
EUROGRAPHICS 2003 / J. Flores and P. Cano Interactive Demos & Posters

Multi-resolution modelling of terrains by using non restricted
quadtree triangulation.

A.Aguilera∗,J.C.Torres+,F.Feito∗

∗ Dpt. de Informática. Universidad de Jaén.
angel, ffeito@ujaen.es

+ Dpt. Lenguajes y Sistemas Informáticos. Univ. de Granada.
jctorres@ugr.es.

Abstract
The interactive visualization of terrains requires the processing of a high amount of data in real time, usually it is
not possible to work with all of them on main in memory.
In this work we present, a method which solves the above problem by means of using spatial indices (quadtree).
For that, the terrains are divided into square cells, each of them having a quadtree, which will only be refined
up to a the detail level depending on the observer position. With this, allaus to reduce the time used for terrains
visualization.

1. Introduction

Frequently, the terrain is shown as a regular mesh of heights,
stored in a bi-dimensional array, so, the occupied space is
reduced to a height value for each cell. In order to visualize
the terrain, we must draw two triangles on each cell. The size
of the cell must be small enough so that, when drawing the
terrain, its splitting into triangles cannot be appreciated. This
strategy forces us to store the whole surface with the same
detail level and to draw all triangles in the mesh whenever
an image is generated, which limits the possibility of inter-
action. Because of that, several multi-resolution representa-
tions for terrains have been proposed 1, 2, 3, 4, 5, which select
and draw in highest resolution only those areas of the terrain
which are can be distinguired by the observer in a given mo-
ment. Furthermore, Renato Pajarola present new algorithms
of the restricted quadtree triangulation 6.

In this work, the use of a spatial index on a representation
in a regular mesh is proposed in order to select the resolu-
tion level to be used on each area of terrain automatically,
allowing the generation of triangles of strips, with the aim of
accelerating the representation. The work is based on three
basic ideas:
- The use of a 2D variant of Bono indices ("Branch on need
octree"), introduced to accelerate the representation of volu-
metric models 2, so as to index the terrain.
- The storage of quadtrees in linear arrays in order to reduce

the space.
- To develop the fact that the quadtree is always complete
as to calculate topological relations among adjacent cells,
which are not sisters in the tree.

2. Multi-resolution model for the representation of
terrains.

Our model is based on the use of spatial indices for the multi-
resolution representation of terrain. In order to be able to
represent the terrain with spatial indices, firstly we have to
divide it into cells. The representation with a square cell has
a big limitation, as it only lets us represent square-shaped
terrains. To solve this problem, we will use different smaller
cells instead of using only a big one.

With this multiple representation of cells, we may repre-
sent not only terrains sized 2n ∗ 2n , but also with terrains
sized 2n ∗ i∗2n ∗ j, where n means the maximum number of
subdivisions a cell can reach, and i and j are the number of
cells throughout the length and breadth of the terrain respec-
tively. With this last representation, the fitting to real terrains
is better than the previous one, as the part of terrain to be
rejected would be 2n − 1 points at worst, either for X or Y
coordinate.

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org

A.Aguilera,J.C.Torres,F.Feito / Multi-resolution modelling of terrains by using non restricted quadtree triangulation

2.1. Spatial indices

Once the division model of cells has been selected, we have
to study how it will be represented so that it takes all the nec-
essary information. It can be carried out in different ways,
the most appropriate one being the quadtree representation
2, so that each node of the tree corresponds to a cell of ter-
rain. As we have seen in the above section, the terrain will
be formed by i x j cells and a quadtree for each of them.
Graphically, the model would be:(See figure 1, 2, 3):

Figure 1: Terrain obtained after applying division criteria.

Figure 2: quadtree corresponding to cell number 0.

Figure 3: quadtrees corresponding to 1st and 5th cells.

Each of these nodes of the tree represents one of the cells
or subcells of terrain, storing in it information of coordinates
it occupies, a flag, the number of brother node if it exists (-
1 if the node is on the border of terrain), and the highest
and lowest height of all points the cell includes. Due to the
facility to represent each of these quadtrees, we have used a
vector.In order to get it, we have stored the tree in a vector, so
that the position of a node is calculated from its position in
the tree. So, with a given node, we would calculate where the
son and father nodes are by means of the following formulae:

1) Son[i] = f ather ∗4 + i+1, i ∈ [0,3],
2) Father = (Son− 1)/4.

So as to calculate the position of adjacent nodes, we must
distinguish between two cases. Firstly, if the node is on the

border of the cell, its brother node will belong to the other
cell; secondly, if the node is inside the cell, the direction of
node in binary will be taken; bits which represent X and Y
coordinates will be separated and an arithmetical operation
with the corresponding coordinate will be carried out. The
figure 4 shows this process.

Figure 4: Obtaining adjacent nodes.

When calculating the brother node belonging to other cell,
we must take into account that this saves a constant number
of nodes, so the following formulae can be applied:
-Right node=Node-Noo f 1stnode from present level.
-Left node=Node+Noo f 1stnode from present level.
-Upwards node=Node+(Noo f 1stnode from present level*2).
-Downwards node=Node-(Noo f 1stnode from present level*
2).

2.2. Definition of structures used

2.2.1. Heights array of terrain points

As heights of terrain points have been obtained following a
uniform distribution, we can use a bi-dimensional array in
order to save such information, so that this array would have
a 2n ∗ i∗2n ∗ j size.

This array will be used to get the height of each of the
points we will draw on the screen, in such a way that from
the coordinates of a point in the space, we will obtain the
height of it.

2.2.2. Cells array

In order to be able to represent the model described before,
we need a quadtree pointers array. The size of this array will
be i∗ j, being "i" and "j" the values calculated previously for
a terrain sized 2n ∗ i∗2n ∗ j puntos.

In addition to the quadtree pointer, each cell in this array
will store the coordinate it takes up in the terrain, the maxi-
mum and minimum height of all points composing that cell,
a flag to let us know if the cell is divided and the number of
right-hand sister cell. If this cell does not exist for being on
the border of terrain, we will give it the value -2.

To represent this array a vector has been used, numbering
each of the nodes in an orderly way, so that having the cell
number, we can know which row and column it occupies in
our terrain.

c© The Eurographics Association 2003.

A.Aguilera,J.C.Torres,F.Feito / Multi-resolution modelling of terrains by using non restricted quadtree triangulation

2.2.3. The quadtrees

As we have explained above, in order to represent a terrain,
we will use a spatial indices model, particularly quadtrees.
The quadtree root node represents a square cell which is not
divided, in such a way that as we go down the tree, the nodes
would represent a part of the cell, the cell shape and the sub-
cells.

In each node of the tree we will gather information on X
and Y coordinates which that cell occupies, the right-hand
sister cell and the maximum and minimum heights of all
points composing that cell, and a flag showing whether that
node is divided or not.

2.3. Definition of criterion for cells division

Both in the array of cells and in each node of quadtree, we
store a flag. The flag is used for knowing how our terrain is
drawn every at moment, since with it we can obtain the final
nodes of either all quadtrees or array of cells.

In order to mark the final nodes of all quadtrees, that is,
to carry out a pruning so as to eliminate the non-relevant
parts for the drawing on screen, we have defined an inde-
pendent function which goes over each cell of the initial ar-
ray and sees whether they comply with the division criterion.
If it does, it enables a flag, and then we observe the four son
nodes so as to see whether they comply with the division cri-
terion. This process is done again repeatedly up to the node
does not comply with the criterion or we come to a leaf node,
marking these nodes with a 0 value in flag.

The criterion used for marking the nodes is based on prox-
imity and terrain roughness, that is, so as to know whether a
cell must be divided or not, we will calculate the distance of
that cell from the observer (who is placed in a point inside or
outside the terrain), and the cell roughness (noting the differ-
ence of heights between its highest and lowest points) These
two values are compared with a threshold so that, if it excels
its value, then the cell is divided, not happening this when it
does not.

2.4. Drawing the terrain

In order to draw the terrain in an efficient way, we obtain
the nodes strips composing it. For that, we make use of the
marked run of nodes to see whether every last node is a start-
ing node of a strip or not. If the node is the initial one of a
strip, then we store its number in a list. Later, this list will
be used for drawing the terrain, taking each of its nodes and
going over the quadtree so as to see whether the brother node
on the right has the same level of subdivision. The drawing
of the strip will go on untilit arrives to a node which does not
have the same level as the initial one.

The aim of using strips for drawing the terrain is the good
use of the optimization that OpenGL has for drawing them.

Drawing the terrain with different strips sized, the discon-
tinuity or gaps which appear when having two strips together
formed by nodes with different level inside the quadtree, tak-
ing form the so-called Crack (See figure 5).
One way of avoiding Cracks is using the fan-shaped draw-

Figure 5: A and b terrain drawn with crack. C terrain drawn
without crack.

ing. In order to draw a terrain according to our model, we
will use strips and fans, so that, when all nodes surrounding
the node to be drawn have higher or same resolution level,
then, we will draw that node as a strip, and if not, as a fan.
In this way we avoid discontinuities among different strips.
The algorithm used for marking and obtaining the last nodes,
which are the initial nodes of a strip, is(See fig. 6 and 7).

Procedure obtain_terrain(array_cells terrain)
Begin

For num_cell=0 to num. of cells
If(divide_cell(terrain, num_cell)== True)

then
terrain[num_cell].flag=1
obtain_tree(terrain[num_cell].tree, 0)

else
terrain[num_cell].flag=0
If (terrain[obt_cell_brot_left(num_cell)].flag==1)

then
Add num_cell to list of initval nodes of a strip

end_if
end_if

end_for
end

Figure 6: Algorithm to obtain the terrain.

2.5. Drawing the visible area of terrain

In order to optimize the drawing process, frustrum culling
is made, drawing only the cells which are visible by the ob-
server in a given moment.

For that, a new flag for each terrain of cell is added, in
such a way that when the flag is enabled, that cell will be
near the observer and visible for him. In this way we do not
have to draw the whole terrain, if it is not visible for the
observer. With this culling, the number of frames per second
we can draw is increased.

c© The Eurographics Association 2003.

A.Aguilera,J.C.Torres,F.Feito / Multi-resolution modelling of terrains by using non restricted quadtree triangulation

Procedure obtain_tree(type_tree tree, int node)
begin

if(divide_node(tree, node)==True) AND (not_s_leaf(node))
then

obtain_sons(node, son1, son2, son3, son4)
obtain_tree(tree, son1)
obtain_tree(tree, son2)
obtain_tree(tree, son3)
obtain_tree(tree, son4)
tree[node].flag=1

else
tree[nodo].flag=0
if (tree[obt_node_brot_left(node)].flag==1)

then
Add num_cell a list of initval nodes of a strip

end_if
end_if

end

Figure 7: Algorithm to obtain a cell.

The algorithm for the representation of terrain only go
over the cells visible by the observer and generating the
number of cells implied in the visualization. For that, two
variables which will influence on the number of cells gen-
erated for visualization, must be taken into account: on the
one hand, the direction on which the observer moves, and on
the other one, the terrain depth to be drawn. As the terrain is
stored in a cells vector, we to apply the following formulae
in order to obtain the numbers of cells implied:

- The observer is moving upwards:
n=((x-j)+num_cells_x*(y+i)+i)

- The observer is moving to the left:
n=(x+num_cells_x*(y+i-j)-i-1)

- The observer is moving downwards:
n=((x-j)+num_cells_x*(y-i-1)+i)

- The observer is moving to the right:
n=(x+num_cells_x*(y+i-j)+i)

where X and Y are the coordinates where the observer is,
"num_cells_x" is the number of cells in a row, and "j" and
"i" are the indices of the following nested loops:

for (i=0;i<DEPTH;i++)
for(j=0;j<(i*2+2);j++)

In the figures 8 and 9 we can see how the culling would
affect the terrain drawing, placing the camera from the ob-
server point of view and from upwards.

3. Conclusion and future works

A method for the representation of terrains has been devel-
oped by using quadtrees, which have let us increase the num-
ber of frames per second.

As future works, will study the criterion of cells division

Figure 8: Last terrain with culling.

Figure 9: Wireframe model with culling.

in order to see which of them is more suitable for obtaining
a better representation of terrain.

References

1. V.Scheib, J.Haber, M.C.Lin, H.Seidel “Efficient Fitting
and Rendering of Large Scattered Data Sets Using Sub-
division Surfaces.”, EG’02 Volume 21, Number 3. 1

2. J. Wilhelms, A. Van Gelder. Octrees for faster iso-
surface generation. ACM Transactions on Graphics,
11(3):201–227, July 1992. 1, 2

3. P.Cignoni, E.Puppo, R.Scopigno, 1997. Representation
and Visualization of Terrain Surfaces at Variable Reso-
lution. The Visual Computer, (13), 5, July 1997. 1

4. L. De Floriani, P. Marzano, E. Puppo. Multiresolution
Models for Topographic Surface Description. The Vi-
sual Computer, (12), 7:317–345. 1

5. E. Puppo. Variable Resolution Terrain Surfaces. Gen-
ova University, tech.rep DISI.TR96-6 1

6. Renato Pajarola. Large Scale Terrain Visualization Us-
ing The Restricted Quadtree Triangulation. Vis 98. 1

c© The Eurographics Association 2003.

	p55: 55
	p57: 57
	p56: 56
	p58: 58

