
Digital Processing and Management Tools for
2D and 3D Shape Repositories

Waqar Saleem
Max-Planc k-Institut für Informatik

Saarbrücken, Germany

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing)
der Naturwissenschaftlich-Technischen Fakultäten
der Universiẗat des Saarlandes

http://www.eg.org
http://diglib.eg.org

ii

Datum des Kolloquiums — Date of Defense
18. Juni 2010 — June 18th, 2010

Dekan — Dean
Prof. Dr. Holger Hermanns
Universiẗat des Saarlandes, Saarbrücken, Germany

Mitglieder des Prüfungsausschusses — Board of Examiners
Prof. Dr. Philipp Slusallek
Universiẗat des Saarlandes, Saarbrücken, Germany

Prof. Dr. Hans-Peter Seidel
MPI Informatik, Saarbr̈ucken, Germany

Dr. Alexander Belyaev
Heriot-Watt University, Edinburgh, United Kingdom

Dr. Michael Wand
MPI Informatik, Saarbr̈ucken, Germany

Waqar Saleem
Max-Planck-Institut f̈ur Informatik
Campus E1 4
66123 Saarbr̈ucken, Germany
wsaleem@mpi-inf.mpg.de

iii

Abstract

This thesis presents work on several aspects of 3D shape processing. We develop
a learning based surface reconstruction algorithm that is robust to typical input
artifacts and alleviates the restrictions imposed by previous such methods. Using
the human shape perception motivated paradigm of representing a 3D shape by
its 2D views obtained from its view sphere, we compute the shape’s “best views”,
extend these views to obtain the more dynamic “best fly” of the shape and also
compute shape complexity which is used to compare the shape with others so as to
obtain an ordering. Our example based method to “correctly” reorient a 2D shape
in an image is also presented as well as a strategy to approximate shape descriptor
values on the view sphere using just a few samples. This allows to bypass the often
time consuming requirement of evaluating the descriptor on a dense sampling of
the view sphere to obtain an accurate representation. We also present our work
on accelerating shape similarity retrieval by using techniques from text retrieval.
Lastly, we present some of the guiding principles behind the maintenance and
development of a large scale, publicly accessible shape repository.

Kurzfassung

Diese Arbeit pr̈asentiert verschiedene Aspekte der Bearbeitung von 3D Objek-
ten. Wir entwickeln einen Lern-basierten “Surface Reconstruction”-Algorithmus,
der robust gegen̈uberüblichen Messartefakten ist und die Einschränkung solcher
Methoden verbessert. Aufgrundlage der menschlichen Wahrnehmung von 3D Ob-
jekten als 2D Sichten aus verschiedenen Perspektiven des “View Spheres” berech-
nen wir den “Best View”. Wir erweitern die Best Views zu einem dynamischen
“Best Fly” um das Objekt herum. Weiterhin bestimmen wir die Komplexität eines
Objekts und verwenden dies um Objekte mit anderen zu vergleichen. Daraus
gewinnen wir eine Sortierung der Objekte anhand ihrer Komplexität. Ebenso
stellen wir eine Exemplar-basierte Methode zur “richtigen” Orientierung eines
2D Objekts in einem Bild vor, sowie eine Strategie um die Deskriptor-Werte der
View Sphere durch wenige Samples zu approximieren. Somit konnen wir die
oft langsame Auswertung der Deskriptoren für eine feine Abtastung der View
Sphere umgehen um eine genaue Darstellung des Objekts zu erhalten. Wir
stellen weiterhin unsere Arbeit zur Beschleunigung zur Abfrageähnlicher Ob-
jekte unter Verwendung von Retrieval-Techniken vor. Schließlich legen wir einige
Grundprinzipien der Entwicklung und Wartung einer umfangreichen,öffentlich-
zug̈anglichen Objekt-Sammlung dar.

iv

v

Summary

Corresponding to the increase in use and popularity of digital 3D shape models in
a variety of applications, methods to acquire, store and analyze these shapes are
becoming more important. We start off by showing how these methods fit into a
digital shape pipelineand then present our work in various stages of this pipeline.

A common way to digitize a real world object is to capture points on the shape’s
surface using a laser scanner. The resulting point cloud suffers from usual mea-
surement artefacts like noise and outliers. Further, it may have holes or missing
data. For subsequent processing, a cleaner, more convenient representation is re-
quired. We present a novel, learning based method that robustly processes such a
point cloud to output a triangle mesh, which is the de facto standard for surface
representation in computer graphics.

While shapes exist as three dimensional objects in the real world and, digitally, in
the computer, they are ultimately presented on 2D media, e.g. monitor or paper.
Presenting a 3D shape on 2D requires a projection giving rise to aview of the
shape. As infinitely many 2D views of a 3D shape are possible and one can
typically present just a few views, a strategy to rank views and select the “best”
ones becomes necessary. We present our work on selectingbest viewsof 2D and
3D shapes. We also extend the problem of finding best view to that of computing
best fly–a dynamic representation of the shape–and show how our computed best
views can easily be extended to solve the best fly problem.

The view finding methods above make use of theview sphereof a shape, specifi-
cally of computing certain descriptor values at discrete samples on the surface of
the view sphere. The denser the view sphere is sampled, the more accurate are
the results obtained. This introduces a tradeoff between accuracy and efficiency.
We show how it is possible to obtain an accurate, continuous representation of
descriptor values by sampling the view sphere only at a few discrete samples and
thus maintaining efficiency.

Our techniques mentioned till now mostly work with and analyze a single 3D
shape in isolation. The increase in popularity and ease of availability of 3D shapes
gives rise to the need for a new kind of methods that can reason about shapes in
context of a larger collection. It is desirable to know how a shape relates to others
in a collection. Does the collection contain similar shapes? Are the other shapes
more or less complex than my current shape? Are there shapes in the collection
that were acquired under identical conditions? The list goes on. We have ad-
dressed the first two issues in our work. We present an indexing mechanism to
significantly accelerate current shape similarity methods allowing us to rapidly

vi

search through a large collection for shapes similar to a query shape. Second,
we leverage insights from human vision research to obtain a measure of the com-
plexity of a shape and use it to sort a collection of shapes according to shape
complexity.

Nearing the end, we present how many of the ideas presented above can be and
are showcased in a publicly accessible, voluminous collection of shapes, whose
upkeep, development and maintenance consumed a significant portion of the re-
search time allotted for this thesis and in turn inspired new ideas.

vii

Zusamenfassung

Aufgrund gr̈oßer werdender Bedeutung von 3D Modelle werden Werkzeuge zum
Erzeugen, Verteilen und Analysieren zunehmend wichtiger. In dieser Arbeit wird
zuerst gezeigt, wie diese Methoden in eineDigitale Shape Pipelinehinein passen.
Anschließend zeigen wir wie sich diese Arbeit in die verschiedenen Teile der
Pipeline einf̈ugt.

Der übliche Weg reale Objekten zu digitalisieren erfolgtüber das Abtasten der
Oberfl̈ache mittels eines Laser-Scanners. Die so gewonnene Punktwolke beinhal-
tet Messfehler aufgrund von Rauschen und Ausreißern. Weiterhin kann die Punkt-
wolke unvollsẗandig erfasst worden sein. Für die anschließenden Schritte benötigt
man eine saubere und einfach zu verwendendene Darstellung. Wir stellen eine
neue Lern-basierte Methode vor, die eine robuste Umwandlung der Punktwolken
in Triangle Mesh erm̈oglicht. Das Triangle Mesh ist der de facto Standard für die
Darstellung von Oberfl̈achen in der Computergrafik.

Obwohl drei dimensionale Objekte nur in der Realität und digital im Computer
vorhanden sind, werden sie doch meist in 2D dargestellt z.B. auf dem Monitor
oder auf Papier. Die Darstellung von 3D Objekten in 2D erfordert eine Projek-
tion und damit eineSichtweiseauf das Objekt. Da es unendlich viele mögliche
2D Sichten eines 3D Objekts gibt und man normalerweise nur wenige darstellen
kann, ist es notwendig die Sichten zu ordnen und die “Beste” auszuwählen. Wir
präsentieren unsere Arbeiten zum auswählen der besten Sicht auf ein 3D Objekt.
Wir erweitern dabei das “Best View”-Problem zum “Best Fly”-Problem, wobei
wir eine dynamische Darstellung des Objekts berechnen. Dabei zeigen wir wie
mit unserer Berechnung des Best Views einfach das Best Fly-Problem gelöst wer-
den kann.

Üblicherweise verwenden die Methoden für das Finden bester Sichten dieView
Sphereeines 3D Objekts, im Speziellen berechnen sie werte bestimmter Deskrip-
toren auf diskreten Punkten der Oberfläche des View Sphere. Je feiner die View
Sphere abgetastet wird, desto besser ist der Best View. D.h. es gibt einen Tradeoff
zwischen Qualiẗat und Effizienz. Wir zeigen wie es m̈oglich ist eine genaue und
kontinuierliche Darstellung des Deskriptors zu erhalten indem nur wenige Punkte
verwendet werden und so die Effizienz erhalten bleibt.

Die bisher erẅahnten Techniken bearbeiten und analysieren einzelne 3D Ob-
jekte meist unabḧangig von einander. Die zunehmende Bedeutung und ein-
fache Verf̈ugbarkeit von 3D Objekten führt zu eimem Bedarf neuerer Metho-
den die mit Objekten im Kontext großer Sammlungen umgehen können. Es ist
wünschenswert zu wissen, wie ein Objekt im Verhältnis zu anderen Objekten einer

viii

Sammlung steht. Enthält die Sammlung̈ahnliche Objekte? Sind andere Objekte
weniger komplex als ein gegebenes? Gibt es Objekte in der Sammlung, die unter
ähnlichen Bedingungen digitalisiert wurden? Die Liste ließe sich fortführen. Wir
behandeln in dieser Arbeit die ersten zwei Fragen. Wir präsentieren dazu eine
Indizierung, die die gegenẅartigen Methoden zur Bestimmung derÄhnlichkeit
von Objekten beschleunigt und die es erlaubt sehr schnell zu einem Anfrage-
Objekt aehnliche Objekte in großen Sammlungen zu identifizieren. Bezüglich der
zweiten Frage, verwenden wir Einsichtenüber die menschliche Wahrnehmung
um ein Maßf̈ur die Komplexiẗat eines Objekts zu entwickeln und benutzen es um
Objekte anhand ihrer Komplexität zu sortieren.

Schließlich zeigen wir wie viele der vorgestellten Ideen umgesetzt werden
könnten und exemplarisch in einer umfangreichen undöffentlich-zug̈anglichen
Sammlung von Objekten umgesetzt sind. Die Sammlung, für deren Entwicklung
und Wartung ein großer Teil der Forschungszeit dieser Arbeit aufgewendet wurde,
inspirierte neue Ideen.

ix

Acknowledgements

I was lucky enough to conduct my post-graduate studies at one of the top destina-
tions for computer science research world wide, the MPII in Saarbrücken. Here,
I observed first-hand how cutting edge research is conducted and experienced the
dynamic and intellectually stimulating environment out of which such work blos-
soms.

During my years in Saarbrücken, I came to know a wide variety of amazing people
from close and afar who enriched my experience beyond words. They are Robert
Bargmann, Irena Galić, Syed Ibne Hasan, Kanela Kaligosi, Abdul Qadar Kara,
Mehmet Kiraz, Sadia Masood, Dimitrios Michail, Josiane Xavier Parreira, Imran
Rauf, Saurabh Ray, Jeff Schoner, Hans Raj Tiwary, Amir Wasim, Ingmar Weber
and Melanie Windl.

Any academic achievement of mine is due to the educators who have left
indelible impressions on me through their excellence in teaching, enthusi-
asm towards their subjects, ability to inspire and keen interest in their stu-
dents’ development. Going backwards in time, these have been: at MAJU,
Dr. Shabbir Ahsan, Dr. Zafar Ansari, Dr. Afaq Hyder (late), Mr. Masood Mir,
Dr. Mehmood Naqvi, Dr. Ansaruddin Syed, and Dr. Abbas Zaidi; and from my
school years, Mr. Salman Ahmad, Mr. Ranjit Bulathsinghala, Mr. Errol Fernando,
Mrs. George, Mr. Lambert, Mr. Abdur Rehman, Mr. Saqlain and Mr. Vaz. At
Saarland University, it was always a pleasure to attend lectures by Dr. Alexander
G. Belyaev, Prof. Dr. Wolfgang J. Paul, and Prof. Dr.-Ing. Philipp Slusallek.

My studies at the MPII were funded by the IMPRS program and the
AIM@SHAPE project. Living in a foreign land with a new language and oft
confusing bureaucracy to deal with, things could easily have gotten messy for me.
Kerstin Kathy Meyer-Ross of IMPRS and Sabine Budde and Conny Liegl of AG4
took it upon themselves to not only make all such processes invisible to me, but
to ensure that my sojourn was as smooth and comfortable as it could be.

I am thankful to members of my PhD committee–Dr. Alexander Belyaev,
Prof. Dr. Hans-Peter Seidel, Prof. Dr.-Ing. Philipp Slusallek, and Dr. Michael
Wand–for taking time out of their busy schedules to attend my defense. In partic-
ular, Dr. Belyaev helped me through numerous revisions of this document.

Sans the resolute support of my family, my PhD may never have reached comple-
tion. I am grateful to them for affording me the space and freedom to pursue my
studies over several long years, and to Mifrah, my wife, for her kind and patient
understanding when those years dragged on longer than they should have.

x

The 2D and 3D shape models used in this dissertation are due to the
AIM@SHAPE Shape Repository, the Stanford Data Archives, Farfield Technol-
ogy, Cyberware and the MPEG7 dataset. Development of some of the ideas
presented in the following pages is due to fruitful discussions with Boris Ajdin,
Dr. Longin J. Latecki, Prof. Dr. Remco Veltkamp and Dr. Shin Yoshizawa.

Lastly, I want to extend my heartfelt gratitude to the numerous kebab shops strewn
all over Saarbr̈ucken. You nourished me in ways far more delectable than anything
else I could otherwise have found.

Contents

1 Introduction 1
1.1 Contributions and Outline. 4

2 Previous Work 11
2.1 Neural Network based Surface Reconstruction. 11
2.2 View Selection . 13
2.3 View Sphere Model. 16
2.4 Shape Orientation. 16
2.5 Shape Repository. 17
2.6 Word Based Approaches to Shape Retrieval. 18
2.7 Shape Complexity. 19

3 Preliminaries 21
3.1 Obtaining Shape Views. 21
3.2 Obtaining Shape Contours. 23
3.3 Computing 2D Shape Similarity. 24
3.4 Similarity Structure Analysis (SSA). 28
3.5 View Descriptors . 30
3.6 Shape Descriptor: Shape Distributions. 32

4 Learning the Shape of a Point Cloud 33
4.1 Geometry Learning. 35
4.2 Node Addition . 37
4.3 Node Removal . 38
4.4 Topology Learning . 40
4.5 Feature Sensitive Reconstructions. 41
4.6 A Priority Queue Implementation. 43
4.7 Discussion. 44

5 Static and Dynamic Shape Views 45
5.1 Stable and Salient Shape Views. 46

xii CONTENTS

5.2 Example Based Shape Orientation. 53
5.3 Dynamic View Representation of a Shape. 60

6 View Sphere Model 71
6.1 Notation. 72
6.2 Optimal View Sphere. 73
6.3 ApproximatingfD on S

2 . 73
6.4 Equivalent Views and View Likelihood. 77
6.5 Representative views. 78
6.6 View Transfer. 79
6.7 Discussion and future work. 81

7 Shape Complexity 83
7.1 Applying SSA to the Similarity Matrix. 85
7.2 Computing Shape Complexity. 86
7.3 Results. 86
7.4 Discussion. 89

8 Shapes as Bags of Words 93
8.1 Scaling Shape Retrieval. 95
8.2 Experiments. 99
8.3 Conclusions and Future Work. 102

9 Managing a Shape Repository 105
9.1 Knowledge Management of Shapes. 105
9.2 Populating the Repository. 109
9.3 Grouping Shapes. 112
9.4 Legal Issues. 113
9.5 Helper Tools. 114
9.6 Discussion. 115

10 Conclusion 117
10.1 Future trends. 119

Bibliography 123

List of Figures

1.1 The digital shape pipeline. 1

3.1 Views of a model from its view sphere.. 23
3.2 The Crust method [Amenta98] for boundary extraction.. 24
3.3 The Curvature Scale Space (CSS) method [Mokhtarian96] 27
3.4 Mesh saliency [Lee05] for the Lion vase and Armadillo models.. 31

4.1 The neural mesh rapidly learns the target shape.. 34
4.2 The geometry learning and node addition & removal steps.. . . . 35
4.3 Vertices at local minima.. 36
4.4 Preserving manifoldness.. 39
4.5 Learning topology. 40
4.6 Sample density and surface curvature dependent reconstructions. . 42

5.1 Overview of our stable and salient view selection method.. 47
5.2 Sample of binary (silhouette) views.. 48
5.3 Similarity weighted spherical graph of a cylinder.. 48
5.4 Stable view regions.. 49
5.5 Selection of stable and salient views using binary (silhouette) views.50
5.6 Best three views generated by our approach.. 50
5.7 Best views with orientation suggestion.. 51
5.8 The best views selected by view saliency only.. 51
5.9 Top 8 most salient viewpoints.. 51
5.10 Top 3 salient view examples of Figure 5.9.. 51
5.11 Different shape orientations.. 53
5.12 Preparing the dataset.. 55
5.13 Results for incorrectly oriented shapes.. 56
5.14 Results for user drawn queries.. 57
5.15 Results for common Computer Graphics models.. 58
5.16 Stills from our best fly computation for the Lion vase.. 60
5.17 Stable and salient views comprisingV. 62

xiv LI ST OF FIGURES

5.18 Varying camera speed,S, along the path,P. 64
5.19 Varying camera zoom,Z, along the path,P. 65
5.20 Stills from our computed best fly for a few shapes.. 68

6.1 The view sphere model used for the optimal radius computation. . 72
6.2 ComputeC, set of interpolation centers.. 74
6.3 Approximating view descriptors.. 76
6.4 Approximation errors at sample points.. 77
6.5 Best, worst and stable views.. 79
6.6 View transfer using several view descriptors.. 80

7.1 A pictorial overview of our shape complexity method.. 84
7.2 Starting configuration of points in the SSA plot.. 85
7.3 Shapes with their SSA plots, sorted by their complexity. 87
7.4 Shapes sorted according to our and existing complexity methods.. 91

8.1 Articulated motion of the Armadillo model.. 94
8.2 An example of our shape deformation pipeline.. 99
8.3 The localization scheme respects symmetries in the shape. 101
8.4 Query results on the original SHREC collection.. 103

9.1 The AIM@SHAPE Shape Repository main page. 106
9.2 Shapes are stored along with their metadata. 107
9.3 The Common Shape Ontology as a Shape Category Tree. 108
9.4 A diverse set of shapes. 109
9.5 Related shapes can be stored as shape “groups”.. 110
9.6 Certified and canonical shapes. 111
9.7 Highly detailed shapes. 112
9.8 Online shape viewer. 114

10.1 The digital shape pipeline, reproduced from Fig. 1.1. 119

Chapter 1

Introduction

After text, images and video, the next wave of digital media is expected to com-
prise 3D shape content. Indeed, an increasing number of shape repositories are
being established either online or as in house catalogs. This creates a need for
tools to analyze and manage contained shapes.

This thesis presents such techniques. While each of the techniques can be used
outside the context of a shape library, almost all of them can be showcased in
a repository and would contribute towards automation of common management
tasks. Here, we provide a brief overview of each of our techniques and mention
how they can be incorporated in a shape library.

There are several ways to create 3D content – it can be designed (from scratch)
using specialist tools and softwares, synthesized from 2D images, obtained by
editing existing content, or acquired from real world objects. Once created, the
content can be cataloged for later reference, placed in virtual or augmented envi-
ronments, animated, shared, re-edited and/or analyzed.

This gives rise to the notion of adigital shape pipeline. An object, whether real,

(Real world/Imaginary)

Object

1. Acquisition/
Modeling

Digital Shape Model

2. Reconstruction/
Export

Shape Representation

3. Processing

4. Analysis

Shape Characteristics

Figure 1.1: The digital shape pipeline

existing as a part specification or in an artist’s imagination, is first given a digital

2 Chapter 1: Introduction

representation. This could be the internal representation of the modeling software
being used, orrange dataobtained from a 3D scanner. In this intial form, the
shape is not useful for general use and needs to be converted to a standard format
(e.g. VRML) or representation (e.g. triangle mesh). The resulting digital shape
model might still not be ready for dissemination or analysis, thus requiring further
processing like remeshing, simplification or smoothing. At this point, the digital
shape can be used for any desired application.

Digital geometry processing refers to tools spanning the entire pipeline. Shape ac-
quisition is the process of acquiring a digital representation of a real world object.
Depending on how accurately the digital shape should represent its real counter-
part, different methods can be used for this step. The most accurate representa-
tions are obtained using contact scanners or range scanners. The former move
a mounted arm over the surface of the object and obtain coordinates of surface
points using the position of the arm in relation to a fixed point. This method is
unsuitable for shapes that are sensitive to touch or hard to reach physically. Laser
scanners obtain point coordinates by projecting a laser beam on the surface and
catching the reflected beam at a sensor. As projection and sensor positions and
angles are known, surface points can be computed by triangulation. To maximize
coverage of the shape, it has to be scanned multiple times from several direc-
tions. The obtained data is referred to asrange dataand hence laser scanners are
also called range scanners. Due to relatively low prices of range scanners, range
scanning is the method of choice for accurate 3D shape digitization.

Range data is subject to common measurement errors like noise and outliers, and
shape specific properties like holes. Holes occur in the point cloud when the
corresponding region of the shape’s surface was not scanned, either due to incom-
plete coverage by the scanner or, as is more common, due to occlusion whereby
some portion of the shape is hidden from the scanner’s view by another portion.
Surface Reconstructiontechniques that reconstruct a surface representation from
point data therefore have to be robust to such artifacts.

Direct reconstructions of range data are highly dense and detailed, leading also to
large file sizes. This is especially prohibitive in context of shape repositories that
have to store many shapes and be able to provide them to users over a network con-
nection. Such fine detail is also not important to most users of shape repositories
and they would readily trade representation detail with size.Shape simplification
or fairing methods obtain a simplified representation of a given shape according
to some criteria, e.g. preservation of curvature. The reverse process, i.e. ob-
taining a denser representation of a given shape, is achieved throughsubdivision
techniques.

Once a shape has been obtained at a desired level of detail, it can be placed in

3

a virtual environment or in a simulation, it can be interactedwith, animated or
deformed, it can be cataloged for later look up, inspected to reveal interesting
properties of the real shape it represents or showcased in virtual museum applica-
tions. The shape can be used in simulations to observe its behavior under different
conditions before it is sent to manufacture. For advertising purposes, a shape can
be rendered with appealing visual effects. A shape can also be used to retrieve
other shapes from a collection that are similar to it, or it could be decomposed
into parts and assembled into a new shape with parts from other shapes. Recently,
printers have been introduced that even make it possible to print 3D shapes. The
power and flexibility afforded by having a digital representation opens the doors
to limitless possibilities to interact with the shape.

However, in order to guide a user to a desired shape in a repository, visual cues to
the shape have to be presented in the form of shape thumbnails. Each thumbnail
shows the shape from a particular view and together, several thumbnails provide
the user with a good idea of the shape without their having downloaded it.Best
view methods aim to compute the viewpoints most suitable for obtaining such
views of a shape. Depending on the targeted application, e.g. object recognition
and maximizing visible area, the goodness of a particular view may vary and a
view that is deemed good for one application might not be so for another.

In maintaining a large shape repository, it also becomes important to present users
with different ways to browse contained shapes. Basic categorizations of shapes
can be with respect to

• representation type, e.g. mesh, implicit surface, boundary representation,

• represented object, e.g. cultural artifact, furniture, human, or

• applicable terms, e.g. unrestricted use, share alike, attribution, or even

• user who uploaded the shape.

Ranking shapes based on their properties can provide another means to efficiently
guide users to desired shapes. These properties could be of several types, i.e.

• directly accessible from shape data, e.g. number of geometric primitives,
file size,

• relative to the repository, e.g. time of addition to the repository, popularity
among downloaded shapes, or

• derived from the shape’s geometry, e.g. topology, shape complexity.

The quality of a shape repository is measured in terms of the value it provides to
its users. In addition to obvious steps like populating the repository with a large

4 Chapter 1: Introduction

variety of shapes, keeping the collection up to date by continually adding new
shapes and minimizing the search effort between a user and their desired shape,
there are other factors that go towards making the repository useful. In order to
provide the user a variety of sortings of shapes as discussed above, the repository
needs to store a large amount of information on each shape. Entering this data
manually is cumbersome for a user. Thus, it is helpful to have automatic tools in
the repository to extract maximum information from a shape and thus reduce user
load. Digital shapes can easily take up hundreds of megabytes in file size. Adding
multi-resolution shape viewers to the repository allows users to inspect a shape
satisfactorily before downloading it. Similarly, integrating simplification tools
allows users to download simplified versions of highly detailed stored shapes,
if desired. For publicly accessible repositories, suitable access policies need to
be put into place. Dissemination of shapes also needs to be controlled through
licensing options.

1.1 Contributions and Outline

Most of the work presented in this thesis deals with Steps 2 and 4 of the digital
shape pipeline shown in Figure1.1. In particular, we make contributions in the
following areas of digital shape processing. For each of these, we mention related
work in Chapter2. For brevity, existing tools and methods that we commonly use
in our techniques below are outlined in Chapter3. Most of the work has already
been published or is currently under review for publication. Towards the end of
this section, we also mention some of our work that we believe deserves further
attention.

1.1.1 Learning based Surface Reconstruction

As range data is typically noisy and incomplete, stochastic methods are natural
candidates to process them. Such methods are increasingly found to model nat-
ural phenomena better than strictly logical methods [Mumford99]. In particular,
statistical learning [Hastie01] is hoped to provide a key to the nature of human
intelligence [Poggio03].

In Chapter4, we present our work onneural meshes[Ivrissimtzis03, Jeong03], a
learning based surface reconstruction algorithm that uses a neural network to learn
shape and topology from an unorganized point set. Earlier methods restrict the
topology of the shape to be reconstructed and in training the surface, apply global

1.1 Contributions and Outline 5

changes to it when, in fact, they mean to increase representation density in only
specific “active” regions of the surface. In contrast, our method is able to learn
the topology of the target shape thus freeing it of restrictions on the input point
set. Also, by associating an “activity counter” to each vertex in the reconstructed
triangle mesh, changes are localized to intended regions only. Our reconstructed
surface can be adapted to different shape properties and we demonstrate recon-
structions sensitive to points density in the range data and shape curvature. As
expected, our method exhibits robustness to input artifacts. This work has been
published previously as [Isgro05, Saleem04,Saleem07a] after which very similar
work appeared in [do Rego07, do Rego09].

Surface reconstruction methods are interesting in context of shape repositories in
that raw range data can be made available to the research community through a
repository. Different researchers can try out their respective algorithms and add
their reconstructed surfaces back to the repository.

1.1.2 Computing best view

3D shapes are typically represented by one or more thumbnails, views of the shape
from different viewpoints. Selecting these viewpoints automatically is known as
the “best view” problem and is of interest in various contexts, e.g. shape recog-
nition and visualization. Depending on the desired application, the goodness of a
viewpoint may vary and a view that is good for one application may not be so for
another.

We note that visualization methods which intend to compute results for a human
audience fail to incorporate the existing, rich body of work on human shape per-
ception [Blanz99, Tarr01,Todd04] (see also references therein). In our opinion,
this omission is a fundamental oversight and hence our approach to the problem,
presented in Section5.1 is based exactly on the principles suggested in these ig-
nored works–we represent a shape by its silhouettes from different viewpoints,
we use similarities between these silhouettes to compute the shape’s best views
as those that are both stable [Weinshall97] and salient [Lee05]. Note that while
some earlier methods happen to use some of these steps as well, none of them is
perceptually motivated and thus none uses all steps together.

This work was published as [Yamauchi06] and since then has been cited as a
standard reference on best view in papers on multi-view methods in robotics
[Welke07, Welke08], view selection [Feixas09,Mortara09], shape retrieval
[Laga07], shape orientation [Fu08] and saliency applications [Liu07,Kim08].

Most, if not all, shape repositories require users to manually add thumbnails when

6 Chapter 1: Introduction

adding a shape to the repository. This is added burden on the user and, as such
thumbnails can be computed automatically, also unnecessary. Incorporating a
best view method like ours to compute thumbnails of shapes as they are added to
the repository can make the user’s task of adding a shape to the repository less
cumbersome.

1.1.3 Computing “best fly”

Best view methods yield static views of the shape. In the case where more than
one view is computed, information on how these views relate to each other is
absent. This calls for a dynamic representation of the shape in the form of an
animation recorded by a camera flying around and pointing towards the shape.

In Section5.3, we formally state and compile the restrictions imposed by previous
work on the camera path in order to compute it. When presenting previous work,
we show how none of them meets all requirements. Our dynamic view method
builds on our perception based best view method and we show how it meets all of
the said requirements. We are the first to consider altering speed and zoom of the
camera along its path around the shape to better meet these requirements. Also,
we coin the term “best fly” for the dynamic view selection problem. This work
was published as [Saleem07b].

Just like static views, dynamic views of a shape can be made available on a shape
repository web page in popular animation formats, e.g. Flash or animated GIF.
It can be argued that a dynamic view provides better value as it takes the screen
space of a single static view while delivering more information to the viewer.

1.1.4 2D Shape Orientation

Just as it is important to present a 3D shape from a good viewpoint, it is important
to orient a 2D shape to its natural orientation. Humans have well defined notions
of correct orientations for most shapes, e.g. given two pictures of a horse from the
same viewpoint but rotated such that its feet are at the bottom in one picture and
its head in the other, we would immediately pick the first one as being correctly
oriented. This is relevant in 3D contexts as well because their views are eventually
also 2D shapes and almost all view selection methods are invariant to rotation, i.e.
they are equally likely to output either one of the two mentioned horse images as
they cannot distinguish between them.

1.1 Contributions and Outline 7

A method to reorient a 2D shape in an image is therefore needed.It turned out
that this problem had simply not been addressed before. We found some work on
image orientation which we show in Chapter2 to be a different problem. In Sec-
tion 5.2, we present our example based solution to 2D shape orientation. We show
an existing, generic dataset can be pruned semi-automatically for the purpose and
how a query shape is matched against it and reoriented. As the notion of “correct”
orientation depends on human interaction with objects of that shape, it cannot be
computed automatically and hence, we need a human user to identify correctly
oriented shapes when setting up our database.

Our method was published as [Saleem07c] and was extended the next year by
[Fu08] to 3D shapes where user input on correctly oriented 3D shapesis used to
train a classifier which then assigns a class to unseen query shapes and reorients
them accordingly.

1.1.5 Computing Complexity of 3D Shapes

Like correct orientation, complexity of a shape is also a human dependent notion.
More so, it is possible that people disagree on which shape is the more com-
plex among two given shapes. Previous work on automatic computation of shape
complexity has taken cues from the shape’s geometry. That, however, makes it
sensitive to small, commonly occurring irregularities like surface noise.

We draw inspiration once again from human shape perception [Koenderink79,
Cutzu97] and present a method that achieves robustness to common shape artifacts
by representing shapes by their view silhouette and measuring their complexity in
terms of the similarities among their views. This is illustrated in side by side
comparisons of rankings of a small set of shapes using our method and some
previous methods. The method and obtained results are presented in Chapter7
and have been published earlier as [Wang08a,Wang08b].

As large unordered collections tend to get confusing, managers of shape reposi-
tories like to impose some ordering on contained shapes so that users can browse
them according to different criteria and depending on their needs at the time, gain
access to their desired shape(s) in the least amount of time. Shape complexity is a
natural candidate for such a criterion as users often want to try out their algorithms
on shapes of increasing complexity.

8 Chapter 1: Introduction

1.1.6 Efficient Shape Retrieval

The Internet provides access to millions of documents but at any given time, a
user only wants to see a few specific ones. That is what makes search engines in-
dispensable. Though shapes have not yet reached comparable volumes, the same
argument applies to shape retrieval.

Almost all previous work on shape retrieval has focused on the quality of retrieved
results with little regard to efficiency. In Chapter8, we present our shape retrieval
technique inspired from text/document retrieval. Using local sampling, we use a
“bag of words” approach to convert a shape into a text document. Thus, all shapes
in a collection are added to an inverted index structure which can then be queried
efficiently. We simulate a large collection of shapes by applying parametrized
deformations to shapes in a small base collection. Our method is able to perform
queries on the resulting collection of one million shapes in under a second.

We believe one of the factors of the usefulness of a shape repository is the ease
with which desired shapes can be found. While general browsing criteria quickly
present a class of desired shapes to the user, making the repository searchable
makes it easier for the user to get to specific shapes. This may be beneficial if the
desired shapes span several criteria and thus would not be grouped together when
stored shapes are sorted according to general shape properties. Indeed, many on-
line shape repositories offer keyword based searches. Offering a shape similarity
based retrieval provides a more geometric means to find the desired shape.

1.1.7 Design and Maintenance of a Shape Repository

Many of our ideas presented so far have either been implemented in or inspired by
the AIM@SHAPE Shape Repository which we developed and maintained over
the course of the research time allotted for this thesis. The repository manages
and provides a seamless interface to over one thousand shapes by putting them in
a knowledge management framework. New shapes of many types, representing a
broad range of real world objects are routinely added to the repository. To enhance
user experience, various means to search and browse are provided along with
online viewing and simplification tools and automatic metadata extraction tools.
To give users control over use of the shapes they add to the repository, legally
binding licences are incorporated that can be specified for a shape at the time of
upload. Since its inception almost five years ago, the repository has been visited
more than two million times and shapes have been downloaded from it almost a
hundred thousand times. These shapes have so far featured in all major digital

1.1 Contributions and Outline 9

geometry research conferences. We present some of the guiding principles behind
the Shape Repository in Chapter9.

Technical documents on the repository have been submitted as various in-project
reports available through the website [AIM@SHAPE] of the EU Project FP6 IST
NoE 506766 AIM@SHAPE and we also contributed to the technical submission
[Danovaro07] describing the multi-resolution mesh viewer incorporatedin the
repository. Note that the repository is the outcome of efforts of many project
partners from the AIM@SHAPE project.

1.1.8 Minor Contributions

Continuously approximating descriptor values on a view sphere.
Digital shape processing techniques that either output views of a shape or use
shape views in an intermediate step to compute some other property, like com-
plexity, make use of “view descriptor” values on a shape’s view sphere. These
values are evaluated at discrete points on the view sphere and are thus dependent
on the discretization. We investigated how these discrete values can be used to
construct a continuous function that can then be evaluated at any point on the
view sphere independent of its discretization. The approximation along with error
values is presented in Chapter6. We also demonstrate the use of our approximated
values in performing common shape operations like computing its representative
and equivalent views, and computing view likelihood.

The View Transfer operation. We introduce in Chapter6 a new shape op-
eration called “view transfer” whereby a chosen view of a shape is transferred to
another, similar shape, and show how descriptor values sampled from our contin-
uous representation can be used to perform this operation. The premise of view
transfer is that similar shapes have similar best view parameters. Using this op-
eration, computed best views of a stored shape can be transferred to other similar
shapes in the repository without having to explicitly compute best views of the
latter shapes.

In the same chapter, we also present our derivation of an optimal radius for a
shape’s view sphere. While view spheres are commonly used, there existed no
formal conditions relating their size to that of the viewed shape and while the
center of the view sphere is fixed at the shape’s center, its radius was heuristically
chosen to be some multiple of the shape’s bounding box diagonal. A preliminary
version of this chapter has been published as [Saleem08].

10 Chapter 1: Introduction

Chapter 2

Previous Work

This thesis consists of work on various areas in digital shape processing. We give
a short introduction to and present related work on each of these areas in this
chapter.

2.1 Neural Network based Surface
Reconstruction

The goal of Surface Reconstruction is to reconstruct the shape represented by a
set of points, orpoint cloud, sampled on its surface, typically obtained through
laser scanning of the shape. Depending on the scanning technology, each point
may also be equipped with information about the surface normal at that point.
In the latter case, the points are said to beorganizedand points without normal
information are termedunorganized. In this thesis, we focus on the more general
case of unorganized points.

The first general purpose method for surface reconstruction from unorganized
points appeared in [Hoppe92]. Since then, there has been considerable activity
in the field and methods drawing from various backgrounds have appeared in the
literature, from differential geometry and level set methods to implicit functions.
A short survey is presented in [Schall05]. Our focus is on surface reconstruc-
tion methods based on statistical methods. Except for a few, [Jenke06,Patańe06],
the vast majority of these methods rely on training a Neural Network [Bishop95].
Roughly speaking, a neural network consists of interconnected nodes that carry

12 Chapter 2: Previous Work

some associated information. Connections between nodes may also have some in-
formation associated with them. After some initialization, the information in the
neural network is made to adapt to inputs and, optionally, corresponding desired
outputs that are progressively introduced to it. This is how the neural network
“learns” from the input. “Training” the neural network consists of presenting it
with inputs in order to make it learn. It stops when the neural network meets some
desired condition, e.g. computed outputs fall below an error threshold.

In [Gu95, Mostafa99,Yang00], neural networks have been trained to reconstruct
parametric and freeform surfaces representing the input point cloud. The neural
network learns a functionf(x, y) such that‖f(xi, yi) − zi)‖ < ǫ for all points
(xi, yi, zi) in the point cloud and for some acceptable error levelǫ. Neural net-
works have been extended tofunctional networksin [Iglesias04] to reconstruct
the point cloud with B-spline and Bezier surfaces (see also references therein).

The above methods fall under thesupervised learningcategory, i.e. they as-
sume a relationship among the input variables(xi, yi, zi) and train the neural net-
work to learn this relationship.Unsupervised learningmethods make no such
assumption. Instead, they train the neural network to learn a surface. Nodes
of the neural network represent points in 3D space and they move towards the
learned surface as the neural network learns. When learning stops, the posi-
tion and connectivity of the nodes form the learned surface, which either di-
rectly or indirectly represents the desired surface. The methods described in
[Barhak01a, Barhak01b, Hoffmann98, Várady99] train a neural network to learn
control grids for reconstruction of the surface or parametric grids for subsequent
parameterization of the surface. In [Knopf04, Yu99], the neural network is trained
to interpolate or approximate the point cloud itself, thus directly learning the de-
sired surface.

In the unsupervised learning methods described above, the topology of the learned
surface and its number of vertices remain unchanged since initialization. As they
initialize the neural network as a 2D grid, they can accurately represent the de-
sired surface only if it represents a surface patch. Also, the learned surface may
under-represent detailed features of the desired surface. As a solution to the latter
problem, subdivision is suggested in [Yu99]. In [Barhak01b, Várady99], where
the surface has the topology of a quad grid, the authors suggest tracking the activ-
ity of each vertex with an associated counter, which increases each time the vertex
participates in learning. They can then spot active vertices by their high counter
values, and add entire rows/columns of vertices in their neighborhoods. Both
these solutions are global in nature and end up adding new vertices in unwanted
regions of the surface as well.

The unsupervised learning method we present in Chapter4 adapts its node distri-

2.2 View Selection 13

bution and topology according to the input point cloud. That allows it to learn fine
features as well as complex topologies.

2.2 View Selection

Digital shapes represent and contain 3D information. However, these shapes are
ultimately presented on 2D media – paper, monitor etc. This necessitates a pro-
jection from the 3D space of the shape to the 2D space of the display medium.
Having chosen a projection method, a given 3D shape can have infinitely many
2D projections corresponding to infinitely many projection directions. Each pro-
jection is aviewof the shape.

Views of a digital shape convey a preliminary idea of the shape. This is useful
in many scenarios. Complex, highly detailed shapes typically take up hundreds
of megabytes or more in file sizes, leading to lengthy download times. Some
repositories even require payment for accessing stored shape models. In such
cases, the user would like to have an idea of the shape before committing to a
download. For digital museum applications, it might be desirable to show some
views of a digitized cultural heritage object without giving the user access to the
full 3D model. Managers of a digital shape repository might want to display a
few “catalog views” of some showcase models to promote their repository. For
machine vision applications, certain views of a shape are required to recognize it
and retrieve similar shapes.

This necessitates a strategy to choose from the potentially infinite views of a
shape, a few “interesting” or informative ones. This is also known as the “best
view” problem. As a single view cannot convey information on the full shape,
some methods find instead theN best views, possibly with a ranking.

The static views found by the kinds of methods discussed above can still be am-
biguous as they do not convey information on how the views relate to each other.
Another class of methods therefore aims to compute a camera path, travelling
along which a virtual camera pointing at the center of the shape captures an ani-
mation of the shape. This animation then provides a dynamic view of the shape.

The predominant approach in view selection is to define a measure orview de-
scriptor that assigns some goodness value to each view. Representing a shape by
its views, the view that maximizes the value of a chosen view descriptor is chosen
as the shape’s best view. In general, methods differ in the view descriptor they
maximize.

14 Chapter 2: Previous Work

2.2.1 Static View Selection

An early method [Kamada88] characterizes a view by the angle between the view-
ing direction and normals of visible faces of the shape. A good view is one that
views most faces directly, i.e. the viewing direction and face normals are parallel.
An angle of90◦ corresponds to a degeneracy. Another angle based approach is
given in [Podolak06] which computes a shape’s symmetry planes and then assigns
a score to a view based on the angle between the viewing direction and the plane
normals. Here, the best view is the one that contains the least symmetries, i.e. the
viewing direction is parallel to most plane normals.

The method given in [Colin88] subdivides the shape into an octree and character-
izes a view based on the number of visible octree cells. For this descriptor, the
more the number of visible cells, the better the view. The descriptor proposed in
[Plemenos96] evaluates views based on the number of visible triangles andthe
visible projected surface area. This is enhanced in [Sokolov05] to additionally in-
clude curvature information at visible vertices, and generalized in [Vázquez03a]
to viewpoint entropy, a probability measure that measures the information content
of a view. The best view is then the one with the maximum information content.
A similar approach is proposed in [Bordoloi05, Takahashi05].

Another curvature based measure is proposed in [Lee05]. Each vertex of the shape
is assigned a saliency value based on its multi-scale curvature properties.View
saliencyis then the sum of saliency values of visible vertices. The assumption here
is that a shape’s best view is the one which contains its most salient features, where
salient features are those that are distinctly different from their neighborhood. The
view selection techniques in [Gumhold02, Shacked01] also maximize a custom
view descriptor. A comparative study of several view descriptors is presented in
[Polonsky05].

In the computer vision and pattern recognition communities, a few object views
are selected for later recognition [Denton04], reconstruction [Lee04] or sim-
ilarity retrieval [Mokhtarian00] of the object. Views most similar to other
views up to a threshold are taken as representative views of the object in
[Lee04,Mokhtarian00]. Similar approaches are presented in [Arbel99, Hall05].

The best view problem is also studied in robot motion and graph drawing. A good
survey of techniques from these areas can be found in Chapter 2 of [Vázquez03b].

2.2 View Selection 15

2.2.2 Dynamic View Selection

There has been surprisingly little work on finding dynamic representations of
shapes. Some online repositories [Demand, Repositorya] offer 3D viewers for
interactive exploration of stored shapes, but this approach becomes impractical
when the shape model is large, as large file transfers are then required to explore
the full shape. This problem could be circumvented by offering a simplified ver-
sion of the shape for exploration but that defeats the original purpose of exploring
shape details. An interesting solution is proposed in [Danovaro07] whereby a sim-
plified version of the shape is first displayed for exploration, and the user can then
choose regions of the shape for which they want to view more details.

Few methods [Sokolov06a, Sokolov06b] compute an animation of the shape as we
proposed earlier. While best view methods sample all possible views of the shape
from its viewsphere to choose the best among them, taking such an approach
to the best fly problem is not feasible as the size of the search space increases
exponentially with the number of viewpoints to be visited in the fly. To guide
the computation of the fly, some heuristics have previously been used which we
formalize below.

1. Brevity– the animation should not be long,

2. Information– the animation must be maximally informative,

3. Exploration– the camera path should avoid fast returns to already visited
viewpoints

4. Smoothness– the path should be smooth.

Depending on how the path computation is performed, shape exploration meth-
ods are classified as eitheroffline or online. Offline methods analyse the object
once and compute the fly in advance. Online methods compute a path in real time
each time they visit the object. Another classification is made on the nature of
exploration conducted.Global methods aim to give a general understanding of
the shape model. The camera stays outside the shape model, restricted to its view-
sphere. Inlocal methods, the camera enters the model and becomes part of it. Our
method presented in Section5.3is a global, offline method that satisfies the above
heuristics.

Previous methods either fail the Smoothness condition [Sokolov06b] or deal with
it artificially by putting in a damping factor where sharp turns occur [Sokolov06a].
The path is often computed incrementally [Sokolov06a]; at each viewpoint in the
path, the next viewpoint is selected after considering each candidate viewpoint’s
view goodness, distance from the starting point of the path and the fraction of the

16 Chapter 2: Previous Work

model uncovered from that viewpoint. Such methods suffer from the drawback
that they cannot guarantee that the computed path will pass through a given set of
points, without violating any of the heuristics or complicating the computation.

2.3 View Sphere Model

In Chapter6, we present our work on approximating view descriptors on a shape’s
view sphere. This is in contrast to the traditional approach of evaluating descriptor
values at discrete samples on the view sphere.

The little work we came across on approximating view descriptors comes from
the best view literature, where the goal is to find the viewpoint that maximizes
the value of a chosen descriptor. In [Plemenos96], the view sphere is divided into
eight spherical triangles corresponding to the three axes. The view descriptor is
evaluated at the triangle vertices, and a “best” triangle is chosen. This triangle is
then recursively subdivided, choosing the best among the new triangles each time.
A similar strategy is employed in [V́azquez03c].

Our approximation in Chapter6 differs from these in that we are interested not
in evaluating the descriptor at one “best” viewpoint, but at any given point on
the view sphere. We therefore build a continuous function that can be trivially
evaluated at any 3D point.

2.4 Shape Orientation

View selection methods, like the ones discussed above, select the best view of
a shape by identifying a best viewpoint on the shape’s view sphere. However,
this alone is not sufficient to select a view uniquely as it does not address another
degree of freedom, the up vector. Views of a shape from the same viewpoint but
with different up vectors are rotations of each other, i.e. the shape is oriented
differently in each of the views. As no strategy is employed to fix an up vector for
a given shape, automatic view selection methods often yield arbitrarily oriented
views which are later fixed by hand.

Humans have well defined notions of the “correct” orientation of a shape. Given,
for example, two side views of a horse with the horse standing on its feet in one
and on its tail in the other, we will immediately pick the former view as the cor-
rectly oriented one. Incorrectly oriented views seem implausible and unrealistic,
even if they have been determined to be the best according to some descriptor. It

2.5 Shape Repository 17

is therefore important to fix a strategy to choose a correct up vector for a given
shape when acquiring its views, or to reorient the shape in a view once it has been
acquired. We take the latter approach in Section5.2.

We could not find previous work on automatic shape orientation. There has re-
cently been some work onimageorientation (cf. [Luo05,Vailaya00,Wang04]),
whereby the correct orientation of a natural image (0◦, 90◦, 180◦ or 270◦) is de-
cided by performing statistical analyses of image features. However, the shape
orientation problem is different. Given a view of a shape, we want to automati-
cally determine the correct orientation of the shape for the view.

2.5 Shape Repository

Digital shapes are of interest in several communities and application areas – com-
puter games, digital museums, virtual environments, movies, and digital geometry
research. While it is possible to design shapes from scratch, the process is often te-
dious and cumbersome. It is therefore desirable to have one or more ready sources
of shapes that can meet the needs of the above communities. These exist in the
form of shape repositories that can be accessed via the Internet.

To assist users in quickly finding a shape model of their choice, these reposito-
ries typically annotate some information to the stored models. Almost all repos-
itories assign each model a suggestive name and present one or more views of
it as accompanying thumbnails. In addition, models are classified according to
the types of object they represent (animal, plane etc.) [Benchmark, Cacheforce,
Databasea, Databaseb,Flash Fire Designs,Modelsa,modelsb], by the type of
data (static, animated or motion capture) [Demand], or by their origin (how they
were acquired) [Databaseb]. Along with origin information, it is also common
to show with each model some meta-information like geometry and texture de-
scription [at Georgia Tech, Browser,Flash Fire Designs,Modelsa,Repositoryb,
Turbo Squid], ownership, notes on applicable tools [Databasea, Repositoryb]
and file formats [Databaseb], references to research papers containing the model
[at Georgia Tech], and/or similar shapes in the repository [Databasea].

In Chapter9, we present an information theoretic approach to a Shape Reposi-
tory that automatically subsumes all the above classification criteria and provides
users a rich set of features to interact with a chosen shape before committing to
download it.

18 Chapter 2: Previous Work

2.6 Word Based Approaches to Shape
Retrieval

The larger a collection, the more difficult it becomes to find things in it. This
applies to collections of shapes as well. In this thesis, we are interested in shape
retrieval based on similarity of fetched shapes to a query shape. Unsurprisingly,
shape retrieval generates interest from many communities – computer vision, pat-
tern recognition, computer-aided design, engineering, shape modeling, computer
graphics, virtual reality, multi-media, databases, and even machine learning and
human-computer interaction. A good survey is presented in [Tangelder04]. The
general approach is to use a shape descriptor to quantify stored and query shapes
into feature vectors. Query execution entails matching the query feature vector
with stored ones.

In Chapter8, we aim to improve upon the above “query-against-all” model as it
is inefficient for large shape collections. We employ for the purpose first a “bag
of words” approach to convert shapes into textual words and second an inverted
index, popularized in document retrieval, for efficient shape retrieval.

Lately, considerable attention [Fraundorfer07, Nistér06, Philbin07, Philbin08,
Schindler07] has been given to “bag of features” techniques for image retrieval
and to their optimization. The basic idea is to treat extracted features, whatever
they may be, as an unordered collection or a bag. Objects, images in this case,
match when their bags contain one or more identical features and the goodness of
the match is determined by the extent of overlap. Bag of words is a specialization
of bag of features in that features are expressed as words.

We found two methods similar to our approach. The first [Biswas07] uses a bag
of words approach for 3D shape retrieval but does not use text retrieval methods
for efficient retrieval like us. All shapes in the collection are sampled, multiple
pairs of samples from each shape are selected and analyzed to extract features, the
features are quantized and then binned. A query shape is led through the same
process and its matches are determined based on the bins its features fall into.

The other, Video Google [Sivic03,Sivic06], uses text retrieval techniques to find
those key frames in a video sequence that contain a shape in a query image. SIFT
features [Lowe99] are extracted from key frames and the query image, and quan-
tized intovisual words. Using a technique similar to the one we use and explain
in Chapter8, an inverted index of visual words and key frames is built and key
frames are then ranked by the normalized inner product of their word frequency
vector and the word frequency vector computed for the query image.

2.7 Shape Complexity 19

2.7 Shape Complexity

Humans can easily judge a given shape to be complex or simple, and, given a set
of shapes, perform a sorting of the shapes based on their geometric complexity.
Automatically estimating shape complexity, however, has received surprisingly
little attention.

In [Rossignac05], an attempt has been made to formalize the notion of shape
complexity by defining a few measures that could lead to its estimation.

• Algebraic complexityis the degree of the polynomial used to represent the
shape.

• Morphological complexityis an estimate of the amount of fine details in
the shape, and is computed as the largest value ofr for which the shape is
r-smoothor r-regular.

• Combinatorial complexityis the number of vertices used in the shape rep-
resentation.

• Representational complexityis a qualitative measure of the amount of re-
dundancy in the shape representation.

• Topological complexityis also a qualitative measure comprising of the
genus of and non-manifold elements in the shape.

While these measures may capture some aspects of how humans gauge shape
complexity, they are limited in terms of how they can be applied for automatic
complexity estimation. The first two measures are restricted to specialist shape
representations and all three quantitative measures are indiscriminate – shapes of
varying complexities can easily end up having the same values for these measures.

More discriminative approaches have involved the use of information theory. Page
and colleagues [Page03,Sukumar06] note that the canonical simplest shape, the
sphere, has the same curvature throughout its surface. Therefore they compute a
shape’s complexity as the entropy of its curvatures viewed as a probability distri-
bution. The method proposed in [Rigau05] builds upon the observation that inside
the sphere, each surface point is visible from every other surface point. A shape’s
inner complexityis then measured in terms of themutual informationbetween
regions of the shape that are mutually visible to each other through the shape’s
interior. An outer shape complexityis also proposed that considers visibility be-
tween regions of the shape and a bounding sphere.

Our method, presented in Chapter7, builds upon evidence from human vision
[Cutzu97] and psychology [Koenderink79] research which claims that humans

20 Chapter 2: Previous Work

perceive 3D shapes as arrangements of 2D view images.

Chapter 3

Preliminaries

Throughout this thesis, we use certain tools and concepts one or more times. To
simplify exposition later and to avoid repetition, we describe them in detail in this
chapter. The methods presented here are not our contributions – we use them as
black boxes in our algorithms and cite relevant sources. We will make explicit
when we modify a certain method from the original for our use.

When analyzing a 3D shape, it is easier to work with views of the shape, which
are 2D images. Many of our methods require these views to be compared to each
other according to similarity, and most shape similarity techniques rely on the
boundary contour of the shape in the view image. These methods typically yield
a similarity distancebetween a pair of shapes, which is zero if the shapes are
identical, and increases with dissimilarity between the shapes. For this reason,
this distance is sometimes also referred to as the “dissimilarity distance”.

In Chapter7, we use Similarity Structure Analysis (SSA) to analyze the similari-
ties between views of a shape in order to compute the shape’scomplexity.

3.1 Obtaining Shape Views

A view of a shape is simply a snapshot from a (virtual) camera of the shape against
a background. To keep the view simple, the background is typically plain. Keep-
ing shape texture and background constant, the necessary parameters for a view
are

• distance of the camera from the shape

22 Chapter 3: Preliminaries

• viewing direction of the camera

• viewing frustum of the camera

• up-vector of the camera

As shape views are often taken to represent the 3D shape in some context, a single
view is usually not enough. Then, thenumber of viewsandposition of the camera
for these views also become important considerations.

The usual solution is to place aview spherearound the shape. This is a sphere
whose center lies at the geometric center of the shape, and whose radius is some
multiple of the length of the diagonal of the bounding box of the shape. Cameras
are placed on the surface of the view sphere and pointed towards the center of the
sphere. This links the position of a camera to its viewing direction. The distance
of the camera from the shape is simply the radius of the view sphere. A small
radius corresponds to a zoom in of the shape, and a large radius to a zoom out.
At one extreme, only part of the shape is visible in the corresponding view and
at the other, the view consists almost entirely of just the background. A suitable
value for the view sphere radius is generally chosen heuristically. In Chapter6,
we present a derivation for an “optimal” radius, which we found missing in the
literature.

Covering the entire surface of the sphere with cameras will yield all views (up to a
zoom factor) that look directly at the shape. However, this leads to infinitely many
camera positions and is thus computationally impossible. A close approximation
would lead to an infeasibly large number of views. Instead, a sufficient number
of camera positions that are uniformly distributed over the surface are considered.
For this reason, the view sphere is typically modeled by a platonic solid – either
by a dodecahedron or its dual, an icosahedron – with the same center and radius.
Cameras are then placed at the vertices of the polyhedron, or at the barycenters of
its faces. In the latter case, the camera positions are projected to the surface of the
sphere being approximated. As explained so far, the number of views obtained
by this approach is limited to 12 (icosahedron) or 20 (dodecahedron). If more
views are required, camera positions are computed in the same way for the poly-
hedron after application of a few subdivision steps to it. Throughout this thesis,
we initially approximate the view sphere by an icosahedron and place cameras at
its vertices. We prefer the icosahedron as its triangle mesh structure easily lends
itself to common subdivision methods. After each subdivision step, all newly
added vertices are projected back to the surface of the view sphere. Figure3.1
shows view spheres at different levels of subdivision for twoshapes.

Most mesh viewing softwares model cameras with a default viewing frustum of
45◦ in thex andy directions. The software used for the experiments in this thesis

3.2 Obtaining Shape Contours 23

(a) A model and its view sphere. (b) Views from a view sphere.

Figure 3.1: Note that the model, radius of the view sphere relative to the bounding
box of the model, and the number of subdivision steps applied to the view sphere
differ in each sub-figure.

follows the same convention. Unless mentioned otherwise, we do not specify
any up vector for our cameras, thus using our system’s default up vector which
corresponds to the positivey direction. This can lead to faulty orientation of
the shape in obtained views. However, this is a typical problem in view-based
methods, as computing the “correct” up vector for a 3D shape is a problem that
has just recently received attention [Fu08]. In Section5.2, we propose a method to
correct orientation of shapes in their view images. In the literature up to the time
of writing this thesis, shape orientation in views is generally fixed manually. The
fact that we end up with arbitrarily oriented views does not hinder our methods
as subsequent steps applied to the views are rotation invariant, i.e. given views
which are identical in all parameters except the up vectors, the methods treat them
identically.

3.2 Obtaining Shape Contours

To obtain the boundary of a 2D shape in an image as a closed contour, we first
scan the image for boundary pixels and then employ the popular Crust method
[Amenta98], illustrated in Figure3.2. Given a set of points sampled closely
enough on a line, the Crust method uses Delaunay triangulation to constuct the
points’ Crust, which is a reconstruction of the original line as a polyline with the
input points as vertices. As our boundary points are just a pixel apart in image

24 Chapter 3: Preliminaries

The Crust of a point set, [Amenta98]. A shape and its boundary.

Figure 3.2: We use the Crust method to extract the boundary contour of a 2D
shape.

space, they satisfy the closeness condition required by the Crust method.

The above strategy works well in general cases, i.e. we are able to extract shape
boundary as a closed, connected contour. However, it fails when the shape bound-
ary contains noise or fine features. In such cases, the computed contour contains
a large number of disconnected edges. Luckily, detection of this case is easy (it-
eration over all obtained edges). When this occurs, we remove noise from the
original shape by iteratively applying blurring and morphological opening to the
original image. At each iteration, we compute the resulting shape’s Crust and
check if it is a closed contour. Iteration stops when a closed contour is obtained.
While this admittedly modifies the shape, shape features lost in this way are too
fine for subsequent methods to work with in the fist place. The resulting Crust
still preserves the overall shape.

3.3 Computing 2D Shape Similarity

2D shape similarity methods analyze the shape to extract afeature vectorfrom it.
The similarity distance between two shapes is defined as the matching cost of their
feature vectors. It is desired of feature vectors to be scale, rotation and translation
invariant. Different methods accomplish this by either preprocessing the shape, or
by incorporating these requirements in the computation and comparison of feature
vectors.

There are two classes of shape 2D similarity methods to choose from. Meth-
ods from one class operate on the boundary contour of the shape in the image,
while those from the other utilize pixel information of the entire shape. Dur-
ing the course of our research, we used a pixel method based on Zernike mo-
ments, and two boundary contour methods based on Curvature Scale Space (CSS)

3.3 Computing 2D Shape Similarity 25

Method BEP reported BEP reimp

Shape context 76.51 41
Image edge orientation histogram 41
Hausdorff region 56
Hausdorff contour 53
Grid descriptor 61
Distance set correspondence 78.38
Fourier descriptor 46
Delaunay triangulation angles 47
Deformation effort 78.18
Curvature scale space (CSS) 84.12 52
Convex parts correspondence 76.45
Contour-to-centroid triangulation (CCT) 84.33 79
Contour edge orientation histogram 41
Chaincode nonlinear elastic matching 56
Angular radial transform 70.22 53

Table 3.1: Accuracy of similarity measures in Bull’s Eye Percentage (BEP). All
methods were reimplemented and BEP figures from the reimplementations (right)
are shown alongside figures claimed by the methods’ authors (center), reproduced
from [Veltkamp06]. We use the CSS and CCT methods in this thesis.

26 Chapter 3: Preliminaries

[Mokhtarian03] and contour to centroid triangulation (CCT) [Attalla05]. Bound-
ary methods generally outperform pixel methods [Latecki00]. The CSS method
has in fact been incorporated into the MPEG-7 standard but was later outper-
formed by the CCT method [Veltkamp06], see also Table3.1. Performance
is judged in terms of retrieval accuracy from the MPEG-7 benchmark database
[Latecki00,Veltkamp06]. Below, we present each of the three methods we used.

3.3.1 Zernike Moments

Zernike momentsof a functionf(x, y) are projections off on to a set of complex
Zernike polynomials,Vnm(x, y), that form an orthogonal basis over the unit circle.

Vnm(x, y) = Vnm(ρ, θ) = Rnm(ρ)e
imθ,

where






m, (n− |m|) even,|m| ≤ n

Rnm(ρ) =
∑

n−|m|
2

s=0 −1s · (n−s)!

s!(n+|m|
2

−s)!(n−|m|
2

−s)!
· ρn−2s,

wheren andm are integers and(ρ, θ) are the polar coordinates of(x, y). For
a discrete image,I(x, y), the Zernike moments oforder n and repetition mare
defined as

Anm =
n+ 1

π

∑

x

∑

y

f(x, y)V ∗
nm(x, y), x2 + y2 ≤ 1,

whereV ∗
nm(x, y) is the complex conjugate ofVnm(x, y).

When using Zernike moments as image features [Chong03, Khotanzad90,
Mukundan98], the image is required to be square and the restriction,x2+ y2 ≤ 1,
is fulfilled by normalizing pixel locations. The feature vector simply consists of
the image’s Zernike moments, and matching cost is the L2 distance between fea-
ture vectors.

As the method employs frequency analysis in polar coordinates, computed mo-
ments are automatically rotation invariant. Scale invariance is achieved by nor-
malizing all moments with respect to the second order moments that represent
area of the viewed shape. To achieve translation invariance, the shape is first
translated such that its centroid lies on the center of the image.

3.3 Computing 2D Shape Similarity 27

3.3.2 Curvature Scale Space (CSS)

The CSS method [Mokhtarian03] is based on the observation that repeatedly
smoothing any closed contour eventually leads to a contour that is fully convex.
More specifically, the number ofcurvature zero crossingsin the contour tends to
zero with smoothing. The boundary contour for any non-trivial shape is a closed
loop with an equal number of alternating curvature minima and maxima. Between
each such pair of curvature extrema is a curvature zero crossing, i.e. a point on
the boundary contour where the curvature is zero. As the shape is smoothed, the
extrema vanish and the zero crossings merge with each other until none remain.
A shape’sCSS imageis a plot of number of smoothing iterations against the posi-
tions of curvature zero crossings on the boundary contour. The CSS feature vector
of the shape then consists simply of the positions and heights of the maxima in the
CSS image. Figure3.3 contains an illustration of the process. When comparing
two feature vectors, one of them is shifted such that the highest maxima in both
are aligned. Matching cost is then defined in terms of differences in correspond-
ing maxima heights starting with the highest in each feature vector. Additional
maxima in one of the feature vectors along with differences in position if corre-
sponding maxima in both feature vectors are penalized.

Figure 3.3: A shape (left), its smoothed versions (right) with highlighed zero
crossings (red) and its CSS image (right), from [Mokhtarian96]. The festure vec-
tor is simply the positions and heights of maxima in the CSS image.

As the method relies on positions on the boundary contour, and not on positions in
the image, it is intrinsically translation invariant. Scale invariance is achieved by
initially normalizing each boundary contours to a total length of one. Alignment
of highest maxima when comparing feature vectors leads to rotation invariance.
In Section5.2.2, when a rotation sensitive method is required, we assign an ad-
ditional matching cost to the initial alignment of maxima. This penalizes shapes
whose CSS images require large amounts of shifting for maxima alignment.

28 Chapter 3: Preliminaries

3.3.3 Contour to Centroid Triangulation (CCT)

The CCT method [Attalla05] connects the boundary contour to the center of the
shape, dividing the contour inton equal length arcs. The spokes radiating from
the centroid to the contour are ordered in clockwise direction with the longest one
being first. Neighboring spokes define a triangle consisting of a chord correspond-
ing to the arc of the shape. The feature vector stores for each spoke, its length, the
angle it forms with its chord, and the ratio of chord to arc length. Each component
is normalized to be between zero and one. Comparison cost is the L1 distance
between components of feature vectors. As the method relies on the shape’s cen-
troid and spokes from the centroid to the contour, it is intrinsically rotation and
translation invariant. Normalizing feature vectors also makes it scale invariant.

3.4 Similarity Structure Analysis (SSA)

SSA, or Multidimensional Scaling (MDS) [Borg05, Borg87] is a dimensionality
reduction tool that projects high dimensional points to a lower dimension such
that pairwise distances are preserved. We use SSA in Chapter7 to obtain a 2D
plot from anN × N similarity matrix,S, where each entrysi,j is the similarity
distance between imagesi andj and . Note that by construction,S is symmetric
andsi,i = 0.

N points,P0 = {pi,0|i ∈ {1, . . . , N}}, are chosen at random in the Cartesian
plane correspoding to theN compared images. The distance matrix,D(Pm), of
the set,Pm, m ≥ 0, is computed such thatdi,j is the Cartesian distance between
pi,m andpj,m. It follows thatdi,i = 0 for all i.

In order to compute the SSA plot, thestarting configurationis set asC0 = D(P0).
An iterative process then starts whereby, in each iterationk, k ≥ 1, the configu-
ration matrix,Ck−1, is checked to be theSSA solutionof S. If the solution has
been reached then iteration stops. Otherwise, the positions of the points inPk−1

in the SSA plot are updated toPk, the new configuration matrix is computed as
Ck = D(Pk) and iteration continues.

3.4.1 Checking for an SSA Solution

To check whether a givenCm, m ≥ 0 is an SSA solution ofS, we need to con-
struct theranking number matrixof Ck and ofS. For a matrix,A, to construct
its ranking number matrix,R(A), all entriesai,j are sorted in descending order

3.4 Similarity Structure Analysis (SSA) 29

and given consecutive ranks. Thus, the largest entry gets a rank of one, the second
largest a rank of two, and so on. Equal entries are assigned consecutive ranks. If
the entries inA are then replaced by their ranks, we obtainR(A).

Cm is an SSA solution ofS when the condition,R(Cm) = R(S), is satisfied.

3.4.2 Updating Point Positions

Positions of points inPm, m ≥ 0, are updated according to therank image matrix
of Cm with respect toS. We denote the rank image matrix of a matrix,A, with
respect to another matrix,B, asRB(A). It contains the entries ofA permuted
such that the ranking number matrices ofRB(A) andB match, i.e.R(RB(A)) =
R(B).

For a givenCm, RS(Cm) denotes theintendedpoint configuration, i.e. it is de-
sired that the Cartesian distances between the points inPm follow a similar pattern
as the similarity distances inS, and that their distance matrix, which will be the
next configuration matrix, be an SSA solution toS. To achieve this, acorrection
factor is computed for each point pairpi,m,pj,m as

f{i,j},m =
c′{i,j},m − c{i,j},m

2c{i,j},m
,

wherec′{i,j},m andc{i,j},m are entries inRS(Cm) andCm respectively. The cor-
rection factor for a point pair can be thought of as the force between them; the
2 in the denominator denotes how the points exert equal forces on each other. A
positive value off{i,j},m indicates that the current distance between the point pair
is an underestimate and should be increased, whereas a negative value implies a
shortening of the distance.

The displacement ofpi,m with respect topj,m is then given as

~d{i,j},m = f{i,j},m · (pi,m − pj,m).

The total displacement forpi,m with respect to all other points is then given as

~di,m =
1

N − 1

N
∑

j=1,j 6=i

~d{i,j},m.

The averaging above prevents displaced points from overshooting. Finally, the
new point position is given by

pi,m+1 = pi,m + ~di,m.

30 Chapter 3: Preliminaries

3.4.3 Stopping Condition

Ideally, iteration stops when the current configuration matrix,Cm, m ≥ 0, is an
SSA solution ofS. Indeed the update of point positions explained above aims to
achieve just that. However, as each point is acted upon by all other points, the
distance matrix of the new point positions is typically still not a solution toS.
Thus, the points are moved again and again until a stopping condition is reached.
With each iteration, the distance matrix of the point positions comes closer to the
SSA solution ofS. This is reflected by progressively smaller values of|f{i,j},m|
and|~di,m|. Note that when the solution is reached,f{i,j},m and consequently~di,m

will both be zero. In fact, after a certain number of iterations,|~di,m| becomes
negligible. Therefore, iteration is stopped when the values of all|f{i,j},m| fall
below a certain threshold. The point positions when iteration stops form the final
configuration of the SSA plot.

3.5 View Descriptors

Many of our methods rely on views of shapes, such as those obtained in Sec-
tion 3.1. A shape view is typically quantified using aview descriptor. Zernike
moments presented in Section3.3.1are one such view descriptor. Two other de-
scriptors we use are viewpoint entropy and view saliency which is based on mesh
saliency.

3.5.1 Viewpoint Entropy

Viewpoint entropy[Vázquez01] of a scene estimates the amount of information
contained in the scene as the minimum number of bits required to represent it. It
is computed as

−
Nf
∑

i=0

Ai

At

log
Ai

At

whereNf is the number of faces in the scene,Ai is the projected area of facei
over the view sphere,A0 is the projected area of the background over the view
sphere, andAt is the total area of the sphere. This expression is maximized when
all projected areas are equal.

3.5 View Descriptors 31

Figure 3.4: Saliency values for the Lion vase and Armadillo models, increasing
from cold (blue) to warm (red) colurs.

3.5.2 Mesh Saliency

Mesh saliency [Lee05] predicts the amount of attention a user would pay to
parts of a shape when viewing it. It is based on an older image saliency tech-
nique [Itti98] that computes visual importance of image regions to a human ob-
server. Higher saliency values are assigned to more attention-grabbing parts. The
motivation is that high curvature areas that “stand out” in their neighborhood are
more salient than low curvature areas or periodically repeating patterns.

The saliency,S(v), of each vertex,v, in a triangle mesh is computed as an aggre-
gate of its saliency values,Si(v), at different scales,i = 1 . . . n. Saliency ofv at
each scale is defined in terms of its mean curvature,C(v), as

Si(v) = ‖G(C(v), σi)−G(C(v), 2σi)‖,

whereG(C(v), σ) is the Gaussian weighted average of mean curvatures of ver-
tices within a distance2σ of v. Thus,G(C(v), σ) represents a smoothing of mean
curvatures aroundv andSi(v), computed at progressively larger scales, measures
the change when smoothing over increasing radii aroundv. A high saliency value
at a low scale indicates that the vertex belongs to a small shape feature, and a high
value at a higher scale indicates a large feature.

32 Chapter 3: Preliminaries

S(v) is computed as a weighted average ofSi(v)s where the weight for each level
depends on the saliency maxima at that level and is meant to suppress spurious
maxima at that level. Figure3.4 shows our computed mesh saliencies of two
shapes. For a given view,view saliencyis simply the sum of saliencies of visible
vertices.

3.6 Shape Descriptor: Shape Distributions

Just like view descriptors quantify a view of a shape, shape descriptors quantify
a whole shape. In Chapter8, we illustrate our efficient shape retrieval approach
using theD2 shape descriptoras an example. The D2 shape descriptor is one
of severalshape distributions[Osada02]. Using the D2 distribution, the authors
obtained more accurate results on a shape similarity benchmark than they did
using other distributions.

The descriptor is computed by sampling the surface of the shape and repeatedly
picking random pairs of samples and noting the distance between the points in
the pair. The distribution of these distances forms the feature vector which, for
convenience, is binned into a histogram.

Chapter 4

Learning the Shape of a Point
Cloud

Stochastic methods and concepts are increasingly being found to model natu-
ral phenomena better than the hitherto used strictly logical methods, and a “sea
change in our perspective” is envisioned when stochastic methods eventually over-
shadow traditional methods in use and application [Mumford99]. Parallels be-
tween statistical learning [Hastie01] and the workings of the human brain lead
mathematicians to believe that such methods could one day help us understand
the nature of intelligence itself [Poggio03].

The promise and efficacy of statistical learning methods has also been harnessed
for Surface Reconstruction methods, and a review of some such methods was
presented in Section2.1. Although such methods are usually slower than their
traditional astochastic counterparts, their superior handling of noisy, incomplete
and uncertain data makes them especially attractive for Surface Reconstruction,
where the input point cloud typically contains such artefacts.

In this chapter, we presentNeural Meshes[Ivrissimtzis03, Jeong03], work on
which we earlier published in [Isgro05, Saleem04,Saleem07a]. A neural network
is initialized as a triangle mesh,M, representing a tetrahedron. Vertices ofM
correspond to nodes and edges to connections of the neural network. For the rest
of this chapter, no distinction is made betweenM, which we call the neural mesh,
and the neural network.M is trained to learn the shape of an input point cloud,
P := {~pi(xi, yi, zi) : i = 1, . . . , N}, using an unsupervised learning scheme
similar to Growing Cell Structures [Fritzke93]. Inspired by topology learning

34 Chapter 4: Learning the Shape of a Point Cloud

Figure 4.1: The neural mesh,M, rapidly learns the general shape represented
by P. From left to right are the base mesh with 4 vertices followed by various
learning stages at 100, 250 and 500 vertices.

methods [Fritzke94,Martinetz94] and in contrast to other learning based methods
from Section2.1,M can also learn topologically complex shapes fromP.

During training, some vertices learn more than others. Learning activity of all ver-
tices is tracked and “active” vertices are rewarded in the form of addition of extra
vertices in their neighborhood. This is different from [Barhak01b, Várady99]
where entire rows/columns of new vertices are introduced. The method in [Yu99]
also grows the mesh by adding new vertices, but it does so by globally subdi-
viding the entire mesh, without regard to relative learning activities of vertices.
By adding new vertices only in local neighborhoods of active vertices, we ensure
added vertex population in only those regions ofM that correspond to currently
under-represented areas of the target shape. Thus, fine details of the target shape
are represented more accurately by a larger number of vertices than coarser areas
of the shape.

OnceM has been initialized, learning proceeds by iterating over a few steps,
namely the Geometry Learning, Node Addition, Node Removal and Topology
Learning steps. The Geometry Learning step is the core step of the algorithm
and is responsible for steeringM to the shape represented byP. However, as
M is initialized as a tetrahedron, i.e. it initially has only four vertices, it cannot
adequately learn any meaningfully complex shape. The Node Addition step is in
charge of increasing vertex population adaptively. New vertices are added in those
regions ofM that under represent their corresponding areas of the target shape.
Vertices inM that contribute to over representation of the target shape, either
due to incorrect node addition, or those that are stuck in local minima (Figure
4.3) degrade mesh quality. These are removed fromM in the Node Removal
step. The Topology Learning step analyzes the current state ofM to possibly
make topological changes in it, namely removal of triangles to form boundaries,
or merging of boundaries to form handles.

To perform these operations, activity information for each vertex,v, needs to be

4.1 Geometry Learning 35

vw M

P
s

A A B

C

D

(a) Geometry Learning (b) Vertex addition/removal

Figure 4.2: (a) Positions of the winner and its neighbors are updated for each
training sample. (b) Vertices are added/removed using complementary vertex split
(left to right) and half-edge collapse (right to left) operations.

maintained. Eachv is equipped with anactivity counter,τ(v), that indicates the
amount of learningv is performing, and awinning sample number,Sw(v), which
remembers the last timev learnt fromP. At initialization, both these quantities
for all vertices are set to zero.

One of the most frequent operations in the above steps is to find the vertex inM
that is closest to a given sample point. To optimize this computation, vertices of
M are copied to an octree [Subramanian92]. This octree is updated each time
vertices are repositioned, added or removed.

As Geometry Learning is the most important step, it is invoked in every iteration.
Node Addition, Node Removal and Topology Learning are invoked with decreas-
ing frequencies respectively.

The basic Neural Mesh algorithm yields triangle mesh reconstructions of the tar-
get shape whose vertex density mimics that of the input point cloud. With a small
alteration, it is possible to obtain reconstructions where the vertex population fol-
lows curvature of the target shape instead. In [Saleem04], we also showed how
the algorithm lends itself to a more efficient implementation that reduces its com-
plexity from O(N2) to O(N logN) with little change in reconstruction quality,
whereN is the number of vertices inM.

4.1 Geometry Learning

A sample,s, is obtained uniformly at random fromP, and the vertex inM that
is closest tos is selected. The selected vertex is termed thewinner,vw.M learns
from s by movingvw towardss and applying smoothing to the 1-ring neighbors
of vw. Smoothing the neighborhood ofvw helps avoid foldovers and local min-
ima inM. Illustrations for the 1D case are given in Figures4.2a and4.3. The

36 Chapter 4: Learning the Shape of a Point Cloud

�
�
�
�

��
����

�
�
�
�

�
�
�
�

����
��

P

M ��
��
��
��
�
�
�
�

��
�
�
�
� �

�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��

P

M
(a) Foldover (b) Local minimum

Figure 4.3: Unwanted artifacts degrade mesh quality. Vertices represented by
unfilled circles will never be selected as winners.

information contained invw is then updated.

4.1.1 Moving vw

The new position ofvw is given as

~vw ← ~vw + αw · F (~d),

where ~d = −→vws andαw is a parameter between 0 and 1.F (~d) is a variant of
Hubber’s filter [Black98] that filters out the effects of outliers inP. A moving
average,µd, and standard deviation,σd, of |~d| over the past 1000 training samples
are maintained. An outlier threshold is then calculated as

ǫd = µd + αdσd,

using an input toleranceαd, andF (~d) is then defined as

F (~d) =

{

1 if |~d| ≤ ǫd
ǫd
|~d| if |~d| > ǫd

.

4.1.2 Smoothing neighbors

For each vertex,vi, in the 1-ring ofvw, its Laplacian [Taubin95] is calculated,

~L(vi) =
1

n(vi)

∑

vk

(~vk − ~vi),

followed by the displacement,

~Ls(vi) = ~L(vi)− (~L(vi) · ~ni)~ni,

4.2 Node Addition 37

wheren(vi) is vi’s valence,vks its 1-ring neighbors and~ni its approximated nor-
mal. vi’s position is then updated as

~vi ← ~vi + αs
~Ls(vi),

whereαs is a smoothing parameter between 0 and 1.

4.1.3 Updating Activity Information

Each time a news is chosen fromP, acurrent sample number,Sc, is incremented.
So, whenP is sampled for the first time,Sc is set to one, at the second sample
Sc = 2, and so on.Sc is used to update the stored activity information of the
currentvw as follows.

First, the number of samples since thevw’s last “win” are computed,

x = Sc − Sw(vw)− 1.

Recall, that whenM is initialized,Sw(v) = 0 for all verticesv inM. The activity
counter is then updated as

τ(vw)← ατ (α
x
τ τ(vw) + 1),

whereατ is calculated asατ = (1
2
)

1

λN , N is the current number of vertices inM
andλ is an input parameter such that a vertex loses half its counter value if it is
not the winner forλN samples. Finally,vw’s winning sample number is set to the
current sample number,

Sw(vw)← Sc.

4.2 Node Addition

As intended, “active” vertices, i.e. vertices that participate actively in learning,
are identified by their high counter values. The presence of active vertices in a
region ofM indicates under representation of the target shape in that region. To
remedy this, new vertices are added in the region.

First, activity information for all vertices is updated. Then, the vertex with the
highest activity counter is selected and a new vertex is added in its neighborhood.

38 Chapter 4: Learning the Shape of a Point Cloud

4.2.1 Updating Activity Information

For each vertex,vi, inM, the number of previous non-winning samples is calcu-
lated,

x = Sc − Sw(vi),

and its activity counter is updated,

τ(vi)← αx
ctrτ(vi),

along with its winning sample number,

Sw(vi)← Sc.

4.2.2 Adding a Vertex

The vertex,vs, with the highest value for the activity counter is selected for a
vertex split operation. The longest edge,es, incident on it is chosen and the edge-
star ofvs is traversed in both clockwise and anti-clockwise directions to find two
edges,e1 ande2 that divide the edge star in half. The vertex split operation is then
performed onvs alonge1 ande2 with the new vertex,vn, added at the midpoint of
es. This is illustrated in Figure4.2b where A corresponds tovs, AC and AD toe1
ande2 and B tovn.

In order to decide activity counter values forvs andvn, their restricted Voronoi
cells (RVCs) are considered. A vertex’s RVC is the intersection of the vertex’s
Voronoi cell with the surface of the target shape. The activity counter ofvs is
distributed among itself andvn in the ratio of the areas of their RVCs. In keeping
with [Fritzke93], the RVC area of a vertex,v, is approximated by the area,Fv, of
a square as

Fv = (lv)
2

where

lv =
1

valence(v)

∑

vi∈1−ring(v)

‖vi − v‖

4.3 Node Removal

Vertices that are not participating in learning are either lying in areas ofM that
over represent the target shape, or are stuck in local minima or foldovers (Figure
4.3). These are “lazy” vertices and need to be removed fromM.

4.3 Node Removal 39

A

B

A

B

X

A B

C Y X

A B

Y

(a) (b) (c)

Figure 4.4: Preserving manifoldness (boundaries are shown in black). Collapsing
edge AB (a,b) or removing triangle ABC (c) results in a non-manifold mesh. The
half-edge collapses (a,b) are not performed, and the triangle removal is corrected
by removing neighboring triangles.

Once again, the activity counter helps identify such vertices. After performing a
counter update as in Section4.2, the vertex with the lowest activity counter and
other vertices whose counter values are below a threshold are chosen for removal
through a half-edge collapse operation (Figure4.2b).

The half-edge collapse operation, in addition to removing a vertex, changes the
valences of three other vertices, as shown in Figure4.2b, where B is the node to be
removed, and A, C and D are the affected vertices. For that reason, when an edge
around a vertex is to be collapsed, the algorithm selects from the vertex’s edge
star that edge whose collapse will cause the affected nodes to become as close to
regular (valence 6) as possible. Such an edge has the leastregularity error,E, of
all the edges in the edge star, whereE is given by

E =
1

3

√

(a+ b− 10)2 + (c− 7)2 + (d− 7)2

anda, b, c andd are the valences of A, B, C and D respectively in Figure4.2b.
For boundary edges,E is computed differently. If, in Figure4.2b, we imagine
a boundary running from left to right through the edge AB such that the part of
M containing the vertex D does not exist, the regularity error for AB would be
computed as

E =
1

2

√

(a+ b− 7)2 + (c− 7)2.

Apart from accommodating for boundary edges, the validity of a candidate half-
edge collapse is also checked. As illustrated in Figure4.4a,b, some collapses can
lead to topological anomalies inM. Such cases are easy to detect – endpoints
of the edge to be collapsed lie on different boundaries, the edge to be collapsed
is part of a boundary with only three edges. Invalid collapses like these are not
carried out.

40 Chapter 4: Learning the Shape of a Point Cloud

Figure 4.5: Learning topology. The hole is learnt (left) as large self-intersecting
triangles, which are removed to form boundaries (center). With continued train-
ing, the boundaries grow close to each other and are merged to form the handle
(right).

4.4 Topology Learning

Topology Learning consists of two sub-steps, removing large triangles fromM to
create boundaries, and merging boundaries close to each other to create handles.
The motivation is that regions inM corresponding to holes in the target shape
will contain very few vertices, as vertices in this region will typically be lazy and
removed by the Node Removal step. This will lead to large triangles in such areas.
Thus, large triangles inM are indicative of holes in the target shape. Following
this strategy, a handle in the target shape will be learnt byM as two separate
boundaries, that will grow close to each other during training. Therefore, when
two boundaries inM get too close, they are merged to form a handle.

4.4.1 Triangle Removal

The average triangle area,A, inM is computed and a triangle removal threshold,
Tr, is computed as

Tr = αrA,

whereαr is an input parameter. All triangles inM that have an area greater
thanTr are selected for removal. However, removing some triangles can cause
M to become non-manifold. This is shown in Figure4.4c. For such triangles,
neighboring triangles are also removed to preserve manifoldness ofM.

The average triangle area,A, inM is used to calculate a triangle removal and a
boundary merging threshold. Triangles with area greater than the triangle removal

4.5 Feature Sensitive Reconstructions 41

threshold are removed, and boundaries whose Hausdorff distance to each other is
less than the boundary merging threshold are merged. If the removal of a triangle
causesM to no longer be manifold, neighboring triangles are removed to restore
manifoldness (Figure4.4c). Figure4.5shows the effect of these steps.

4.4.2 Boundary Merging

A boundary merging threshold,Tm, is computed in terms ofA as

Tm = αm

√

A,

whereαm is an input parameter. Boundaries are merged when the Hausdorff dis-
tance between them falls belowTm. The Hausdorff distance between the bound-
aries is estimated as the Hausdorff distance between the sets of vertices represent-
ing them. The merging procedure is as follows. Starting from the two closest
nodes, one from each boundary, both boundaries are traversed in the same orien-
tation checking for possible triangles with the next vertex. The candidate which is
closest to equilateral is selected and added to the mesh. Traversal followed by tri-
angle addition continues until the two boundaries are completely connected with
a set of triangles.

4.5 Feature Sensitive Reconstructions

Sharp features in a surface are characterized by high curvature values. Vertices
in regions ofM corresponding to such features in a target shape exhibit large
changes in their normals during training. Thus, tracking changes in normals of
vertices gives hints about curvature of the target shape. Therefore, rewarding,
through Node Addition, those vertices that exhibit large variations in normals
leads to feature sensitive reconstructions.

This is achieved by replacing the activity counter,τ , by anormal counter,η. In
the Basic Step, a change in the winner’s normal is measured as

δw = 1−−→nw
−→nw

′,

where−→nw and−→nw
′ are the (normalized) normals estimated atvw before and after

its movement respectively.δw is then normalized as

nδ =
δw
Mδ

,

42 Chapter 4: Learning the Shape of a Point Cloud

Figure 4.6: Neural Mesh reconstructions of the cube (top) andBimba (bottom)
models according to sampling density ofP (left) and surface curvature (right).
Reconstructions of the same size are compared.

4.6 A Priority Queue Implementation 43

whereMδ is the mean value ofδw’s over the lastCδ iterations andCδ is a user
defined constant, e.g. 1000. Again, the number of samples since thevw’s last
“win” are computed,

x = Sc − Sw(vw)− 1,

and finallyη(vw) is updated as

η(vw)← αη(α
x
ηη(vw) + nδ).

Note that whenM is trained using the normal counter instead of the activity
counter, it is not possible to apply the Topology Learning step, as large triangles in
M no longer correspond to holes in the target shape. Instead, they now correspond
to flat regions in the target shape. Some reconstructions of this sort are shown in
Figure4.6.

4.6 A Priority Queue Implementation

One core part of the Neural Mesh algorithm is the tracking of vertex activities
using counters. These counters then need to be scanned during Node Addition
and Node Removal steps to identify vertices with highest/lowest values of the
counters. This is anO(N) operation whereN is the number of vertices inM.

As the absolute values of the counters are not important for the algorithm, rather
the relative values for different vertices, the counter can be done away with alto-
gether by copying the vertices to a priority queue data structure, where the relative
counter value of a vertex is modeled by the priority of the corresponding element
in the queue. Changes in counter values can then be modeled by simply chang-
ing the priorities of the elements in the queue, or by “jumping” the corresponding
elements ahead or behind in the queue by a certain amount. Addition of vertices
toM with a particular counter value then corresponds to addition of a new ele-
ment in the queue at a particular position. Vertex removal corresponds to element
removal. The advantage offered by this approach is that vertices with high/low
counter values can be spotted trivially at the head/tail of the queue.

Implementing the queue as a self-balancing AVL tree [Adel’son-Vel’skii62] al-
lows changes in queue positions to run inO(N logN) time and selection of ver-
tices to be split/removed inO(1) time. A full treatment of this implementation
is outside the scope of this thesis and we refer the reader to [Saleem04] for more
details, where we also show that this implementation brings down the complexity
of the algorithm fromO(N2) toO(N logN).

44 Chapter 4: Learning the Shape of a Point Cloud

4.7 Discussion

Neural Meshes effectively solve the problems unaddressed by previous surface
learning methods. They can represent entire surfaces, not just patches. Learning
is adaptive; it starts with a small, simple initial surface to which vertices are added
only where needed, i.e. in the 1-ring neighborhood of active vertices. Vertices
that become misplaced during training and over representP are removed. Also,
neural meshes possess the ability to learn topology.

Notice that the only step of the algorithm whereP is required is in picking train-
ing samples, thus making the running time independent of the size ofP . This
is in direct contrast to methods that need to process all input points in order to
output a surface. Independence from the input point cloud also allows out-of-core
processing of large data sets.

Like most learning algorithms, Neural Meshes suffer from the need for user pa-
rameters. While a default set of values can be set, best results will be obtained
by tuning the parameters in accordance to the input set. This could be seen as an
advantage for the expert user. For an extensive treatment of this issue, we refer
the reader to [Saleem04].

Despite the speedup offered by the priority queue implementation, the method
is slow and non-competitive with contemporary geometry-based Surface Recon-
struction methods [Schall05]. The majority of the running time is spent in Geome-
try Learning. We expect that a shrink-wrapping approach, similar to [Kobbelt99],
with the Neural Mesh initialized as an inflated bounding sphere with number of
vertices close to the final number could offer a solution to this problem.

Chapter 5

Static and Dynamic Shape Views

3D views are ultimately displayed on 2D media, invoking a projection from three
dimensional shape space to two dimensional display space. As infinitely many
projections are possible and display space is limited, it becomes important to
choose a few good projections orviews. Our interest in representative views is
mainly in context of shape repositories, where a catalog of views of stored shapes
is presented to the user for browsing. Possible applications of the methods pre-
sented in this chapter are to automatically compute such views for and to support
view based similarity retrieval of shapes stored in the repository. However, the
methods are general enough to be used in other contexts as well.

What distinguishes a good view from a bad one in the eyes of a human ob-
server relies on the nature of 3D shape perception which is an active re-
search topic in psychology, neuroscience, psychophysics, and computer sci-
ence [Blanz99, Tarr01,Todd04] (see also references therein). As mentioned in
Section2.2.1, view selection, or thebest view problem, receives attention from
diverse areas. Broadly, we can distinguish between them as computer vision mo-
tivated techniques [Arbel99, Denton04, Hall05,Lee04, Mokhtarian00] that define
representative 2D views for later recognition and representation, and computer
graphics approaches [Bordoloi05, Gumhold02, Lee05, Podolak06, Shacked01,
Takahashi05,Vázquez03a] that aim to effectively and economically present a
shape to an observer. The former analyze similarity and stability relation-
ships [Cutzu94, Cutzu96,Weinshall97] between different views while the lat-
ter maximize defined view descriptors. A comparison of various best view ap-
proaches in [Polonsky05] concludes that while each of the descriptors covered
in the paper is reasonably good, it inevitably fails to produce satisfactory results

46 Chapter 5: Static and Dynamic Shape Views

for certain types of shapes. In Section5.1, we suggest a method that combines
similarity and goodness/saliency approaches to inherit the strengths of each ap-
proach while compensating for their individual disadvantages. This work was
earlier published as [Yamauchi06].

None of the above methods, including ours, consider shape orientation during
view selection. In fact, as we mentioned in Section2.4, in selecting views these
methods employ rotation invariant techniques that cannot distinguish between
views in which the shape is oriented differently. Therefore, the resulting views
contain the shape in arbitrary orientation. This is a known problem and shape ori-
entation in selected views is often corrected by hand [Polonsky05, Takahashi05].
An automatic heuristic we proposed and present in Section5.1.1 turned out to
work only in a few cases. We then tackled the problem of correcting the orienta-
tion of a shape in its view, in a systematic manner resulting in our example based
method previously published as [Saleem07c] and presented here in Section5.2.
To the best of our knowledge, ours is the first attempt to automatically solve the
problem of fixing shape orientation in views.

Static views limit exposition of the shape to just the shown parts. This problem
is further exacerbated in methods that choose only a single view and thus convey
no information on the rest of the shape. A dynamic view, on the other hand,
presents a smooth animation of different parts of the shape. We surveyed the
little existing work in this direction in Section2.2.2where we summarized the
conditions that should be fulfilled as the camera recording the view travels (flies)
along a computed path. In tradition of the best view problem, we term the problem
of finding good dynamic views of a shape as the “best fly” problem. We present
our work on extending best views to compute a best fly in Section5.3, earlier
published as [Saleem07b], whereby the speed and zoom of the camera along the
computed path vary in accordance with viewed shape features. As far as we know,
we are the first to alter the speed and zoom parameters of the camera to provide a
more informative fly.

5.1 Stable and Salient Shape Views

Like the computer vision methods mentioned above, our best view method is also
based on similarities between shape views. We simplify similarity computation
by considering only the binary silhouette of the shape in its views. The obtained
similarity values are then used to guide a clustering process that partitions the view
sphere intostable view regionswhere viewpoints in such a region share a similar
view of the shape which is different from views from other regions. Using the

5.1 Stable and Salient Shape Views 47

Similar

Dissimilar

(a)aview sphere (b)
similarity weighted
spherical graph

(c)
view sphere parti-
tioned into stable
view regions

Low

High

(d) mesh saliency (e) view saliency (f) computed views
Figure 5.1: Overview of our stable and salient view selection method. Top row:
Partitioning the view sphere into stable view regions. (a) view sphere and ob-
served object. (b) similarity weighted spherical graph. (c) colored stable view
regions. Bottom row: using view saliency to select the final views. (d) mesh
saliency. (e) visualization of view saliency. (f) selected representative views.

perceptually motivated view saliency measure [Lee05], we pick a representative
from each of these regions and the most salient of these is our suggested best view
of the shape. An overview of the method is presented in Figure5.1.

We obtain 162 views of the shape as described in Section3.1corresponding to the
vertices of our view sphere approximated by a doubly Loop-subdivided icosahe-
dron. The view sphere itself forms aspherical graphin which an edge connects
neighboring views. We discard all color information to consider only the silhou-
ette of the shape in each view, as shown in Figure5.2, and then perform pair
wise image similarity comparison between all neighboring views using Zernike
moments analysis, as described in Section3.3.1. We use moments up to order
15. The similarity value between neighboring views is assigned as a weight to the
corresponding edge in the spherical graph. Figures5.1b and5.3 show the spher-
ical graph with edges colored by similarity weights. A blue edge represents high
similarity between its incident views while red edges represent dissimilar views.
Rotation invariance of our view similarity method is illustrated in Figure5.3a,
where edges between views that are rotated version of themselves have received

48 Chapter 5: Static and Dynamic Shape Views

Figure 5.2: Sample of binary (silhouette) views.

(a) similar views (b) dissimilar views
Figure 5.3: Similarity weighted spherical graph of a cylinder.

low weights.

In our similarity weighted view sphere, a stable view [Weinshall97] will be identi-
fiable as a viewpoint with high similarity weights on all incident edges. An area of
the view sphere that groups several such stable views together forms astable view
region. To find stable view regions, we partition the similarity weighted spherical
graph based on its edge weights. One possible way to achieve this is to find an
edge cut that segments the graph into the requested number of partitions while
minimizing the total weights of edges in the cut. This way we prevent regions
with high stability to be partitioned into two disjoint parts. MeTiS [Karypis98]
is a graph partitioning application that partitions a graph into the requested num-
ber of sub-graphs. Given a graph with weighted edges, MeTiS finds an edge cut
which minimizes total weights and generates sub-graphs with balanced number
of vertices. Although our application does not require the balancing property,
our experiments show that it does not create any bias. Figure5.1c shows an ex-
ample of this partition method (each partition has a different color). The par-
titioning quality is also influenced by the sampling density of the view sphere.
Sparse sampling will result in a small graph which will be difficult to partition.
In the field of object recognition, around 50 uniform distributed samples are

5.1 Stable and Salient Shape Views 49

(a) each stable view region is represented by one of its views.

(b) unstable views lie at the intersection of stable view regions.

Figure 5.4: Stable view regions.

used [Seibert92, Mokhtarian00]. In our implementation, 162 samples are used,
same as in [Takahashi05], and from our experience this number is sufficient.

We pick a single view from each region as its representative. This view is com-
puted as the saliency weighted average of all viewpoints in the region. That is, the
representative viewpoint,Ri, of a partition,Pi, is given by

Ri =

∑

j∈Pi
sj · pj

∑

j∈Pi
sj

,

wherepj is the position of a view sphere vertex andsj is its corresponding view
saliency. The representative views are then ranked according to their view salien-
cies.

5.1.1 A Suggestion for Model Orientation

One of the major challenges in view selection is to find the proper orientation
of the 3D model. For example, when viewing a model of a four-legged animal,
we expect the view-selection method to orient the view such that the animal will
be on its feet and not on any other body-part. At the time of publication of this
work, this problem was yet to be addressed successfully and as a full solution was
outside the scope of the work, we suggested and tried the following heuristic.

50 Chapter 5: Static and Dynamic Shape Views

Stable view, high saliency←− −→ Stable view, low saliency

Figure 5.5: Selection of stable and salient views using binary (silhouette) views.

Best 2nd 3rd Best 2nd 3rd Best 2nd 3rd

Figure 5.6: Best three views generated by our approach.

We claim that for an object to be properly oriented, its least important part should
be facing down. The justification is that usually the lower part of an object is
hidden from the viewer and the viewer would thus choose the least important
part to be the lower one. Figure5.7shows several examples of model orientation
selection based this our hypothesis. For all other view selection results in this
chapter, the up vector was set to(0, 1, 0). View orientation in the figures has not
been adjusted in any other way.

As we see in Figure5.7, our suggestion led to correct orientation for only 3 out
of the 12 models that we tested. Our later work in this direction is presented
in Section5.2 where we obtain better results. After the publication of our two
works, a classification based method [Fu08] was proposed to compute upright
orientations of man made objects. We revisit the topic of shape orientation in 2D
views in detail in Section5.2.

5.1 Stable and Salient Shape Views 51

Figure 5.7: Best views generated by our approach together withour suggestion
for model orientation.

Figure 5.8: The best views selected by view saliency only.

Figure 5.9: Top 8 most salient viewpoints. (Blue points) The view sphere’s edge
color reflects saliency value of the incident viewpoints. Notice the back of view
sphere is culled for visualization.

Figure 5.10: Top 3 salient view examples of Figure5.9.

52 Chapter 5: Static and Dynamic Shape Views

5.1.2 Results and Discussion

Figure 5.4 shows some results obtained by partitioning the similarity weighted
spherical graph using MeTiS. Figure5.4a shows a representative stable view for
each model while Figure5.4b shows an unstable view. Note, that the unstable
view lies at the intersection of several stable view regions. We see that the stable
regions for the dragon and horse models are stretched in the sphere’s longitudinal
direction. This implies that a movement of the viewpoint along a longitudinal
line will result in minimal change in view compared to movement in a latitudinal
direction.

We fixed the number of partitions (also the number of final views) to 8. From our
experiments, this number usually proved sufficient to cover all interesting parts
of the model. A larger number of partitions may not reveal any new information,
while a smaller number might not suffice.

Figures5.5 and5.6 show several results of our experiments using our automatic
multi-view selection method. We also examined illuminance (grayscale) images
using the Gouraud shading model besides silhouette (binary) images. However,
the shaded images are sensitive to environmental conditions, such as lighting, and
hence tend to bias the results. Due to this, we concluded that the use of binary
images is more appropriate for our purposes.

Figure 5.9 shows a multi-view selection that is based on saliency alone.It is
easy to see that all high saliency viewpoints are concentrated in a small region on
the view sphere. This is because small deviations in viewpoint do not affect the
saliency value much. By taking into account the stability of the view, we force the
views to be spread all over the view sphere, resulting in a better distribution.

Figure5.8 shows the best views selected by the mesh saliency method [Lee05].
Comparing Figure5.8 with Figures5.5 and5.6, we can say that our results are
comparable or, in some cases, better. For example, the bottom of the dragon model
is the most salient (Figure5.8). However, when stability is taken into account, the
best view changes to the side of the dragon, which is a much better suggestion
(Figure5.6), although this is not the most salient view.

Similarly, the neck of David’s head is also salient due to its high and consistent
curvature. However, this view is unstable (Figure5.4). Therefore, our method
avoids the uninteresting view of the neck and recommends better views that cover
the front and top of the head (Figure5.5). Note that our method does not ignore
the saliency recommendation in the neck region, but combines it with a stable
view. These examples show the benefits of our method achieved by combining
two human perception elements, stability and saliency.

5.2 Example Based Shape Orientation 53

Figure 5.11: Two views each with different orientations of two shapes. Given
the left image of each shape, our method automatically computes the right image,
which has a more natural orientation for the shape.

No optimization was done throughout the implementation. Computation time of
constructing the similarity weighted spherical graph is about 40 minutes. This
does not depend on the shape since view similarity is computed on the rendered
views whose number is fixed (number of vertices of the view sphere). View res-
olution is set to256× 256. The bottleneck here is the Zernike moment computa-
tion which is known to be slow. Adopting one of several optimizations suggested
in [Chong03] will dramatically reduce the time needed for this step. Graph parti-
tioning by MeTiS takes less than 10ms. Mesh saliency computation times depend
on the number of vertices in the shapes and agree with those in the original pa-
per [Lee05]. The view saliency computation takes less than a minute, depending
on the rendering time of the model. All timings were measured on a 2.8GHz
Pentium 4 PC with an ATI Radeon R300.

5.2 Example Based Shape Orientation

Humans know the correct orientation(s) of a shape through experience with ob-
jects of that shape. It is through previous interaction that we know, for example,
that the correct orientation for a car is one in which the wheels are down, instead
of up. Such information is difficult, if not impossible, to compute from the shape
alone [Blanz99]. As view-finding techniques are insensitive to rotation, they can-
not distinguish between the views in each row of Figure5.11. However, a human
observer would clearly prefer the views in the right column over those in the left
column. In Section5.1, we proposed a heuristic to automatically correct shape
orientation in chosen views but the results, shown in Figure5.7, turned out to be
unsatisfactory.

In this section, we suggest a two step example based approach whereby a query
shape is matched with exemplars in a database of classified, correctly oriented
shapes. Correct orientation of database shapes is determined manually before-
hand. In the first step, classification, the query shape is matched up with a candi-
date class from the database and a target shape from the candidate class is chosen.

54 Chapter 5: Static and Dynamic Shape Views

In the subsequent alignment step, the query shape is re-oriented according to the
target shape’s orientation.

5.2.1 Setting up the Database

To set up our database, we choose the MPEG-7 dataset [Latecki00,Veltkamp06],
which contains 1400 binary images organised into 70 classes with 20 members
per class, where each image contains a single shape. As the dataset was compiled
to test shape similarity techniques, members of the same class differ from each
other in shape features. With regards to orientation, a lot of redundancy and false
information had to be filtered out.

We found several classes ofnon-orientableshapes. These are artificial shapes
for which no notion of correct orientation exists. These classes were removed. In
some of the remaining classes, we found images with incorrect orientations. These
images mostly contain natural objects in orientations which a human observer can
easily specify to be incorrect. Such images were also removed, and later used as
queries for our method.

Next, we filter outredundant imagesfrom the dataset. These are class members
that differ from each other only in fine shape features and not necessarily in ori-
entation. We removed redundancies automatically by identifying groups of very
similar images within a class, and retaining one image from each group. This is
done by choosing a class member initially at random as a query image and com-
paring it with all other class members. Member images that are too similar to
the query, i.e. their similarity distance is below a threshold, are removed from the
dataset. Note that the similarity measure used is rotation sensitive and is described
in Section3.3.2. The query image is flagged so that it can no longer be removed
from the dataset. Next, the image which is the most dissimilar to the query im-
age, i.e. has the maximum similarity distance, is taken as the query image and
the process is repeated. Repetition stops when the class comprises only of flagged
images. Figure5.12shows examples of the kinds of images that are removed from
the database.

After the above filtering steps, the original dataset is reduced to 237 images in
56 classes. The smallest and largest class memberships are 1 and 14 respectively
with a median of 4. The choice of ‘similar’ images is very much dependent on the
shape similarity method used. We talk more about this in Section5.2.4. Within
the database, we represent each shape by its boundary contour, as described in
Section3.2. From the 237 images in our database, 20 images required blurring
iterations, with only 4 images requiring 3 or more iterations.

5.2 Example Based Shape Orientation 55

cattle-11 crown-1 deer-15 tree-3

device0-10 HCircle-7 Misk-12 spring-15

apple-3 apple-10 chopper-01 chopper-14

Figure 5.12: From the original dataset, we manually remove incorrectly oriented
images (top row) and images containing non-orientable shapes (middle row). Re-
dundantly oriented images (bottom row) within a class can be removed automati-
cally.

5.2.2 Example based Shape Orientation

As mentioned earlier, our method proceeds in two steps – a classification followed
by an alignment step. We use nearest neighbour classification. Using the CSS
shape similarity method [Mokhtarian03], explained in Section3.3.2, we retrieve a
list of database images sorted according to their similarity distance from the query
image. The candidate class is then chosen as the class containing the best match,
i.e. the image least distant from the query.

From the candidate class, we choose the shape most similar to the query shape.
This is thetarget shape. Recall that database shapes are correctly oriented, and
that all shapes are represented by their boundary contours. To align the query
shape to the target shape, we rotate the query shape such that the directions of its
Principal Components (PCs) match those of the target shape.

To remove bias because of point density, shape contours are uniformly sampled
before PCA calculation. An artefact of PCA alignment is that using PCs, a shape
cannot be distinguished from its180◦ rotation. Thus, during alignment, the query
image could end up getting mis-aligned by180◦. To avoid this, once the query
shape has been rotated as described above, we match it with both the target shape
and a180◦ rotation of the target shape. If the180◦ rotated target shape gives a
better match, we rotate our final image by180◦.

56 Chapter 5: Static and Dynamic Shape Views

5.2.3 Results

We query our method with the incorrectly oriented shapes removed from the orig-
inal MPEG-7 dataset, with user input images, and with commonly used shapes
from Computer Graphics literature. We used images of commonly used mod-
els that were presented as best-view results in Section5.1. Results are shown in
Figures5.13 to 5.15(some artefacts may be visible because of image resizing).
The columns show query images, corresponding target shapes chosen from the
database and our final results. Recall that database shapes are assumed to be cor-
rectly oriented. The correctness of a result is evaluated visually, and is taken to be
correct if the resulting image is similarly oriented as a database image of the same
class, or if it agrees with the human notion of correct orientation for the contained
shape.

Query Best match Alignment

bird-11 bird-9 bird-11 aligned

butterfly-17 butterfly-5 butterfly-17 aligned

chicken-11 chicken-10 chicken-11 aligned

tree-3 tree-14 tree-3 aligned

chicken-7 chicken-20 chicken-7 aligned

apple-1 pocket-1 apple-1 aligned

Figure 5.13: Results for incorrectly oriented shapes.

We have the most success when using incorrectly oriented shapes previously re-
moved from the dataset, Figure5.13, as they have similar class members still in
the database. The tree-3 case shows the efficacy of the PCA rotation correction
mentioned at the end of the last section. Even though the query and target images

5.2 Example Based Shape Orientation 57

Query Best match Alignment

bone bone-17 bone aligned

car tree-1 car aligned

fork fork-20 fork aligned

heart heart-8 heart aligned

Figure 5.14: Results for user drawn queries.

have the same PCs, our method is able to detect and misalignment and rotates the
query by180◦ for better alignment. The chicken-7 case illustrates the limitations
of a shape’s PCs in estimating its orientation. While the target shape is very sim-
ilar to the query shape, its PCs and those of the query do not match, thus ending
up in an incorrectly oriented result. The apple-1 case illustrates our use of object
boundaries for similarity computation. In terms of shape boundaries, the apple
and pocket watch are hardly distinguishable.

Results for user sketches, Figure5.14, are fairly good when the sketch matches
an existing database shape closely. Limitation of orientation estimation by PCs
is again illustrated in the heart case, and the car case shows the deficiency of
our method when queried with a shape different from database exemplars (our
database contains a personalcar class whose members are differently shaped than
this query).

Major deficiencies of the method are fully exposed in Figure5.15. Our database
already contained a horse exemplar very similar to the query horse, thus yielding
a good result. We expected the camel to match the horse as well, but its curvature
properties caused our similarity method to deem it more similar to the frog, re-
sulting in an incorrect output orientation. (Notice that the camel’s front and hind

58 Chapter 5: Static and Dynamic Shape Views

Query Boundary Best match Aligned

horse horse-19 horse aligned

David face-9 David aligned

bunny heart-8 bunny aligned

camel frog-7 camel aligned

rocker-arm personalcar-8 rocker-arm aligned

Santa fork-20 Santa aligned

Figure 5.15: Results for common Computer Graphics models.

5.2 Example Based Shape Orientation 59

legs are not apart in the boundary image). Finally, our database simply does not
contain suitable exemplars for many of the other models, so the results are more
or less arbitrary. Santa and rocker-arm are examples of non-orientable shapes. No
orientation can be regarded as correct for these shapes. The target shapes chosen
are irrelevant, as any orientation imposed on these shapes will do.

5.2.4 Discussion

Typical running times to orient a query shape are about a minute. If the query
shape is complex (the boundary has many concave/convex pairs), our method can
take up to two minutes. The bulk of the running time is taken up by the similarity
retrieval in the classification step. This can be optimised by performing an ini-
tial one-time probabilistic analysis of the database [Super04] and/or approximate
nearest neighbor searches [Sebastian02]. Also, more efficient search strategies
[Keogh06] can be employed. The search can further be optimised throughindex-
ing. Instead of matching a query image with the entire database, we could extract
a ‘prototype’ for each class and match the query with the prototypes to find the
candidate class. The target shape could then be found by matching the query with
all members of the candidate class.

Many aspects of our method are dependent on the shape similarity method used.
The most important of these is the retrieval of the similarity sorted list mentioned
above. As seen in Section5.2.3, accuracy of this list is crucial to our method. Arte-
facts in the similarity method lead to questionable sortings causing our method to
yield implausible results. Throughout this chapter, we have used the CSS method,
which had been reported earlier [Latecki00] to perform well and has in fact been
included in the MPEG-7 standard. However, recent results [Veltkamp06] and our
experience with the method indicate that the method can still be substantially im-
proved.

Perhaps the most important ingredient of our method is the database used. It cur-
rently contains only 56 classes, extracted from an already compiled dataset. The
limitations arising from this are visible in Figure5.15. While the need for extend-
ing the dataset is obvious, it is not entirely clear how to do so without manual in-
teraction. One solution could be to crawl the Internet for images. As these images
are (mostly) posted by human users, we can assume them to be correctly oriented.
However, automatically sorting through these images to extract the ones contain-
ing single objects against a plain background is non-trivial. Furthermore, each
extracted image will need to be either classified into one of the existing classes in
the database, or added as an example of a new class. This could be done using a
similarity threshold.

60 Chapter 5: Static and Dynamic Shape Views

Also, as highlighted in Section5.2.3and in [Podolak06], Principal Components
are not robust estimators of shape orientation. The alignment step could instead
make use of other methods like Iterative Closest Point (ICP) or symmetry axes
[Podolak06].

One drawback our method suffers from is the absence of a systematic means of
evaluation. The correctness of our result can be judged only by visual inspection
by a human user, or by similarity to stored instances of the same class. But we
believe that this flaw is intrinsic in our problem description, and will be resolved
once we have a representative enough reference dataset.

A natural extension of our method is to work directly with 3D models. On closer
inspection, this problem amounts to choosing a correct up-vector in 3D for the
given shape. An example based approach as the one we presented has recently
been proposed in [Fu08], where the authors form a feature vector composed of a
few basic geometric properties of the 3D shape. They then train a classifier using
345 test models. The trained classifier was able to correctly re-orient 819 models
with a success rate of about 90%.

We believe that the problem we tackle is a hard one, as we try, in essence, to mimic
the human notion of correct orientation, which is a complex mix resulting mostly
from user experience and partly from the object’s shape. Such a notion is not
entirely computationally replicable from the shape’s geometry alone [Blanz99].
However, as has been shown in [Fu08], statistical methods that can to some extent
learn this notion go a long way towards solving this problem.

5.3 Dynamic View Representation of a Shape

Figure 5.16: Left to right are scenes extracted in sequence from our animation of
the Lion vase model. Speed (top right) and zoom (bottom right) of the camera
vary along its path.

While static views limit shape exposition, interactive shape viewers, as offered by
some repositories, require the entire shape to be streamed to the user’s machine,

5.3 Dynamic View Representation of a Shape 61

which is inefficient for large, detailed shapes. We present anefficient, hybrid
solution based on our best view method form Section5.1. We compute a camera
path,P, on the view sphere as an interpolation between the shape’s best views,
V, e.g. Figure5.17. Our premise is that the shape is sufficiently described byV
and what remains is to inform the user on the relation (transition) between these
views. At each point along the path, corresponding to the view of the shape visible
to the camera, the speed,S, and zoom,Z, of the camera are modified. The path
is computed such that it fulfils the conditions listed earlier in Section2.2.2and
reproduced below

1. Brevity– the animation should not be long,

2. Information– the animation must be maximally informative,

3. Exploration– the camera path should avoid fast returns to already visited
viewpoints

4. Smoothness– the path should be smooth.

An animation recorded by a camera traveling onP observingS and Z can
be made available on a shape repository’s web page in a popular web format,
e.g. animated GIF or Flash. A tunable parameter can allow a user to control
the length of the animation. Most of the images in this section are stills from
our results video which better illstrates our computed paths and is available at
http://www.mpii.de/ wsaleem/SCCG07.

5.3.1 Computing the path

Given the set,V, of representative viewpoints, we want the computed path,P, to
interpolate its members on the view sphere. Also, we require our animation to
run continuously on a shape repository web page without any visible breaks. We
formulate these requirements onP as follows:

• Interpolation– the camera path should interpolate a given set of viewpoints.

• Looping– the camera path should be a cycle.

In [Sokolov06b], the interpolation order is determined by first defining a distance
function that favors viewpoints with higher view goodness values, computing all
pairwise shortest paths between the viewpoints and then applying a TSP solver.
This restricts the computed path to edges of the tessellated view sphere, and fails
the Smoothness condition from Section2.2.2.

62 Chapter 5: Static and Dynamic Shape Views

Figure 5.17: Stable view regions (colored) for the Armadillomodel and their
representative viewpoints (green dots). We compute 12 regions, and each of the
four views above is taken from the representative viewpoint of one of the regions
in the center of the image.

5.3 Dynamic View Representation of a Shape 63

Looping is satisfied trivially by repeating the first point at the end when computing
the ordering. As the path is a cycle, the choice of first point is arbitrary. Once
the ordering is determined, we interpolate the points on the sphere using cubic
spherical splines (Chapter 15 in [Watt91]). A few computed paths are shown
in Figure5.20. Our computation of viewpoint ordering is described below. A
discussion on how well the resulting path satisfies the conditions listed in Section
2.2.2is given in Section5.3.6.

For every 3 consecutive points in a potential ordering,Vi, Vj, Vk ∈ V, consider
the quantity

Θijk = |d(Vi, Vj) + d(Vj, Vk)− d(Vi, Vk)|,

whered(A,B) is the spherical distance between pointsA andB. Θijk gives a
measure of the turn atVj. ForVi, Vj, Vk lying on the same great circle,Θijk = 0.
The computed ordering is the one which minimizes

∑

Vj
Θijk.

5.3.2 Up-vector consistency

Special consideration is given to the up-vectors of both the virtual camera and
the models used. We use a default value for models’ up-vector,~Um = (0, 1, 0),
which is consistent with most scanning systems. However, this is not robust and
we manually fixed~Um for one of the five models used in this chapter.

For proper orientation of the model in the animation, we keep~Uc, the up-vector of
the camera, consistent with~Um. At all times, ~Uc is chosen as the vector perpen-
dicular to the viewing direction that is coplanar with~Um. This gives two possible
orientations for the up-vector. Indeed, there is a ‘flip’ in orientation at singular
points, i.e. viewpoints with view direction parallel to~Um. The flip in ~Uc is nec-
essary to maintain correct orientation of the model, otherwise, once the camera
passes through the singular point, the model appears to be upside down.

5.3.3 Computing camera speed

Camera speed,S, determines the distance alongP from the current viewpoint to
the next one. The motivation is that the camera should quickly fly by uninteresting
views. Formally, we pose the following condition on the speed.

• Saliency respecting– the camera should slow down when passing over vi-
sually important regions of the shape, and speed up for uninteresting views.

64 Chapter 5: Static and Dynamic Shape Views

a b c

Figure 5.18: a) Minimum (top) and maximum (bottom) positions in thespeed
clockof the Armadillo animation. The 3 o’ clock position represents the starting
and ending point of the animation, during which the pointer moves clockwise. The
length of the pointer represents the magnitude of the speed, and the dots represent
the interpolated viewpoints. b) and c) show the views corresponding to the min
and max positions respectively.

We use the perception based measure of view saliency,VS, to compute visual
importance. The above formulation suggests an inverse relationship,S ∝ 1

VS .
Taking the view that the purpose of our animation is to aid human understanding
of the shape, we use the Two-Thirds Power Law (cf [de’Sperati97] and references
therein) from locomotion which relates tangential velocity,V , of free-hand move-
ments to the radius of curvature,R, of the trajectory as follows:

V (t) = K ·
(

R(t)

1 + α ·R(t)

)1−β

α ≥ 0, K ≥ 0, (5.1)

whereK is a velocity gain constant,α is negligible if the trajectory does not have
inflection points, andβ is close to2

3
for adults. Putting in these values, we get

V (t) = K · (R(t))
1

3

= K ·
(

1

κ(t)

) 1

3

,

whereκ(t) is the curvature of the path. In our case, we want the speed to depend
not on the curvature, but onVS. Therefore we set

S(t) = Ks ·
(

1

VS(t) + γ

) 1

3

, (5.2)

5.3 Dynamic View Representation of a Shape 65

whereγ is a constant offset to compensate for the0 to 1 normalization ofVS.
Puttingγ = 1 makesS vary betweenKs and Ks

3
√
2
≈ 0.79Ks. A high value of

Ks is thus needed for changes in speed to be discernible. Note that our use of
cubic splines for interpolation technically invalidates the choiceα = 0 in Equa-
tion 5.1. However, we find that as a first approximation, the obtained results are
quite satisfactory.

Equation5.2 is in agreement with the inverse relation suggested earlier.The ex-
ponent dampens the effect of any irregularities inVS. In Figure5.18, we show an
example of the computed speed function. As the static images only poorly convey
the dynamic nature of the result, we urge the reader to view the accompanying
video for a better understanding.

5.3.4 Computing camera zoom

Figure 5.19: a) Minimum (top) and maximum (bottom) positionsin the zoom
clock of the Armadillo animation, where the zoom clock represents zoom in the
same way as the speed clock in Figure5.18represents speed. b) and c) show the
views corresponding to the min and max positions respectively.

The motivation behind a variable camera zoom,Z, is the following.

• Appropriate viewing scale– the shape should be viewed at a scale that is in
accordance with the size of the features being viewed.

In photography, zooming is achieved by changing the focal length of the camera
lens. With the perspective projection of OpenGL that we use throughout this
chapter, this is equivalent to varying the distance between the camera and the
object, i.e. placing the camera in the corresponding position on a view sphere
with a different radius; smaller radius for zooming in and larger for zoom out.
Therefore, we computeZ by computing the corresponding radius,R.

66 Chapter 5: Static and Dynamic Shape Views

Recall that saliency is computed in a multi-scale way (Section3.5.2), where a
higher value at a small scale implies a small scale feature, for which the camera
should zoom in (small viewing radius). Correspondingly, a high saliency value at
a high scale implies a large scale feature, which requires a large viewing radius
for proper inspection. We thus define, for each scalei, a corresponding viewing
radiusri ∝ kσi, wherek is a constant andσi is the size of the vertex neighborhood
considered for saliency computation at scalei. The appropriate viewing radius,
R, for a vertex,v, can then be computed as:

R(v) =

∑

i Sali(v)ri
∑

i Sali(v)
,

where Sali(v) is the saliency ofv at scalei. For a view,V , an average viewing
radius is computed as

R(t) =

∑

v∈V R(v)

n(v ∈ V)
. (5.3)

After normalizingR to [0, 1], we use Equation5.1to computeR as

R(t) = Kz(R(t)
1

3 + 1),

whereKz corresponds to the minimum value ofR.

Results for the Armadillo model are shown in Figure5.19.

5.3.5 Results

We tested our method on several models and the results are shown in Figures5.16
and5.20, and more comprehensibly, in the video mentioned earlier. A summary
of computation times is given in Table5.1.

In Section5.1, the computation time for obtaining the similarity weightedview
sphere was around 40 minutes, with the bottleneck being the unoptimized simi-
larity computations between views of resolution 256×256. We reduce the simi-
larity computation time to a couple of seconds by comparing not the binary views
but their extracted boundaries at a resolution of 400×400. We also replace the
area normalization step of the original method with the simpler one proposed
in [Kamila05]. Note that as the images are compared using Zernike moments
[Khotanzad90] which operate on the pixels of the image, we do not have to em-
ploy the full contour extraction method from Section3.2. Just identifying pixels
lying at shape boundaries and toggling the remaining shape pixels to background
pixels is sufficient.

5.3 Dynamic View Representation of a Shape 67

Most of the time in our current computation is spent on the meshsaliency calcu-
lation, which depends on the size of the mesh. For large models, e.g. the Buddha
and Lion vase, this can be quite large. However, this is a one-time preprocessing
step whose results are saved. This time also includes the computation ofR(v)
from Section5.3.4. The other preprocessing step – extractingV – uses image
similarity and depends on the resolution of the views being compared. As we use
the same resolution for all models, all of them take the same amount of time.

Time taken for viewpoint ordering depends on the number of viewpoints being
considered, and for constant number of viewpoints (12 in our case) is independent
of model size. View saliency computation requires identifying visible mesh ver-
tices from each viewpoint. We interpolate 12 viewpoints using 12 spherical cubic
splines, and sample 50 points on each spline. We thus have to compute visible
vertices for 600 viewpoints. The times for view saliency computation also include
computation time forR from Section5.3.4.

Vertices
Mesh
Saliency

Extracting
V

Viewpoint
ordering

View
Saliency

Armadillo 172,974 761.42s 2s 15s 116.54s
Buddha 543,652 <1h 2s 15s 256.3s
Bunny 34,834 20.23s 2s 15s 41.0s
Elephant 20,007 12.73s 2s 15s 28.3s
Lion vase 800,002 <1.5h 2s 15s 576.5s

Table 5.1: Summary of computation times for a few models.

When the desired length of the animation is varied through the tunable parameter
mentioned earlier, the pre-computed saliency and similarity values should be used.
Extraction of stable view regions from the weighted view sphere [Karypis98] and
computation ofV then takes milliseconds. Viewpoint ordering and view saliency
would have to be totally recomputed. The time for the former depends only on the
chosen size ofV. In our experience, 12 viewpoints provide sufficient coverage of
the object. View saliency computation, which also depends on model size, would
also change markedly as varying the size ofV varies the number of splines and
hence the number of viewpoints inP. Though this can be time consuming, we
suffice with this solution as we do not aim to provide a real-time solution.

5.3.6 Discussion

We discuss how our method fares with respect to the four conditions mentioned
earlier in Section2.2.2and reproduced below for convenience.

68 Chapter 5: Static and Dynamic Shape Views

a b

c d

Figure 5.20: Scenes extracted in clockwise order from the computed animations
of the (a) Armadillo, (b) bunny, (c) Livingstone elephant and (d) Happy Buddha
models. The blue line on the view sphere denotes the computed path,P, and the
dots correspond to the interpolated viewpoints. In each case, the four images are
extracted from the animation in clockwise order.

5.3 Dynamic View Representation of a Shape 69

1. Brevity– the animation should not be long,

2. Information– the animation must be maximally informative,

3. Exploration– the camera path should avoid fast returns to already visited
viewpoints

4. Smoothness– the path should be smooth.

Regarding Brevity, the length of the animation is tunable, as discussed in ear-
lier sections. Once the points to be interpolated have been ordered, the shortest
path consists of straight lines or geodesics. To ensure overall Smoothness, we
interpolate using cubic splines. The extra length added by the smooth splines
is compensated by speeding up the camera over low saliency views. Fulfilling
the Smoothness condition and covering the view sphere in a cyclic path invari-
ably lead to a self-intersectingP. This seemingly violates the Exploration con-
dition, but we claim that by interpolating points representative of different, non-
overlapping regions of the view sphere, we have already fulfilled the condition.
Lastly, we believe that by including the representative views of the shape, the path
already conveys sufficient Information on the shape. Guiding it through interme-
diate ‘good’ views, as is traditionally done, will serve only to violate one of the
other conditions. In addition, by allotting inspection times and viewing scales ac-
cording to the visual importance of the shape features, we believe we are able to
convey a lot more information about covered parts than previous methods that fly
by the shape at fixed speeds and zooms.

Our objective, namely to generate a short but informative fly around a given shape
model, has a long history in the movie industry. It seems promising to study
the techniques used in that area. However, caution will have to be exercised as
movies often have a story which serves as the context and aids the determination
of camera parameters. In a shape repository framework, there are no such helping
factors.

One of the biggest problems we faced while developing the method was lack of
feedback. In the absence of any formal measures to judge the quality of our output,
it was difficult for us to ascertain whether we were on the right track. While, in
principle, we can always ask a human observer to compare two different flies
of a shape, the human visual system is quite lenient and seems to automatically
compensate for any missing information. Indeed, the few people in our lab whom
we did ask to compare such flies were unable to give a confident answer, and
showing more flies served only to confuse and disorient. In fact, recent research
[Henderson07] even puts into doubt the role of computational models of visual
saliency in determining a human observer’s attention. Significant advances in the
fields of human cognition and psychology are required (which may just go on

70 Chapter 5: Static and Dynamic Shape Views

to verify the heuristics proposed by the graphics community)before a ‘provably
correct’ best fly of a given shape model can be computed. Until then, the only
barometer computer graphics practitioners have towards that goal is how well they
fulfil their heuristics derived through observation, common sense and application
requirements.

Chapter 6

View Sphere Model

View based algorithms are quickly emerging as key tools for shape understand-
ing and manipulation. While the most prominent application is focusing users’
attentions on important shape parts [Bordoloi05, Lee05, Podolak06,Polonsky05,
Takahashi05,Vázquez01], such algorithms have also been used for shape match-
ing [Abbasi00], bas relief generation [Song07] and optimal camera path computa-
tion [Arbel99, Barral00]. The motivation behind these methods are longstanding
results from human psychology [Bülthoff95, Koenderink79] which claim that hu-
mans perceive shapes as a set of 2D images from different viewpoints.

So far, the focus of such methods has been on defining good view descriptors (Sec-
tion 2.2.1) with little attention paid to the construction and samplingof the view
sphere. As mentioned in Section3.1, a platonic solid, usually an icosahedron, fa-
vored for its triangle mesh structure, is taken as a base approximation of the view
sphere, and is successively subdivided to obtain finer, fairly uniform samplings.
The hope is that with a sufficiently large number of samples, the obtained views
capture all necessary features of the shape.

In this chapter, we first present a derivation of the “optimal” view sphere of a
shape, and then present a scheme to construct a smooth approximation of descrip-
tor values over the view sphere using only a handful of samples. The samples
chosen for the approximation depend on both the viewed shape and the chosen
descriptor. In addition, we define a new shape based operation,view transfer, and
demonstrate how our framework can be used to perform view transfer and other
common view based shape operations.

For descriptors whose computation is known to be expensive, e.g. Zernike mo-

72 Chapter 6: View Sphere Model

CP

d
θf

l

(a) (b)

Figure 6.1: (a) A virtual camera atP with frustumθf viewing the center,C, of
a bounding box diagonal of lengthl from a distanced. (b) A model in its view
sphere.

ments [Khotanzad90], computation for a few adaptively sampled viewpoints is
far more efficient than for a dense sampling of the view sphere. In contrast to
the traditional, discrete sampling, the continuous approximation we build from
the adaptively sampled values can be trivially queried for descriptor values at any
given point on the view sphere. The approximation can also be used for typical
(representative views) and novel (view transfer) view based operations.

Our scheme is general and applies to any view descriptor. For demonstration
purposes, we test our scheme on three descriptors, namely Zernike moments
[Khotanzad90], viewpoint entropy [V́azquez01] and view saliency [Lee05]. All
three have been presented earlier in Chapter3.

6.1 Notation

A view descriptor,D, for a shape model,M, describes a function,fD : S2 → R,
from the view sphere,S2, to R. S2 is represented by surface samples,S = {si},
and the representation ofM w.r.t. D is the set of values{fD(si)}. S typically
represents a dense sampling ofS

2, e.g. four subdivisions of an icosahedron (2562
view points) followed by re-projection toS2.

We iteratively approximatefD by building up a set ofinterpolation centers,C, and
a corresponding interpolation function,f . In each iterationk, k ≥ 1, we compute
Ck andfk which are used to updateC andf at the end of the iteration. Note that
the superscript indicates iteration number and not exponentiation.

6.2 Optimal View Sphere 73

For a given vector,p, we indicate by‖p‖n the n-th norm ofp, i.e. ‖p‖n =

(
∑

i pi
n)

1

n wherepi is thei-th component ofp. For a set,S, ‖S‖ denotes its size
and for a complex number,z, ‖z‖ or |z| denotes the magnitude.

6.2 Optimal View Sphere

The size ofS2 relative toM determines the shape to background ratio in obtained
views. Clearly, we want to maximize this ratio while still viewing the entire shape.
Typically, the radius,r, of S2 is taken to be some factor,F , of the length,l, of the
bounding box diagonal ofM, r = Fl. In the best view literature we reviewed,
no mention is made of the choice ofF leading us to believe that it is chosen
heuristically. We present here a formal derivation for an optimal value ofF that
meets the above constraints.

Shape views are captured by cameras placed on the surface ofS
2 and pointing at

the center,C, of the bounding box ofM. (C is also the center ofS2.) Thus, in
order to fully viewM, the distance of the camera fromC should be no smaller
thand such that at distanced and with a viewing frustum ofθf , the camera just
fully views the bounding box diagonal. This is illustrated in Figure6.1. We
thus obtaind = l

2
cot

θf
2

. Most mesh viewing softwares, including the one used
throughout this thesis, model cameras with a default value ofθf = π/4. Thus,

d =
l

2
(√

2− 1
) ≈ 1.21l.

Settingr = d, i.e. F = 1.21 causes extremities ofM to lie at view image
boundaries. Therefore, for our experiments, we setF = 1.3 for all shapes.

6.3 Approximating fD on S
2

As mentioned in Section6.1, one of the key components of our approximation
scheme is a set,C = {ci} ⊂ S, of interpolation centers. These have the property
that our final approximation,f , interpolatesfD at them, i.e. at all times

f(ci) = fD(ci), ci ∈ C. (6.1)

Furthermore, at all othersi ∈ S, f approximatesfD up to an errorη, i.e.

E(si) < η, si ∈ S, si /∈ C

74 Chapter 6: View Sphere Model

k ← 0; C ← ∅;D ← ∅
fk ← 1
Ck ← vertices of icosahedron onS2

Dk ← {fD (ci) | ci ∈ Ck} // actual descriptor computation
5: C ← C⋃ Ck; D ← D⋃Dk

repeat
k ← k + 1; Ck ← ∅;Dk ← ∅
fk ← build function (C,D) // interpolate at current centers
S ′ ← S − C − nghbr (Ck−1) // S2 samples minus current centers, old
neighbors

10: while
(

(‖Ck‖ < Nv) ∧ (‖S ′‖ > 0)
)

do
s← sample inS ′ with highest error
Ck ← Ck ⋃{s} // new center
S ′ ← S ′ − nghbrs(s)− {s} // discard center and neighbors

end while
15: Ek ← errors (Ck, fk, fk−1) // errors for candidate centers

Dk ← {fD (ci) | ci ∈ Ck} // actual descriptor computation
C ← C⋃ Ck; D ← D⋃Dk

until (¬ stop condition (C,S,Ek))
C ← C − Ck // remove last, unused batch of new centers

Figure 6.2: ComputeC, set of interpolation centers.

whereE(si) is a measure of error atsi.

Both C and f are updated iteratively. In each iterationk, k ≥ 1, the pairs
(ci, fD(ci)) for the currentC are used to construct an approximation,fk. The
error,Ek(si), at eachsi is measured in terms of the variation betweenfk(si) and
fk−1(si). Thesi with the highest error are added to the set,Ck, of new centers. At
the end of the iteration,C andf are updated asC ← C⋃ Ck, f ← fk. Iteration
stops when a stopping condition is met. Centers added in the last iteration have
not yet been used for interpolation, and are therefore removed fromC. For initial-
ization,C is set to the vertices of an icosahedron (12 centers) centered around the
shape and with radius as discussed in Section6.2, andf ← f 0 ← 1. Figure6.2
presents the pseudo-code for the entire procedure.

Note that in our framework, the views corresponding toci ∈ C form the final
representation ofM with respect toD. This is different from other approaches
that also representM with a few views. These methods select their views based
on visibility of faces [Jaubert06, Roberts98] or similarity among views [Abbasi00,
Yamauchi06] ofM, whereas the views chosen in our approach are determined by

6.3 Approximating fD on S
2 75

the approximation offD by f .

Constructing fk Given pairs,(ci, fD(ci)), fk is calculated using implicit in-
terpolation as follows. Using the Gaussian kernelϕ(t) := exp(−t), t ∈ R

+, fk is
defined as [Poggio90]

fk(p) :=
∑

ci∈C
αk
i ϕi(p), p := (x, y, z), (6.2)

that is, a linear combination of the radial basis functionsϕi(p) := ϕ(‖p − ci‖2),
centered atci ∈ C. Then, the coefficients in Equation6.2 that uniquely satisfy
Equation6.1are the solutions of ther × r square linear systemAkα = b, where
the entries of the matrixAk areakij := ϕ(‖ci − cj‖2), α := (αk

i)
r
i=1, and the

constant term isb := [fD(c1), . . . , fD(cr)]
T . Here,r indicates the size ofCk.

The function used in (6.1) involves the Euclidean distance between points ofS
2;

an alternative is to replace it with the geodesic distance. In this case, it is enough
to substitute‖n−m‖2 with 〈n,m〉, n, m ∈ S

2.

Measuring Error The approximation error at a sample,si ∈ S, in iterationk
is measured as

Ek(si) =
‖fk(si)− fk−1(si)‖

‖fk‖∞
.

This leads to two artefacts. Firstly, samples chosen as centers in the previous
iteration and their neighbors exhibit large errors in the current iteration. These
errors do not signify approximation inaccuracies, rather the correction offat these
samples. The second artefact arises from the fact that approximation errors are
usually clustered, i.e. samples with high error values often lie close to each other.
Choosing any one of these samples as an interpolation center in this iteration will
bring down the error in this neighborhood in the next iteration. To deal with
these artefacts, two sets of vertices are barred from selection as new centers. The
first set, corresponding to the first artefact, consists of interpolation centers from
the previous iteration and their neighbors, and the second contains neighbors of
current centers. In each iteration, we choose at mostNv new centers, whereNv is
previously specified, i.e.‖Ck‖ ≤ Nv for all k. This is also indicated in Figure6.2.
The iteration error in iterationk is then measured as

Ek = ‖Ek(ci)‖∞, ci ∈ Ck.

76 Chapter 6: View Sphere Model

en
tr

op
y

fD at S, ‖S‖ = 2562 f1, ‖C‖ = 12 f6, ‖C‖ = 72 f12, ‖C‖ = 144

sa
lie

nc
y

fD at S, ‖S‖ = 2562 f1, ‖C‖ = 12 f20, ‖C‖ = 240 f39, ‖C‖ = 468

m
om

en
ts

,|A
3
,1
|

fD at S, ‖S‖ = 2562 f1, ‖C‖ = 12 f21, ‖C‖ = 252 f43, ‖C‖ = 516

Figure 6.3: Descriptor approximation for the model from Figure6.1b) for increas-
ingk (left to right) and different descriptors.

Stopping Condition The algorithm terminates at the iterationk = k′ when,
for the first time, the iteration error for two consecutive iterations falls below a
threshold,η, i.e. Ek′ ≤ η andEk′−1 ≤ η. The final error for each sample is then
set to its error in the last iteration,E(si) = Ek′(si) for all si. As our approximation
is smooth, it cannot approximate well descriptors whose correspondingfD are
non-smooth overS2. In such cases, if the error threshold is too low, iteration
does not terminate quickly. Therefore, we add a second condition, namely that we
terminate iteration also if‖C‖ ≥ ‖S‖

3
+Nv. The additionalNv term is to account

for Ck′ , the last batch of candidate centers that will not be used for interpolation
and are therefore discarded.

Results for an experiment are shown in Figure6.3. We setη = 1% andNv =
12. The leftmost view spheres represent theground truthvalues at a quadruply
subdivided icosahedron. The remaining view spheres in each row are shaded using

6.4 Equivalent Views and View Likelihood 77

Figure 6.4: Approximation errors at sample points.

values approximated fromC up to that iteration. Figure6.4shows approximation
errors against iterations for the experiment. Absolute error is measured as the
difference between ground truth and approximated values. Note that the ground
truth is shown here only for purposes of exposition. Our algorithm does not rely
on its computation.

6.4 Equivalent Views and View Likelihood

Views of M from viewpoints{p1, . . . ,pn} ∈ S
2 are said to beequivalent

[Bordoloi05, Weinshall97] w.r.t. a givenD if their valuesfDdiffer by less than
some threshold,ǫ, i.e.

|fD(pi)− fD(pj)| < ǫ i, j ∈ 1, . . . , n, i 6= j.

The likelihood of a given view is then measured in terms of the probability of
existence of other views that are equivalent to it [Weinshall97].

Using our approximation,f , we are able to compute equivalent views and view
likelihood by constructing iso-lines off . For the given viewpoint,p, all view-
points lying on the iso-linef = f(p) yield views equivalent to the one fromp.
The likelihood of the view is given by the length of the iso-line.

To construct the iso-line, we collect all edgesei = (sj, sk) in S, such that either






f(sj) = f(p), or
f(sk) = f(p), or
(f(sj)− f(p)) ∗ (f(sk)− f(p)) < 0

, and add necessary points to a set,I,

of viewpoints. In the first (resp. second) case,sj (resp.sk) is added toI. In the
third case, a linearly interpolated point,q, onei is added toI, i.e.

q = sj +
f(p)− f(sj)

f(sk)− f(sj)
(sk − sj).

78 Chapter 6: View Sphere Model

OnceI is populated, points that lie on the same triangle inS are connected by
an edge. The set of all such edges forms the iso-line. The length of the iso-line
can be taken as the sum of the great circle or Euclidean distances between points
connected by edges. For convenience, the number of edges in the set may also be
used. The cost of this operation is linear in the number of edges inS.

6.5 Representative views

The three dimensional shape of an object is conveyed through its two dimensional
views, whether on paper, screen or the retina. To this effect, some views are better
than others, leading to the concepts ofbestandworstviews. Views of a shape from
neighboring viewpoints are typically similar. However, most nontrivial shapes
have overall distinctly different views.Unstableviews represent the transition
from one view of the shape to another. Together, the best, worst and unstable
views of the shape constitute its representative views.

Our framework can be used to compute representative views ofM with respect
to a givenD by exploiting the critical points off . Similar approaches are typi-
cally employed by best view techniques [Lee05, Vázquez01]. The critical points
of fare first approximated according to the values offon the neighborhoods of
sphere samples,si ∈ S. More precisely, letN(si) := {sj : (si, sj) edge} be the
1-star of the samplesi, i.e. the set of vertices incident tosi in the meshing of
S
2. Then, the view fromsi is the local best(resp. worst) view if f(si) ≥ f(sj)

(resp.f(si) ≤ f(sj)) , sj ∈ N(si). Indicating withN⋆(si) the anticlockwise (or
clockwise) reordering ofN(si), the view fromsi is unstableif the number of sign
changes,(f(sj) − f(si)), sj ∈ N⋆(si), is 2 + 2m, m ≥ 1. In this case,m closed
iso-curves off intersect atsi.

Note that computing these views takes linear time in the size ofSand does not
require setting thresholds or other parameters. The global best (resp. worst) view
is given as the maximum (resp. minimum) of the local best (resp. worst) views.
Once the representative views have been approximated using the values offonS,
we refine them by computing the critical points off , thus making the computation
of representative views independent of the sampling ofS

2.

If we are interested solely in the best (resp. worst) view, we need only find the
maxima (resp. minima) off . Choosing an approximated extremum,s0, we use
the Nelder-Mead simplex search [Jr.87,Nelder90] with starting points0. The
algorithm performs a direct search method and does not require gradients or other
derivative information. At each step of the search, a new point in or near the

6.6 View Transfer 79

Figure 6.5: (left) View sphere with viewpoint entropy values and iso-lines. (right)
From top to bottom, some of the best, worst and unstable views.

current simplex is generated. The function value at the new point is compared
with the function values at the vertices of the simplex and one of the vertices is
replaced by the new point, giving a new simplex. This step is repeated until the
diameter of the simplex is less than a specified tolerance.

For the general case, we note that the gradient∇f := (∂xf, ∂yf, ∂zf) of f is given
by

{

∂xf(n) = −
∑

i∈V αi
x−nx

i

‖n−ni‖2 exp(‖n− ni‖2),
n := (x, y, z), ni := (nx

i , n
y
i , n

z
i);

where∂yf and∂zf are achieved from the previous expression by replacingx with
y andz. Then, we compute the critical points off by imposing that∇f = 0.
Choosing a representative viewn0, which is an approximation of a minium, max-
imum, or saddle off , we solve the implicit equation∇f = 0 in a neighborhood
of n0 by using an iterative method with starting pointn0.

Our tests show that ifS is sufficiently dense, the locations of approximated and
actual viewpoints onS2 corresponding to the representative views are almost co-
incident. This is due to the fact that the approximationf is continuous and its
discrete critical points converge to the continuous ones by increasing the number
of samples onS2.

6.6 View Transfer

Given two similar shape models, say a bicycle and a motorbike, and a particular
view of one of them, e.g. front view of the bicycle, we would like to impose the
same view on the motorbike, i.e. we would like to automatically compute a front

80 Chapter 6: View Sphere Model

Figure 6.6: View transfer from reference (left) to three target (right) models using
viewpoint entropy, view saliency and Zernike moments up to order 10 as descrip-
tors.

view of the motorbike. In doing so, we say that the view of the bicycle model has
beentransferredto the motorbike model. Moreover, in this example, we refer to
the front view of the bicycle as thereference viewand to the bicycle and motorbike
models as resp. thereferenceandtargetmodels.

A single reference view,vref, may correspond to more than one transferred views.
We notice however that, as the reference,Mref, and target,Mtar, models are
similar, descriptor values forvref and the transferred views must be alike. With
this observation, the problem of transferring views becomes similar to the one of
finding equivalent views in Section6.4, i.e. we want to find those views ofMtar
for which fD is equal to some given value. In this case, the value thatfD should
equal isfD(vref). We therefore go about this problem in the same manner.

As a single descriptor captures only some aspects of the shape, a more accurate
view transfer is achieved when several view descriptors are combined. Such a
transfer ensures that a greater number of shape features ofMtar in the transferred
view match those ofMref in vref.

Single Descriptor For a given descriptor,D, and reference view,vref, we
compute the descriptor value,fD(vref), and construct an approximation,f , w.r.t.
D for the target model,Mtar. We then construct iso-lines on the view sphere of
Mtar corresponding tof = fD(vref) as described in Section6.4. Views corre-
sponding to the points on the iso-line are then the transferred views.

Multiple Descriptors Using several descriptors,Di, i = 1 . . . n, for perform-
ing the transfer, for eachDi, we build the corresponding approximation,f i, for
Mtar and then construct the iso-linesf i = fD(vref) on the view sphere ofMtar.

6.7 Discussion and future work 81

Each iso-line represents transferred views w.r.t. to a single descriptor. The trans-
ferred view w.r.t. all descriptors thus lies at the point where all iso-lines inter-
sect. In practice though, there is rarely a single point where all iso-lines intersect.
Therefore, we assign to each point,p, on the view sphere ofMtar a quantity
computed as

g(p) =
n

∑

i=1

∣

∣f i(Pp)− fDi
(vref)

∣

∣ .

The transferred view then corresponds to the point on the view sphere that mini-
mizesg. Finding the minimizer is similar to the problem of finding the worst view
in Section6.5, so we adopt the same approach as in that section.

A few examples of transferred views are given in Figure6.6 where we use
three descriptors for the transfer. We notice that with the descriptors used, the
method chooses the correct view of a left hand even when the reference model is
a right hand. However, it can not distinguish between different orientations – in its
transferred view, the cow is facing the other way as the horse in the reference view.
This can be attributed to the descriptors used. The animal models used are roughly
symmetric on either side, and two of the descriptors used, viewpoint entropy and
view saliency, are insensitive to reflection. Thus they cannot distinguish between
reflected views. Results for the chair models are progressively worse, especially
the last chair. This is because this chair model is quite different from the reference
model. It has long thin and curvy legs with only 2 beams in its back support.
Less discriminative descriptors would have given more acceptable results for the
model.

6.7 Discussion and future work

In this chapter, we have presented a technique to build a continuous approxima-
tion of a given view descriptor, and have shown how this approximation can be
exploited to answer typical view based queries, in particular, to transfer views
between similar shapes. Unlike traditional view finding schemes, we sample the
view sphere adaptively based on both the model and the descriptor. This allows us
to avoid descriptor computation in “uninteresting” parts of the view sphere, and
leads to an economical view-based representation of the shape, namely our final
set of interpolation centers.

82 Chapter 6: View Sphere Model

6.7.1 Shape Comparison

One important view based shape operation that we have yet to address is shape
comparison. Using our model, we envision the following approach to the problem
of finding a matching cost between two shape models.

After rescaling the models,M1 andM2, to be compared, their view spheres,
S
2(M1) andS2(M2), are aligned and a correspondence,c, is established between

a set,S1, of points onS2(M1) and another set,S2, of points onS2(M2). Two
points pairs are sufficient to describe a unique alignment. Then, for a given de-
scriptor,D, we construct the approximations,f1 andf2, for both shapes. The cost
of the alignment can then be described as

∑

p∈S1

‖f1(p)− f2(c(p))‖.

A naive approach would be to try many alignments and then choose as the match-
ing cost of the two models the smallest cost of the two alignments, i.e.

cost(M1,M2) = min
i

cost(Ai),

where eachAi is an alignment. This is obviously quite expensive. A solution
is to initially find a suitable alignment of the view spheres. This could be done
by the aligning the PCA or symmetry axes [Podolak06] of the two shapes, or by
pre-computation of a canonical orientation of the viewed shapes [Fu08].

Chapter 7

Shape Complexity

As even small amounts of noise can significantly perturb the curvature distribution
of a shape, previous curvature based approaches to shape complexity [Page03,
Sukumar06] turn out to be sensitive to noise–small amounts of noise on a shape’s
surface will increase computed complexity even though the shape itself will not
have changed much.

Our approach to computing shape complexity is based on evidence from human
perception [Koenderink79] that humans construct internal representations of 3D
shapes as 2D images in certain relation to each other. We thus claim that a complex
shape is one with distinct, dissimilar views, while a simple shape has smaller
variation in its views. In fact, the canonical simplest shape, the sphere, has exactly
the same view, up to scale, from all viewpoints [Cutzu97].

We compute the complexity of a shape as follows. We obtainN views of it (Sec-
tion 3.1), extract their boundary contours (Section3.2) and obtain all pairwise
similarity distances using the contour-to-centroid method (Section3.3.3). This
gives aN × N similarity matrix,S, to which we apply SSA (Section3.4) to ob-
tain a 2D plot withN points. Each of the points represents a view and pairwise
distances between points in the plot correspond to the similarity distance between
the views. Thus, a simple shape will result in a tightly clustered SSA plot whereas
the plot for a complex shape will contain highly dispersed points. We measure
the complexity of the shape as the amount of dispersion of points in its SSA plot
obtained in the above manner. Figure7.1 gives a pictorial overview of the ap-
proach. As our methods considers shape views, it is insensitive to small variations
in shape.

84 Chapter 7: Shape Complexity

(a) shape to be analyzed (b) shape with view sphere

(c) shape views obtained from its view sphere

(d) extracted boundary silhouettes from the views

S =















0 0.130 0.246 0.236 . . .

0.130 0 0.222 0.220 . . .

0.246 0.222 0 0.123 . . .

0.234 0.220 0.123 0 . . .
...

...
...

...
. ..















(e) similarity distance matrix of boundary silhouettes

(f) 2D SSA plot corresponding toS

Figure 7.1: A pictorial overview of our shape complexity method. a) shows the
original 3D shape. b) shows the shape with its view sphere around it. c) shows
several sampled views taken from the view sphere. d) shows the extracted sil-
houettes from above views. e) shows the symmetric matrix of similarity distances
between the silhouettes. f) is the SSA plot calculated from the above similarity
distance matrix.

7.1 Applying SSA to the Similarity Matrix 85

Figure 7.2: Starting configuration of points in the SSA plot.

7.1 Applying SSA to the Similarity Matrix

The original SSA method places no requirements on the initial point configuration
in the SSA plot. However, the choice of starting points affects our final complexity
result. A random selection of points may lead to slightly varying complexity val-
ues for the same shape each time it is computed. Therefore, we fix the initial point
configuration as follows. We consider a sinusoidal function withx andy rescaled
to the interval[0, 1] and sample theN initial points,{pi,0), i ∈ {1, . . . , N}}, uni-
formly on it along thex axis, i.e. the coordinates ofpi,0, are given by

xi =
i− 1

N − 1
, yi =

1

2
(1− sin 2πxi)

As we take the same number of views for each shape, the initial point configu-
ration in the SSA plots for all shapes is the same, shown in Figure7.2. As per
the SSA method, movement of points in subsequent iterations is guided by the
relative magnitudes of entries in the shape’s similarity matrix. Thus, it is not pos-
sible to distinguish between the plots obtained for two shapes whose similarity
matrices differ only in scale. Therefore, when iteration stops, we rescale each
plot according to its similarity matrix,S, to obtainQ = {qi}, the final set of
points. Assuming the algorithm stopped afterM iterations, we consider the last
configuration matrix,CM = D(PM), and obtain a rescaling factor

F =
largest entry inS

largest entry inCM
.

The centroid of the points inPM is computed,cM = 1
N

∑

i pi,M , and the positions

86 Chapter 7: Shape Complexity

of the rescaled points are computed,

qi = cM + F · (pi,M − cM).

7.2 Computing Shape Complexity

Once the points,Q, in the SSA plot are obtained, we aim to measure complexity
of the analyzed shape in terms of their dispersion. The motivation is that a simple
shape will yield only a few distinct views, leading to a handful of tight, distinct
clusters in the SSA plot, whereas a complex shape will have largely varying views
which will lead to loose and overlapping clusters.

We use two measures to obtain a complexity value from the points,Q, obtained
in the previous section. The first method measures complexity as the dispersion
of the points in thex andy directions,

Cσ =
√

σ2
x + σ2

y ,

whereσx andσy are standard deviations of thex andy coordinates resp. of theqi.
The second measure relies on the convex hull of the points inQ which is a subset,
H = {hj| j ∈ {1, . . . , h}}, of Q. Shape complexity is then measured as

CH =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h1x h1y

h2x h2y

...
...

hhx hhy

h1x h1y

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

2
[(h1xh2y + h2xh3y + . . .+ hhxh1y) −
(h1yh2x + h2yh3x + . . .+ hhyh1x)] ,

wherehjx andhjy are thex andy coordinates resp. ofhj.

7.3 Results

We tested our approach on a set of shapes we obtained from the Internet. In Figure
7.3, we show each of these shapes alongside their corresponding SSA plots, and
the obtained values for our two complexity measures,CH andCσ. As the shown

7.3 Results 87

Shape SSA plot Shape SSA plot

Bumpy sphere,CH = 1.40, Cσ = 6.04 Torus,CH = 8.20, Cσ = 19.72

Star,CH = 1.41, Cσ = 9.88 Camel,CH = 13.20, Cσ = 15.91

Schwarz’s cyl.,CH = 3.16, Cσ = 11.08 Dinosaur,CH = 13.37, Cσ = 14.94

Ellipsoid,CH = 3.24, Cσ = 12.72 Homer,CH = 15.86, Cσ = 15.85

Genus,CH = 7.34, Cσ = 11.09 Armadillo,CH = 15.93, Cσ = 18.45

Cone,CH = 7.59, Cσ = 25.07 Bones,CH = 19.54, Cσ = 25.51

Bunny iH,CH = 8.06, Cσ = 11.91

Figure 7.3: Shapes sorted top to bottom, left to right according toCH .

88 Chapter 7: Shape Complexity

Shape CH Relative Cσ Relative

Bumpy sphere 1.4028 1 6.0435 1
Star 1.4091 1.0 9.8827 1.6
Schwarz’s Cylinder 3.1565 2.3 11.0770 1.8
Ellipsoid 3.2412 2.3 12.7204 2.1
Genus 7.3383 5.2 11.0868 1.8
Cone 7.5897 5.4 25.0723 4.1
Bunny iH 8.0565 5.7 11.9106 2.0
Torus 8.2006 5.8 19.7177 3.3
Camel 13.2013 9.4 15.9134 2.6
Dinosaur 13.3709 9.5 14.9445 2.5
Homer 15.8560 11.3 15.8468 2.6
Armadillo 15.9370 11.4 18.4462 3.1
Bones 19.5370 13.9 25.5131 4.2

Table 7.1: Result sorted byCH

values indicate, the shapes are sorted according to values ofCH from top to bottom
and left to right, so the Bumpy Sphere is the simplest shape according to this
measure, the Star is more complex and so on till the Bunny iH model. The next
more complex model with respect toCH is the Torus and then the Camel up to
the Bones model. In the SSA plots shown, for better visualization, the points have
been rescaled to fit inside the intervalx, y ∈ (0, 1). We useN = 42, i.e. we take
42 views of each shape. These results are summarized in Table7.1, where the
shapes are again sorted byCH and we also show the relative complexities of the
shapes, e.g. according toCσ, the Camel is 2.6 times as complex as the Bumpy
sphere.

CH andCσ do not give mutually consistent results. This can also be seen in Figure
7.4where we compare our results with those obtained using our implementations
of previous curvature based methods [Page03,Sukumar06]. We see especially
that relatively simple shapes like the Cone and Torus are ranked quite high with
Cσ. The reason for this is that points in the SSA plots for these shapes (Figure
7.3) lie in tight, distinct clusters. AsCσ relies on deviation in one dimension
only (along thex andy axes separately), the final value comes out to be large.
This is corrected when we consider two dimensional information by computing
the area of the convex hull to calculateCH . In Figure7.4, the Cone and Torus
models obtain much lower ranks according toCH . As expected, the curvature
based methods of [Page03,Sukumar06] are unable to deal with noise, the most

7.4 Discussion 89

prominent example of which is that they rank the Bumpy sphere asone of the most
complex shapes, whereas our view based method ignores the noise and ranks the
Bumpy sphere as the simplest.

7.4 Discussion

Our literature review on automatic computation of complexity of 3D shapes, pre-
sented in Section2.7, yielded few other works. The ones among these that we
tested are vulnerable to noise and slight irregularities in the shape. In contrast,
our method which is motivated by results from human vision research [Cutzu97]
is able to ignore these artefacts and produce a ranking of shapes that is more in
agreement with human notions of shape complexity.

However, our method still has deficiencies, e.g. in the first two columns in Figure
7.4, the Bunny is ranked quite low compared to other, simpler shapes like Torus.
We believe this is because of inadequate representation of the information con-
tained in our SSA plots. A deeper understanding of the SSA plot reflected in a
sophisticated measures to compute complexity from the plots will, in our opinion,
relieve our method of the above problems.

The key to our complexity results is the SSA plot we obtain for each shape, which
in turn depends on the shape similarity method used. A good shape similarity
method, i.e. one that can compute similarities between shapes as humans perceive
them, is thus crucial for the success of our approach.

As large numbers of 3D shape content become common, organizing them in a
meaningful manner becomes important. Our approach can be used for this pur-
pose to sort shapes in a 3D shape repository according to their complexities. Given
a query shape, the repository can also be searched for stored shapes that are more,
less or similarly complex.

One straightforward application of our SSA plots can be to compute shape sym-
metries [Podolak06, Mitra06]. Symmetries in a shape are a measure of the shape’s
self-similarities. A shape that has many symmetries will yield tight clusters of
points in the SSA plot, e.g. the Star in Figure7.3. This is because clusters corre-
spond to views that are similar to each other. If views from different parts of the
shape end up in the same cluster, that is indicative of a self-similarity within the
shape between those parts. We could see each point in a cluster as a “vote” for a
view. Different parts of a shape voting for the same view will be significant indi-
cators of symmetry. Similar voting schemes have also been employed in previous

90 Chapter 7: Shape Complexity

works on symmetry [Podolak06, Mitra06]. A significantly large number of votes
for a view could also be used as a cue for the best view of the object.

7.4 Discussion 91

Rank CH Cσ [Page03] [Sukumar06]

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 7.4: Shapes sorted according to four complexity measures – our complex-
ity measures,CH andCσ, and the methods from [Page03] and [Sukumar06].

92 Chapter 7: Shape Complexity

Chapter 8

Shapes as Bags of Words

The aim of shape retrieval is to retrieve, given a collection of shapes and a query
shape, a list of shapes from the collection ranked by similarity to the query shape.
In general, a search query to a shape collection can comprise many things in-
cluding key words, images and sketches. Each of these queries makes sense in
different applications. In this chapter, we consider only queries that are shapes
themselves.

When talking of searching and retrieval, we have to specify what we consider a
successful search. In other words, we need to adopt notions ofprecisionandre-
call for shape retrieval. These notions depend on measures of shape similarity,
which themselves heavily depend on the application at hand. Very often shape
(dis)similarity measures are categorized as either sensitive or oblivious to articu-
lated motions, see Figure8.1for an example of an articulated motion. This means
either the similarity measure depends on how the shape (and thus its surface) is
embedded into Euclidean space, or it depends only on intrinsic properties of the
surface that do not (or only slightly) depend on the embedding. In the first case we
have a measure that is sensitive to articulated motions, and in the second case an
oblivious measure. Note that it depends on the particular application if articulation
invariant (dis)similarity makes sense or not.

As mentioned in Section2.6, many communities work on 3D shape retrieval.
There even exists an annual shape retrieval contest [SHREC]. The focus in these
works and the contests has been mostly on search quality, but not on its efficiency.
Our aim and purpose in this chapter is to scale 3D shape retrieval to large col-
lections of shapes. Though publicly available shape collections at the moment
contain only a few hundred shapes we are convinced that with some delay we will

94 Chapter 8: Shapes as Bags of Words

Figure 8.1: Articulated motion of the Armadillo model.

see them grow/explode like other multi-media collections as text, audio or images.
Here we make the following contributions to scale shape retrieval to large shape
collections:

1. We show how to derive, from each shape, a multi(bag) of artificial (feature)
words with the two key properties that (1) there are only relatively few dis-
tinct words per shape, and (2) similar shapes have a relatively large number
of words in common, whereas dissimilar shapes do not. These properties al-
low us to use standard top-k indexing and retrieval techniques, which scale
well to a large number of objects. Many different geometric features that
have been discussed in the shape retrieval literature can be used to derive the
(feature) words. In that sense the derivation of (feature) words is generic.
We discuss two examples: shape distributions [Osada02] for articulated mo-
tion sensitive shape retrieval, and spin images [Johnson97] for articulated
motion invariant retrieval.

2. We show how to construct an arbitrarily large database of realistic shapes
by variation of a given small number of base shapes with respect to the fol-

8.1 Scaling Shape Retrieval 95

lowing: thickness, scale, stretch, and local deformation. This, we construct
1,000,000 shapes from the small SHREC collection [SHREC] that contains
only 400 shapes.

3. We show how indexing and retrieval based on the artificial words easily
scales to our artificially created 1,000,000 shape database, where we achieve
an average query time of 27 milliseconds.

4. We show how text retrieval based on our artificial words gives results of
the same quality as those obtained using the most successful of the original
shape-distribution descriptors [Osada02].

5. We show how to use ideas from the spin-images descriptor [Johnson97] to
derive an alternative bag of words for each document that permit articulated
motion invariant shape retrieval, as called for by certain applications

Our approach can be characterized aslocalizeandquantize. The same philoso-
phy is being increasingly employed in the image retrieval domain (Section2.6),
and has been employed once for shapes [Biswas07], though in 2D. To test our
approach, we generated a large collection of shapes (1,000,000) from a base set
of only 400 shapes.

8.1 Scaling Shape Retrieval

In a nutshell our approach can be characterized aslocalize (geometric features)
andquantize(the localized features). We observe that many geometric feature
based shape descriptors—also global ones—can be localized in the following
sense: first the shape is sampled, i.e. the boundary that represents it, and then the
features are computed at each sample point. The localized features can be treated
like words in a document—turning shape retrieval into a text retrieval problem.
But localization alone is not enough to provide an efficient, robust and relevant
3D shape search engine. While localization essentially allows for efficient top-
k search by enabling efficient indexing of the local features their quantization is
needed for robustness (recall), accuracy (precision) and also efficiency. With al-
most no quantization a shape query might not provide any hit due to small shape
variations, noise or even just numerical inaccuracies, whereas quantizing too ag-
gressively can render many hits irrelevant and makes it harder to rank them prop-
erly. The two extremes—almost no hits when not quantizing and almost every
shape in the collection being a hit—illustrate the virtue of quantization, namely
trading-off accuracy and robustness. Note that sampling already introduces some

96 Chapter 8: Shapes as Bags of Words

sort of quantization, but this is not enough to ensure robustness (a high recall
value). To achieve the latter, the computed words also need to be quantized.

Ourgenericapproach follows the following pipeline to build an index:

1. Sample the shape which is given by a boundary description.

2. Compute features localized at the sample points.

3. Quantize the localized features, providing a (feature) word frequency vector
representation.

4. Build a weighted inverted index on the (feature) words.

This pipeline is generic as it allows many different geometric features to be used
in its second step. For our experiments we used a localized version of the D2
shape distribution [Osada02] which we described in Section3.6. The D2 shape
distribution is a global feature in the sense that it takes into account the relation
of the sample point at which the feature is localized to all other sample points
spread out over the entire surface of the shape. In that sense we are dealing in our
experiments with a localized global feature that is not invariant under articulated
motions of the shape. We are also discussing an example of a localized local fea-
ture, namely spin-images [Johnson97]. So far we have not conducted experiments
using our pipeline and spin-images, but we expect them to perform much better
for articulated motion invariant shape search.

The rest of the pipeline is standard. We used a standard weighting scheme in
our index, namely “term-frequency-inverse document frequency” (tf-idf) with is
defined as follows: letnj

i be the frequency of wordj in shapei, letni =
∑

j n
j
i be

the total number of words for shapei (in our implementation this is a constant),
let mj be the number of shapes in the collection having wordj, and letm be
the number of shapes in the collection. The weighted frequency of wordj in
documenti is given as

n̄j
i =

nj
i

ni

log
m

mj

,

i.e., as the product of the word frequency within the documentn
j
i

ni
and the inverse

document frequencym
mj

(scaled logarithmically).

A query shape is processed exactly the same way as the shapes in the collection,
i.e. a weighted (feature) word frequency vector is computed for the query shape.
Shapess in the collection are ranked with respect to the query shapeq by the
normalized inner product of the weighted word frequency vectors fors andq, i.e.
by

∑

j n̄
j
s · n̄j

q.

8.1 Scaling Shape Retrieval 97

8.1.1 Example: a localized global descriptor

Localization We assume that we are given a boundary representation of a 3D
shape that is normalized to fit into the unit cube. Our localized shape descriptor
for each point on the boundary is the distribution of distances to other points on
the boundary. Globally the shape is described by the function that maps each point
on the boundary to its associated distribution of distances. Note that this function
is very similar to the D2 shape function studied by Osada et al. [Osada02].

Quantization Obviously our localized descriptor cannot be used or even com-
puted in practice. To discretize it, we sample 5000 points from the shape uni-
formly (with respect to surface area) at random. For each sample point we com-
pute the distance to another 100 sample points (sampled uniformly at random
from the 4999 remaining sample points). The distribution of these distances is
our discretized version of the localized shape descriptor. Globally the shape is
now represented by the distributions at all the sample points.

Sampling the shape and the distance computations is already a quite aggres-
sive quantization. Quantization is not only necessary to discretize our shape
descriptor—as we argued before quantization is also needed to trade-off robust-
ness (recall) and accuracy (precision). We quantize further (sacrificing accuracy
for robustness) as follows: the distances at each sample point are binned into five
bins each of width1/20 of the length of the diagonal of the unit cube, i.e.

√
3.

Then the number of elements in each bin is multiplied by1/4 giving number in
the interval[0, 25]. This number is rounded to the next integer providing a number
in {0, . . . , 25} that can be represented by a letter in{A, . . . , Z}. Hence the final
quantized, localized descriptor is a five letter word in{A, . . . , Z}5.

8.1.2 Example: a localized local descriptor

Localization Again we assume that we are given boundary representation of
a 3D shape that is normalized to fit into the unit cube. Furthermore we assume
that we have access to the surface normal at each point. Our localized local shape
descriptor is for each point on the boundary a distribution of(α, β)-pairs that are
defined as follows: fix a radiusε > 0 for any pointp of the boundary and let~np

be the unit surface normal atp. For any pointq on the boundary with distance less
thanε to p, i.e.,‖p− q‖ < ε, let ~q := q − p and define

(αq
p, β

q
p) =

(

√

‖~q‖2 − 〈np, ~q〉2, 〈~np, ~q/‖~q‖〉
)

.

98 Chapter 8: Shapes as Bags of Words

Our localized shape descriptor (also known as spin-image [Johnson97]) is the
distribution of the(αq

p, β
q
p) for the pointsq in the ε-neighborhood ofp on the

surface.

Quantization Spin-images cannot be computed in practice, but they can be
discretized easily by sampling the shape: take thek nearest sample points of the
sample point at which the spin-image needs to be discretized and just compute the
histogram of spin-image values for these neighbors.

8.1.3 Difference to feature hashing

At first glance our general approach looks very similar to the feature hashing
approach from [Biswas07]—note that at this level we do not care about the par-
ticularities of the chosen features, but there are some differences that affect the
efficiency as well as the search quality:

1. Both approaches sample the shapes. Ifn is the number of sample points
per shape (called landmarks in [Biswas07]), then with feature hashing one
generatesn2 words per shape (the hash table bins exactly correspond to our
words), whereas we generate onlyn words per shape. Note that the sam-
pling requirements for feature hashing and our word generating mechanism
are roughly the same since they are basically determined by the local ge-
ometries of the shapes. Hence, there is a factor ofn difference in the total
number of words to be indexed for the two approaches.

2. Feature hashing uses a very different distance metric. For comparing shapes
s1 ands2 with (normalized) frequenciesnj

1 andnj
2 of thej’th word, feature

hashing uses
∑

j(n
j
1 − nj

2)
2/(nj

1 + nj
2), whereas our approach uses (with a

distinctly different normalization̄nj
·)
∑

j n̄
j
1 · n̄j

2. The first measure is a dis-
similarity measure for shapes, whereas the second measures the similarity
between shapes, i.e., a large value means very similar shapes. The advan-
tage of our measure is that it is monotone in the word frequencies, which is
an essential prerequisite for doing top-k retrieval, which, in turn, is the key
to scale search to very large data sets.

8.2 Experiments 99

Figure 8.2: An example of our shape deformation pipeline. Form left to right:
original shape from the SHREC collection, thinned, thickened, and locally de-
formed for two different parameter settings.

8.2 Experiments

8.2.1 Datasets

We used the SHREC [SHREC] collection of the AIM@SHAPE consortium as
our main source of 3D shapes, see Figures8.1, 8.2, 8.3 and 8.4 for examples
of shapes in this collection. Currently this collection contains about 400 shapes
represented as polygonal surface meshes. A collection of only 400 shapes is not
enough to test the scalability of our (or any) shape retrieval scheme to the size
of collections that we expect in the not too distant future. Hence we created our
own large scale shape collection from the shapes in the SHREC collection. The
goal when creating the large collection was to model some real world variety. We
considered global variations like thickening and thinning, as well as local, small
scale variations (which can also be seen as noise).

Creating a large shape collection

We took the shapes from the SHREC collection as base shapes and applied the
following transformations (we arrived at our choice of the parameter values after
some experimentation, e.g., we wanted to make sure that the deformed shapes are
not self intersecting):

100 Chapter 8: Shapes as Bags of Words

1. Rotation about the x,y and z-axes with three angles chosen uniformly at
random from[0, 2π) for each axis, then

2. scaling along the x,y and z-axes with three scaling values each chosen uni-
formly at random from the interval[0.5, 1.50], and finally

3. one of

(a) thickening or thinning by moving the vertices of the mesh along the
surface normals at these vertices. The offset value is chosen from an
exponential distribution with mean value0.02. We cut off the values
at0.01 and0.03, thus taking only values from the interval[0.01, 0.03].

(b) local deformations at seed vertices from the polygonal mesh. We pick
1/k seed vertices uniformly at random from the set of all vertices of
the mesh. The valuek itself is chosen from an exponential distribution
with mean value20. The offset values at the seed vertices is then cho-
sen uniformly at random from an interval[omin, omax], where−omin and
omax are chosen from exponential distributions with with mean value
0.02. Again these values are cut off at0.01 and0.04. The off-set val-
ues are propagated with decreasing weight to the neighbors of the seed
vertices. The neighborhood is taken as the direct neighbors and their
neighbors, i.e., the one- and two ring in the mesh. If neighborhoods of
seed vertices overlap, then maximum of the magnitudes of all off-sets
is chosen. Finally, vertices are moved along their unit normals by the
offset amount. A negative off-set means moving the vertices to the
interior of the shapes.

8.2.2 Quality

We compared the quality of the localized D2 shape distribution descriptor and of
our implementation of the original D2 descriptor as described in Section3.6). For
the comparison we used the labelled SHREC shape collection with 400 shapes,
and computed standard relevance measures (mean average precision (map) and
precision atk (pr. atk)). Our results show that relevance does not degrade when
localizing the D2 shape descriptor, see also Figure8.4 for visual results. At this
point we should remark that neither the D2 descriptor nor its localization are par-
ticularly well suited for the SHREC collection. We expect much better results
for articulated motion invariant descriptors. We summarize our findings in the
following table.

8.2 Experiments 101

map pr. at 5 pr. at 10 pr. at 20

Orig. D2 0.40 0.66 0.49 0.36
Our method 0.41 0.66 0.52 0.38

8.2.3 Symmetries

A benefit of our localization scheme is that it allows for symmetry detection in
shapes. As expected, we observe that the same word occurs at sample points that
reflect some shape symmetry, see Figure8.3. Note that this is a feature of the
localization, since one cannot hope to detect symmetries with the corresponding
global descriptor—in our case the D2 shape distribution.

Figure 8.3: The localization scheme respects symmetries in the shape. Shown are
the sample points at which a single, frequent word is located—the word is not the
same for the two figures.

102 Chapter 8: Shapes as Bags of Words

8.3 Conclusions and Future Work

We have presented a generic scheme to scale feature based shape retrieval to large
collections of 3D shapes. To demonstrate our generic approach we have imple-
mented a localized version of the so called D2 shape distribution descriptor and
tested it on two collections. The first one is a standard collection that has 400
shapes, and the second contains 1,000,000 shapes that we have generated for the
purpose of testing our method.

To exploit the genericity of our approach more shape features should be local-
ized and integrated into our framework. Especially, it will be interesting to study
the different behavior of local and global features—one can expect a significant
difference with respect to invariance under articulated motions. We also want to
gain a better understanding of how well we can detect shape symmetries with our
approach and if this can be used for partial shape matching.

Also the generic set-up can be extended. So far we do not take any spatial coher-
ence into account when ranking the retrieved shapes. It is not obvious that taking
spatial coherence into account will improve the search quality much though since
by the nature of our approach similar words should be located at neighboring sam-
ple points on a shape. Nevertheless, it is an interesting question if the ranking can
be improved by considering particularities of the sampling approach.

8.3 Conclusions and Future Work 103

Query Results 2 to 6 (first result is always the query itself)
D

2
ad

ap
te

d

plane-26 plane-273 bird-28 bird-133 plane-376

D
2

or
ig

in
al

plane-169 plane-145 plane-48 plane-82 hand-278 ant-339

D
2

ad
ap

te
d

human-389* ant-325 mechpart-348 hand-35 ant-15

D
2

or
ig

in
al

human-37 human-389* ant-275 ant-202 spring-102mechpart-141

D
2

ad
ap

te
d

chair-96 chair-6 chair-125 chair-232 chair-87

D
2

or
ig

in
al

chair-38 pliers-320 chair-96 human-43 chair-22 pliers-392

Figure 8.4: Query results on the original SHREC collection. Shown are three
queries (the query shape is always shown as the left most shape) and the top six
results (the top result always was the query shape itself so we do not show it here).
For each query the first row shows the results retrieved our localized version of
the D2 shape distribution descriptor and the second row shows the results for the
D2 shape distribution descriptor itself. Note also that the search quality does not
degrade by localization (also note that a articulated motion sensitive descriptor as
D2—localized or not— is not well suited for some of the queries).
* – human-389 in the dataset is a scaled version of the human-37 model.

104 Chapter 8: Shapes as Bags of Words

Chapter 9

Managing a Shape Repository

A significant portion of the research effort for this thesis was spent in con-
tributing to the development, maintenance and upkeep of the Shape Repository
[Repositorya] of the EU IST NoE project, AIM@SHAPE [AIM@SHAPE]. The
repository is a result of efforts of the entire project, not ours alone. However,
we feel that the underlying principles can be applied to any shape repository and
thus, an overall exposition of the ideas behind the repository will be beneficial to
the digital shape research community. The following ideas have previously been
outlined in project internal reports available through the AIM@SHAPE web por-
tal [AIM@SHAPE]. All of the figures in this chapter are screen captures from
the repository website [Repositorya]. Readers are encouraged to visit the website
themselves to further explore the repository.

9.1 Knowledge Management of Shapes

The first and foremost concern in maintaining a sizable collection of digital shapes
is their organization. Although, the most common form of shape representation is
the triangle mesh, other representations like parametric surfaces, volume represen-
tations, point set surfaces and implicit representations also abound. Furthermore,
if we slightly relax our definition ofshapebeyond surface models, we have to
additionally deal with representations in the form of raster data, animations, con-
tours and structural descriptors. Moreover, shapes vary among each other in terms
of their size, complexity, topology, origin, means of creation and a multitude of
other characteristics. In this context, to meaningfully present stored shapes and

106 Chapter 9: Managing a Shape Repository

Figure 9.1: The AIM@SHAPE Shape Repository is accessible online at
http://shapes.aimatshape.net.

9.1 Knowledge Management of Shapes 107

Figure 9.2: Shapes in the repository are considered instances of ontology concepts
and have associated metadata fields which have to be entered when adding the
shape to the repository and are subsequently displayed with the shape.

to allow a user to browse through them in some organized fashion is a non-trivial
task.

In the AIM@SHAPE Shape Repository, this problem is solved using a knowledge
management approach. A Common Shape Ontology has been developed that de-
fines a hierarchical classification of different shape representations. Each node
in the hierarchy represents aconceptin the ontology and has a list of associated
attributes, ormetadata fields, in addition to the metadata it inherits from higher
level concepts. Specific shape types are concepts residing at the lowest level of
the hierarchy, and only these concepts are allowed to haveinstances. For a shape
type concept, an instance is a shape of that type. Thus, all shapes are added to the
repository as instances of some concept. As each concept has some related meta-
data, an instance has to have values for each of the metadata fields. Therefore,
when instances are added to the repository, the associated metadata has also to be
entered. This metadata is stored in the repository along with the shapes. Different
instances of the same concept are distinguished based on their individual meta-
data values. Figure9.2shows an example “view page” of a shape which shows its
thumbnail(s) along with stored metadata.

108 Chapter 9: Managing a Shape Repository

Figure 9.3: Shapes in the repository are organized using a Common Shape Ontol-
ogy developed within the project. Considering only the bottom level concepts of
the ontology results in a Shape Category Tree.

A condensed version of the ontology showing only the lower level concepts that
correspond to concrete shape types is presented on the repository website as a
clickable “Shape Category Tree” shown in Figure9.3. Clicking on a shape type
in the tree allows users to “browse by category” by displaying all stored shapes on
that type.

Storing metadata simply as database fields allows us to trivially sort shapes ac-
cording to several criteria (shape quality, number of times downloaded, identity
of uploader etc.) by issuing single SQL queries to the database. The quality of
the repository depends on the presence and quality of the metadata provided for
the instances. Two steps are taken to uphold these requirements. Firstly, addition

9.2 Populating the Repository 109

Figure 9.4: The repository has been populated with shape representations acquired
from a large variety of objects.

of instances to the repository is restricted to a handful of project internal and ex-
ternal partners who have agreed to uphold the metadata requirement when adding
instances. Secondly, for common shape types, tools have been incorporated into
the repository that automatically extract values for certain metadata fields from
shapes that are being added. This eases the burden on the user to enter a long list
of metadata values.

9.2 Populating the Repository

Of course, the primary requisite of a truly useful and general purpose Shape
Repository is to provide a large number of shapes ranging in their attributes: size,
complexity, topology, representation format, etc. The shapes must have known
properties and should be aesthetically pleasing. Preferably, the shapes should be
unique to the repository, at least at the time of addition. To remain current, the
repository must be updated periodically with new shapes. To be of special use to
the scientific community, current trends in digital shape research should be mon-
itored, and an effort should be made to provide data suitable for experimentation
and validation of algorithms in these fields.

110 Chapter 9: Managing a Shape Repository

Figure 9.5: “Groups” in the repository link related shapes, e.g. this group contains
a reconstruction at the topmost level followed by range data at lower levels.

For the purposes of the AIM@SHAPE Shape Repository, the above issues have
been dealt with in a variety of ways. As the repository is part of a larger project
involving researchers working on different aspects of digital shape processing for
diverse applications, collecting an initial set of shapes in various formats and sizes
was straightforward. Participating researchers contributed shapes they typically
use for experiments and benchmarking, and shapes they generated as results of
their research. Properties of shapes are supposed to be documented through ac-
companying metadata. As it is unfeasible to manually moderate metadata for all
shapes, the burden of entering correct metadata values for shapes has to be left on
the users adding the shapes to the repository. This is somewhat alleviated for some
fields of some shape types by the automatic metadata extraction tools mentioned
in Section9.1, but the problem of totally freeing the user from entering metadata
is far from solved. It should however also be noted that some metadata fields, like
origin of the digital shape, cannot be automatically computed and user interaction
will always be needed for such values.

Great effort has been put into populating the repository with unique and interest-

9.2 Populating the Repository 111

Figure 9.6: Accurate scans of a few canonical shapes have beenadded to allow
benchmarking of algorithms.

ing shapes. To this effect, exclusive scanning sessions have been held regularly
to acquire shapes ranging from toys to furniture items to cultural artifacts. Some
of these shapes are shown in Figure9.4. Both raw and processed data from these
sessions is made available through the repository, with the accompanying meta-
data providing details about the scanners used for acquisition and origin of the
shapes. Figure9.5shows one such group. In an effort to provide shapes withcer-
tified properties, original CAD models of some machine parts, along with scans
of the manufactured part are also provided. This is also done for a few simple,
canonical shapes, shown in Figure9.6, which were later custom-manufactured for
the repository.

Scans from a new (at the time of writing) type of 3D scanner that uses a scan-
ner mounted on an articulated arm and thus eliminates the need for subsequent
scan alignment and registration, were acquired exclusively for and made avail-
able through the repository. To provide highly detailed shapes, alginate moulds
of hands were prepared and subsequently scanned. Figure9.7shows a combined
thumbnail of one such model. The resulting scans provide very fine details, in
some cases up to the resolution of individual dermal ridges.Super resolution
reconstructionis a recent (as of writing) line of research whereby an object is
scanned many times from the same position. Noise inherent in the measuring de-
vice, namely the 3D scanner, causes all scans to vary slightly from each other.
This is exploited to reconstruct the scanned object at a resolution much higher

112 Chapter 9: Managing a Shape Repository

Figure 9.7: Scans of highly detailed alginate moulds of handshave been added to
the repository. The figure shows the scanned model.

than that of any of the individual scans. Data for such algorithms was acquired for
the repository in the form of 100 scans of a single coin from the same side.

9.3 Grouping Shapes

We saw in Section9.2 some of the ways in which the Shape Repository may
contain different representations of the same shape. In such cases, it is reasonable
to group these different representations together into a single logical whole.

This idea is implemented in the AIM@SHAPE Shape Repository by introducing
the concept of hierarchicalshape groupsillustrated earlier in Figure9.5. The
topmost level contains a single “representative” model for the group. Depending
on how the user adding the shapes wants to organize the group, there might be one
or more sub-levels in the group, each containing one or more shapes. Thus, the
repository comprises ofindividual modelsandgroup models, and when adding to
the repository, the user has to indicate whether an individual or group model is
going to be added.

Group models essentially consist of individual models coupled with organiza-
tional information, i.e. number of levels in the group, and membership of each
level. They are modeled as a separate concept in the Common Shape Ontology
and each shape group in the repository is an instance of this concept, with refer-

9.4 Legal Issues 113

ences to shape instances.

Other than providing a means for linking related shapes, shape groups have
emerged to be starting points for collaboration. In our experience, models added
to the repository by one user have later been used by other users to test their own
algorithms. The results of these algorithms are then added to the group containing
the original shape, possibly in a new sub-level. Another use has been to conve-
niently disseminate all models used and/or produced in a research project. The
authors of the project can then simply direct inquirers to the repository to obtain
desired models.

9.4 Legal Issues

Having a large number of shapes from diverse sources necessarily entails issues
on ownership and dissemination rights. Within the AIM@SHAPE Shape Reposi-
tory, the user who added a model becomes itsowner. To deal with dissemination
and reuse issues, an AIM@SHAPE General Licence has been put together which
covers most of the general requirements of model owners. Any user wishing to
download a model from the repository has to indicate agreement to the licence
for the download to proceed successfully. The downloaded archive contains the
chosen shape model, its thumbnail(s) and metadata. The terms of the licence are
that

• the Shape Repository and owner of the model, whose information is present
in the accompanying metadata, be acknowledged whenever the model or its
derivatives are further disseminated,

• the accompanying metadata be stored with the shape model,

• shape models representing culturally or religiously sensitive artefacts, e.g.
Chinese dragon, be used conscientiously, and

• the Shape Repository team and the model owner be contacted if the model
is to be used for any non-research or non-commercial purpose.

All shapes added to the repository are subject to the above licence. An online
service, Creative Commons (CC) [Commons], is used to help model owners en-
force additional terms, namely No Derivative Works (ND) and Share Alike (SA).
ND forbids a user to disseminate works derived from the downloaded model.
SA, on the other hand, allows users such dissemination but only if the derived
works are subject to the same conditions. For the chosen option, CC provides a
legally valid licence, which, when specified by the model owner, is linked to in

114 Chapter 9: Managing a Shape Repository

Figure 9.8: Using an integrated mesh viewer, visitors to the repository can view
simplified versions of shapes online before choosing to download them.

the AIM@SHAPE General Licence for the shape. A user wishing to download
the model then has to indicate agreement to this licence as well.

9.5 Helper Tools

Detailed, high quality shapes typically correspond to large files. Prior to commit-
ting to a download, most users would like to have a better idea of the shape of the
model. Additionally, a stored shape may be too large or too detailed for the user’s
purposes, in which case the user would prefer to download a simplified version of
the shape.

While the metadata and thumbnails accompanying a model in the AIM@SHAPE
Shape Repository give a rough idea of its shape and complexity, a true idea can
be had only by directly viewing the 3D shape itself. Therefore, a lightweight,
Java based viewer, shown in Figure9.8, has been incorporated into the repository
that allows users to view stored shapes that are represented as manifold triangle

9.6 Discussion 115

meshes. For the same shapes, a more advanced viewer [Danovaro07] based on
Java 3D is also available which allows users to interactively and selectively sim-
plify the viewed shape. When the user is satisfied with the simplification results,
the resulting shape can be directly downloaded.

The repository also offers staple features like site statistics, FAQs, links to other
online repositories and a keyword search that searches through some metadata
fields. As it is developed within a larger project, links to other parts of the project
are also provided. There is also a link to a short tutorial on the Common Shape
Ontology, and a functionality to browse through stored shapes according to their
shape types.

Shapes and metadata stored in the Shape Repository are replicated respectively in
a dedicated geometric search engine server and a separate Ontology & Metadata
Repository (OMR). The first offers functionality to search through stored shapes
using other shapes as queries, where search results are stored shapes ranked with
respect to similarity to the query shape. The OMR provides asmart searchthat
can reason about the metadata and thus be able to handle advanced queries, e.g.
to retrieve all triangle mesh models with more than 20,000 vertices. However,
issuing queries forsemantic search, i.e. search based on metadata, is tedious. To
facilitate this, a natural language query interface has been incorporated that lets
a user enter the query in natural language (English) which is then transparently
broken down into a form suitable for the semantic search.

9.6 Discussion

We presented the general principles behind the AIM@SHAPE Shape Repository
and believe that these can be helpful in the implementation of any large scale
shape library. Maintaining a shape library spurs research into helper tools that au-
tomatically analyze contained shapes to extract interesting information for users.
The tools presented in other chapters of this thesis are cases in point.

We verify these principles by measuring the popularity of the repository in terms
of numbers of visitors and downloaded shapes. Since its launch in August 2004,
the repository has had more than two million visitors who have downloaded
shapes almost a hundred thousand times. Shapes from the repository have been
featured in publications in all major digital geometry related conferences. This
suggests to us that the repository is useful and the underlying principles sound.

116 Chapter 9: Managing a Shape Repository

Chapter 10

Conclusion

The number and popularity of large scale shape repositories is on the rise. With
growing interest in 3D shapes from diverse application areas, we can safely as-
sume this trend to hold in the foreseeable future. This necessitates new kinds of
tools for the analysis and management of stored shapes. This thesis has presented
a few such digital shape processing techniques. Looking at shape processing from
this novel view point led us to tackle some problems that were as yet unaddressed,
e.g. shape orientation and view transfer, or had received little attention, e.g. best
fly and shape complexity. At the same time, it directed us towards classic (surface
reconstruction, shape retrieval) as well as recent (best view) problems. We also
studied in detail a common shape analysis construct used also in several of our
above methods, namely the view sphere.

Our learning based surface reconstruction method from Chapter4 can be applied
to a point set contained in a repository and the obtained reconstruction then added
back to the repository in the same group as the original raw data. As the method
is statistical, it, on the one hand, offers high robustness to noise and other input
artifacts and, on the other, suffers from low speed. However, this can be allevi-
ated in light of current computational advances, namely parallel computing. Our
method comprises chiefly of iteratively finding and updating the positions of a
winnerand its neighbors where each winner is independent of others. Such a set-
ting is perfectly suited to the SIMD parallel model implemented by modern GPUs.
A GPGPU version of the algorithm will therefore bring the algorithm’s running
time down to competitive levels while retaining its robustness.

Presenting a few, carefully chosen views of a shape is a very common operation
in both the digital and real worlds. Chapter5 described our proposed techniques

118 Chapter 10: Conclusion

to automatically select static and dynamic views of a given shape. We are the first
to compile a formal list of requirements for the latter and to compute an animation
that satisfies these requirements. In the process, we coined the term “best fly” for
the problem. Our methods are motivated by results from psychology and shape
perception, and thus provide intuitive shape views.

In the same chapter, we address the problem of 2D shape orientation and present
our example based approach to it. Our method relies on a database of correctly
oriented shapes and we demonstrate how an existing shape data set can be used
for the purpose. Not surprisingly, we need human input to specify correct ori-
entations for shapes. Our method can then clean up redundantly oriented shapes
automatically. User input is also required to identify non-orientable shapes to be
removed. For query shapes, we find the closest matching exemplar from the data
set and transfer its orientation to the query. We note that we were the first to ad-
dress this problem and that our work was later extended to 3D shapes in [Fu08]
where shapes labeled as correctly oriented by a human observer are used to train
a classifier. Then, instead of matching a query shape to an exemplar, its target
orientation class is found and it is reoriented accordingly.

While maintaining the AIM@SHAPE Shape Repository we found it useful to
highlight complex shapes to visitors. For that purpose, complexity or “quality”
values were manually added to each shape. Visitors could then sort stored shapes
by their quality and quickly access the more complex shapes. We then set out
to automatically compute such a quality measure. More specifically, in Chapter
7 we aimed at automatic computation of shape complexity. It turned out that
there had been little work on this problem and that too suffered from sensitivity to
common shape defects like noise. Once again, we leveraged results from human
shape perception to motivate our approach and comparing our results to those of
previous methods, we found that our complexity ranking of an example set of
shapes was more intuitive and robust.

In addition to the usual keyword search, the AIM@SHAPE Shape Repository also
provides a geometric search option whereby shapes in the repository can be sorted
according to similarity to a submitted query shape. Shape retrieval methods so far
have focused on accuracy of the retrieved list. However, with sizes of repositories
expected to grow, efficiency also becomes an important concern. Once again, we
are among the first to consider fast end efficient similarity retrieval of 3D shapes.
In Chapter8, we introduced a framework that couples existing shape retrieval
techniques with powerful and proven methods from text retrieval. The sub-second
query time we achieve on a collection of one million shapes is far beyond anything
reported in existing shape retrieval literature. Though our collection of shapes
is admittedly a toy example, we believe it aptly simulates a database of similar

10.1 Future trends 119

shapes and that real collections of this size are just around the corner.

Shape repositories provide natural showcases for shape processing tools. This ap-
proach also fits with the emerging paradigm of cloud computing whereby users
expect more and more services to be provided online. A shape repository should
therefore incorporate tools for common shape operations like surface reconstruc-
tion, mesh viewing, smoothing and simplification. At the same time, the reposi-
tory should provide time saving tools to the user that automate menial tasks like
entering shape metadata and that enable efficient browsing of shapes through var-
ious means and criteria. In Chapter9, we described how we were able to imple-
ment some of our ideas in the AIM@SHAPE Shape Repository. The apparent
popularity and success of the repository serves us as a validation of our approach.

10.1 Future trends

We have paced this thesis such that techniques dealing with single shapes appear
first followed by techniques that deal with large collections of shapes culminating
in the management of a full fledged publicly accessible online shape library. This
reflects our vision of the direction taken by research activity in digital geometry
research. This trend is closely coupled with the digital shape pipeline, which we
reproduce below from Chapter1. When faster and cheaper computers first started

(Real world/Imaginary)

Object

1. Acquisition/
Modeling

Digital Shape Model

2. Reconstruction/
Export

Shape Representation

3. Processing

4. Analysis

Shape Characteristics

Figure 10.1: The digital shape pipeline, reproduced from Fig. 1.1

coming out, interest arose in the nascent computer graphics community towards
the display and analysis of 3D geometry. At that time, this was still a new kind
of content and research focus was appropriately on its creation, acquisition and
reconstruction. The first general purpose surface reconstruction paper appeared in
1992 [Hoppe92]. As the community now matures, methods for these steps abound
and attention has now moved on to novel ways of using and analyzing this content.
At the same time, now that we can safely assume a proliferation of such content,
the time is also right to think about how to reason about collections of shapes,
instead of single shapes in isolation. In a way, this also represents our level of
comfort with the content. Early, low level handling of the data of the sort, “How
do we reconstruct a triangle mesh from the given point cloud?”, has been replaced

120 Chapter 10: Conclusion

by a semantically higher level of reasoning where we can completely abstract
out geometric details to process queries like, “Given two shapes representing a
dinosaur and a humanoid, which one is more complex?”

Of course, the shift in research activity is not entirely discrete. Just like in to-
day’s age of video streaming and online photo editing, it is still worthwhile to
make a better photo camera, there is still ongoing research on the earlier stages of
the digital shape pipeline. If anything, their significance is all the more empha-
sized. However, those stages no longer generate as much interest as they once did,
because they have already paved the way to the later stages which are currently
newer and hence more exciting.

At the same time, as we venture into higher level processing of 3D content, we
necessarily invoke more ambiguity and vagueness. When performing a ranking
by shape similarity, is a cup more similar to a fish or an automobile? Is the view
of a bottle from the top better than the one from the bottom? These and similar
questions are ones that even a human cannot answer with confidence and probably,
two different human subjects will end up giving two different sets of answers. This
leads to a paradox whereby, when our algorithms set out, for example, to compute
“best” views of a given shape, or to perform a “similarity” based ranking, it is not
entirely clear what the best view is, and what is meant by similarity.

We realize that we want our algorithms to mimic human behavior; a shape simi-
larity or shape complexity method should rank objects as a human would, a best
view or shape orientation method should choose views that a human would. The
solution therefore lies in understanding human behavior. That is why a growing
amount of digital geometry research is looking into results from human psychol-
ogy. Our own view based methods presented in Chapters5, 6 and7 rely on results
from [Blanz99, Koenderink79, Tarr01, Todd04].

10.1.1 A Sociological Approach to Shapes

As large collections of shapes are on the rise, methods leveraging information
from them have also begun to emerge. Instead of deeply analysing a single shape,
it is less laborious to simply infer the required information from a large, easily
accessible population of shapes. Sometimes, such information might not even be
deducible from the single analyzed shape. For example, in Section5.2, we infer
the correct orientation of a 2D shape from a larger data set. In [Fu08], a collection
of shapes is used to train a classifier which then indicates a correct orientation
for a query shape. [Laga07] also trains a classifier with features extracted from a
large collection of shapes to perform shape classification, retrieval and best view

10.1 Future trends 121

computation.

It is clear that such methods need to maintain some kind of structure that can both
“absorb” and “apply” information. Information pertaining to individual members
of the collection should be absorbed and formulated such that it can be readily ap-
plied to new, unseen shapes. This is very similar to the human process of deciding
based on past experience. And as statistical learning methods have rich parallels
with human intelligence [Poggio03], it is not surprising that learning methods are
popular in this context.

Another class of methods we see gaining importance in context of shape reposi-
tories is those that impose some ordering on the contained shapes, e.g. by ranking
them according to their complexities, or sorting them according to similarity to a
query shape. Such methods simply provide another view of the contained shapes
and quickly give a broad overview of the entire population with respect to different
criteria.

10.1.2 Relevance to Shape Repositories

Increasing focus on analysis and processing of digital shapes is good news for
shape repositories, which, as we argued earlier in the chapter, provide natural
showcases for shape processing tools. In accordance with current computing
trends, users would like, even expect, to modify shapes stored in a repository
online and view the results to the their satisfaction before downloading the shape
to their computer. To serve these needs, a shape repository has to store not just
shapes but also a considerable cache of tools that can operate on these shapes
quickly and efficiently to deliver results online to a user in real time. In addi-
tion, emerging methods that make use of large collections of shapes make us view
shape repositories no longer as passive containers of shapes, but as entities in
themselves that actively play a part in shape analysis.

While seamless synergy of such tools and repositories is still a distant vision, the
need for this synthesis is already present and in order to keep pace with advances
in other kinds of media, managers of 3D shape repositories would do well to take
note of it. We believe that shape repositories are still in their infancy. With a little
above a thousand shape models, the AIM@SHAPE Shape Repository is among
one of the largest, general purpose, public shape repositories. This is nowhere
close to public libraries of other content, e.g. videos on YouTube or images on
Flickr. Thanks to advances made in digital shape research, creation of digital
shapes no longer lies in the realm of specialists alone. We therefore foresee an
explosion in the number and sizes of shape repositories. At such time, it will be

122 Chapter 10: Conclusion

handy to have existing tools like the ones developed in this thesis.

Bibliography

[Abbasi00] S. ABBASI AND F. MOKHTARIAN . Automatic View Se-
lection in Multi-view Object Recognition. InInternational
Conf. on Pattern Recognition (ICPR’00), pages 1013–1016,
August 2000.

[Adel’son-Vel’skii62] G. M. ADEL’ SON-VEL’ SKII AND E. M. LANDIS. An al-
gorithm for the organization of information.Soviet Mathe-
matics Doklady, 3:1259–1263, 1962.

[AIM@SHAPE] AIM@SHAPE.http://www.aimatshape.net/.

[Amenta98] N. AMENTA , M. BERN, AND D. EPPSTEIN. The crust and
theβ-Skeleton: combinatorial curve reconstruction.Graph-
ical Models and Image Processing, 60(2):125–135, 1998.

[Arbel99] T. ARBEL AND F. P. FERRIE. Viewpoint Selection by Navi-
gation through Entropy Maps. InProceedings of the Seventh
IEEE International Conference on Computer Vision, pages
248–254, 1999.

[at Georgia Tech] LARGE GEOMETRIC MOD-
ELS ARCHIVE AT GEORGIA TECH.
http://www.cc.gatech.edu/projects/large_models/.

[Attalla05] EMAD ATTALLA AND PEPE SIY . Robust shape simi-
larity retrieval based on contour segmentation polygonal
multiresolution and elastic matching.Pattern Recognition,
38(12):2229–2241, 2005.

[Barhak01a] J. BARHAK AND A. FISCHER. Parameterization and recon-
struction from 3D scattered points based on neural network
and PDE techniques.IEEE Transactions on Visualization
and Computer Graphics, 7(1):1–16, 2001.

http://www.aimatshape.net/
http://www.cc.gatech.edu/projects/large_models/

124 BIBLIOGRAPHY

[Barhak01b] JACOB BARHAK AND ANATH FISCHER. Adaptive Recon-
struction of Freeform Objects with 3D SOM Neural Net-
work Grids. InPG ’01: Proceedings of the 9th Pacific Con-
ference on Computer Graphics and Applications, page 97,
2001.

[Barral00] PIERRE BARRAL , GUILLAUME DORME, AND DIMITRI

PLEMENOS. Scene understanding techniques using a virtual
camera. In A. de Sousa and J. C. Torres, editors,Proceed-
ings of Eurographics 2000, volume 19, 2000.

[Benchmark] PRINCETON SHAPE BENCHMARK.
http://shape.cs.princeton.edu/benchmark/.

[Bishop95] CHRISTOPHERM. B ISHOP. Neural Networks for Pattern
Recognition. Oxford University Press, 1995.

[Biswas07] SOMA BISWAS, GAURAV AGGARWAL, AND RAMA

CHELLAPPA. Efficient Indexing For Articulation Invariant
Shape Matching And Retrieval. InProceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2007.

[Black98] MICHAEL J. BLACK , GUILLERMO SAPIRO, D. MARI-
MONT, AND DAVID HEEGER. Robust Anisotropic Diffu-
sion. IEEE Transactions on Image Processing, 7(3):421–
432, March 1998.

[Blanz99] VOLKER BLANZ , M ICHAEL J. TARR, HEINRICH H.
BÜLTHOFF, AND THOMAS VETTER. What Object
Attributes Determine Canonical Views? Perception,
28(5):575–600, 1999.

[Bordoloi05] UDEEPTA BORDOLOI AND HAN-WEI SHEN. View Selec-
tion for Volume Rendering. In16th IEEE Visualization Con-
ference (VIS 2005), pages 487–494, 2005.

[Borg87] I. BORG AND J. LINGOES. Multidimensional similarity
structure analysis. Springer, Berlin, 1987.

[Borg05] I. BORG AND P.J.F. GROENEN. Modern Multidimensional
Scaling: Theory and Applications. Springer, 2005.

[Browser] 3D CAD BROWSER. http://www.3dcadbrowser.com/.

http://shape.cs.princeton.edu/benchmark/
http://www.3dcadbrowser.com/

BIBLIOGRAPHY 125

[Bülthoff95] H. H. BÜLTHOFF, S. Y. EDELMAN , AND M. J. TARR.
How are three-dimensional objects represented in the brain?
Cerebral Cortex, 5(3):247–260, 1995.

[Cacheforce] CACHEFORCE. http://www.cacheforce.com/.

[Chong03] CHEE-WAY CHONG, P. RAVEENDRAN, AND R. MUKUN-
DAN. Translation invariants of Zernike moments.Pattern
Recognition, 36(8):1765–1773, 2003.

[Colin88] C. COLIN. Towards a system for exploring the universe of
polyhedral shapes. InProceedings of Eurographics, pages
209–220, 1988.

[Commons] CREATIVE COMMONS. http://creativecommons.org/.

[Cutzu94] F. CUTZU AND S. EDELMAN . Canonical views in ob-
ject representation and recognition. Vision Research,
34(22):3037–3056, 1994.

[Cutzu96] F. CUTZU AND S. EDELMAN . Faithful representation of
similarities among three-dimensional shapes in human vi-
sion. Proc. Natl. Acad. Sci., Psychology, 93(21):12046–
12050, 1996.

[Cutzu97] F. CUTZU AND M. J. TARR. The representation of three-
dimensional object similarity in human vision. InIn SPIE
Proceedings from Electronic Imaging: Human Vision and
Electronic Imaging II, 3016, pages 460–471. SPIE, 1997.

[Danovaro07] EMANUELE DANOVARO, LAURA PAPALEO, DAVIDE SO-
BRERO, MARCO ATTENE, AND WAQAR SALEEM. Ad-
vanced remote inspection and download of 3D shapes. In
Web3D ’07: Proceedings of the twelfth international con-
ference on 3D web technology, pages 57–60. ACM Press,
2007.

[Databasea] THE GAMMA DATABASE.
http://wwwc.inria.fr/gamma/.

[Databaseb] THE SAMPL DATABASE.
http://sampl.ece.ohiostate.edu/data/3DDB/Models/.

[Demand] 3D ON DEMAND. http://www.3dod.org/.

[Denton04] TRIP DENTON, M. FATIH DEMIRCI, JEFFABRAHAMSON,
ALI SHOKOUFANDEH, AND SVEN DICKINSON. Selecting

 http://www.cacheforce.com/
http://creativecommons.org/
 http://wwwc.inria.fr/gamma/
 http://sampl.ece.ohiostate.edu/data/3DDB/Models/
http://www.3dod.org/

126 BIBLIOGRAPHY

Canonical Views for View-Based 3-D Object Recognition.
In ICPR ’04: Proceedings of the 17th International Con-
ference on Pattern Recognition, volume 2, pages 273–276,
Cabridge, UK, August 2004. IEEE Computer Society.

[de’Sperati97] CLAUDIO DE ’SPERATI AND PAOLO V IVIANI . The rela-
tionship between curvature and velocity in two-dimensional
smooth pursuit eye movements.The Jounral of Neuro-
science, 17(10):3932–3945, 1997.

[do Rego07] RENATA L. M. DO REGO, ALUIZIO F. R. ARAÚJO, AND

FERNANDO BUARQUE DE L IMA NETO. Growing Self-
Organizing Maps for Surface Reconstruction from Unstruc-
tured Point Clouds. InProceedings of the International
Joint Conference on Neural Networks, IJCNN, pages 1900–
1905. IEEE, 2007.

[do Rego09] RENATA L. M. E. DO REGO, HANSENCLEVER DEF. BAS-
SANI, DANIEL FILGUEIRAS, AND ALUIZIO F. R. ARAJO.
Surface Reconstruction Method Based on a Growing Self-
Organizing Map. In Cesare Alippi, Marios M. Polycarpou,
Christos Panayiotou, and Georgios Ellinas, editors,ICANN
(1), volume 5768 ofLecture Notes in Computer Science,
pages 515–524. Springer, 2009.

[Feixas09] MIQUEL FEIXAS, MATEU SBERT, AND FRANCISCO

GONZÁLEZ. A unified information-theoretic framework for
viewpoint selection and mesh saliency.ACM Transactions
on Applied Perception, 6(1):1–23, 2009.

[Flash Fire Designs] FLASH FIRE DESIGNS.
http://www.flashfire.com/.

[Fraundorfer07] FRIEDRICH FRAUNDORFER, HENRIK STEWNIUS, AND

DAVID NISTR. A Binning Scheme for Fast Hard Drive
Based Image Search. InProceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. IEEE
Computer Society, 2007.

[Fritzke93] BERND FRITZKE. Supervised Learning with Growing Cell
Structures. InAdvances in Neural Information Processing
Systems (7th NIPS Conference 1993), pages 255–262. MIT
Press, 1993.

 http://www.flashfire.com/

BIBLIOGRAPHY 127

[Fritzke94] BERND FRITZKE. A Growing Neural Gas Network Learns
Topologies. InAdvances in Neural Information Processing
Systems (8th NIPS Conference 1994), pages 625–632. MIT
Press, 1994.

[Fu08] HONGBO FU, DANIEL COHEN-OR, GIDEON DROR, AND

ALLA SHEFFER. Upright orientation of man-made objects.
ACM Transactions on Graphics (SIGGRAPH proceedings),
27(3), 2008.

[Gu95] P. GU AND X. YAN. Neural network approach to the re-
construction of freeform surfaces for reverse engineering.
Computer-Aided Design, 27(1):59–64, 1995.

[Gumhold02] STEFAN GUMHOLD. Maximum entropy light source place-
ment. InVIS ’02: Proc. of the conference on Visualization
’02, pages 275–282, Washington, DC, USA, 2002. IEEE
Computer Society.

[Hall05] P. M. HALL AND M. J. OWEN. Simple Canonical Views.
In The British Machine Vision Conf. (BMVC’05), volume 1,
pages 7–16, Oxford, UK, 2005.

[Hastie01] TREVOR HASTIE, ROBERT TIBSHIRANI , AND JEROME

FRIEDMAN. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, August 2001.

[Henderson07] J. M. HENDERSON, J. R. BROCKMOLE, M. S. CASTEL-
HANO, AND M. M ACK. Visual saliency does not account
for eye movements during search in real-world scenes. In
R. van Gompel, M. Fischer, W. Murray, and R. Hill, editors,
Eye Movements: A Window on Mind and Brain. Elsevier,
2007.

[Hoffmann98] M. HOFFMANN AND L. V ÁRADY . Free-form Surfaces for
Scattered Data by Neural Networks.Journal for Geometry
and Graphics, 2:1–6, 1998.

[Hoppe92] HUGUESHOPPE, TONY DEROSE, TOM DUCHAMP, JOHN

MCDONALD , AND WERNER STUETZLE. Surface recon-
struction from unorganized points. InSIGGRAPH ’92: Pro-
ceedings of the 19th annual conference on Computer graph-
ics and interactive techniques, pages 71–78, New York, NY,
USA, 1992. ACM.

128 BIBLIOGRAPHY

[Iglesias04] A. IGLESIAS, G. ECHEVARRÍA , AND A. GÁLVEZ . Func-
tional networks for B-spline surface reconstruction.Future
Gener. Comput. Syst., 20(8):1337–1353, 2004.

[Isgro05] FRANCESCO ISGRO, FRANCESCA ODONE, WAQAR

SALEEM , AND OLIVER SCHALL . Clustering for Surface
Reconstruction. In Bianca Falcidieno and Nadia Magnenat-
Thalmann, editors,1st International Workshop on Semantic
Virtual Environments, pages 156–162, Villars, Switzerland,
2005. MIRALab.

[Itti98] LAURENT ITTI , CHRISTOF KOCH, AND ERNST NIEBUR.
A Model of Saliency-Based Visual Attention for Rapid
Scene Analysis.IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, 20(11):1254–1259, Nov 1998.

[Ivrissimtzis03] IOANNIS P. IVRISSIMTZIS, WON-K I JEONG, AND HANS-
PETER SEIDEL. Using Growing Cell Structures for Surface
Reconstruction. InShape Modeling International, pages
78–88, 288. IEEE Computer Society, 2003.

[Jaubert06] BENOIT JAUBERT, KARIM TAMINE , AND DIMITRI PLE-
MENOS. Techniques for off-line scene exploration using a
virtual camera. InInternational Conference 3IA’06, May
2006.

[Jenke06] PHILIPP JENKE, M ICHAEL WAND , MARTIN BOKELOH,
ANDREAS SCHILLING , AND WOLFGANG STRASSER.
Bayesian Point Cloud Reconstruction.Computer Graph-
ics Forum (Proceedings of Eurographics 2006), 25(3):379–
388, 2006.

[Jeong03] WON-K I JEONG, IOANNIS P. IVRISSIMTZIS, AND HANS-
PETER SEIDEL. Neural Meshes: Statistical Learning Based
on Normals. InPacific Conference on Computer Graphics
and Applications, pages 404–408. IEEE Computer Society,
2003.

[Johnson97] A. JOHNSON. Spin-Images: A Representation for 3D Sur-
face Matching. PhD thesis, Carnegie Mellon University,
1997.

[Jr.87] J. E. DENNIS JR. AND D. J. WOODS. New Computing
Environments: Microcomputers in Large-Scale Computing.
SIAM, 7, 1987.

BIBLIOGRAPHY 129

[Kamada88] TOMIHISA KAMADA AND SATORU KAWAI . A simple
method for computing general position in displaying three-
dimensional objects.Computer Vision, Graphics and Image
Processing, 41(1):43–56, 1988.

[Kamila05] N. K. KAMILA , S. MAHAPATRA , AND S. NANDA . In-
variance image analysis using modified Zernike moments.
Pattern Recogn. Lett., 26(6):747–753, 2005.

[Karypis98] G. KARYPIS AND V. K UMAR. MeTiS: A soft-
ware package for partitioning unstructured graphs, par-
titioning meshes, and computing fill-reducing order-
ings of sparse matrices. Version 4.0. Inhttp://www-
users.cs.umn.edu/˜karypis/metis/. Univ. of Minnesota, Dept.
of Computer Science, 1998.

[Keogh06] EAMONN KEOGH, L I WEI, X IAOPENG X I , SANG-HEE

LEE, AND M ICHAIL VLACHOS. LB Keogh supports exact
indexing of shapes under rotation invariance with arbitrary
representations and distance measures. InVLDB ’06: Pro-
ceedings of the 32nd international conference on Very large
data bases, pages 882–893. VLDB Endowment, 2006.

[Khotanzad90] A. KHOTANZAD AND Y. H. HONG. Invariant Image
Recognition by Zernike Moments.IEEE Trans. on Pattern
Analysis and Machine Intelligence, 12(5):489–497, 1990.

[Kim08] YOUNGMIN K IM AND AMITABH VARSHNEY. Persuading
Visual Attention through Geometry.IEEE Transacations
on Visualization and Computer Graphics, 14(4):772–782,
2008.

[Knopf04] G. K. KNOPF AND A. SANGOLE. Interpolating scattered
data using 2D self-organizing feature maps.Graphical
Models, 66(1):50–69, 2004.

[Kobbelt99] LEIF KOBBELT, JENS VORSATZ, ULF LABSIK , AND

HANS-PETER SEIDEL. A Shrink Wrapping Approach to
Remeshing Polygonal Surfaces.Computer Graphics Forum
(Proceedings of Eurographics 99), 18(3):119–130, 1999.

[Koenderink79] J. J. KOENDERINK AND A. J. VAN DOORN. The Internal
Representation of Solid Shape with Respect to Vision.Bio-
logical Cybernetics, 32(4):211–216, 1979.

130 BIBLIOGRAPHY

[Laga07] HAMID LAGA AND MASAYUKI NAKAJIMA . A boost-
ing approach to content-based 3D model retrieval. In
GRAPHITE ’07: Proceedings of the 5th international con-
ference on Computer graphics and interactive techniques in
Australia and Southeast Asia, pages 227–234. ACM, 2007.

[Latecki00] L. J. LATECKI , R. LAK ÄMPER, AND U. ECKHARDT.
Shape Descriptors for Non-rigid Shapes with a Single
Closed Contour. InIEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 424–429, 2000.

[Lee04] JINHO LEE, BABACK MOGHADDAM , HANSPETERPFIS-
TER, AND RAGHU MACHIRAJU. Finding Optimal Views
for 3D Face Shape Modeling. In6th IEEE Int. Conf. on Au-
tomatic Face and Gesture Recognition, pages 31–36, 2004.

[Lee05] CHANG HA LEE, AMITABH VARSHNEY, AND DAVID W.
JACOBS. Mesh Saliency.ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2005), 24(3):659–666, 2005.

[Liu07] YU-SHEN L IU , M IN L IU , DAISUKE K IHARA , AND

KARTHIK RAMANI . Salient critical points for meshes. In
SPM ’07: Proceedings of the 2007 ACM symposium on
Solid and physical modeling, pages 277–282. ACM, 2007.

[Lowe99] DAVID G. LOWE. Object Recognition from Local Scale-
Invariant Features. InICCV, pages 1150–1157, 1999.

[Luo05] J. LUO AND M. BOUTELL. Automatic Image Orientation
Detection via Confidence-Based Integration of Low-Level
and Semantic Cues.IEEE Trans. Pattern Anal. Mach. Intell.,
27(5):715–726, 2005.

[Martinetz94] THOMAS MARTINETZ AND KLAUS SCHULTEN. Topol-
ogy representing networks.Neural Networks, 7(3):507–522,
1994.

[Mitra06] N. J. MITRA , L. GUIBAS, AND M. PAULY . Partial and
Approximate Symmetry Detection for 3D Geometry.ACM
Transactions on Graphics (Proceedings of SIGGRAPH 06),
25(3):560–568, 2006.

[Modelsa] THE123D MODELS. http://www.the123d.com/.

[modelsb] VRMLMODELS. http://www.ocnus.com/models/models.html.

 http://www.the123d.com/
 http://www.ocnus.com/models/models.html

BIBLIOGRAPHY 131

[Mokhtarian96] F. MOKHTARIAN , S. ABBASI, AND J. KITTLER. Robust
and efficient shape indexing through curvature scale space.
In British Machine Vision Conference, pages 53–62, Edin-
burgh, UK, 1996.

[Mokhtarian00] FARZIN MOKHTARIAN AND SADEGH ABBASI. Automatic
Selection of Optimal Views in Multi-view Object Recogni-
tion. In Proceedings of the British Machine Vision Conf.
(BMVC’00), pages 272–281, 2000.

[Mokhtarian03] F. MOKHTARIAN AND M. BOBER. Curvature Scale Space
Representation: Theory, Applications and MPEG-7 Stan-
dardization. Kluwer Academic, 2003.

[Mortara09] MICHELA MORTARA AND M ICHELA SPAGNUOLO. Tech-
nical Section: Semantics-driven best view of 3D shapes.
Computers and Graphics, 33(3):280–290, 2009. Proceed-
ings of IEEE SMI.

[Mostafa99] MOSTAFA G.-H. MOSTAFA, SAMEH M. YAMANY , AND

ALY A. FARAG. Integrating Shape from Shading and Range
Data Using Neural Networks.cvpr, 02:2015–2020, 1999.

[Mukundan98] R. MUKUNDAN AND K. R. RAMAKRISHNAN . Mo-
ment Functions in Image Analysis: Theory and Applica-
tions. World Scientific Publishing Co Pte Ltd., Singapore,
September 1998.

[Mumford99] DAVID MUMFORD. The dawning of the age of stochasticity.
In V. I. Arnold, M. Atiyah, P. Lax, and B. Mazur, editors,
Mathematics: Frontiers and Perspectives 2000, pages 197–
218. American Mathematical Society, 1999.

[Nelder90] J. A. NELDER AND R. MEAD. A Simplex Method for
Function Minimization. Computer Journal, 7:308–313,
1990.

[Nistér06] D. NISTÉR AND H. STEWÉNIUS. Scalable Recognition
with a Vocabulary Tree. InIEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 2, pages
2161–2168, June 2006.

[Osada02] ROBERT OSADA, THOMAS A. FUNKHOUSER, BERNARD

CHAZELLE , AND DAVID P. DOBKIN. Shape distributions.
ACM Trans. Graph., 21(4):807–832, 2002.

132 BIBLIOGRAPHY

[Page03] DAVID L. PAGE, ANDREAS KOSCHAN, SREENIVAS R.
SUKUMAR , B. ROUI-ABIDI , AND MONGI A. A BIDI .
Shape analysis algorithm based on information theory. In
ICIP (1), pages 229–232, 2003.

[Patańe06] G. PATAN É. SIMS: a Multi-Level Approach to Surface Re-
construction with Sparse Implicits. InIEEE International
Conference on Shape Modeling and Applications, pages
222–233, 2006.

[Philbin07] J. PHILBIN , O. CHUM , M. ISARD, J. SIVIC , AND A. Z IS-
SERMAN. Object retrieval with large vocabularies and fast
spatial matching. InProceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2007.

[Philbin08] J. PHILBIN , O. CHUM , M. ISARD, J. SIVIC , AND A. Z IS-
SERMAN. Lost in Quantization: Improving Particular Ob-
ject Retrieval in Large Scale Image Databases. InProceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2008.

[Plemenos96] DIMITRI PLEMENOS AND MADJID BENAYADA . Intelligent
Display in Scene Modeling. New Techniques to Automati-
cally Compute Good Views. InProceedings of GraphiCon,
1996.

[Podolak06] JOSHUA PODOLAK , PHILIP SHILANE , ALEKSEY

GOLOVINSKIY, SZYMON RUSINKIEWICZ, AND THOMAS

FUNKHOUSER. A planar-reflective symmetry transform for
3D shapes.ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2006), pages 549–559, 2006.

[Poggio90] T. POGGIO AND F. GIROSI. Networks for approximation
and learning.Proceedings of the IEEE, 78(9):1481–1497,
1990.

[Poggio03] T. POGGIO AND S. SMALE . The mathematics of learning:
Dealing with data.Amer. Math. Soc. Notice, 50(5):537–544,
2003.

[Polonsky05] OLEG POLONSKY, GIUSEPPEPATAN É, SILVIA BIASOTTI,
CRAIG GOTSMAN, AND M ICHELA SPAGNUOLO. What’s
in an Image? The Visual Computer, 21(8–10):840–847,
2005. Proc. of Pacific Graphics 2005.

BIBLIOGRAPHY 133

[Repositorya] AIM@SHAPE SHAPE REPOSITORY.
http://shapes.aimatshape.net/.

[Repositoryb] THE STANFORD 3D SCANNING REPOSITORY.
http://graphics.stanford.edu/data/3Dscanrep/.

[Rigau05] JAUME RIGAU , M IQUEL FEIXAS, AND MATEU SBERT.
Shape Complexity Based on Mutual Information. InSMI
’05: Proceedings of the International Conference on Shape
Modeling and Applications 2005, pages 357–362, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[Roberts98] D. R. ROBERTS AND A. DAVID MARSHALL. Viewpoint
Selection for Complete Surface Coverage of Three Dimen-
sional Objects. InProceedings of the British Machine Vision
Conference, volume II, pages 740–750, 1998.

[Rossignac05] JAREK ROSSIGNAC. Shape complexity.The Visual Com-
puter, 21(12):985–996, 2005.

[Saleem04] WAQAR SALEEM. A Flexible Framework for Learning-
based Surface Reconstruction. Master’s thesis, Computer
Science Department, University of Saarland, 2004.

[Saleem07a] WAQAR SALEEM , OLIVER SCHALL , GIUSEPPEPATAN È,
ALEXANDER BELYAEV, AND HANS-PETER SEIDEL. On
Stochastic Methods for Surface Reconstruction.The Visual
Computer, 23(6):381–395, June 2007. AIM@SHAPE Best
Paper Award, 2007.

[Saleem07b] WAQAR SALEEM , WENHAO SONG, ALEXANDER

BELYAEV, AND HANS-PETER SEIDEL. On Computing
Best Fly. In Mateu Sbert, editor,Proceedings of the 23rd
Spring Conference on Computer Graphics, 2007, pages
143–149, 2007.

[Saleem07c] WAQAR SALEEM , DANYI WANG, ALEXANDER G.
BELYAEV, AND HANS-PETER SEIDEL. Automatic 2D
Shape Orientation by Example. In2007 International Con-
ference on Shape Modeling and Applications (SMI 2007),
pages 221–225. IEEE, 2007.

[Saleem08] WAQAR SALEEM , GIUSEPPEPATAN É, M ICHELA SPAGN-
UOLO, BIANCA FALCIDIENO , AND HANS-PETERSEIDEL.

http://shapes.aimatshape.net/
http://graphics.stanford.edu/data/3Dscanrep/

134 BIBLIOGRAPHY

On continuously approximating discretely sampled view de-
scriptors. Technical report, IMATI, 2008.

[Schall05] OLIVER SCHALL AND MARIE SAMOZINO. Surface from
Scattered Points: A Brief Survey of Recent Developments.
In Bianca Falcidieno and Nadia Magnenat-Thalmann, edi-
tors,1st International Workshop on Semantic Virtual Envi-
ronments, pages 138–147, Villars, Switzerland, 2005. MI-
RALab.

[Schindler07] GRANT SCHINDLER, MATTHEW BROWN, AND RICHARD

SZELISKI. City-Scale Location Recognition. InComputer
Vision and Pattern Recognition, 2007. CVPR ’07. IEEE
Conference on, pages 1–7, 2007.

[Sebastian02] THOMAS B. SEBASTIAN AND BENJAMIN B. K IMIA .
Metric-Based Shape Retrieval in Large Databases. InPro-
ceedings of the 16 th International Conference on Pattern
Recognition (ICPR’02), pages 291–293. IEEE Computer
Society, 2002.

[Seibert92] MICHAEL SEIBERT AND ALLEN M. WAXMAN . Adaptive
3-D Object Recognition from Multiple Views.IEEE Trans.
Pattern Analysis and Machine Intelligence, 14(2):107–124,
February 1992.

[Shacked01] RAM SHACKED AND DANI L ISCHINSKI. Automatic Light-
ing Design using a Perceptual Quality Metric.Comput.
Graph. Forum, 20(3), 2001.

[SHREC] SHREC.http://www.aimatshape.net/event/SHREC/.

[Sivic03] JOSEF SIVIC AND ANDREW ZISSERMAN. Video Google:
A Text Retrieval Approach to Object Matching in Videos.
In ICCV, pages 1470–1477, 2003.

[Sivic06] JOSEF SIVIC AND ANDREW ZISSERMAN. Video Google:
Efficient Visual Search of Videos. InToward Category-
Level Object Recognition, pages 127–144, 2006.

[Sokolov05] DMITRY SOKOLOV AND DIMITRI PLEMENOS. Viewpoint
quality and scene understanding. InVAST 2005: Euro-
graphics Symposium Proceedings., pages 67–73, Pisa, Italy,
November 2005.

http://www.aimatshape.net/event/SHREC/

BIBLIOGRAPHY 135

[Sokolov06a] DMITRY SOKOLOV, DIMITRI PLEMENOS, AND KARIM

TAMINE . Methods and data structures for virtual world ex-
ploration.The Visual Computer, 22(7):506–516, 2006.

[Sokolov06b] DMITRY SOKOLOV, DIMITRI PLEMENOS, AND KARIM

TAMINE . Viewpoint quality and global scene exploration
strategies. InInternational Conference on Computer Graph-
ics Theory and Applications (GRAPP 2006), Setúbal, Por-
tugal, February 2006. INSTICC - Institute for Systems and
Technologies of Information, Control and Communication.

[Song07] WENHAO SONG, ALEXANDER BELYAEV, AND HANS-
PETER SEIDEL. Automatic Generation of Bas-reliefs from
3D Shapes. In2007 International Conference on Shape
Modeling and Applications (SMI 2007), pages 211–214,
2007.

[Subramanian92] K. SUBRAMANIAN AND D. FUSSEL. A search structure
based on k-d trees for efficient ray tracing. Technical Report
Technical Report Tx 78712-1188, The University of Texas
at Austin, 1992.

[Sukumar06] SREENIVAS R. SUKUMAR , DAVID PAGE, ANDREI GRI-
BOK, ANDREASKOSCHAN, AND MONGI A. A BIDI . Shape
Measure for Identifying Perceptually Informative Parts of
3D Objects. In3DPVT, pages 679–686, 2006.

[Super04] BOAZ J. SUPER. Learning Chance Probability Functions
for Shape Retrieval or Classification. InCVPRW ’04: Pro-
ceedings of the 2004 Conference on Computer Vision and
Pattern Recognition Workshop, page 93. IEEE Computer
Society, 2004.

[Takahashi05] SHIGEO TAKAHASHI , ISSEI FUJISHIRO, YURIKO

TAKESHIMA , AND TOMOYUKI NISHITA. A Feature-
Driven Approach to Locating Optimal Viewpoints for
Volume Visualization. In16th IEEE Visualization Confer-
ence (VIS 2005), pages 495–502, 2005.

[Tangelder04] JOHAN W. H. TANGELDER AND REMCO C. VELTKAMP.
A Survey of Content Based 3D Shape Retrieval Methods. In
SMI, pages 145–156, 2004.

[Tarr01] M. J. TARR AND D. J. KRIEGMAN. What Defines a View?
Vision Research, 41:1981–2004, 2001.

136 BIBLIOGRAPHY

[Taubin95] GABRIEL TAUBIN . A signal processing approach to fair
surface design. InSIGGRAPH ’95: Proceedings of the 22nd
Annual Conference on Computer Graphics and Interactive
Techniques, pages 351–358, 1995.

[Todd04] J. T. TODD. The visual perception of 3D shape.TRENDS
in Cognitive Science, 8(3):115–121, 2004.

[Turbo Squid] TURBO SQUID. http://www.turbosquid.com/.

[Vailaya00] ADITYA VAILAYA AND ANIL JAIN . Reject Option for VQ-
Based Bayesian Classification.ICPR, 02:2048, 2000.

[Várady99] L. VÁRADY, M. HOFFMANN, AND E. KOVÁCS. Improved
free-form modeling of scattered data by dynamic neural net-
works. Journal for Geometry and Graphics, 3:177–181,
1999.

[Vázquez01] PERE-PAU V ÁZQUEZ, M IQUEL FEIXAS, MATEU SBERT,
AND WOLFGANG HEIDRICH. Viewpoint Selection using
Viewpoint Entropy. InVMV ’01: Proceedings of the Vision
Modeling and Visualization Conference 2001, pages 273–
280, 2001.

[Vázquez03a] P.-P. V́AZQUEZ, M. FEIXAS, M. SBERT, AND W. HEI-
DRICH. Automatic View Selection Using Viewpoint En-
tropy and its Applications to Image-based Modelling.Com-
puter Graphics Forum, 22(4):689–700, 2003.

[Vázquez03b] PERE-PAU V ÁZQUEZ. On the Selection of Good Views and
its Application to Computer Graphics. PhD thesis, Dept.
LSI, Technical University of Catalonia, Barcelona, 2003.

[Vázquez03c] PERE-PAU V ÁZQUEZ AND MATEU SBERT. Fast Adaptive
Selection of Best Views. InLecture Notes in Computer Sci-
ence (ICCSA 2003), volume 2669, pages 295–305. Springer
Verlag, 2003.

[Veltkamp06] R. C. VELTKAMP AND L. J. LATECKI. Properties and Per-
formance of Shape Similarity Measures. In10th IFCS Conf.
Data Science and Classification, 2006.

[Wang04] Y. M. WANG AND H. ZHANG. Detecting image orientation
based on low-level visual content.Computer Vision and Im-
age Understanding, 93(3):328–346, 2004.

 http://www.turbosquid.com/

BIBLIOGRAPHY 137

[Wang08a] DANYI WANG. 3D Shape Complexity using View Similar-
ity. Master’s thesis, Computer Science Department, Univer-
sity of Saarland, 2008.

[Wang08b] DANYI WANG, ALEXANDER BELYAEV, WAQAR

SALEEM , AND HANS-PETER SEIDEL. Estimating
complexity of 3D shapes using view similarity. Research
Report MPI-I-2008-4-002, Max-Planck-Institut für In-
formatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken,
Germany, September 2008.

[Watt91] ALAN WATT AND MARK WATT. Advanced Animation and
Rendering Techniques. ACM Press, 1991.

[Weinshall97] DAPHNA WEINSHALL AND M ICHAEL WERMAN. On
View Likelihood and Stability. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 19(2):97–108, 1997.

[Welke07] KAI WELKE, ERHAN OZTOP, GORDON CHENG, AND

RÜDIGER DILLMANN . Exploiting similarities for robot per-
ception. InIEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IROS, pages 3237–3242. IEEE,
2007.

[Welke08] KAI WELKE, TAMIM ASFOUR, AND RÜDIGER DILL -
MANN . Object separation using active methods and multi-
view representations. InIEEE International Conference
on Robotics and Automation, ICRA, pages 949–955. IEEE,
2008.

[Yamauchi06] HITOSHI YAMAUCHI , WAQAR SALEEM , SHIN

YOSHIZAWA, ZACHI KARNI , ALEXANDER BELYAEV,
AND HANS-PETER SEIDEL. Towards Stable and Salient
Multi-View Representation of 3D Shapes. InIEEE Inter-
national Conference on Shape Modeling and Applications
2006 (SMI2006), pages 265–270, Matsushima, Japan, 2006.

[Yang00] MINYANG YANG AND EUNGKI LEE. Improved neural net-
work model for reverse engineering.International Journal
of Production Research, 38(9):2067–2078, 2000.

[Yu99] Y. Y U. Surface reconstruction from unorganized points us-
ing self-organizing neural networks. InIEEE Visualization
99, Conference Proceedings, pages 61–64, 1999.

	Introduction
	Contributions and Outline

	Previous Work
	Neural Network based Surface Reconstruction
	View Selection
	View Sphere Model
	Shape Orientation
	Shape Repository
	Word Based Approaches to Shape Retrieval
	Shape Complexity

	Preliminaries
	Obtaining Shape Views
	Obtaining Shape Contours
	Computing 2D Shape Similarity
	Similarity Structure Analysis (SSA)
	View Descriptors
	Shape Descriptor: Shape Distributions

	Learning the Shape of a Point Cloud
	Geometry Learning
	Node Addition
	Node Removal
	Topology Learning
	Feature Sensitive Reconstructions
	A Priority Queue Implementation
	Discussion

	Static and Dynamic Shape Views
	Stable and Salient Shape Views
	Example Based Shape Orientation
	Dynamic View Representation of a Shape

	View Sphere Model
	Notation
	Optimal View Sphere
	Approximating fD on S2
	Equivalent Views and View Likelihood
	Representative views
	View Transfer
	Discussion and future work

	Shape Complexity
	Applying SSA to the Similarity Matrix
	Computing Shape Complexity
	Results
	Discussion

	Shapes as Bags of Words
	Scaling Shape Retrieval
	Experiments
	Conclusions and Future Work

	Managing a Shape Repository
	Knowledge Management of Shapes
	Populating the Repository
	Grouping Shapes
	Legal Issues
	Helper Tools
	Discussion

	Conclusion
	Future trends

	Bibliography

