Eurographics Symposium on Parallel Graphics and Visualization (2007)

Jean M. Favre, Luis Paulo dos Santos, and Dirk Reiners (Editors)

Interactive Particle Visualization with Advanced Shading
Models using Lazy Evaluation

Christiaan P. Gribble! and Steven G. Parker?

1Visual Simulation Group, Department of Computer Science, Grove City College
2Scientific Computing & Imaging Institute, School of Computing, University of Utah

Abstract

Farticle-based simulation methods are used to model a wide range of complex phenomena and to solve time-
dependent problems of various scales. Effective visualizations of the resulting state will communicate subtle
changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as
it evolves. We describe a visualization process targeting upcoming, highly parallel multicore desktop systems that
enables interactive navigation and exploration of large particle datasets rendered with illumination effects from
advanced shading models. These expensive illumination effects are evaluated lazily by decoupling interactive dis-
play and high quality rendering. We explore the performance characteristics of this approach and demonstrate its

effectiveness using several large particle datasets.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and Tech-
niques 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Particle methods are commonly used to simulate complex
phenomena in a wide variety of scientific domains. Using
these techniques, computational scientists model such phe-
nomena as a system of discrete particles that obey certain
laws and possess certain properties. Particle-based simula-
tion methods are particularly attractive because they can be
used to solve time-dependent problems on scales from the
atomic to the cosmological.

Frequently, millions of particles are required to capture
the behavior of a system accurately. Such massive simula-
tions lead to very large, very complex datasets, making in-
teractive visualization a difficult task. Moreover, the need to
simultaneously visualize both the large- and small-scale fea-
tures within the data further exacerbate these issues. An ef-
fective particle visualization method will communicate sub-
tle changes in the three-dimensional structure, spatial organi-
zation, and qualitative trends within the data as a simulation
evolves, as well as enable easier navigation and exploration
of the data through interactivity.

As particle-based simulations continue to grow in size
and complexity, effective visualization of the resulting state
becomes increasingly problematic. In particular, two issues
arise. First, these datasets are difficult to visualize interac-
tively because of their size. An effective visualization algo-
rithm must be capable of rendering such a large number of
particles efficiently. Second, the intricacies of complex data
are difficult to convey sensibly. Particle methods often sim-
ulate complex objects with subtle features that interact in
complex ways, and detecting the salient features within the
data is a critical step in correctly interpreting the simulation

(© The Eurographics Association 2007.

results. Unfortunately, the proper way to communicate this
information is not well-understood by the visualization or
perception communities.

Visualization systems typically employ local shading
models when rendering large datasets. Local shading models
are efficient, do not introduce shading artifacts that could be
misinterpreted as artifacts in the underlying data, and pro-
vide cues about the orientation of a surface because the local
properties at a given point are considered during shading.
Other surfaces in the environment are not considered, how-
ever, so effects from the interaction of light with these sur-
faces are either ignored or crudely approximated.

A recent psychophysical study has demonstrated that ad-
vanced illumination effects can aid attempts to comprehend
important features within complex particle datasets [GP06].
In contrast to purely local models, advanced shading mod-
els such as ambient occlusion and physically based diffuse
interreflection provide more accurate approximations to the
light transport equation [ICG86, Kaj86] and capture illumi-
nation effects that can enhance the perception of complex
shapes with subtle features.

Unfortunately, advance shading models that simulate
global effects are computationally expensive, and current al-
gorithms are not particularly well-suited to interactive use.
We describe an interactive particle visualization process in
which the computational limitations of expensive illumina-
tion effects are mitigated by evaluating these effects lazily.
The results are stored in per-particle texture maps, called
dynamic luminance textures (DLTs), which are then cached
and reused throughout an interactive session. The algorithm
targets upcoming, highly parallel multicore desktop com-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

38 C. P. Gribble & S. G. Parker / Interactive Particle Visualization ... using Lazy Evaluation

puter systems and enables interactive navigation and explo-
ration of large particle datasets rendered with illumination
effects from advanced shading models.

2. Background and Related Work

This research is motivated by the need to visualize data from
a particle-based simulation technique called the material
point method (MPM) [SZS94, SZS95]. MPM is a particle-
in-cell [Har64] simulation technique that is particularly well-
suited to problems with high deformations and complex ge-
ometries. While we demonstrate our approach using MPM
data from simulations of structural mechanics problems, our
approach is applicable to particle data from other simulation
methods and other application domains as well.

2.1. Particle Visualization

Investigators typically use particle visualization to assist
efforts in data analysis and feature detection, as well as
in debugging ill-behaved solutions. One approach to par-
ticle visualization projects the particle values to a three-
dimensional grid, and the transformed data is then visual-
ized using standard techniques such as isosurface render-
ing [LC87] and direct volume rendering [Lev88].

Grid-based representations are suitable for some, but not
all, particle visualization tasks. The limited resolution of the
grid itself can be problematic: fine structural details within
the data may be lost. To alleviate this issue, the grid can
be refined, either uniformly or adaptively. However, inves-
tigators are often interested in simultaneously examining
both the large- and small-scale structures within the data,
so grid-based visualization techniques may not be appropri-
ate. Additionally, interpolation may hide features or prob-
lems present in the original particle data. For example, small
particles that have extremely high velocities may be invalid,
but the influence of such particles can be masked by interpo-
lation. Moreover, interpolation and isosurface extraction can
be time-consuming tasks, particularly for large datasets.

Particles can also be represented directly by simple, iconic
shapes called glyphs. For many applications, a sphere or an
ellipsoid is a natural representation of an individual particle.
Glyph-based representations are able to preserve the fine de-
tails within the data while maintaining the large-scale three-
dimensional structure of the entire domain. The resulting vi-
sualizations are particularly useful for the data analysis and
code development tasks that investigators often perform.

Several efforts have explored techniques to render large
numbers of spheres efficiently, from rasterization on mas-
sively parallel processors [KPH97], visualization clus-
ters [LMCO04], custom hardware [ZTHO03, ZHC*04], and
programmable graphics hardware [GGSP06] to interactive
ray tracing on tightly coupled supercomputers [BGG™*06]
and highly parallel multicore systems [GIK™].

Our approach targets upcoming, highly parallel multicore
desktop systems. The current implementation leverages the
Manta interactive ray tracing system [BSP06], which has

been designed for both interactivity and flexibility. This sys-
tem has been shown to scale efficiently to large numbers of
processors for complex visualization tasks [SBB*06].

2.2. Interactive Global Illumination

Interactively rendering images of complex environments
with full global illumination computed in every frame
currently remains out of reach. However, several render-
ing algorithms offer alternatives for efficient computation
of global illumination effects. These techniques generally
query data structures that store illumination samples of the
environment, or maintain interactivity by limiting the num-
ber and cost of paths traced during each frame.

For example, systems based on ray tracing or rasterization
can include global illumination by precomputing and stor-
ing the effects, and later using the results during interactive
rendering. Such an approach requires a representation of the
precomputed solution that is appropriate for use in an inter-
active renderer. Several such representations have appeared
in the literature, ranging from illumination maps [Arv86]
and grid-based structures [GSHG98] to representations in
complex bases like spherical harmonics [RHO1,SKS02] and
non-linear wavelets [NRH03, NRHO4].

Advanced illumination effects can also be sampled lazily
during interactive rendering, and the samples can then be
cached and reused when appropriate. As with precompu-
tation, this method requires a representation of the com-
puted results that is suitable for caching, as well as the abil-
ity to reuse the cached samples. Additionally, these tech-
niques require the ability to detect out-of-date samples that
must be recomputed. Methods such as the irradiance vol-
ume [GSHGY8], the render cache [WDGO02, WDP99], and
several others utilize this approach.

Other algorithms decouple parts of the rendering process
to facilitate better user interaction and faster image gener-
ation [BDT99, WDP99, WDGO02]. Typically these methods
decompose the interactive pipeline into two distinct, asyn-
chronous components: an interaction loop that responds to
user input, and a high quality rendering engine that contin-
ually updates the image as quickly as possible. These ap-
proaches provide a responsive environment with which the
user interacts, but maintain image quality by employing an
expensive rendering engine.

3. Dynamic Luminance Textures

We seek practical methods that include effects from ad-
vanced shading models in an interactive particle visualiza-
tion process. One possible approach involves precomputed
luminance textures (PLTs) [GP06], in which per-particle tex-
ture maps are used to capture illumination effects from ad-
vanced shading models. Unfortunately, this approach im-
poses lengthy preprocessing phases in which the luminance
textures are generated for every particle in a particular
dataset. Then, the results are typically compressed to im-
prove manageability of the resulting data.

(© The Eurographics Association 2007.

C. P. Gribble & S. G. Parker / Interactive Particle Visualization . .. using Lazy Evaluation 39

Interactive Rendering Engine Luminance Texture Cache Texture Generation Engine

Threads Request Queue Threads

Valid: true

Valid: false Valid: true
Requested: Lrue Requested: true
Valid: false Valid: true -
Requested: true Requested: true

Requested: true

o
'4
R e ﬁ % ﬁ @

L}

Figure 1: Major components of the DLT particle visualization pipeline. The interactive rendering engine responds to user input,
displays the currently visible particles, and generates texture requests (left). The luminance texture cache manages outstanding
requests and completed textures (middle). The texture generation engine asynchronously satisfies outstanding texture requests

using Monte Carlo path tracing (right).

The approach described here is motivated by lazy evalu-
ation of illumination effects. Rather than generate the per-
particle luminance textures during a preprocessing phase,
the DLT approach evaluates the user-specified shading
model on-the-fly during interactive visualization.

The DLT algorithm consists of three components. The
first is an interactive rendering engine that responds to user
input, displays the currently visible particles, and generates
luminance texture requests for these particles on-the-fly. The
second is a texture generation engine based on Monte Carlo
path tracing [Kaj86]; this engine asynchronously satisfies
outstanding texture generation requests. The third compo-
nent is a luminance texture cache that manages the requests
and makes completed textures available for use in subse-
quent frames. These components are illustrated in Figure 1.

3.1. Interactive Rendering Engine

The interactive front-end responds to user input and displays
the currently visible particles. During rendering, the status of
the texture corresponding to a visible particle is determined
by first querying the luminance texture cache. If the texture
is valid, the values in the appropriate texels are used dur-
ing shading. Specifically, the appropriate (u,v) texture space
coordinate of a visible point is computed, the four values re-
quired to bi-linearly interpolate the luminance value at that
point are queried, and the resulting value is multiplied by
the color of the particle. However, if the texture is invalid,
a request is submitted to the texture cache and the particle
is temporarily shaded using the Lambertian shading model.
The results of this process are depicted in Figure 2.

In our current implementation, the Manta interactive ray
tracing system [BSPO6] serves as the interactive front-end.
Two important features were added to this system to support
the DLT algorithm. First, Manta was extended to support ef-
ficient rendering of large, time-varying particle datasets us-
ing multilevel grids [PMS*99]. Second, a material shader

(© The Eurographics Association 2007.

that either interpolates textured luminance values or gener-
ates texture requests and temporarily shades particles using
Lambertian shading and shadows was added to the system.
Although we currently employ the Manta framework for in-
teractive display, a front-end based on programmable graph-
ics hardware could be modified to support DLTs as well.

3.2. Texture Generation Engine

The texture generation engine satisfies outstanding texture
generation requests. When work is available, the engine de-
queues the request and allocates memory for the texture.
Then, samples in the (u,v) parameter space of the texture are
generated and mapped to the corresponding particle. Rays
originating at these points are traced through the scene ac-
cording to the user-specified shading model, and the result-
ing luminance values are stored in the corresponding texel.
When the texture is complete, the status of the appropriate
entry in the cache is updated.

In the DLT approach, textures are generated on-the-fly,
so the texture generation engine must communicate with
the texture cache. We have implemented two types of tex-
ture generation engines within the Manta framework: inter-
nal and external. Experimentation shows that the internal en-
gine typically provides the desired performance characteris-
tics [Gri06], and we describe the details here.

With internal texture generation, Manta rendering threads
process outstanding requests. These threads (or some subset
of them) dedicate a user-specified portion of the per-frame
rendering time to texture generation via Manta’s transaction
processing framework [BSPO6]. A parallel callback is first
registered during initialization. The threads invoke the call-
back at the beginning of every frame and dynamically switch
to texture generation, processing outstanding requests for the
user-specified time interval. When the control timer expires,
texture generation ceases (even if outstanding requests re-
main) and the threads proceed to interactive rendering. Tex-
ture generation within Manta is illustrated in Figure 3.

40 C. P. Gribble & S. G. Parker / Interactive Particle Visualization ... using Lazy Evaluation

Figure 2: Interactive rendering and asynchronous luminance texture generation. The interactive rendering engine responds to
user input, displays the currently visible particles, and generates luminance texture requests for these particles on-the-fly. The
texture generation engine asynchronously satisfies these requests using Monte Carlo path tracing. (In these images, completed
textures have been artificially brightened to draw attention; in practice, the results of using luminance textures are more subtle.)

Manta rendering pipeline

T

. Generate textures . Render frame
I:l Display frame . Frame barrier

Figure 3: Texture generation in Manta. Texture genera-
tion requests are processed by a parallel callback executed
within the Manta pipeline. When the rendering threads in-
voke the callback, some user-specified portion of the total
frame time is dedicated to texture generation before render-
ing the current frame.

This process imposes an upper bound on the achievable
frame rate. For example, if the rendering threads dedicate
0.03 seconds to texture generation, the highest achievable
frame rate will be 30 frames per second. Similarly, this ap-
proach places a lower bound on the texture generation la-
tency. If 0.03 seconds are dedicated to texture generation,
then the minimum latency will be 0.03 seconds.

3.3. Luminance Texture Cache

The luminance texture cache is a globally accessible data
structure that manages the state related to dynamically gen-
erated textures. In particular, the cache stores completed tex-
tures and makes the results available for use by the interac-
tive front-end. Requests for new luminance textures are also
managed by the cache and communicated to the texture gen-
eration engine via the request queue.

When a request is processed by the texture generation
engine, memory for the texture is allocated, if necessary.
The memory corresponding to a particular texture is reused

whenever possible, as in the case of invalidating the cur-
rently valid entries within the cache in response to changes
in the underlying geometry or lighting configurations. Once
memory for the texture is available, the texture generation
engine satisfies the request as described above. Upon com-
pletion, the result is cached and the status of the appropriate
entry is updated, indicating that the texture is available for
use in subsequent frames.

New texture requests are handled by the request queue.
When the interactive rendering engine encounters a visible
particle, the cache is queried concerning the state of the cor-
responding texture. If the texture has not yet been requested,
either a unique time stamp or a priority measure is generated
for the current particle, the request is stored at the appro-
priate position within the queue, and the status of the corre-
sponding particle is updated.

We have implemented three request scheduling strate-
gies: first-in, first-out (FIFO); last-in, first-out (LIFO);
and priority-based scheduling. Experimentation shows that
priority-based scheduling provides the desired performance
characteristics [Gri06], and we describe the details here.

With priority-based texture request scheduling, each re-
quest is assigned a priority, and the request queue sorts out-
standing requests such that the request with the highest pri-
ority always resides at the front of the queue.

Some issues with this scheme deserve attention. For ex-
ample, this approach requires an appropriate priority metric.
Both the FIFO and LIFO strategies are implicitly priority-
based schemes. The priority of each request is determined
by a unique time stamp, and the requests are ordered ac-
cordingly: ascending order (oldest first) in the FIFO queue,
and descending order (newest first) in the LIFO queue. The
requests are implicitly sorted because the time stamp is a
monotonically increasing function.

With explicit priority-based scheduling, a more compli-
cated priority metric is necessary to overcome the implicit
ordering resulting from the time stamp function. In gen-
eral, requests corresponding to the currently visible parti-
cles should be given preference over those generated earlier,

(© The Eurographics Association 2007.

C. P. Gribble & S. G. Parker / Interactive Particle Visualization . ..

using Lazy Evaluation 41

BVE&E

Bullet-2 Bullet-7 Cylinder-6 Cylinder-22

particles 569523 549128 214036 212980
Data size 13.04 MB 12.57 MB 6.53 MB 6.50 MB
Frame rate 5.20 fps 3.59 fps 2.74 fps 2.46 tps

Fireball-10 Fireball-12 JP8-128 JP8-173
particles 954903 951449 834271 809533
Data size 14.57 MB 14.52 MB 22.28 MB 21.62 MB
Frame rate 3.54 fps 3.11 fps 3.40 fps 2.85 fps

Table 1: Particle datasets used to evaluate the DLT approach. These datasets exhibit a wide variety of sizes and geometric
complexity, and each represents a single time step of the full simulation. We evaluate a working implementation of the DLT
approach using the viewpoints and time steps shown above. (Frame rates reflect performance while servicing outstanding

texture generation requests.)

which argues for an ordering based on timestamps. How-
ever, interactions between a strict time-based ordering and
the Manta rendering engine result in distracting artifacts be-
cause, in this case, requests are always generated in a very
specific order. Thus, the following heuristic is used to com-
pute the priority of each request: P(x) = T'(x) — D(x), where
the priority P(x) of a request for particle x is the difference
between the time 7 (x) that request is generated and the dis-
tance D(x) from the particle to the current viewpoint. This
simple metric biases request ordering towards particles that
have been encountered recently and that are close to the cur-
rent viewpoint. While several other heuristics can be used,
user experience shows that this heuristic does not lead to vi-
sually distracting artifacts and ensures that particles encoun-
tered more recently are given preference. In addition, this
metric can be evaluated almost as quickly as the time stamp
alone, requiring just one additional operation.

A data structure capable of dynamically ordering the re-
quests such that the highest priority request is always at the
front of the queue is also required with this strategy. We cur-
rently implement the priority queue using a tree-based heap
structure. With this design, pushing and popping operations
can be implemented in a straightforward manner, and the or-
dering constraint does not impose measurable overhead.

4. Results

To quantify the performance of the DLT approach, we use
the datasets depicted in Table 1. The results reported in
this section were gathered by rendering several frames at
512 x 512 resolution using a 16 core Opteron machine with
2.6 GHz processors and 64 GB of physical memory.

(© The Eurographics Association 2007.

We first quantify the performance of priority-based
scheduling. Textures are generated using physically based
diffuse interreflection, 16 x 16 texels, and 49 samples per
texel. Each rendering thread dedicates at least 0.04 seconds
to texture generation. The results are reported in Table 2.

We observe that the number of textures generated in each
frame is greater than the number of threads, indicating that
the average texture requires less than the maximum 0.04 sec-
onds that threads dedicated to texture generation in each
frame. Also, the priority queue minimizes the number of new
requests generated in each frame. Currently, the size of the
queue is, in theory, unbounded as low-priority requests are
not dropped; instead, the priorities of previously requested
textures are periodically updated if the corresponding par-
ticles remain visible for a user-specified time interval. In
practice, however, the size of the request queue immediately
grows to the number of particles visible in the first frame,
and never grows larger than the maximum number of parti-
cles visible during an interactive session.

The DLT approach generates and caches textures for only
the particles that are visible throughout an interactive ses-
sion. As a result, the memory required to store dynamically
generated textures is considerably less than that required by
PLTs. Table 3 compares the memory consumed by textures
in the cache with the size of uncompressed and PCA com-
pressed PLTs. The number of visible particles is significantly
less than the total number of particles in each dataset, rang-
ing from 2.38% (Bullet-7) to roughly 12% (Cylinder-22).
These data indicate a dramatic reduction in the number of
textures that must be resident in memory. The memory con-

42 C. P. Gribble & S. G. Parker / Interactive Particle Visualization ... using Lazy Evaluation

Dataset # generated Latency
Bullet-2 21.40 0.04
Bullet-7 22.88 0.06
Cylinder-6 27.36 0.20
Cylinder-22 21.04 0.15
Fireball-10 37.72 0.15
Fireball-12 33.60 0.14
JP8-128 23.92 0.09
JP8-173 19.20 0.08

Table 2: Priority-based request scheduling. The average
number of textures generated in each frame and the aver-
age latencies (in seconds) for requests in the queue using
16 threads on the test machine. In general, priority-based
scheduling provides desirable performance characteristics.

Dataset % visible DLT PLT PLT-PCA
Bullet-2 4.5% 6.3 139.0 4.4
Bullet-7 2.4% 32 1341 4.2
Cylinder-6 11.6% 6.3 52.3 1.6
Cylinder-22 11.9% 6.2 52.0 1.6
Fireball-10 8.1% 18.8 233.1 7.3
Fireball-12 73% 17.0 2324 7.3
JP8-128 77% 15.6 203.7 6.4
JP8-173 89% 17.6 197.6 6.2

Table 3: Memory requirements for dynamically generated
luminance textures. The memory (in megabytes) consumed
by DLTs is a factor of 8.24—42.03 less than that con-
sumed by uncompressed PLTs, and is comparable to that
required by PCA compressed PLTs storing eight basis tex-
tures. (PLT/PLT-PCA data after Gribble [Gri06].)

sumed by uncompressed PLTs can be reduced by factor of
8.24-42.03 using uncompressed, dynamically generated lu-
minance textures. The requirements are thus comparable to
those of PLTs that have been compressed using PCA; the use
of DLTs does not impose any texture compression phases,
however.

We also examine the impact of DLTs on interactive vi-
sualization performance. Lambertian shading with shadows
serves as the baseline. To isolate the overhead imposed by
cache query operations, the texture generation control timer
is set to expire immediately. As the data in Table 4 show,
these operations reduce performance by roughly a factor of
three. Performance drops by an additional factor of 2.81—
6.06 while outstanding requests are processed, but still per-
mits fluid interactions with the data. However, when all out-
standing requests have been satisfied, performance increases
dramatically, achieving frame rates that are a factor of 1.10—
1.58 higher than Lambertian shading with shadows.

Finally, the graph in Figure 4 summarizes the scaling
characteristics of our current implementation. While the
number of texture requests satisfied in a given frame scales
roughly linearly with the number of threads, interactive per-

02

Average efficiency

Outstanding —+—
Completed
Ideal —w—
0 .
1 2 4 8 16
Number of threads

Figure 4: Average efficiency achieved by the DLT algo-
rithm. Interactive performance does not improve when us-
ing a large number of threads to service outstanding texture
generation requests (red), but the algorithm scales very effi-
ciently once these requests have been satisfied (green,).

formance does not improve substantially when using a large
number of threads to service these requests. In this case, the
operations imposed by texture generation and texture cache
updates constitute a bottleneck and thwart efficient scaling.
Once these requests have been satisfied, however, the al-
gorithm scales to 16 threads with approximately 80% effi-
ciency.

5. Conclusions and Future Work

We have introduced a particle visualization algorithm that
lazily evaluates advanced shading models, permitting inter-
active navigation and exploration of large particle datasets
rendered with expensive illumination effects. The algorithm
targets upcoming, highly parallel multicore desktop systems
and exhibits efficient scaling to 16 threads on the test ma-
chine.

The algorithm presented here brings perceptually benefi-
cial effects from advanced shading models to the interactive
visualization of particle-based simulation data. Moreover,
because an investigator can interact with the whole dataset,
a clear understanding of the state of each particle and its re-
lationship to the full computational domain can be achieved.

Discussion. The DLT approach is designed to address some
of the limitations inherent to an approach based on precom-
putation [GP06]. For example, the memory consumed by dy-
namic luminance textures is much less than that required by
precomputing textures for every particle. As a result, texture
compression is not required. Lazy evaluation also removes
restrictions regarding the geometry and lighting configura-
tions used during interactive visualization. Luminance tex-
tures can simply be recomputed by invalidating cached en-
tries if these configurations change during interactive visual-
ization. The DLT approach requires neither lengthy prepro-
cessing phases nor texture compression, has lower memory
requirements, and enables a wider range of interactions with
the data than approaches based on precomputation.

(© The Eurographics Association 2007.

C. P. Gribble & S. G. Parker / Interactive Particle Visualization . .. using Lazy Evaluation 43

Texture requests

Dataset Lambertian Query only Outstanding Completed
Bullet-2 46.13 17.44 5.20 72.95
Bullet-7 26.22 13.63 3.59 37.75
Cylinder-6 29.84 9.23 2.74 39.59
Cylinder-22 26.56 8.50 2.46 37.90
Fireball-10 59.17 21.44 3.54 65.37
Fireball-12 4492 16.75 3.11 55.24
JP8-128 25.71 9.55 3.40 38.79
JP8-173 24.78 8.85 2.85 35.81

Table 4: Impact of DLTs on interactive visualization performance. Frame rates achieved using 16 threads on the test machine.
Cache query operations reduce performance by roughly a factor of three, and texture generation has an additional impact.
However, once outstanding texture generation requests have been satisfied, frame rates improve significantly.

We have evaluated the performance of our approach using
a system with eight 2.6 GHz dual-core processors (16 pro-
cessing cores total). The evaluation of our implementa-
tion shows good texture generation latencies and interactive
frame rates on this reasonably priced machine. However, the
theoretical peak available on the test machine is substantially
less than the raw FLOPS provided by a single 3.2 GHz Cell
processor [BWSFO06]. With the advent of massively multi-
core processors, compute power exceeding that of the test
machine will be available on commodity desktop systems
in the near future. The DLT algorithm is designed for such
highly parallel architectures, and the scaling characteristics
indicate that it can be modified to accommodate future archi-
tectures in a straightforward manner. The anticipated plat-
forms thus suggest that our algorithm may facilitate interac-
tive particle visualization with effects from advanced shad-
ing models on a single, very inexpensive processor.

Future work. Currently, computing an accurate solution to
the light transport equation at highly interactive rates re-
mains out-of-reach, even on multicore platforms like the test
machine used to benchmark our implementation. As a re-
sult, some aspects of the DLT algorithm may warrant fur-
ther investigation. For example, improving the performance
of luminance texture generation by aggressive optimization
of the path tracing engine would be valuable. Specifically,
leveraging the coherent grid traversal algorithm for parti-
cle data [GIK*] during texture generation is one promis-
ing direction for improving performance. In addition, tex-
ture level-of-detail could be used to reduce texture genera-
tion time for perceptually unimportant particles. Such an ap-
proach would require a human behavior model incorporat-
ing factors from both space navigation [FTM97] and visual
attention [SCCDO04]. Different representations for storing il-
lumination effects may also provide more accurate or more
compact results. Spherical harmonics is just one of several
alternatives that could be explored.

As discussed above, the memory required by the DLT ap-
proach is significantly less than that of uncompressed PLTs,
so we have not explored texture compression in this con-
text. However, there is nothing inherent to the DLT approach
that precludes the use of texture compression with dynami-

(© The Eurographics Association 2007.

cally generated textures. Incremental compression schemes,
for example, those based on principal component analy-
sis [OPK*04, Wen03,ZYKO06], can be used to further reduce
the memory required by dynamically generated textures.

Although the number of texture requests satisfied in a
given frame scales roughly linearly with the number of tex-
ture generation threads, interactive performance does not im-
prove significantly when using a large number of threads.
This analysis indicates that the luminance texture cache rep-
resents the current bottleneck in our implementation. A de-
centralized caching scheme in which each thread manages
some part of the cache may help to alleviate the bottleneck,
particularly as more and more processing cores become
available. More sophisticated request scheduling heuristics
may also be helpful in this context, and could be combined
with texture level-of-detail to further improve performance.

It would also be interesting to explore new global illumi-
nation algorithms that trade fidelity for computational com-
plexity, and vice versa. For example, developing computa-
tionally simple, perceptually-equivalent approximations to
indirect illumination is one promising direction. Likewise,
it would be valuable to investigate specialized acceleration
structures for on-demand computation of global illumina-
tion effects. Exploring these problems will potentially lead
to more general solutions that can then be tailored to inter-
active particle visualization.

Parts of this work were funded by the DOE ASC program.
References

[Arv86] ARvVO J.: Backward ray tracing. Developments in Ray
Tracing (Siggraph *86 Course Notes) 12 (August 1986).

[BDT99] BALA K., DORSEY J., TELLER S.: Radiance inter-
polants for accelerated bounded-error ray tracing. ACM Trans-
actions on Graphics 18, 3 (1999), 213-256.

[BGG*06] BIGLER J., GUILKEY J., GRIBBLE C., PARKER S.,
HANSEN C.: A case study: Visualizing material point method
data. In Proceedings of the Eurographics/IEEE Symposium on
Visualization (May 2006), pp. 299-306.

[BSP0O6] BIGLER J., STEPHENS A., PARKER S. G.: Design for
parallel interactive ray tracing systems. In Proceedings of the

44 C. P. Gribble & S. G. Parker / Interactive Particle Visualization ... using Lazy Evaluation

2006 IEEE Symposium on Interactive Ray Tracing 2006 (2006),
pp. 187-196.

[BWSF06] BENTHIN C., WALD 1., SCHERBAUM M.,
FRIEDRICH H.: Ray tracing on the CELL processor. In
Proceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing (September 2006), pp. 15-23.

[FTM97] FuUJisHIRO 1., TANAKA R., MARUYAMA T.: Human
behavior-oriented adaptive texture mapping: A time-critical ap-
proach for image-based virtual showrooms. In Proceedings of the
1997 Virtual Reality Annual International Symposium (VRAIS
'97) (March 1997), pp. 4-11.

[GGSPO6] GRIBBLE C. P., GUILKEY J. E., STEPHENS A.],
PARKER S. G.: Visualizing particle-based simulation data on
the desktop. In British HCI 2006 Workshop on Combining Visu-
alization and Interaction to Facilitate Scientific Exploration and
Discovery (September 2006), pp. 1-8.

[GIK*] GRIBBLE C. P, IzE T., KENSLER A., WALD 1.,
PARKER S. G.: A coherent grid traversal approach to visualizing
particle-based simulation data. /EEE Transactions on Visualiza-
tion and Computer Graphics. To appear.

[GP06] GRIBBLE C. P., PARKER S. G.: Enhancing interactive
particle visualization with advanced shading models. In ACM
Siggraph Third Symposium on Applied Perception in Graphics
and Visualization (July 2006), pp. 111-118.

[Gri06] GRIBBLE C. P.: Interactive Methods for Effective Parti-
cle Visualization. PhD thesis, University of Utah, 2006.

[GSHGY98] GREGER G., SHIRLEY P., HUBBARD P., GREEN-
BERG D.: The irradiance volume. IEEE Computer Graphics
and Applications 18, 2 (1998), 32-43.

[Har64] HARLOW F. H.: The particle-in-cell method for fluid
dynamics. Methods for Computational Physics 3 (1964), 319—
343.

[ICG86] IMMEL D. S., COHEN M. F., GREENBURG D. P.: A
radiosity method for non-diffuse environments. In Proceedings
of Siggraph 1986 (1986), pp. 133-142.

[Kaj86] KAIJIYA J. T.: The rendering equation. In Proceedings of
Siggraph 1986 (1986), pp. 143-150.

[KPH97] KROGH M., PAINTER J., HANSEN C.: Parallel sphere
rendering. Parallel Computing 23,7 (1997), 961-974.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: a high
resolution 3D surface construction algorithm. In International
Conference on Computer Graphics and Interactive Techniques
(1987), pp. 163-169.

[Lev88] LEVOY M.: Display of surfaces from volume data. JEEE
Computer Graphics and Applications 8, 3 (1988), 29-37.

[LMCO04] LIANG K., MONGER P., COUCHMAN H.: Interactive
parallel visulization of large particle datasets. In Eurograph-
ics Symposium on Parallel Graphics and Visualization (2004),
pp. 111-118.

[NRHO3] NG R., RAMAMOORTHI R., HANRAHAN P.: All-
frequency shadows using non-linear wavelet lighting approxima-
tions. ACM Transactions on Graphics 22, 3 (2003), 376-381.

[NRHO4] NG R., RAMAMOORTHI R., HANRAHAN P.: Triple
product wavelet integrals for all-frequency relighting. ACM
Transactions on Graphics 23, 3 (2004), 477-487.

[OPK*04] OzAwWA S., PANG S., KASABOV N., ZHANG C.,
GUESGEN H. W.: A modified incremental principal component
analysis for on-line learning of feature space and classifier. In Pa-
cific Rim International Conference on Artificial Intelligence (Au-
gust 2004), pp. 231-240.

[PMS*99] PARKER S., MARTIN W., SLOAN P.-P. J., SHIRLEY
P., SMITS B., HANSEN C.: Interactive ray tracing. In Symposium
on Interactive 3D Graphics (1999), pp. 119-126.

[RHOI] RAMAMOORTHI R., HANRAHAN P.: An efficient rep-
resentation for irradiance environment maps. In Proceedings of
Siggraph "01 (August 2001), pp. 497-500.

[SBB*06] STEPHENS A., BOULOS S., BIGLER J., WALD 1.,
PARKER S. G.: An application of scalable massive model in-
teraction using shared memory systems. In Proceedings of the
Eurographics Symposim on Parallel Graphics and Visualization
(May 2006), pp. 19-26.

[SCCD04] SUNDSTEDT V., CHALMERS A., CATER K., DEBAT-
TISTA K.: Top-down visual attention for efficient rendering
of task related scenes. In Vision, Modelling and Visualization
(November 2004).

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Transactions on Graph-
ics 21, 3 (2002), 527-536.

[SZS94] SuULSKY D., ZHOU S., SCHREYER H. L.: A particle
method for history dependent materials. Computer Methods in
Applied Mechanical Engineering 118 (1994), 179-196.

[SZS95] SuLsKY D., ZHOU S., SCHREYER H. L.: Applica-
tion of a particle-in-cell method to solid mechanics. Computer
Physics Communications 87 (1995), 236-252.

[WDGO02] WALTER B., DRETTAKIS G., GREENBERG D. P.: En-
hancing and optimizing the render cache. In Proceedings of Eu-
rographics Workshop on Rendering (2002), pp. 37-42.

[WDP99] WALTER B., DRETTAKIS G., PARKER S.: Interactive
rendering using the render cache. In Eurographics Workshop on
Rendering (1999), Eurographics Association, pp. 19-30.

[Wen03] WENG J.: Candid covariance-free incremental principal
component analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence 25, 8 (2003), 1034—-1040.

[ZHC*04] ZEMCIK P., HEROUT A., CRHA L., Fucik O., Tu-
PEC P.: Particle rendering engine in DSP and FPGA. In 11"
International Conference and Workshop on the Engineering of
Computer-based Systems (ECBS '04) (2004), p. 361.

[ZTHO03] ZEMCIK P., TISNOVSKY P., HEROUT A.: Particle ren-
dering pipeline. In 19" Spring Conference on Computer Graph-
ics (2003), pp. 165-170.

[ZYKO06] ZHAO H., YUEN P. C., KwoK J. T.: A novel incre-
mental principal component analysis and its application for face
recognition. IEEE Transactions on Systems, Man, and Cybernet-
ics (Part B) 36, 4 (2006), 873-886.

(© The Eurographics Association 2007.

