
International Workshop on Visual Analytics (2012)
K. Matkovic and G. Santucci (Editors)

Scalable Cluster Analysis of Spatial Events

I. Peca1, G. Fuchs1, K. Vrotsou1,2, N. Andrienko1 & G. Andrienko1

1 University of Bonn and Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS), Germany
2 Linköping University, Sweden

Abstract
Clustering of massive data is an important analysis tool but also challenging since the data often does not fit in
RAM. Many clustering algorithms are thus severely memory-bound. This paper proposes a deterministic density
clustering algorithm based on DBSCAN that allows to discover arbitrary shaped clusters of spatio-temporal events
that (1) achieves scalability to very large datasets not fitting in RAM and (2) exhibits significant execution time
improvements for processing the full dataset compared to plain DBSCAN. The proposed algorithm’s integration
with interactive visualization methods allows for visual inspection of clustering results in the context of the analysis
task; several alternatives are discussed by means of an application example about traffic data analysis.

Categories and Subject Descriptors (according to ACM CCS): I.5.3 [Pattern Recognition]: Clustering—Algorithms

1. Introduction

Visual analytics strives to combine automated processing
tools in a tight loop with human analyst interaction and feed-
back. This allows to utilize an analyst’s intrinsic domain
knowledge in order to appropriately choose and parametrize
computational methods, evaluate intermediate results and
guide the overall analysis process. In this regard, clustering
is an indispensable tool for the analysis of large datasets. It
can be used as a means for aggregating data to manageable
sizes, removing noise and outliers, and consequently detect-
ing structure and/or patterns in the data. A serious drawback
of purely computational cluster analysis, however, is that the
chosen cluster algorithm and set parameters are a ’black box’
with respect to the outcome. Visualization can play a key
role in helping the analyst to understand the impact of algo-
rithm choice and parameter settings on the result.

We consider the discovery and visualization of arbitrary
shaped clusters of events in space and time. An event is de-
fined as any physical or abstract discrete object having a par-
ticular position in space and time. It can be instantaneous
(point event) or it can have a temporal duration (time line).
Examples of events include geo-referenced photos, occur-
rences of earthquakes, forest fires, disease cases, and mobile
phone calls.

Clustering datasets of spatiotemporal events is challeng-
ing due to their typically vast size, which is often too large

to fit into main memory, and due to the nature of the data
which are inherently restricted by their spatiotemporal prop-
erties [AA09]. Partitioning clustering techniques, such as
K-means, are avoided because the number of clusters must
be known in advance, and also the retrieved clusters are
restricted to convex shapes. Density based clustering algo-
rithms, such as DBSCAN [EKSX96], are preferred for their
ability to extract arbitrarily shaped clusters without requiring
a priori specification of the cluster count. DBSCAN, how-
ever, operates with the entire dataset in main memory, and
does not treat space and time differently.

We present a deterministic clustering algorithm based on
DBSCAN that introduces critical improvements addressing
these challenges. The algorithm

• is scalable to large datasets, i.e. data not fitting in RAM,
• accounts for the spatiotemporal nature of the data, and
• exhibits significant improvements in execution times.

Our approach is applicable to point events as well as events
extended in space and/or in time assuming a meaningful def-
inition of spatial and temporal distances between events.

2. Related work

Density-based approaches are a popular class of clustering
algorithms, with DBSCAN [EKSX96, ABKS99] as the ini-
tial representative. DBSCAN is designed to discover clus-
ters of arbitrary shape by considering the density of objects

c© The Eurographics Association 2012.

DOI: 10.2312/PE/EuroVAST/EuroVA12/019-023

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/EuroVAST/EuroVA12/019-023

I. Peca et al. / Scalable Cluster Analysis of Spatial Events

(i.e., points in feature space) according to a user-defined
distance metric d and distance threshold εspace. The neigh-
bourhood of a point p is composed of the set of points
{Np|d(p,ni)≤ εspace}. If |Np| ≥ minPts, with minPts a
given neighbourhood size threshold, then p is a so-called
core point; otherwise it is considered a marginal point. A
point p is density-reachable from another point q iff p is
part of the neighbourhood of q and q is a core object. DB-
SCAN starts with an arbitrary point p, and all points that are
density-reachable from p are retrieved. If p is a core point,
this procedure yields a cluster. If p is a marginal point, the al-
gorithm proceeds to the next unvisited point in the database.

Clustering methods are typically memory-bound with re-
spect to the maximum data size that can be processed. Sev-
eral scalability optimizations have therefore been proposed,
most often based on sampling. In [BKKK04] a preference
subspace is defined by selecting a subset of dimensions for
each point. ‘Sampling inside DBSCAN’ [ZAC∗00] does not
save core-objects that have only cores as neighbours. This
approach, however, may lead to lost points which have to be
treated separately. ‘Sampling outside DBSCAN’ [ZAC∗00]
selects a sample of the dataset and builds separate R*-trees
for both the database and the sample. While DBSCAN is
applied only to the sample, the cluster labeling process is
applied to the entire database. However sampling techniques
rely on the appropriate choice of an efficient sample, and
must separately deal with lost points. To avoid this we do
not use sampling in our approach.

Partitioning is also employed for improving the clustering
process. In [ZSC∗00] the data are partitioned according to
their distribution characteristics. The partitions are clustered
using DBSCAN, and the partial clusters are merged. This
merging process is challenging when partitioning over mul-
tiple dimensions. We address this by ordering the data along
one dimension and processing them in contiguous blocks.

ST-DBSCAN [BK06] is a method similar to our own. It
uses two distance metrics, one for spatial and another for
non-spatial object attributes including time. To speed up
point neighbourhood queries temporal filtering (i.e., sam-
pling) is applied; moreover the paper makes very specific as-
sumptions about the temporal structure of the data, namely,
temporal neighbourhood is defined based on cyclic time
units (days, years). By contrast, our approach can handle ar-
bitrary types of temporal references.

3. Approach

The algorithm we propose is an extension of DBSCAN in-
spired by the event clustering idea presented in [AAH∗11]
and ST-DBSCAN. We adopt the existing DBSCAN algo-
rithm to larger-than-RAM spatio-temporal datasets by intro-
ducing a temporal window [t1, t2] which allows us to con-
sider smaller subsets of the data at a time. Contiguous blocks
of data (or frames), composed of objects contained in the

time window, are loaded in RAM and processed separately
by the algorithm. The algorithm works as follows:

1. The data are loaded into RAM successively in frames
which are partly overlapping (Section 3.2).

2. DBSCAN is applied to each frame using separate dis-
tance measures for space and time (Section 3.1).

3. When clustering is complete, a process is initiated for
merging clusters of neighbouring frames (Secion 3.3).

4. After merging, the RAM occupied by old frames is re-
leased and the process is repeated for subsequent frames.

The parameters needed for the proposed algorithm are:

• The spatial, εspace, and temporal, εtime, density thresholds
set by the user to define the neighbourhood (Fig. 1(a)).

• The neighbourhood size threshold minPts defining the
minimum number of points that must exist within εspace
and εtime for a point to be considered a core point.
• The time window, f rameSize, defining the size of each

frame in terms of time units, days/hours etc. This is either
set to a fixed value by the user (with a default value of 4 ·
εtime), or it may be dynamically computed for each frame
with respect to temporal data density and available RAM.

tim
e

space

εtime

εtime

εspace

εspace

p

(a) Neighbourhood

tim
e

space

Frame f2

Frame f1

t1
end

t2
start

Δt=2×εtime

(b) Data frame overlap

Figure 1: Schematic views of algorithm concepts. (a) The
cylindrical neighbourhood of a point p in the space-time do-
main. (b) The data frame overlap in the temporal domain.

3.1. Distance measures

We use two distance measures, a spatial and a temporal,
in the computation of our proposed algorithm. Spatial dis-
tance, ds, is measured by the Euclidean distance of two
objects. Temporal distance for linear time is computed by
dt(t1, t2) = |t1 − t2|, where t1 and t2 are the time interval
boundaries for two objects. Similarly, time distance can be
defined for cyclic time units.

3.2. Selection of frames

Before applying the algorithm, points are sorted in the
database with respect to the temporal attribute and then pro-
cessed in frames of chronological order. Temporal frame
boundaries are selected such that a temporal overlap ∆t =
2 · εtime between each pair of subsequent frames is intro-
duced (Fig. 1(b)). This ensures that all core points (with a

c© The Eurographics Association 2012.

20

I. Peca et al. / Scalable Cluster Analysis of Spatial Events

temporal neighbourhood size of 2 · εtime) in the overlap re-
gion are indeed detected in both frames so the corresponding
partial clusters are correctly merged in the next step (Sec-
tion 3.3). It follows that f rameSize ≥ 2 · εtime should hold.
Otherwise, frames would overlap with more than one subse-
quent frame which results in an excessive number of merge
operations, significantly degrading algorithm performance.

3.3. Merging process

DBSCAN is applied to each data frame separately. Once
clusters of two adjacent frames have been found, they are
inspected and merged if needed. There are two cases that
cover all possible situations for merging the clusters. Two
clusters from adjacent frames are merged if:

1. they share a core point in the overlapping area, or
2. they share a point that is core in one cluster, and marginal

in a core’s neighbourhood in the other.

Clusters without points in the overlapping area are ig-
nored. Cluster merging is done by updating the correspond-
ing labels: objects in the second frame are relabeled to match
the cluster id from the first frame. Using this approach the al-
gorithm revisits each object at most once.

3.4. Optimizations

To speed up the retrieval of an object’s neighbourhood
during clustering we maintain one indexing tree per
frame, specifically, an optimized R-tree using the Sort-Tile-
Recursive (STR) algorithm [RSV01]. Since the data points
are already sorted, it is possible to quickly generate an R-tree
with high space utilization for each frame separately.

Furthermore, in order to efficiently merge clusters from
different frames, we employ a cluster label-object dictionary
structure: we first identify the cluster label to be changed,
and then bulk update the actual objects associated with that
cluster label. This speeds up the merging considerably, since
the number of clusters is smaller than the number of objects.

3.5. Performance, complexity and quality

The computational complexity of the proposed method
is primarily resulting from the DBSCAN algorithm. For
each of the n entries in the dataset, their εspace and εtime
neighbourhood need to be retrieved. This can be done in
O(n · log(n)) using indexing tree structure over the spatial
dimension. In addition, the dataset is divided in k frames,
each with size ni. The time complexity of the algorithm re-
sults from querying the neighbours of each object which is
performed locally within each frame. The complexity is thus
O(∑k

i=1 nilog(ni)), where k is the number of frames, and ni is
the number of points in each frame. The computational com-
plexity is O(k ·ni · log(ni)) = O(n · log(ni)), where ni � n.
Thus, our proposed method often outperforms plain DB-
SCAN even if the entire data would fit into RAM – depend-
ing on the organization of the data, the faster neighbourhood

(a) εspace = 500, minPts = 15,
εtime = 5, f rameSize = 30

(b) εspace = 1000, minPts = 5,
εtime = 10, f rameSize = 50

Figure 2: Experiment results showing the execution times
of both plain DBSCAN (blue) and our proposed algorithm
(red) for processing the full dataset for two different repre-
sentative parameter combinations.

queries over individual frames outweighs the costs for the
chronological ordering preprocess.

Several experiments were conducted to compare the be-
haviour of the original DBSCAN algorithm and our modified
version. The experiments, given varying parameters, investi-
gated differences in computation time as data size increases
up to and beyond the maximum size fitting into RAM. Two
datasets were used for the experiments consisting of around
300,000 points each. The experiments were conducted on an
Intel R© CoreTM i3 CPU 4GB RAM 64-bit OS.

Experiment results (Fig. 2) show that our approach out-
performs original DBSCAN for large datasets. Computa-
tion times increase for both algorithms with data size, how-
ever the maximum size supported by our algorithm is far
larger. The experiments indicate that the optimal size of
the time window is 2 · εtime < f rameSize < 5 · εtime. Larger
frames offer diminishing returns since defeating the pur-
pose of frames, while 2 · εtime is the minimum size thresh-
old that ensures all core points are properly extracted to
match plain DBSCAN results after merging of frames (cf.
Sections 3.2, 3.3). Note that provided f rameSize≥ 2 · εtime,
the impact of parameter combinations for εspace, εtime and
minPts, as well as clustering results exactly match those of
plain DBSCAN.

4. Visual exploration of clustering results

We will illustrate how the proposed clustering algorithm can
be used for visual analysis of large datasets. For our exam-
ple, we use a dataset of 17,200 GPS-tracks of cars in Milan
collected over one week (∼2 million position records). Our
objective is to detect traffic jams in the city during this period
and investigate their properties. Traffic jams can be identified
through spatio-temporal clusters of slow movement events.
Using database operations, we extract position records with
speed less than 10km/h (295,000 records). We then apply our
clustering algorithm with parameters: εspace = 100m, εtime =

c© The Eurographics Association 2012.

21

I. Peca et al. / Scalable Cluster Analysis of Spatial Events

(a) Number of clusters

(b) Number of events in clusters

Figure 3: 2D histograms show-
ing aggregates of traffic jams
with respect to days (vert. axis)
and hours of day (horiz. axis).

(a) Clusters of entire week (b) Clusters of single day (Thursday)

Figure 4: Clusters represented in a space-time cube by prisms enclosing them with
respect to their start and end times, and durations. The prisms are coloured ac-
cording to spatial position: northwest is blue, northeast is purple, southeast is red,
southwest is pink.

10min, minPts = 5, and f rameSize = 50. The method finds
6,166 clusters including in total 75,691 points. Each cluster
is characterized by the number of events in it, its duration,
and start and end time. The durations of the clusters range
from 34 seconds to 242 minutes, 43% of them have duration
up to 10 minutes while very long clusters are rare.

We interactively filter out clusters with durations below 10
minutes and consider the remaining 3,513 clusters as repre-
senting traffic jams. We investigate the temporal distribution
of these traffic jams by means of two-dimensional (2D) his-
tograms with the dimensions representing the days from 1
(Sunday) to 7 (Saturday) and hours of the day from 0 to
23 (Fig. 3). The heights of the bars show counts of traf-
fic jams (Fig. 3(a)), and counts of events in the traffic jams
(Fig. 3(b)). As could be expected, traffic jams are more fre-
quent on working days rather than weekends. The count of
traffic jams peaks around hours 6 and 16. The number of
events in traffic jams peaks around 5-6h and 15-16h.

To enable further investigation of the detected traffic jams
they can be displayed in a spatial context by convex hulls
enclosing the clusters: on a map by drawing 2D polygons
around the cluster events, or in a space-time cube (STC)
[Häg70,Kra03] by prisms around the clusters with respect to
the clusters’ start and end times, and durations (Fig. 4). Fig-
ure 4(a) displays traffic jams of the entire week in the STC
coloured according to their spatial position. Traffic jams oc-
cur frequently on the northwest and northeast part of the
city. Also, clusters with long duration occur mostly on the
east, close to Linate airport. These, however, are probably
not traffic jams but usual slow movements in the airport
area. Spatial and/or temporal zooming can be applied, to
study clusters in more detail. In Figure 4(b) the STC has
been temporally zoomed to show a single day, specifically,
day 5 (Thursday) when most traffic jams occurred. Traffic

jams on the northwest occurred continuously during the day,
while on the southeast they occurred for short intervals in
the morning and in the afternoon. Also, very long (in time)
traffic jams are revealed in the northern part of the eastern
belt road in the morning and on the southern belt road in
the afternoon. Interaction with the STC gives access to ad-
ditional information about selected clusters allowing further
exploration and analysis.

As further informal verification of the proposed algo-
rithm we cross-compared the extracted traffic jams with the
results obtained using the clustering method described in
[AAH∗11] and found them to be the same.

5. Conclusion and Future Work

We proposed a deterministic event clustering algorithm
based on DBSCAN that is scalable to very large data not
fitting into main memory. The core idea is to sequentially
cluster temporal frames (subsets) of the data and then merge
them to obtain the final result. Evaluation shows a significant
performance increase in comparison to plain DBSCAN for
both data fitting in RAM and data too large to fit.

We further discussed how our proposed method is in-
tegrated with interactive visualization methods to facilitate
evaluation of parametrization choices and visual exploration
of clustering results. This combination of density-based
clustering and interactive result refinement allowed us to find
interesting traffic jam patterns in a car movement dataset.

Currently, our proposed framing scheme only considers
temporal frames. Clustering is thus still memory-bound in
cases where the minimum temporal frame size is still too
large to fit into RAM. We thus plan to investigate combining
temporal and spatial partitioning with dynamic frame sizes
for even better scalability to data with different spatial vs.
temporal density distributions.

c© The Eurographics Association 2012.

22

I. Peca et al. / Scalable Cluster Analysis of Spatial Events

References
[AA09] ANDRIENKO G., ANDRIENKO N.: Interactive cluster

analysis of diverse types of spatiotemporal data. SIGKDD Ex-
plorations 11, 2 (2009), 19–28. 1

[AAH∗11] ANDRIENKO G., ANDRIENKO N., HURTER C.,
RINZIVILLO S., WROBEL S.: From movement tracks through
events to places: Extracting and characterizing significant places
from mobility data. In IEEE Visual Analytics Science and Tech-
nology (2011), IEEE, pp. 161–170. 2, 4

[ABKS99] ANKERST M., BREUNIG M., KRIEGEL H., SANDER
J.: Optics: Ordering points to identify the clustering structure. In
ACM SIGMOD’99 Int’l Conf. on Management of Data (1999),
ACM Press, pp. 49–60. 1

[BK06] BIRANT D., KUT A.: St-dbscan: An algorithm for clus-
tering spatial-temporal data. Data & Knowledge Engineering 60
(2006), 208–221. 2

[BKKK04] BÖHM C., KAILING K., KRIEGEL H., KRÖGER P.:
Density connected clustering with local subspace preferences.
In Fourth IEEE International Conference on Data Mining (Nov.
2004), IEEE Computer Society Press, pp. 27–34. 2

[EKSX96] ESTER M., KRIEGEL H., SANDER J., XU X.: A
densisity-based algorithm for discovering clusters in large spa-
tial databases with noise. In Int’l Conf. on Knowledge Discovery
and Data Mining (1996), AAAI Press, pp. 226–231. 1

[Häg70] HÄGERSTRAND T.: What about people in regional sci-
ence? Papers in Regional Science 24 (1970), 6–21. 4

[Kra03] KRAAK M.: The space-time cube revisited from a geovi-
sualization perspective. In Proceedings of the 21st International
Cartographic Conference (ICC) (Aug. 2003), pp. 1988–1996. 4

[RSV01] RIGAUX P., SCHOLL M., VOISARD A.: Spatial
Databases: With Application to GIS. Morgan Kaufmann, 2001,
ch. Spatial Access Methods, pp. 201–266. 3

[ZAC∗00] ZHOU S., A.ZHOU, CAO J., WEN J., FAN Y., HU
Y.: Combining sampling technique with DBSCAN algorithm
for clustering large databases. In 4th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, Current Issues and
New Applications (2000), Springer-Verlag, pp. 169 – 172. 2

[ZSC∗00] ZHOU A., S.ZHOU, CAO J., FAN Y., HU Y.:
Approaches for scaling DBSCAN algorithm to large spatial
databases. Computer Science and Technology. 15, 6 (2000), 509–
526. 2

c© The Eurographics Association 2012.

23

