in focus is whether the GML is capa-
ble of representing object descriptions and shape classes ef-
ficiently.

3.1. The Pointed Arch

A circular arc can be specified by start- and endpoint, and the
midpoint of the circle, like in Fig. 9 b). In the GML, this is an
array of three points, written [a m b]. To distinguish be-
tween the two possible arcs from a to b, we specify a normal
vector n with the convention that the arc is always CCW ori-
ented when the normal points to the viewer. Now given two
circles (myg,r) and (mg,r) as in Fig. 2, the circle intersec-
tion is computed by an operator that expects midpoints and

198 Havemann and Fellner / Generative Parametric Design of Gothic Window Tracery

radii and the plane normal on the stack: Every GML opera-
tor pops its arguments from the stack, computes one or more
results, and pushes these back on the stack. In this case, the
intersection points above and below the line between m and
my are pushed on the stack, in this order. As we are only
interested in one of them, the other one is popped. The two
arcs are assembled with just one more line of code:

mL r mR r nrml intersect circles pop !q
[:gmL pL] [pRmL :q]

The intersection is stored in a named register g. One draw-
back of stack-based programming is that it can be very te-
dious to keep track of the stack items and their order. Alter-
natively, variables can be stored in dictionaries — but search-
ing through the dictionary stack may be slow. As a third al-
ternative, the GML provides named registers for local vari-
ables: Values can be set using ! g and retrieved using :g. This
encourages a more “procedural” programming style, while
still retaining the flexibility of the stack for parameter pass-
ing. A sequence of such operations can be merged into a
single function, which then behaves like a built-in operator:

{ 'nrml !offset !excess !pR !pL
:pR :pL :excess line 2pt !mR
:pL :pR :excess line 2pt !mL
:pR :mR dist :offset sub !r
:mL :r :mR :r :nrml intersect circles pop !q
[:g :mL :pL :pR :offset move 2pt]
[:pR :pL :offset move 2pt ‘MR :q]
} /compute-arcs exch def

The first line of code just retrieves some parameters from
the stack (in reverse order). The second line computes the
midpoint mg of the right arch as pg + excess- (pr. — pr). The
radius r of both circles is computed as the distance from pg
to mg minus the desired offset. The circular arcs are assem-
bled “inline”: An open bracket [is just a literal symbol that
is put on the stack. The move 2pt operator moves a point
into the direction of another point by a specified amount of
units. The closed] just makes the interpreter create an ar-
ray from stack elements until it finds the [. The family of
pointed arches in Fig. 7 b) was created using this function
by varying the offset parameter.

3.2. Creating a Closed Polygon

The resulting two arcs can be seen as a high-level represen-
tation of a pointed arch. In order to create a polygonal mesh,
the arcs are converted to polygons: The circleseg oper-
ator expects an arc, a normal vector, an integer resolution,
and a mode flag on the stack, and pushes a polygon. The
advantage of the stack is the possibility of operator chain-
ing: Calling compute-arcs creates two arcs on the stack,
so only the other required parameters must be provided. To
also polygonize the other arc, the topmost stack elements are
swapped using exch, and the two point arrays, or polygons,

Figure 14: Creation of a pointed arch: a) The circular arcs
are sampled and combined into a single outline polygon.
b) A double-sided Combined BRep face is created and then
extruded. Sharp edges are shown in red, smooth edges in
green. c) Front and back are sharp faces as their border con-
tains BSpline curve segments. Quadrangles on the sides are
tesselated using Catmull/Clark subdivision.

are concatenated into a single polygon using the arrayap-
pend operator:

nrml 4 1 circleseg exch
nrml 4 1 circleseg arrayappend
[bL dup bR dup] arrayappend

The order is always very crucial when operating on the
stack: The arcs were pushed in order left, right, and they
are processed right, left, to create a combined CCW oriented
polygon. Note that it contains the tip of the arch twice, as
the last point of the right arc and the first point of the left
arc. This was done intenionally to create a corner there (see
below). The bottom corners by, bg of the segments are also
duplicated and appended, so that the result is just a single
polygon (Fig. 14 a).

Functions and executable arrays are synonymous in the
GML: The opening brace { puts the interpreter in deferred
mode, and subsequent tokens are not executed but just put
on the stack. The closing } is a signal to create an ordinary
array from these tokens, and to set its executable flag to true.
So this is an executable array, ready to be executed as the
loop body.

3.3. Creating a Polygonal Mesh

Two very basic modeling operations turn this polygon into a
mesh which is shown in Figs. 14 b) and c):

5 poly2doubleface (0.0,1.0,5) extrude

The poly2doubleface creates a double-sided face from a
point array, i.e., from a polygon. It provides different modes
to do this. So in addition to the polygon it expects an integer
number on the stack that specifies how to handle successive
identical points, and whether the face should have smooth or
sharp edges. Mode 5 creates sharp edges and crease vertices
by default, but if a point occurs repeatedly, only a single cor-
ner vertex is created from it. The resulting double-sided face

(© The Eurographics Association 2004.

Havemann and Fellner / Generative Parametric Design of Gothic Window Tracery 199

a) b)

Figure 15: Creating a window in a wall: a) The arch is in-
verted by negative extrusion. The backface (culled, not ren-
dered) is closer and CW oriented (black halfedge). b) A wall
with its front face in the same geometric plane as the arch’s
backface. The backface (black halfedge) is made a ring of the
wall’s front face (halfedge at bottom) using the killFmak-
eRH Euler operator. ¢) The tesselation of the wall respects
the ring just created and trims it out.

(with front and back) is topologically a solid, but it has zero
volume. One mesh halfedge, as a handle to the face, is left
on the stack. Halfedges are an integral data type in the GML.

Besides such an halfedge, the extrude operation expects
a 3D point (dx, dy, mode) on the stack, where dx specifies the
shrinking and dy the vertical distance of the extruded face to
the original face. The mode flag again specifies vertex types
and edge sharpness flags. Mode 5 for example means that
for “vertical” edges (along normal direction) the vertex type
determines the sharpness, and the “horizontal” edges (in the
displaced face plane) are sharp. This is why just the vertical
edges from the three corner vertices are sharp in Fig. 14 b).
This image also shows the halfedge returned by extrude as
the red half-arrow in the lower left.

3.4. Mesh Representation: Combined BReps

The underlying mesh representation is the Combined BRep
[HFon], CBRep for short, which was first presented on VAST
2001 [HFO02]. Each edge in a CBRep carries a sharpness flag,
that can either be set to sharp (red) or smooth (green). These
flags determine which tesselation method to use for a face:
Faces that contain one or more smooth edges are smooth
faces. They are treated as Catmull/Clark subdivision sur-
faces. Faces with only sharp edges and where all vertices are
corners are treated as polygonal faces. Faces with only sharp
edges but where not all vertices are corners are sharp faces.
The border of such a sharp face contains BSpline curves, but
it is triangulated for display just like polygonal faces. An ex-
ample is the front face of the arch in Fig. 14 c). A vertex is
classified as corner vertex if three or more of its edges are
sharp, with exactly two sharp edges it is a crease vertex. So
the classification actually proceeds from edges to vertices to
faces.

Combined BReps have another feature, which is that

(© The Eurographics Association 2004.

a)

Figure 16: a) The execution of gothic-window yields eight
polygons on the stack defining the structure of the prototype
window. b) The seven interior polygons are embedded in the
face created from the outer arch. c) Simple negative etrusion
of the interior regions.

polygonal or sharp faces may have rings. A ring is a “nega-
tive”, CW oriented, face in the interior of another face, which
is the ring’s baseface. It trims out a hole, which is quite use-
ful e.g. for creating windows in a facade.

Note that the backface of the arch model is actually CW
oriented from the perspective in Fig. 14 c¢). So one way to
create a hole is by negative extrusion, so that the model ap-
pears inverted when backface culling is active (Fig. 15). A
halfedge of the backface is obtained using “halfedge navi-
gation: The mate operator returns the mate of a halfedge,
which is part of the neighbour face, and runs in reverse di-
rection. Given an edge eWall of the wall, the backside is
turned into a ring of the wall using the killFmakeRH Euler
operator, which reads “kill Face, make Ring Hole”:

5 poly2doubleface dup mate exch
(0,-0.3,5) extrude exch eWall killFmakeRH

Here, the halfedge on the front-facing side of the double-
sided face is duplicated, and the duplicate is flipped on the
backside. The top two stack elements are exchanged, so that
the negative extrusion of -0.3 units operates on the front
face and pushes it farther away, returning a halfedge of the
extruded face. Another exch brings the backside-halfedge
again to the top, and it is made a ring of the wall’s front side.

3.5. The Prototype Window in GML

The GML representation of the prototype Gothic window is
of course a function gothic-window that expects the essen-
tial parameters as described in section 2.2 on the stack: The
left and right base points of the arch, the height of the vertical
segments of the lower part of the window, the excess of the
arch, the plane normal, the vertical offset of the sub-arches
(cf. Fig. 5), and the outer and inner border thicknesses. The
following call produces the eight polygons that are shown in
Fig. 16 a) together with the wall from before:

(-1,0,2) (1,0,2) 4.0 1.25 (0,-1,0)
0.2 0

1
2 0.1 0.05 gothic-window

200 Havemann and Fellner / Generative Parametric Design of Gothic Window Tracery

Note that the cryptic sequence of parameters basically
corresponds to what one would enter as values in a dialogue
box in an interactive program. For the user not to mistype,
the parameters in a dialogue box are named. But in back-
ground, this might very well create a line of code as the one
above, in order to trigger the creation of geometry, when the
user pushes the OK button.

The gothic-window function uses only operators and
techniques that were presented so far. The only additional
operator needed is intersect line ellipse, to compute
the midpoint of the circle in the top from two points specify-
ing the line, the two focal points of the ellipse, and its radius.
The computation of the four fillets, each composed of three
arcs, is done explicitly: The start-, mid-, and endpoints of
each arc are uniquely defined by the intersection of circles.
Those are derived from the big arch, the sub-arches, and the
circle, based on the inner and outer border thicknesses.

3.6. Window Styles

Executing gothic-window creates eight polygons on the
stack, in a defined order. They can be used to directly cre-
ate mesh faces, in a similar manner as in section 3.3. But
much more flexibility is gained by using window styles. Note
that the eight polygons fall into four groups: Main arch, sub-
arches, circle, and fillets. Instead of using gothic-window
directly, one can wrap this into another function gothic-
window-style that subsequently calls four functions corre-
sponding to the four groups:

{ reBack !eWall
gothic-window
:eWall style-arch !eArch
:eArch :eBack style-circle
2 { :ehArch :eBack style-sub-arch } repeat
4 { :eArch :eBack style-fillet } repeat
} /gothic-window-styles exch def

This function expects the same parameters as gothic-
window, and additionally two halfedges of the front- and
backside of the wall where the window is to be inserted.
After the polygons are created, a function style-arch is
expected to take the topmost main arch-polygon from the
stack, to somehow insert it into the wall, and to return a
halfedge to the new face. The other items, the sub-arches,
the circle and the fillets, are then inserted into this main
arch face. Each of these functions is supposed to take two
halfedges and one polygon from the stack, so that finally all
polygons are popped and processed.

One great thing GML has inherited from Postscript is its
quite flexible name lookup mechanism — namely the dictio-
nary stack technique. When the GML interpreter encounters
an executable name, such as style-arch, it searches top
to bottom through the current dictionary stack to find the
first dictionary that contains this name as a key. If it exists,

Figure 17: a) Profiles are created by also shrinking an ex-
truded face. b) A simple horizontal translation of the edges
can yield self-intersections of the surface c) The more elab-
orate extrudestable operator removes self-intersections.

a) b)

Figure 18: a) Profile used for multiple extrusions. Extru-
sion starts in the origin (top left corner); x-direction defines
shrinking offset, y-direction pushes into the wall. b) Shape
created by sweeping the profile along the border of a ring. c)
View more from above.

the interpreter takes the corresponding value (literal or exe-
cutable), and executes it. The dictionary stack can be freely
manipulated at any time, using begin and end.

Soif, e.g., a dictionary My-Simple-Style is active where
all four style-arch keys are defined, pointing to suitable
functions, a particular window instance can be created just
like this:

My-Simple-Style begin

(-1,0,2) (1,0,2) 4.0 1.25 (0,-1,0)
0.2 0.1 0.05 gothic-window-style
end

3.7. Adding Profiles

The simple extrude operator used so far can also be used to
shrink the extruded face. This is done by a simple horizontal
offset, translating each edge to the left (i.e. towards the face

(© The Eurographics Association 2004.

Havemann and Fellner / Generative Parametric Design of Gothic Window Tracery 201

interior) by a specified amount of units. This works well in
most cases (Fig. 17 a), but it can lead to self-intersections in
faces with sharp corners, such as the central fillet (17 b). We
have therefore added a more sophisticated extrudestable
operator, based on the straight line skeleton, which is related
to the medial axis of a polygon [EE99]. This operator not
only removes self-intersections, it can also handle multiple
extrude-operations at a time, i.e., an array of (dx,dy, mode)
triplets. This essentially defines a profile, see Fig. 18 for an
example.

4. Results

We have carried out a number of experiments to test the vari-
ability of our style library, some of which are shown in Fig.
20. In 20 a) only the basic structure is used, and the same
profile is used for fillets, circles and sub-arches. The open-
ings are created by negative extrusion until the backside of
the wall is reached, and then the extruded face is made a ring
of the backside. In 20 b), the circle style is set to contain a
rounded rosette, but with the same profile as before. In the
next model 20 c), we switch to pointed foils in the rosette
and to a more elaborate profile (the one from Fig. 18). The
model 20 d) has just the same structure as before. Only the
profile is different, the number of foils is set to 4, and the
sub-arches use a pointed trefoil (cf. Fig. 12). In 20 e) only
the profile for the sub-arches is varied, and another set of
parameters is used for the pointed trefoil.

The next example, Fig. 20 f), is actually quite interesting:
This time we use the fillets and the rosette from 20 ¢), and
combine them with the style for the sub-arches from 20 d).
So we can make use of the recursive structure of Gothic ar-
chitecture, where the sub-arches are pointed arches just like
the outer arch, and consequently permit the same type of re-
finement. The next two images show one further iteration:
First a style with 20 c¢) in both sub-arches (20 g), and then
this new style is again used for the sub-arches (20 h).

At the second refinement level of this model, the ex-
trudestable operator has to remove quite a bit of self-
intersections that would otherwise destroy the model, as can
be seen in 21 a) showing a 3rd level rosette. This is due to
the fact that in this style the profile, which is essentially a 2D
polygon, is uniformly scaled by an amount depending on the
wall thickness. Fig. 21 b) shows the tesselation and gives an
idea of the number of triangles that are created by the sub-
division surfaces (about 7 million, after 4 subdivision steps).
— The final example 21 d) marks one area of future work:
Given an image of a window like in 21 c), how well can we
actually reproduce the existing shape? And could there be
ways to determine some of the shape parameters automati-
cally?

It should be mentioned that the complete GML code for
all examples, styles, and the library of basic Gothic window
tools such as pointed-arch, rosette, etc. fits into an ascii

(© The Eurographics Association 2004.

/;% -
x[‘ ‘

mimre

Figure 19: Varying excess with constant height. With a style
library, a manifold of windows is obtained using just a few
high-level parameters. The mesh is robust against invalid
parameters (last image), the parameter validity should be
checked on a higher software layer.

file of 27KB. Building the most complicated example win-
dow, 20 h), takes not much more than a second or two on
a state-of-the-art PC. — An interactive GML demo can be
downloaded from the GML website [Hav03] for verification
— and for enjoying Gothic window tracery, of course.

References

[Ado99] ADOBE SYSTEMS INC.: PostScript Language
Reference Manual, 3rd ed. Addison-Wesley,

1999. 5

[Bin89] BINDING: Masswerk. Wiss. Buchgesellschaft,
Darmstadt, Germany, 1989. 3

[Bin02] BINDING: Hochgotik. Taschen Verlag, Cologne,
Germany, 2002. 2

[EE99] EPPSTEIN, ERICKSON: Raising roofs, crashing

cycles, and playing pool: Applications of a data
structure for finding pairwise interactions. Dis-
crete & Computational Geometry 22, 4 (1999),
569-592. 9

[Hav03] HAVEMANN: The gml homepage, Aug. 2003.
http://www.generative-modeling.org. 5, 9

[HF02] HAVEMANN S., FELLNER D. W.: A versatile 3D
model representation for cultural reconstruction.
In Proc. VAST 2001 Intl. Symp. (Glyfada, Greece,

2002), ACM Siggraph, pp. 213-221. 7

[HF04] HAVEMANN S., FELLNER D.: Generative para-
metric design of gothic window tracery. In
Proc. Shape Modeling and Application (SM1°04)
(Genova, June 2004), Giannini F., Pasko A.,

(Eds.), IEEE, pp. 350-354. 1

[HFon] HAVEMANN, FELLNER: Progressive combined
breps — multi-resolution meshes for incremental
real-time shape manipulation. Computer Graph-

ics Forum (submitted for publication). 7

[VEF96] VON EGLE, FIECHTER: Gotische Baukunst,
reprint from 1905 ed., vol. Bd. 3 of Baustil- und
Bauformenlehre. Verlag Th. Schifer, Hannover,
Germany, 1996. 5

http://www.generative-modeling.org

