
Eurographics Symposium on Parallel Graphics and Visualization (2006)
Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

Distributed Force-Directed Graph Layout and
Visualization

Christopher Mueller, Douglas Gregor, Andrew Lumsdaine

Open Systems Laboratory
Indiana University

Bloomington, IN 47405
{chemuell,dgregor,lums}@osl.iu.edu

Abstract
While there exist many interactive tools for the visualization of small graphs and networks, these
tools do not address the fundamental problems associated with the visualization of large graphs. In
particular, larger graphs require much larger display areas (e.g., display walls) to reduce visual clutter,
allowing users to determine the structure of large graphs. Moreover, the layout algorithms employed
by these graph visualization tools do not scale to larger graphs, thereby forcing users into a batch-
oriented process of generating layouts offline and later viewing of static graph images. In this paper,
we present a parallel graph layout algorithm based on the Fruchterman-Reingold force-directed layout
algorithm and demonstrate its implementation in a distributed rendering environment. The algorithm
uses available distributed resources for both compute and rendering tasks, animating the graph as the
layout evolves. We evaluate the algorithm for scalability and interactivity and discuss variations that
minimize communication for specific types of graphs and applications.

1. Introduction

The visualization of large graphs is becoming increas-
ingly important in diverse fields including bioinfor-
matics, social network analysis, and network optimiza-
tion (e.g., [ADWM04]. However, visualization of large
graphs is typically a batch-oriented, sequential pro-
cess: users must first construct a layout offline, which
can easily require tens of minutes to compute. Users
can then view the resulting static image on a single
display or display wall. This situation stands in stark
contrast to the plethora of visualization tools [JM04]
for small graphs that produce animated, interactive
layouts on single workstations. Early results with vi-
sualizing dense graphs on large surfaces suggest that
they “qualitatively [change] interactive network visu-
alization” [AKGN99].

Visualization tools for small graphs do not scale
well to larger graphs for two reasons. The first rea-
son is that the graph layout algorithms themselves
rarely scale well. For instance, many of these tools use

force-directed layout algorithms, which determine the
position of each node in a graph by iteratively com-
puting attractive forces between connected nodes and
repulsive forces between all pairs of nodes. While these
algorithms are ideal for animation—the visualization
system can display the graph after each iteration—the
force calculations are expensive and can easily take
several seconds per iteration on medium-sized graphs,
making them unacceptably slow for interactive use.

The second reason that small-graph visualization
tools cannot scale to larger graphs is that few of these
tools provide support for distributed rendering to large
format display devices such as tiled display walls.
Graph visualizations are visually limited by the num-
ber of nodes and edges that can be rendered on the
display. The node-link graph diagram displays nodes
as points or glyphs and edges as lines between the
nodes. On most displays, only a few hundred edges
can be effectively displayed before the image becomes
too cluttered to interpret. While techniques exist for

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

C. Mueller et al / Distributed Force-Directed Graph Layout and Visualization

improving the layout of planar graphs (e.g., circuit
layout), most graphs that arise in real-world appli-
cations (e.g., bioinformatics, telephone networks) are
not planar. The characteristics of these graphs limit
the use of node-link visualizations to small graphs on
workstation-class displays.

In this paper we present an approach to solv-
ing the two scalability problems associated with in-
teractive graph visualization tools. We first employ
distributed rendering techniques to permit the dis-
play of larger graphs on tiled display walls, without
the visual clutter of a single display. We then de-
scribe a distributed-memory parallel formulation of
the Fruchterman-Reingold force-directed layout algo-
rithm [FR91], which permits layout of medium-sized
graphs on tiled displays at interactive frame rates. Fi-
nally, we evaluate the performance and scalability of a
distributed graph visualization environment based on
Chromium [HHN∗02] and the Parallel Boost Graph
Library [GL05].

2. Distributed Graph Rendering

Display walls are a fairly recent addition to scientific
computing environments. A display wall is composed
of a collection of displays connected to one or more
computers. When a single machine drives more than
two displays, custom video switching and scaling hard-
ware is used to partition the image across all displays.
When a cluster drives the display wall, each node in
the cluster is connected to one or two displays and a
middleware application manages rendering across all
the displays. From a systems perspective, it is conve-
nient to define three types of compute nodes used with
display walls [RRJ∗04]:

1. Display nodes drive the displays
2. Rendering nodes generate the pixels and geometry
3. Application nodes generate the raw data

Aside from custom hardware solutions, there are
three primary middleware tools in common use for
rendering to display walls. The most general, Dis-
tributed Multihead X (DMX), is an X server that
distributes X events to clients running on the dis-
play nodes. Any application can connect to the DMX
server and display windows on the display wall.
SAGE [RRJ∗04], developed for geo-sciences applica-
tions, acts as a virtual framebuffer for application and
rendering nodes. SAGE applications send pixels to the
display nodes, which manage the final layout of the
images for each application. Chromium [HHN∗02] is a
wrapper around OpenGL that intercepts the OpenGL
calls from an application and distributes them across
the display wall. Chromium supports multiple strate-
gies for compositing geometry from parallel applica-
tions, making it a flexible tool for individual applica-

Figure 1: The system architecture for a parallel ap-
plication in a distributed rendering environment. MPI
provides support for running the algorithmic compo-
nents of the application in parallel while Chromium
manages the rendering OpenGL pipeline and display
wall. Chromium composites the geometry from the ap-
plication nodes into a global display space and prop-
erly segments lines that span displays.

tions. Extensions to DMX allow X applications to use
Chromium for parallel rendering.

There are other systems available for distributed
rendering (e.g. ParaView [Kit06]) and many anima-
tion systems support network rendering. However,
these systems are not designed for use with display
walls and do not provide robust and comprehenisive
support for interactive use.

To render a graph across multiple displays, the ren-
dering system must ensure that edges are drawn on
all displays they intersect. In Figure 1, the right-most
line spans three displays, with no explicit endpoints on
the lower-right display. If each display is represented
as a single tile or framebuffer, as in SAGE, the appli-
cation developer must ensure that lines are properly
segmented and rendered to each tile. Geometry based
display wall renderers such as DMX and Chromium,
on the other hand, handle segmentation automatically.

Most display walls also introduce gaps, or borders,
between the displays. On high-end, projector-based
walls, these gaps are minimal. However, on LCD-based
walls, there is typically a 2-inch gap between dis-
play surfaces that must be considered when lines are
drawn across displays. Chromium handles such gaps
smoothly by allowing the user to position the displays
anywhere in the scene space. Experience has shown
that users quickly learn to ignore the borders intro-
duced by LCDs. The borders can also be exploited by
rendering algorithms as a physical method for parti-
tioning data visually; we use this approach to show the
user vertex partitions assigned to individual nodes.

Parallel applications add an extra level of complex-
ity to the rendering pipeline. The middleware must
accept geometry streams from multiple sources and
properly synchronize and composite them prior to ren-

c© The Eurographics Association 2006.

C. Mueller et al / Distributed Force-Directed Graph Layout and Visualization

dering each frame. Of the display wall tools, only
Chromium has full support for parallel applications
and arbitrary composition schemes. While SAGE can
support multiple pixel streams from a parallel appli-
cation, it assigns each stream to a distinct area of
the framebuffer, making it difficult to manage applica-
tions that use geometric primitives, rather than pixels,
for rendering. Chromium supports different strategies
for compositing the geometry stream on the display
nodes. Sort-first rendering divides the display area
into tiles and each rendering node is assigned one
tile, similar to SAGE’s framebuffer approach. Sort-
last rendering combines the streams from all render-
ing nodes into a single, global display space, making it
possible to combine complex geometry from multiple
sources into a single image.

[AKGN99] discusses the utility and challenges for
displaying large graphs using tiled display. Their
display system uses an SGI Onyx to drive a dis-
play wall, allowing them to use algorithms designed
for shared-memory parallel systems rather than dis-
tributed memory systems.

We originally developed prototype implementations
using SAGE, Chromium, and a custom, OpenGL-
based rendering system. Sage and our custom system
worked fine for simple examples. Unfortunately, SAGE
failed to integrate smoothly with MPI and required
reimplementing the compositing algorithms already
available in Chromium. Our custom solution worked
well with MPI but also required reinventing a large
amount of Chromium’s technology.

Our final system architecture for processing and
rendering graphs in distributed environments (Fig-
ure 1) uses MPI for parallel processing and Chromium
for distributed rendering to the display wall. For a
given run, the application first partitions the graph
across the application nodes and sets up display nodes
on each computer connected to a display. The applica-
tion proceeds by executing one iteration of the layout
algorithm followed by a rendering pass. In a render-
ing pass, each application node sends the geometry
for its vertices and edges along with a synchroniza-
tion signal to Chromium. Chromium composites the
stream using sort-last compositing and sends the fi-
nal geometry data to the individual display nodes. As
with traditional OpenGL-based systems, once the ren-
dering commands have been issued, the application is
free to continue, allowing it to enter the next layout
phase before the rendering is complete.

3. Distributed Force-Directed Layout

While there exist many vertex/edge layout algorithms
for graph drawing, the distributed graph rendering ar-
chitecture places some severe limitations on the un-
derlying layout algorithm. First, the algorithm must

be efficient even with a large numbers of vertices and
edges, so that interactive layout can be achieved. Sec-
ond, to limit data aggregation bottlenecks, the algo-
rithm must be able to perform layout of local ver-
tices without requiring extensive global information.
Finally, the algorithm must be efficiently paralleliz-
able in a distributed memory system, minimizing the
communication overhead relative to the local compu-
tation required even as the number of compute nodes
and displays increases. To the best of our knowledge,
there are no prior results for interactive graph render-
ing algorithms on distributed memory systems.

We have adapted the Fruchterman-Reingold force-
directed layout algorithm [FR91]. Force-directed algo-
rithms place all of the vertices within a space, then
iteratively compute the forces acting on each vertex
and reposition the vertices accordingly until a mini-
mal energy state is reached. Given a graph with ver-
tices V and edges E, Vertices connected by an edge
(u, v) ∈ E are “pulled” together by an attractive force
fa(d), where d is the distance between u and v. In-
tuitively, this force should be stronger when the ver-
tices are farther apart, so that adjacent vertices will
be positioned close together. Each vertex also exhibits
a repulsive force fr(d) on every other vertex, whose
strength is inversely related to the distance. The func-
tions fa(d) and fr(d) are selected to ensure that the
forces cancel each other when two adjacent vertices
reach some optimal distance apart.

The computation of attractive forces is efficient, re-
quiring O(|E|) time. However, the computation of re-
pulsive forces requires every pair of vertices to be com-
pared in O(|V |2) time. To improve the performance of
the latter operation, the repulsive forces computed for
a vertex u are limited to those vertices within a cir-
cle of radius k =

√
width · height. Fruchterman and

Reingold suggest dividing the drawing space into a
grid with cells of size k × k. Vertices are sorted into
cells based on their position, and for each vertex repul-
sive forces need only be computed within its own cell
and neighboring cells, drastically reducing the aver-
age number of distance comparisons. Pseudo-code for
the complete distributed Fruchterman-Reingold lay-
out algorithm is provided in Figure 4. The following
subsections describe the evolution and evaluation of
this algorithm.

3.1. Näıve Distribution and Parallelization

The Fruchterman-Reingold layout algorithm can be
trivially distributed by considering the layout on each
compute node independently of the other nodes. Each
compute node is given its own display in which it can
render its local portion of the distributed graph. Inter-
processor edges in the graph are filtered out, so that
attractive forces are computed only between vertices

c© The Eurographics Association 2006.

C. Mueller et al / Distributed Force-Directed Graph Layout and Visualization

on the same compute node. Since each display is con-
sidered independent of the others, repulsive forces are
only calculated between vertices that reside on the
same compute node.

Näıve distribution and parallelization of
Fruchterman-Reingold is both efficient and scal-
able. Since interprocessor edges are not considered,
the distributed layout algorithm itself requires no
communication. Visually, this leads to a layout
on each compute node that only illustrates local
structure. Vertices may be placed far from their
neighboring vertices that reside on other processors.
Figure 2(a) illustrates these long interprocessor edges,
which traverse nearly the entire width of the display
wall. Näıve distribution is only as effective as the
initial partitioning. When interesting substructures
are assigned to a single compute node, the layout will
expose these substructures.

3.2. Attraction Across Processors

Graph substructures that span multiple compute
nodes can be pulled closer together by considering at-
tractive forces for interprocessor edges. These attrac-
tive forces can be computed by replicating the position
information of neighboring vertices across processes.
Thus, prior to the computation of attractive forces,
processors exchange the current location of each ver-
tex with its remote neighbors. Attractive forces are
then computed for each vertex using both intrapro-
cessor edges and interprocessor edges.

Attraction across processor boundaries introduces
communication into the distributed layout algorithm.
In each iteration, the position information of each ver-
tex must be sent to the compute nodes that store a
neighboring vertex, resulting in O(|V | · p) additional
communication per step, where p is the number of
processors. A good partitioning can improve the per-
formance of the algorithm by minimizing the amount
of positional data that must be transferred.

Visually, interprocessor attraction forces bring to-
gether graph substructures that span multiple com-
pute nodes. Even though vertices themselves are
bound to the display connected to the compute node
on which they reside, they may move toward the dis-
play on which their neighbors reside, providing the
illusion of global layout. Figure 2(b) illustrates how
the addition of interprocessor attractive forces avoids
long interprocessor edges in the layout. We found
that it the algorithm produced more pleasing layouts
when the interprocessor attractive forces were some-
what weaker than intraprocessor attractive forces. We
therefore multiply the magnitude of the attractive
force for an interprocessor edge by some constant
C < 1. When C is nearly 1, graphs with many in-
terprocessor edges tend to clump near other displays

(a) Näıve layout

(b) Interprocessor attraction

Figure 2: Comparing the näıve distributed
Fruchterman-Reingold layout to the version that
permit interprocessor attraction between vertices on
a small world graph.

(i.e., near the center of the tiled display wall), as in-
terprocessor attractive forces outweigh intraprocessor
repulsive forces. Extending the Fruchterman-Reingold
algorithm slightly, the sides of the display exert a re-
pulsive force on nearby vertices, pushing the graph
layout toward the center of the display to generate
more pleasing layouts.

3.3. Repulsion Across Processors

The distributed Fruchterman-Reingold layout with in-
terprocessor attraction pulls vertices near their neigh-
bors, regardless of the compute node on which the
neighbors reside. However, this interprocessor attrac-
tive force is not balanced by an interprocessor repul-
sive force, causing clumping of vertices near the shared
borders of each display. The grid used in distributed
Fruchterman-Reingold layout can be extended to mul-
tiple compute nodes, as shown in Figure 3. Prior to the
computation of repulsive forces, each processor gath-
ers the local vertices that reside in grid cells adja-
cent to another display and exchanges those with the
corresponding compute node. The process is identical
to that of exchanging boundary information in dis-
tributed finite element analyses.

c© The Eurographics Association 2006.

C. Mueller et al / Distributed Force-Directed Graph Layout and Visualization

Figure 3: Each display is divided by a grid of cells
used to compute repulsive forces. Vertices that fall into
cells adjacent to nearby displays will repulse vertices
on those nearby displays.

do for n iterations:
// Interprocessor repulsion
for each local vertex v:

// place v in grid cell (i, j) based on its position
// Repulsive forces
for each grid cell (i, j):

for each vertex u in grid cell (i, j):
for each vertex v in neighboring grid cells:

// compute repulsive force between u and v
// Interprocessor attraction
for each edge (u, v):

if v is remote:
// send position of u to the owner of v

// Attractive forces
for each edge (u, v):

// compute attractive force between u and v
// Position update
for each local vertex v:

// move v based on the forces acting on it

Figure 4: Pseudo-code for the distributed
Fruchterman-Reingold implementation.

The intent of interprocessor repulsion is to coun-
teract the interprocessor attractive forces that tend to
clump vertices around the borders of the display. How-
ever, in our experience the addition of the repulsive
forces did not produce layouts that were noticeably
better than those using the simpler (and more effi-
cient) repulsion from the display borders. Rather, by
decreasing the constant C that governs the strength
of interprocessor attraction, clumping can be avoided
while still exposing graph structure across processors.

3.4. Vertex Migration

Our distribution and parallelization of the
Fruchterman-Reingold layout algorithm has re-
stricted vertices to the local display, although edges
may cross several displays. Relaxing this condition,
vertices may be permitted to migrate to other displays
when the interprocessor attractive forces are strong
enough to overcome the repulsive forces exerted by

Figure 5: Visual migration across processors permits
vertices to be placed closest to their neighbors, even
when those neighbors are stored on a different com-
pute node.

the edges of the (local) display. There exist two kinds
of vertex migration: visual and data migration.

Visual migration of vertices involves drawing a ver-
tex (and its edges) on a display other than the lo-
cal display. The data associated with the vertex is
not actually moved to the compute node associated
with the remote display; rather, the rendering system
simply displays the vertex and edge on the other dis-
play. The computation of attractive forces (both inter-
and intra-processor) is unchanged by visual migration.
However, visual migration of a vertex implies that re-
pulsive forces can no longer be efficiently computed:
once a vertex is displayed outside the confines of its
owner’s display area, it does not fall within any local
grid cells and therefore no repulsive forces act on it on
either its owning processor or the processor displaying
it. For this reason, vertices that have visually migrated
may be placed very near other vertices on the remote
processor, causing visual clutter. In our experiments,
the resulting visual clutter was mitigated by the use of
processor-specific colors for each vertex. Thus, a ver-
tex that had migrated would retain the color of its
owning processor, and would therefore be visually dis-
tinct from the vertices stored on the remote processor.
Figure 5 illustrates the result of permitting vertex mi-
gration for a distributed small-world graph. A long
chain of vertices owned by the upper-right and lower-
left displays has been pulled together on the upper-
left display, and the vast majority of edges within the
display are very short. Visual migration has an inter-
esting side effect: when a vertex migrates to another
processor, it is because the vertex is pulled much more
strongly to that processor by its neighbors, potentially
indicating that layout would be better—and compu-
tations more efficient—if the vertex were stored on
that remote processor. In a sense, visual migration of
vertices can indicate a better partitioning for a graph.

Data migration of vertices expands visual migra-
tion to involve physically moving the data associated
with a vertex to the processor displaying the vertex.

c© The Eurographics Association 2006.

C. Mueller et al / Distributed Force-Directed Graph Layout and Visualization

Data migration eliminates the communication associ-
ated with drawing vertices on remote displays and re-
stores the proper behavior of the local repulsive forces.
However, data migration has severe performance im-
plications. Migrating a vertex involves passing a ver-
tex and all of its edges (including any additional data
attached to the vertex and edges) to a different proces-
sor, notifying all processors with vertices adjacent to
that vertex of the move, and assimilating the vertex
into its new owner’s data structure. Data migration
within the Parallel Boost Graph Library is particu-
larly expensive, requiring (in the worst case) reallo-
cation of the graph data structure on each compute
node. Moreover, data migration can introduce load-
balancing problems when a large number of vertices
migrate to only a few compute nodes. For instance,
the compute node displayed in the upper-left corner
of Figure 5 contains a disproportionate number of ver-
tices due to migration.

4. Methods

We implemented the distributed graph layout algo-
rithm using the Parallel Boost Graph Library [GL05]
over MPI and visualized the results on a tiled display
using Chromium. Rendering nodes were connected to
the display nodes using Chromium’s tilesort SPU,
enabling distributed sort-last rendering.

We tested this visualization environment using ran-
domly generated graphs from three different models:
Erdös-Renyi, Power Law, and Small World graphs.
Erdös-Renyi graphs, also known as random graphs,
randomly join pairs of vertices. Power-Law graphs ex-
hibit a power-law distribution in the degree of vertices,
as seen in graphs such as the Web graph. Small-world
graphs exhibit a regular local structure with many
small cliques and several long-range connections that
bring together otherwise unrelated groups.

For each graph type, we constructed graphs with be-
tween n = 500 and n = 8000 vertices and distributed
these graphs across 1, 2, 4, and 8 processors. The re-
sulting distributed graphs were rendered on an 8-node
display wall. The number of edges in the graphs de-
pend on the type of graph: Erdös-Renyi graphs con-
tained approximately 10n edges, Power Law graphs
contained from 2 to 12 thousand edges, and Small
World graphs contained 10n edges. The graphs were
partitioned across the nodes in the visualization clus-
ter. Small-world graphs had optimal partitions, mini-
mizing cross-processor edges; Erdös-Renyi and Power
Law graphs, on the other hand, exhibited poor, ran-
dom partitioning.

Our visualization cluster consisted of 8 nodes with
two AMD Opteron 246 processors and 8GB RAM per
node running Fedora Core 2 with the kernel upgraded

 1

 10

 100

 8 4 2 1

W
al

l C
lo

ck
 T

im
e

fo
r

10
0

F
ra

m
es

 (
s)

of Processors

Small-World
Power Law

Erdos-Renyi
10 FPS

 1

 10

 100

 8 4 2 1
W

al
l C

lo
ck

 T
im

e
fo

r
10

0
F

ra
m

es
 (

s)

of Processors

Small-World
Power Law

Erdos-Renyi
10 FPS

Figure 6: Scalability with the display enabled (top)
and disabled (bottom) for 2000 vertex graphs.

to 2.6.10. The eight nodes contained GeForce 5950Fx
graphics cards with 128MB video memory, running X
and connected by Gigabit Ethernet. We used LAM-
MPI 7.1.1, Chromium 1.8, and the current develop-
ment version of the Parallel BGL. All times were mea-
sured using wall clock time covering the execution of
the algorithm and the setup code, excluding command
line parsing. The algorithm was executed for 100 itera-
tions, which was sufficient to stabilize the layout. With
the display enabled, the graph was rendered once per
iteration.

4.1. Results

We evaluated the performance and scalability of our
distributed graph visualization environment on a vari-
ety of randomly-generated graphs, measuring the costs
of various algorithm features and of the distributed
rendering infrastructure itself. We were particularly
interested in whether the distributed layout algorithm
itself is scalable and if it can be harnessed to provide
animated visualizations of graph layout on a tiled dis-
play wall at interactive frame rates.

Scalability Figure 6 illustrates the wall-clock times
when executing 100 iterations of our distributed graph
layout algorithm on graphs with 2000 vertices. With
the display disabled (bottom), the algorithm provides
excellent scalability with near-linear scaling up to 8

c© The Eurographics Association 2006.

C. Mueller et al / Distributed Force-Directed Graph Layout and Visualization

processors. Scalability was similar with the display en-
abled, with less steep curves due to the time taken
by the rendering infrastructure. With the display en-
abled, we required four processors to achieve inter-
active frame rates of 10 FPS or better for all graph
types with 2000 vertices. At 8000 vertices, scalabil-
ity remained reasonable and we were able to achieve
acceptable frame rates of 2–5 FPS.

Display Costs Figure 7 illustrates the costs of ren-
dering the distributed graphs to the tiled display wall.
The display cost is the time difference between runs
with the display system enabled and disabled (all
other variables are fixed). The left graph shows the
average display cost per frame, which was generally
under .1 second. The relative display cost is the ratio
of the display cost to the overall execution time with
the display enabled. For identical graphs, the absolute
display costs were stable against of the number of pro-
cessing nodes and increased relative to the size of the
graph, roughly following a power curve. The relative
display cost increased with the number of processors,
suggesting that that the amount of time spent in the
algorithm decreased at a faster rate than the perfor-
mance of the display system. However, the relative
display cost decreased as the number of vertices in-
creased (right graph), minimizing the overall impact
of the display system for larger graphs. For the sizes
tested, the display costs generally fell between 20%
and 80% of the overall run time. The absolute cost
per frame was almost always below 0.1 second of a
second and typically below 0.05 second. For 8000 node
Erdös-Renyi graphs the display cost per frame peaked
at .29 seconds. Thus, for almost all graphs tested, the
display system was able to maintain interactive rates.

4.2. Discussion

The distributed algorithm produced similar layouts
to the single-processor version. Power law and Erdös-
Renyi graphs, with high connectivity, were always dif-
ficult to interpret and generally settled to groups of
vertices in the center of the display area. However,
observing the evolution of the layout provided insight
into the overall structure of both graph types. Small
world graphs, on the other hand, provide interpretable
layouts in all cases. On a single processor, small world
graphs tend to form rings and looped curves. As the
number of vertices grows and the display space is filled,
multiple ’knots’ form, obscuring the overall structure.
With multiple processors, the portion of the graph
assigned to each processor formed its own local loop
that was connected to the adjoining loops on remote
processors by tight clusters of edges, making it easier
to explore local structure on individual displays while
discerning the overall structure across all displays, as
illustrated in Figure 2(b).

For multiple processors, we colored the vertices and
edges by the process number that owned the vertex.
In the case of edges that overlapped, an edge is col-
ored by the vertex that last drew it. While useful for
debugging, coloring partitions of the graph also made
it easier to interpret large, dense graphs. With a sin-
gle color, overlapping edges and close vertices add a
large amount of visual noise to the image. Arbitrar-
ily coloring groups of edges using a small number of
colors helped disambiguate the structure in dense re-
gions. With vertex migration enabled, the coloring
provided a visual anchor for collections of vertices as
they moved from screen to screen.

5. Future Work

Figure 8: Distributed graph layout of a 1,000 node
small world graph on an 8-node rendering cluster.

There are a few immediate opportunities for contin-
uing study of distributed graph layout and rendering.
The most important is scaling up to larger display
clusters. While large computation clusters are rela-
tively easy to configure, larger display clusters present
additional challenges. Display walls require a large
amount of physical space, and all of the rendering
nodes must contain graphics hardware that is not typ-
ically found in compute clusters. Finally, the software
used to drive the display wall, while technically sound,
requires extensive configuration and expertise to use.

The initial partitioning of the vertices has a direct
effect on the final layout. Because the algorithm does
not allow vertex migration, vertices assigned to the
same processor will always have a stronger effect on
each other than distant nodes. Thus, a good partition-
ing should assign vertices that are most related to the
same processor.

While we have done a basic study of repulsion and
vertex migration, there are many additional strategies
we could employ that are aware of the physical layout
of the display. By taking into account the “display
physics”, we believe that we can improve the display
of large, distributed graphs.

c© The Eurographics Association 2006.

C. Mueller et al / Distributed Force-Directed Graph Layout and Visualization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 8 4 2 1

A
ve

ra
ge

 C
os

t P
er

 F
ra

m
e

(s
ec

on
ds

)

Number of Processors

Erdos-Renyi
Small World
Power Law

10 FPS

 100

 80

 60

 40

 20
 8000 4000 2000 1000 500

R
el

at
iv

e
D

is
pl

ay
 C

os
t (

%
)

Graph Size

Small World
Erdos-Renyi
Power Law

Erdos-Renyi
Power Law

Small World

Figure 7: The average display cost per frame (left) was almost always under .1 second, allowing for interactive
frame rates from the graphics system. The outliers are from 8000 node Erdös-Renyi graphs, the most densely
connected graphs tested. The relative display costs (right) decreased with the size of the graph. The results here
are for 8000 node graphs using the 8 processor configuration.

6. Conclusion

The availability of affordable parallel computing sys-
tems and tiled display walls, combined with the grow-
ing demand for interactive applications that support
complex data sets, opens up the opportunity to de-
velop a new class of applications that take advan-
tage of cluster resources for large-data applications.
Occupying the space between traditional workstation
tools and off-line parallel applications, these applica-
tions will provide high-end analytical tools to users for
real-time data analysis.

In this paper, we described an adaptation of a force-
directed graph layout algorithm for interactive use on
a computing cluster. Using MPI and the Parallel BGL
for graph layout and Chromium for distributed render-
ing, we attained interactive frame rates on problems
that are not interactive on a single workstation. We
were also able to effectively display graphs using a
tiled display wall that would be uninterpretable on a
smaller display. Using the combined approach of paral-
lel processing and distributed rendering demonstrates
the feasability of developing visualization applications
that scale to environments that span multiple com-
puters and contain complex data.

Acknowledgments

This work was supported by NSF grant EIA-0131354
and by a grant from the Lilly Endowment. We are
grateful to John Huffman and Frederick Myers of the
Advanced Visualization Laboratory at Indiana Uni-
versity, who built and maintained the visualization
clusters we used for this work.

References

[ADWM04] Adai A., Date S., Wieland S., Mar-
cotte E.: LGL: Creating a map of protein function

with an algorithm for visualizing very large biolog-
ical networks. Journal of Molecular Biology 340, 1
(June 2004), 179–190.

[AKGN99] Abello J., Koutsofios E., Gansner
E. R., North S. C.: Large networks present visual-
ization challenges. SIGGRAPH Computer Graphics
Newsletter 33, 3 (August 1999).

[FR91] Fruchterman T., Reingold E.: Graph
drawing by force-directed placement. Software–
Practice and Experience 21, 11 (1991), 1129–1164.

[GL05] Gregor D., Lumsdaine A.: The Paral-
lel BGL: A generic library for distributed graph
computations. In Parallel Object-Oriented Scien-
tific Computing (POOSC) (July 2005).

[HHN∗02] Humphreys G., Houston M., Ng
R., Frank R., Ahern S., Kirchner P. D.,
Klosowski J. T.: Chromium: a stream-processing
framework for interactive rendering on clusters.
In SIGGRAPH ’02: Proceedings of the 29th an-
nual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 2002), ACM
Press, pp. 693–702.

[JM04] Jünger M., Mutzel P. (Eds.): Graph
Drawing Software. Springer, 2004.

[Kit06] Kitware: ParaView. http://www.

paraview.org/, 2006.

[RRJ∗04] Renambot L., Rao A., Jeong R. S. B.,
Krishnaprasad N., Vishwanath V., Chan-
drasekhar V., Schwarz N., Spale A., Zhang
C., Goldman G., Leigh J., Johnson A.: SAGE:
the Scalable Adaptive Graphics Environment. In
Proceedings of WACE (2004).

c© The Eurographics Association 2006.

