
EUROGRAPHICS 2012/ A. Fusiello, M. Wimmer Poster

GPU Texture Level of Abstraction in 3D Scenes

Jordane Suarez∗, Farès Belhadj∗ and Vincent Boyer∗

∗L.I.A.S.D. Université Paris 8, France
{suarez, amsi, boyer}@ai.univ-paris8.fr

Abstract
We present a method to dynamically control the texture level of abstraction in 3D scene. Level of abstraction con-
sists in visualizing the necessary and sufficient information in an image. Texture generation is generally realized
by a designer in a high resolutions with a low level of abstraction. Our model provides automatically texture level
of abstraction through offline and online segmentation and lets the designer define the number of colors in the
object texture.

1. Introduction

In 3D level of abstraction techniques [KST08,GTDS10] the
texture generation is neglected and has never been consid-
ered as a part of the abstraction solutions. For example view-
dependent toon shading [BTM06] provides level of abstrac-
tion as mentioned by the authors, but unfortunately only fo-
cuses on the description of a particular illumination model
and never considers the 3D model textures. It is tricky to
suppose that the texture generation belongs to the designer’s
job because it supposes that the designer creates all the nec-
essary textures for all available levels of abstraction. In con-
trast with 3D level of detail techniques where both view de-
pendent geometry and texture LOD rendering are simulta-
neously considered, the 3D level of abstraction techniques
focus only on an illumination model or geometric data of
the 3D models and never consider the texture abstraction.
We addresse the following question : how must be textured,
at different level of abstraction, a 3D polygonal mesh de-
fined with only its textures given at a high level of abstrac-
tion? Basic solutions that create abstracted textures through
2D segmentation process are not suitable: how many tex-
tures should be precomputed? how are considered negative
coordinates and repetitions?

2. Our Model

Starting with a 3D textured model, we create a texture-
object model space that takes into account how the texture is
mapped on the geometry (see section2.1). Then the segmen-
tation can be achieved with 2D image segmentation meth-
ods (see section2.2). As we are able to generate textures
with different levels of abstraction, different strategies can

be used to map texture level of abstraction on the 3D model
(see section2.3).

2.1. Histogram generation

We propose to compute a histogram that takes into account
the usage proportion of each texture in the object space. This
computation is necessary once (results can be stored and ref-
erenced by the model) and should not be recomputed dur-
ing the rendering process. Thus, for a given mesh and for
each triangleTi that composes the mesh, we compute in a
first step:So

i , the surface ofTi in the object space;St
i , the

surface ofTi projected in the texture space according to its
texture coordinatesCoordi . During this step, we extract the
extremal texture coordinates in order to manage texture rep-
etitions and negative coordinates. In a second step, we com-
putePo

i (resp.Pt
i ) by dividing eachSo

i (resp.St
i ) by the sum

of all object space surfacesSo (resp. by the sum of all tex-
ture space surfacesSt ). ThereforePo

i ×Pt
i corresponds to the

triangle area in the object space weighted by its area in the
texture space. Finally we use these proportions to compute
color occurrences in a new texture. This is done in the GPU
and the results are stored in the fragment’s alpha component.
Additive blending is enabled and, during this process, for
each texel and for each triangle that covers it, the alpha chan-
nel accumulates the quantityPo

i ×Pt
i . In order to perform

color quantities, we scanline (in CPU) the generated texture
pixels to fill a table where colors are unified and quantities
are merged. As our histogram generation is computed in the
texture-object model, texture repetition and texture deforma-
tion are treated by our GPU process.

c© The Eurographics Association 2012.

DOI: 10.2312/conf/EG2012/posters/029-030

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/posters/029-030


J. Suarez, F. Belhadj & V.Boyer / GPU Texture Level of Abstraction in 3D Scenes

2.2. Dynamic Segmentation

We propose to use the hierachical clustering algortihm
[HTF09] to produce dynamic segmentations (we have also
implemented ak-means segmentation, but results show that
hierarchical clustering gives better solution while avoiding
creation of new colors): we search among the set ofn colors,
each pair of spatially closest ones. Each pair is merged into
a new color. All configurations are saved and the process is
reiterated until convergence (only when one single color re-
mains). The entire process is realized offline and we store the
colors computed at each iteration in a line of a 2D texture.
This texture describes a colors tree where we can search for
the closest color at any level or find it using an incremen-
tal algorithm. Finally, we render the model: a GPU shader is
used to colorize each fragment using the texture previously
generated according to the texture coordinates and the initial
texture. An uniform valuel , expressing the desired level of
abstraction, is given as an input of our shader. This value is
used as thet coordinate of the generated texture. Therefore
texturing each fragment of the mesh consists in finding, for
this fragment and in the generated texture, the closest color
to the one used in the initial texture: for a given line (t) in the
generated texture (containing the set of segmented textures
colors), the closest color (s) to the initial one.

2.3. Adapting the texture level of abstraction

Our model is able to produce, in real-time, different levels of
abstraction for a 3D scene. Every function (or function com-
position) which is able to produce values in a given range
can be used as an input forl . These can be classified into
two main categories: static and dynamical-based strategies.

• Static-based strategy: to let the designer choose the level
of abstraction; depending on the significance of each ob-
ject in the scene, the user can affect a fixed value to the
object.

• Dynamic-based strategy: depending on the
depth/orientation of each object, the level of abstraction is
automatically adapted as in [BTM06]; perception based:
the level of abstraction is automatically adapted at each
frame depending on the objects meaning.

Different strategies can be simultaneously combined on
the scene, on a part of it (a model), or on multiple textures
used for a given model.

3. Results

The figure1 shows results obtained applying our model on a
complete 3D scene and gives an overview of the good behav-
ior of our model. Here different shadings (toon, edge draw-
ing, color enhancement, etc.) follow the texture abstraction;
respectively 13, 16 and 12 colors are chosen for the segmen-
tation of the terrain, the water and the sky.

The figure2 illustrates the perception-based strategy on a

Figure 1: Texture-object model space segmentation on a
complete scene.

crowd scene. We consider that characters with a gun are dan-
gerous. Using this information, we adapt the texture level of
abstraction to render other characters. Note that this scene is
composed by 57 textures, 36 Vertex Buffer Objects, 200000
polygons and we obtain 200 frames per second on a NVIDIA
Quadro FX while with a classical OpenGL rendering, we ob-
tain 300 frames per second on the same architecture.

Figure 2: Texture level of abstraction using dynamic percep-
tion based strategy

4. Conclusion and Future Work

We have presented a method that automatically generates
and dynamically uses texture levels of abstraction in a 3D
scene. As future work, first we plan to apply this model to
the visualization of crowd simulation (agent behavior, emer-
gence of group dynamics, etc.) to reduce or emphasize scene
details. Applications on NPR effects (Toon Shading, Ab-
straction) and illustration applications will also be investi-
gated.

References

[BTM06] BARLA P., THOLLOT J., MARKOSIAN L.: X-toon: an
extended toon shader. InProceedings of the 4th international
symposium on Non-photorealistic animation and rendering(New
York, NY, USA, 2006), NPAR ’06, ACM, pp. 127–132.1, 2

[GTDS10] GRABLI S., TURQUIN E., DURAND F., SILLION

F. X.: Programmable rendering of line drawing from 3d scenes.
ACM Trans. Graph. 29(April 2010), 18:1–18:20.1

[HTF09] HASTIE T., TIBSHIRANI R., FRIEDMAN J.: 14.3.12
hierarchical clustering. InThe Elements of Statistical Learn-
ing (2nd ed.)(2009), Springer N. Y., (Ed.), vol. 1, New York:
Springer, pp. 520–528.2

[KST08] KOLOMENKIN M., SHIMSHONI I., TAL A.: Demar-
cating curves for shape illustration. InACM SIGGRAPH Asia
2008 papers(New York, NY, USA, 2008), SIGGRAPH Asia ’08,
ACM, pp. 157:1–157:9.1

c© The Eurographics Association 2012.

30


