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Abstract
The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programma-
bility, have made graphics hardware a compelling platform for computationally demanding tasks in a wide va-
riety of application domains. In this report, we describe, summarize, and analyze the latest research in mapping
general-purpose computation to graphics hardware.
We begin with the technical motivations that underlie general-purpose computation on graphics processors
(GPGPU) and describe the hardware and software developments that have led to the recent interest in this field.
We then aim the main body of this report at two separate audiences. First, we describe the techniques used in
mapping general-purpose computation to graphics hardware. We believe these techniques will be generally useful
for researchers who plan to develop the next generation of GPGPU algorithms and techniques. Second, we survey
and categorize the latest developments in general-purpose application development on graphics hardware. This
survey should be of particular interest to researchers who are interested in using the latest GPGPU applications
in their systems of interest.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture;
D.2.2 [Software Engineering]: Design Tools and Techniques

1. Introduction: Why GPGPU?

Commodity computer graphics chips are probably today’s
most powerful computational hardware for the dollar. These
chips, known generically as Graphics Processing Units or
GPUs, have gone from afterthought peripherals to modern,
powerful, and programmable processors in their own right.
Many researchers and developers have become interested in
harnessing the power of commodity graphics hardware for
general-purpose computing. Recent years have seen an ex-
plosion in interest in such research efforts, known collec-
tively as GPGPU (for “General Purpose GPU”) computing.
In this State of the Art Report we summarize the motiva-
tion and essential developments in the hardware and soft-
ware behind GPGPU. We give an overview of the techniques
and computational building blocks used to map general-
purpose computation to graphics hardware and provide a
survey of the various general-purpose computing applica-
tions to which GPUs have been applied.

We begin by reviewing the motivation for and challenges
of general purpose GPU computing. Why GPGPU?

1.1. Powerful and Inexpensive

Recent graphics architectures provide tremendous memory
bandwidth and computational horsepower. For example, the
NVIDIA GeForce 6800 Ultra ($417 as of June 2005) can
achieve a sustained 35.2 GB/sec of memory bandwidth; the
ATI X800 XT ($447) can sustain over 63 GFLOPS (compare
to 14.8 GFLOPS theoretical peak for a 3.7 GHz Intel Pen-
tium4 SSE unit [Buc04]). GPUs are also on the cutting edge
of processor technology; for example, the most recently an-
nounced GPU at this writing contains over 300 million tran-
sistors and is built on a 110-nanometer fabrication process.

Not only is current graphics hardware fast, it is acceler-
ating quickly. For example, the measured throughput of the
GeForce 6800 is more than double that of the GeForce 5900,
NVIDIA’s previous flagship architecture. In general, the
computational capabilities of GPUs, measured by the tradi-
tional metrics of graphics performance, have compounded at
an average yearly rate of 1.7× (pixels/second) to 2.3× (ver-
tices/second). This rate of growth outpaces the oft-quoted
Moore’s Law as applied to traditional microprocessors; com-
pare to a yearly rate of roughly 1.4× for CPU perfor-
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Figure 1: The programmable floating-point performance
of GPUs (measured on the multiply-add instruction as 2
floating-point operations per MAD) has increased dramat-
ically over the last four years when compared to CPUs. Fig-
ure courtesy Ian Buck, Stanford University.

mance [EWN05]. Put another way, graphics hardware per-
formance is roughly doubling every six months (Figure 1).

Why is the performance of graphics hardware increasing
more rapidly than that of CPUs? After all, semiconductor ca-
pability, driven by advances in fabrication technology, is in-
creasing at the same rate for both platforms. The disparity in
performance can be attributed to fundamental architectural
differences: CPUs are optimized for high performance on
sequential code, so many of their transistors are dedicated to
supporting non-computational tasks like branch prediction
and caching. On the other hand, the highly parallel nature of
graphics computations enables GPUs to use additional tran-
sistors for computation, achieving higher arithmetic inten-
sity with the same transistor count. We discuss the architec-
tural issues of GPU design further in Section 2.

This computational power is available and inexpensive;
these chips can be found in off-the-shelf graphics cards built
for the PC video game market. A typical latest-generation
card costs $400–500 at release and drops rapidly as new
hardware emerges.

1.2. Flexible and Programmable

Modern graphics architectures have become flexible as
well as powerful. Once fixed-function pipelines capable
of outputting only 8-bit-per-channel color values, modern
GPUs include fully programmable processing units that
support vectorized floating-point operations at full IEEE
single precision. High level languages have emerged to
support the new programmability of the vertex and pixel
pipelines [BFH∗04, MGAK03, MTP∗04]. Furthermore, ad-
ditional levels of programmability are emerging with every
major generation of GPU (roughly every 18 months). Exam-
ples of major architectural changes in the current generation
(as of this writing) GPUs include vertex texture access, full

branching support in the vertex pipeline, and limited branch-
ing capability in the fragment pipeline. The next generation
is expected to expand on these changes and add “geome-
try shaders”, or programmable primitive assembly, bringing
flexibility to an entirely new stage in the pipeline. In short,
the raw speed, increased precision, and rapidly expanding
programmability of the hardware make it an attractive plat-
form for general-purpose computation.

1.3. Limitations and Difficulties

The GPU is hardly a computational panacea. The arithmetic
power of the GPU is a result of its highly specialized archi-
tecture, evolved over the years to extract the maximum per-
formance on the highly parallel tasks of traditional computer
graphics. The rapidly increasing flexibility of the graphics
pipeline, coupled with some ingenious uses of that flexibil-
ity by GPGPU developers, has enabled a great many appli-
cations outside the original narrow tasks for which GPUs
were originally designed, but many applications still exist for
which GPUs are not (and likely never will be) well suited.
Word processing, for example, is a classic example of a
“pointer chasing” application, which is dominated by mem-
ory communication and difficult to parallelize.

Today’s GPUs also lack some fundamental computing
constructs, such as integer data operands. The lack of inte-
gers and associated operations such as bit-shifts and bitwise
logical operations (AND, OR, XOR, NOT) makes GPUs ill-
suited for many computationally intense tasks such as cryp-
tography. Finally, while the recent increase in precision to
32-bit floating point has enabled a host of GPGPU applica-
tions, 64-bit double precision arithmetic appears to be on the
distant horizon at best. The lack of double precision hampers
or prevents GPUs from being applicable to many very large-
scale computational science problems.

GPGPU computing presents challenges even for problems
that map well to the GPU, because despite advances in pro-
grammability and high-level languages, graphics hardware
remains difficult to apply to non-graphics tasks. The GPU
uses an unusual programming model (Section 2.3), so effec-
tive GPU programming is not simply a matter of learning a
new language, or writing a new compiler backend. Instead,
the computation must be recast into graphics terms by a pro-
grammer familiar with the underlying hardware, its design,
limitations, and evolution. We emphasize that these difficul-
ties are intrinsic to the nature of computer graphics hard-
ware, not simply a result of immature technology. Computa-
tional scientists cannot simply wait a generation or two for a
graphics card with double precision and a FORTRAN com-
piler. Today, harnessing the power of a GPU for scientific
or general-purpose computation often requires a concerted
effort by experts in both computer graphics and in the par-
ticular scientific or engineering domain. But despite the pro-
gramming challenges, the potential benefits—a leap forward
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in computing capability, and a growth curve much faster than
traditional CPUs—are too large to ignore.

1.4. GPGPU Today

An active, vibrant community of GPGPU developers has
emerged (see http://GPGPU.org/), and many promis-
ing early applications of GPGPU have appeared already in
the literature. We give an overview of GPGPU applications,
which range from numeric computing operations such as
dense and sparse matrix multiplication techniques [KW03]
or multigrid and conjugate-gradient solvers for systems of
partial differential equations [BFGS03, GWL∗03], to com-
puter graphics processes such as ray tracing [PBMH02]
and photon mapping [PDC∗03] usually performed offline
on the CPU, to physical simulations such as fluid mechan-
ics solvers [BFGS03, Har04, KW03], to database and data
mining operations [GLW∗04, GRM05]. We cover these and
more applications in Section 5.

2. Overview of Programmable Graphics Hardware

The emergence of general-purpose applications on graphics
hardware has been driven by the rapid improvements in the
programmability and performance of the underlying graph-
ics hardware. In this section we will outline the evolution of
the GPU and describe its current hardware and software.

2.1. Overview of the Graphics Pipeline

The application domain of interactive 3D graphics has sev-
eral characteristics that differentiate it from more general
computation domains. In particular, interactive 3D graph-
ics applications require high computation rates and exhibit
substantial parallelism. Building custom hardware that takes
advantage of the native parallelism in the application, then,
allows higher performance on graphics applications than can
be obtained on more traditional microprocessors.

All of today’s commodity GPUs structure their graphics
computation in a similar organization called the graphics
pipeline. This pipeline is designed to allow hardware imple-
mentations to maintain high computation rates through par-
allel execution. The pipeline is divided into several stages;
all geometric primitives pass through every stage. In hard-
ware, each stage is implemented as a separate piece of hard-
ware on the GPU in what is termed a task-parallel machine
organization. Figure 2 shows the pipeline stages in current
GPUs.

The input to the pipeline is a list of geometry, expressed
as vertices in object coordinates; the output is an image in
a framebuffer. The first stage of the pipeline, the geometry
stage, transforms each vertex from object space into screen
space, assembles the vertices into triangles, and tradition-
ally performs lighting calculations on each vertex. The out-
put of the geometry stage is triangles in screen space. The
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Figure 2: The modern graphics hardware pipeline. The ver-
tex and fragment processor stages are both programmable
by the user.

next stage, rasterization, both determines the screen posi-
tions covered by each triangle and interpolates per-vertex
parameters across the triangle. The result of the rasteriza-
tion stage is a fragment for each pixel location covered by
a triangle. The third stage, the fragment stage, computes the
color for each fragment, using the interpolated values from
the geometry stage. This computation can use values from
global memory in the form of textures; typically the frag-
ment stage generates addresses into texture memory, fetches
their associated texture values, and uses them to compute the
fragment color. In the final stage, composition, fragments are
assembled into an image of pixels, usually by choosing the
closest fragment to the camera at each pixel location. This
pipeline is described in more detail in the OpenGL Program-
ming Guide [OSW∗03].

2.2. Programmable Hardware

As graphics hardware has become more powerful, one of the
primary goals of each new generation of GPU has been to
increase the visual realism of rendered images. The graph-
ics pipeline described above was historically a fixed-function
pipeline, where the limited number of operations available at
each stage of the graphics pipeline were hardwired for spe-
cific tasks. However, the success of offline rendering systems
such as Pixar’s RenderMan [Ups90] demonstrated the ben-
efit of more flexible operations, particularly in the areas of
lighting and shading. Instead of limiting lighting and shad-
ing operations to a few fixed functions, RenderMan evalu-
ated a user-defined shader program on each primitive, with
impressive visual results.

Over the past six years, graphics vendors have trans-
formed the fixed-function pipeline into a more flexible pro-
grammable pipeline. This effort has been primarily con-
centrated on two stages of the graphics pipeline: the ge-
ometry stage and the fragment stage. In the fixed-function
pipeline, the geometry stage included operations on vertices
such as transformations and lighting calculations. In the pro-
grammable pipeline, these fixed-function operations are re-
placed with a user-defined vertex program. Similarly, the
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fixed-function operations on fragments that determine the
fragment’s color are replaced with a user-defined fragment
program.

Each new generation of GPUs has increased the function-
ality and generality of these two programmable stages. 1999
marked the introduction of the first programmable stage,
NVIDIA’s register combiner operations that allowed a lim-
ited combination of texture and interpolated color values to
compute a fragment color. In 2002, ATI’s Radeon 9700 led
the transition to floating-point computation in the fragment
pipeline.

The vital step for enabling general-purpose computation
on GPUs was the introduction of fully programmable hard-
ware and an assembly language for specifying programs
to run on each vertex [LKM01] or fragment. This pro-
grammable shader hardware is explicitly designed to pro-
cess multiple data-parallel primitives at the same time. As of
2005, the vertex shader and pixel shader standards are both
in their third revision, and the OpenGL Architecture Review
Board maintains extensions for both [Ope04, Ope03]. The
instruction sets of each stage are limited compared to CPU
instruction sets; they are primarily math operations, many of
which are graphics-specific. The newest addition to the in-
struction sets of these stages has been limited control flow
operations.

In general, these programmable stages input a limited
number of 32-bit floating-point 4-vectors. The vertex stage
outputs a limited number of 32-bit floating-point 4-vectors
that will be interpolated by the rasterizer; the fragment
stage outputs up to 4 floating-point 4-vectors, typically col-
ors. Each programmable stage can access constant registers
across all primitives and also read-write registers per primi-
tive. The programmable stages have limits on their numbers
of inputs, outputs, constants, registers, and instructions; with
each new revision of the vertex shader and pixel [fragment]
shader standard, these limits have increased.

GPUs typically have multiple vertex and fragment pro-
cessors (for example, the NVIDIA GeForce 6800 Ultra and
ATI Radeon X800 XT each have 6 vertex and 16 fragment
processors). Fragment processors have the ability to fetch
data from textures, so they are capable of memory gather.
However, the output address of a fragment is always deter-
mined before the fragment is processed—the processor can-
not change the output location of a pixel—so fragment pro-
cessors are incapable of memory scatter. Vertex processors
recently acquired texture capabilities, and they are capable
of changing the position of input vertices, which ultimately
affects where in the image pixels will be drawn. Thus, vertex
processors are capable of both gather and scatter. Unfortu-
nately, vertex scatter can lead to memory and rasterization
coherence issues further down the pipeline. Combined with
the lower performance of vertex processors, this limits the
utility of vertex scatter in current GPUs.

2.3. Introduction to the GPU Programming Model

As we discussed in Section 1, GPUs are a compelling so-
lution for applications that require high arithmetic rates
and data bandwidths. GPUs achieve this high performance
through data parallelism, which requires a programming
model distinct from the traditional CPU sequential program-
ming model. In this section, we briefly introduce the GPU
programming model using both graphics API terminology
and the terminology of the more abstract stream program-
ming model, because both are common in the literature.

The stream programming model exposes the parallelism
and communication patterns inherent in the application
by structuring data into streams and expressing compu-
tation as arithmetic kernels that operate on streams. Pur-
cell et al. [PBMH02] characterize their ray tracer in the
stream programming model; Owens [Owe05] and Lefohn et
al. [LKO05] discuss the stream programming model in the
context of graphics hardware, and the Brook programming
system [BFH∗04] offers a stream programming system for
GPUs.

Because typical scenes have more fragments than ver-
tices, in modern GPUs the programmable stage with the
highest arithmetic rates is the fragment processor. A typical
GPGPU program uses the fragment processor as the compu-
tation engine in the GPU. Such a program is structured as
follows [Har05a]:

1. First, the programmer determines the data-parallel por-
tions of his application. The application must be seg-
mented into independent parallel sections. Each of these
sections can be considered a kernel and is implemented
as a fragment program. The input and output of each ker-
nel program is one or more data arrays, which are stored
(sometimes only transiently) in textures in GPU memory.
In stream processing terms, the data in the textures com-
prise streams, and a kernel is invoked in parallel on each
stream element.

2. To invoke a kernel, the range of the computation (or the
size of the output stream) must be specified. The pro-
grammer does this by passing vertices to the GPU. A
typical GPGPU invocation is a quadrilateral (quad) ori-
ented parallel to the image plane, sized to cover a rect-
angular region of pixels matching the desired size of the
output array. Note that GPUs excel at processing data in
two-dimensional arrays, but are limited when processing
one-dimensional arrays.

3. The rasterizer generates a fragment for every pixel loca-
tion in the quad, producing thousands to millions of frag-
ments.

4. Each of the generated fragments is then processed by the
active kernel fragment program. Note that every frag-
ment is processed by the same fragment program. The
fragment program can read from arbitrary global mem-
ory locations (with texture reads) but can only write to
memory locations corresponding to the location of the
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fragment in the frame buffer (as determined by the ras-
terizer). The domain of the computation is specified for
each input texture (stream) by specifying texture coordi-
nates at each of the input vertices, which are then inter-
polated at each generated fragment. Texture coordinates
can be specified independently for each input texture, and
can also be computed on the fly in the fragment program,
allowing arbitrary memory addressing.

5. The output of the fragment program is a value (or vec-
tor of values) per fragment. This output may be the final
result of the application, or it may be stored as a texture
and then used in additional computations. Complex ap-
plications may require several or even dozens of passes
(“multipass”) through the pipeline.

While the complexity of a single pass through the pipeline
may be limited (for example, by the number of instructions,
by the number of outputs allowed per pass, or by the limited
control complexity allowed in a single pass), using multiple
passes allows the implementation of programs of arbitrary
complexity. For example, Peercy et al. [POAU00] demon-
strated that even the fixed-function pipeline, given enough
passes, can implement arbitrary RenderMan shaders.

2.4. GPU Program Flow Control

Flow control is a fundamental concept in computation.
Branching and looping are such basic concepts that it can
be daunting to write software for a platform that supports
them to only a limited extent. The latest GPUs support vertex
and fragment program branching in multiple forms, but their
highly parallel nature requires care in how they are used.
This section surveys some of the limitations of branching on
current GPUs and describes a variety of techniques for iter-
ation and decision-making in GPGPU programs. For more
detail on GPU flow control, see Harris and Buck [HB05].

2.4.1. Hardware Mechanisms for Flow Control

There are three basic implementations of data-parallel
branching in use on current GPUs: predication, MIMD
branching, and SIMD branching.

Architectures that support only predication do not have
true data-dependent branch instructions. Instead, the GPU
evaluates both sides of the branch and then discards one of
the results based on the value of the Boolean branch condi-
tion. The disadvantage of predication is that evaluating both
sides of the branch can be costly, but not all current GPUs
have true data-dependent branching support. The compiler
for high-level shading languages like Cg or the OpenGL
Shading Language automatically generates predicated as-
sembly language instructions if the target GPU supports only
predication for flow control.

In Multiple Instruction Multiple Data (MIMD) architec-
tures that support branching, different processors can follow
different paths through the program. In Single Instruction

Multiple Data (SIMD) architectures, all active processors
must execute the same instructions at the same time. The
only MIMD processors in a current GPU are the vertex pro-
cessors of the NVIDIA GeForce 6 and NV40 Quadro GPUs.
All current GPU fragment processors are SIMD. In SIMD,
when evaluation of the branch condition is identical on all
active processors, only the taken side of the branch must be
evaluated, but if one or more of the processors evaluates the
branch condition differently, then both sides must be evalu-
ated and the results predicated. As a result, divergence in the
branching of simultaneously processed fragments can lead
to reduced performance.

2.4.2. Moving Branching Up The Pipeline

Because explicit branching can hamper performance on
GPUs, it is useful to have multiple techniques to reduce the
cost of branching. A useful strategy is to move flow-control
decisions up the pipeline to an earlier stage where they can
be more efficiently evaluated.

2.4.2.1. Static Branch Resolution On the GPU, as on the
CPU, avoiding branching inside inner loops is beneficial.
For example, when evaluating a partial differential equa-
tion (PDE) on a discrete spatial grid, an efficient implemen-
tation divides the processing into multiple loops: one over
the interior of the grid, excluding boundary cells, and one
or more over the boundary edges. This static branch res-
olution results in loops that contain efficient code without
branches. (In stream processing terminology, this technique
is typically referred to as the division of a stream into sub-
streams.) On the GPU, the computation is divided into two
fragment programs: one for interior cells and one for bound-
ary cells. The interior program is applied to the fragments
of a quad drawn over all but the outer one-pixel edge of the
output buffer. The boundary program is applied to fragments
of lines drawn over the edge pixels. Static branch resolution
is further discussed by Goodnight et al. [GWL∗03], Harris
and James [HJ03], and Lefohn et al. [LKHW03].

2.4.2.2. Pre-computation In the example above, the re-
sult of a branch was constant over a large domain of input
(or range of output) values. Similarly, sometimes the result
of a branch is constant for a period of time or a number
of iterations of a computation. In this case we can evalu-
ate the branches only when the results are known to change,
and store the results for use over many subsequent itera-
tions. This can result in a large performance boost. This
technique is used to pre-compute an obstacle offset array in
the Navier-Stokes fluid simulation example in the NVIDIA
SDK [Har05b].

2.4.2.3. Z-Cull Precomputed branch results can be taken
a step further by using another GPU feature to entirely skip
unnecessary work. Modern GPUs have a number of features
designed to avoid shading pixels that will not be seen. One
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of these is Z-cull. Z-cull is a hierarchical technique for com-
paring the depth (Z) of an incoming block of fragments with
the depth of the corresponding block of fragments in the Z-
buffer. If the incoming fragments will all fail the depth test,
then they are discarded before their pixel colors are calcu-
lated in the fragment processor. Thus, only fragments that
pass the depth test are processed, work is saved, and the ap-
plication runs faster. In fluid simulation, “land-locked” ob-
stacle cells can be “masked” with a z-value of zero so that
all fluid simulation computations will be skipped for those
cells. If the obstacles are fairly large, then a lot of work is
saved by not processing these cells. Sander et al. described
this technique [STM04] together with another Z-cull accel-
eration technique for fluid simulation, and Harris and Buck
provide pseudocode [HB05]. Z-cull was also used by Purcell
et al. to accelerate GPU ray tracing [PBMH02].

2.4.2.4. Data-Dependent Looping With Occlusion
Queries Another GPU feature designed to avoid drawing
what is not visible is the hardware occlusion query (OQ).
This feature provides the ability to query the number
of pixels updated by a rendering call. These queries are
pipelined, which means that they provide a way to get a
limited amount of data (an integer count) back from the
GPU without stalling the pipeline (which would occur when
actual pixels are read back). Because GPGPU applications
almost always draw quads with known pixel coverage,
OQ can be used with fragment kill functionality to get
a count of fragments updated and killed. This allows the
implementation of global decisions controlled by the CPU
based on GPU processing. Purcell et al. demonstrated this
in their GPU ray tracer [PBMH02], and Harris and Buck
provide pseudocode for the technique [HB05]. Occlusion
queries can also be used for subdivision algorithms, such as
the adaptive radiosity solution of Coombe et al. [CHL04].

3. Programming Systems

Successful programming for any development platform re-
quires at least three basic components: a high-level language
for code development, a debugging environment, and profil-
ing tools. CPU programmers have a large number of well-
established languages, debuggers, and profilers to choose
from when writing applications. Conversely, GPU program-
mers have just a small handful of languages to choose from,
and few if any full-featured debuggers and profilers.

In this section we look at the high-level languages that
have been developed for GPU programming, and the debug-
ging tools that are available for GPU programmers. Code
profiling and tuning tends to be a very architecture-specific
task. GPU architectures have evolved very rapidly, making
profiling and tuning primarily the domain of the GPU man-
ufacturer. As such, we will not discuss code profiling tools
in this section.

3.1. High-level Shading Languages

Most high-level GPU programming languages today share
one thing in common: they are designed around the idea that
GPUs generate pictures. As such, the high-level program-
ming languages are often referred to as shading languages.
That is, they are a high-level language that compiles into a
vertex shader and a fragment shader to produce the image
described by the program.

Cg [MGAK03], HLSL [Mic05a], and the OpenGL Shad-
ing Language [KBR04] all abstract the capabilities of the
underlying GPU and allow the programmer to write GPU
programs in a more familiar C-like programming language.
They do not stray far from their origins as languages de-
signed to shade polygons. All retain graphics-specific con-
structs: vertices, fragments, textures, etc. Cg and HLSL pro-
vide abstractions that are very close to the hardware, with
instruction sets that expand as the underlying hardware ca-
pabilities expand. The OpenGL Shading Language was de-
signed looking a bit further out, with many language features
(e.g. integers) that do not directly map to hardware available
today.

Sh is a shading language implemented on top of
C++ [MTP∗04]. Sh provides a shader algebra for manipu-
lating and defining procedurally parameterized shaders. Sh
manages buffers and textures, and handles shader partition-
ing into multiple passes.

Finally, Ashli [BP03] works at a level one step above
that of Cg, HLSL, or the OpenGL Shading Language. Ashli
reads as input shaders written in HLSL, the OpenGL Shad-
ing Language, or a subset of RenderMan. Ashli then auto-
matically compiles and partitions the input shaders to run on
a programmable GPU.

3.2. GPGPU Languages and Libraries

More often than not, the graphics-centric nature of shading
languages makes GPGPU programming more difficult than
it needs to be. As a simple example, initiating a GPGPU
computation usually involves drawing a primitive. Looking
up data from memory is done by issuing a texture fetch. The
GPGPU program may conceptually have nothing to do with
drawing geometric primitives and fetching textures, yet the
shading languages described in the previous section force
the GPGPU application writer to think in terms of geomet-
ric primitives, fragments, and textures. Instead, GPGPU al-
gorithms are often best described as memory and math op-
erations, concepts much more familiar to CPU program-
mers. The programming systems below attempt to provide
GPGPU functionality while hiding the GPU-specific details
from the programmer.

The Brook programming language extends ANSI C with
concepts from stream programming [BFH∗04]. Brook can
use the GPU as a compilation target. Brook streams are con-
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Figure 3: Examples of fragment program “printf” debug-
ging. The left image encodes ray-object intersection hit
points as r, g, b color. The right image draws a point at each
location where a photon was stored in a photon map. (Im-
ages generated by Purcell et al. [PDC∗03].)

ceptually similar to arrays, except all elements can be oper-
ated on in parallel. Kernels are the functions that operate on
streams. Brook automatically maps kernels and streams into
fragment programs and texture memory.

Scout is a GPU programming language designed for sci-
entific visualization [MIA∗04]. Scout allows runtime map-
ping of mathematical operations over data sets for visualiza-
tion.

Finally, the Glift template library provides a generic
template library for a wide range of GPU data struc-
tures [LKS∗05]. It is designed to be a stand-alone GPU data
structure library that helps simplify data structure design and
separate GPU algorithms from data structures. The library
integrates with a C++, Cg, and OpenGL GPU development
environment.

3.3. Debugging Tools

A high-level programming language gives a programmer the
ability to create complex programs with much less effort
than assembly language writing. With several high-level pro-
gramming languages available to choose from, generating
complex programs to run on the GPU is fairly straightfor-
ward. But all good development platforms require more than
just a language to write in. One of the most important tools
needed for successful platforms is a debugger. Until recently,
support for debugging on GPUs was fairly limited.

The needs of a debugger for GPGPU programming are
very similar to what traditional CPU debuggers provide, in-
cluding variable watches, program break points, and single-
step execution. GPU programs often involve user interaction.
While a debugger does not need to run the application at full
speed, the application being debugged should maintain some
degree of interactivity. A GPU debugger should be easy to
add to and remove from an existing application, should man-
gle GPU state as little as possible, and should execute the de-
bug code on the GPU, not in a software rasterizer. Finally, a
GPU debugger should support the major GPU programming
APIs and vendor-specific extensions.

A GPU debugger has a challenge in that it must be able
to provide debug information for multiple vertices or pixels
at a time. In many cases, graphically displaying the data for
a given set of pixels gives a much better sense of whether
a computation is correct than a text box full of numbers
would. This visualization is essentially a “printf-style” de-
bug, where the values of interest are printed to the screen.
Figure 3 shows some examples of printf-style debugging
that many GPGPU programmers have become adept at im-
plementing as part of the debugging process. Drawing data
values to the screen for visualization often requires some
amount of scaling and biasing for values that don’t fit in an
8-bit color buffer (e.g. when rendering floating point data).
The ideal GPGPU debugger would automate printf-style de-
bugging, including programmable scale and bias, while also
retaining the true data value at each point if it is needed.

There are a few different systems for debugging GPU pro-
grams available to use, but nearly all are missing one or more
of the important features we just discussed.

gDEBugger [Gra05] and GLIntercept [Tre05] are tools
designed to help debug OpenGL programs. Both are able to
capture and log OpenGL state from a program. gDEBugger
allows a programmer to set breakpoints and watch OpenGL
state variables at runtime. There is currently no specific sup-
port for debugging shaders. GLIntercept does provide run-
time shader editing, but again is lacking in shader debugging
support.

The Microsoft Shader Debugger [Mic05b], however,
does provide runtime variable watches and breakpoints for
shaders. The shader debugger is integrated into the Visual
Studio IDE, and provides all the same functionality pro-
grammers are used to for traditional programming. Unfortu-
nately, debugging requires the shaders to be run in software
emulation rather than on the hardware. In contrast, the Apple
OpenGL Shader Builder [App05b] also has a sophisticated
IDE and actually runs shaders in real time on the hardware
during shader debug and edit. The downside to this tool is
that it was designed for writing shaders, not for computation.
The shaders are not run in the context of the application, but
in a separate environment designed to help facilitate shader
writing.

While many of the tools mentioned so far provide a lot of
useful features for debugging, none provide any support for
shader data visualization or printf-style debugging. Some-
times this is the single most useful tool for debugging pro-
grams. The Image Debugger [Bax05] was among the first
tools to provide this functionality by providing a printf-like
function over a region of memory. The region of memory
gets mapped to a display window, allowing a programmer
to visualize any block of memory as an image. The Image
Debugger does not provide any special support for shader
programs, so programmers must write shaders such that the
output gets mapped to an output buffer for visualization.

The Shadesmith Fragment Program Debugger [PS03] was
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the first system to automate printf-style debugging while
providing basic shader debugging functionality like break-
points and stepping. Shadesmith works by decomposing a
fragment program into multiple independent shaders, one for
each assembly instruction in the shader, then adding output
instructions to each of these smaller programs. The effects
of executing any instruction can be determined by running
the right shader. Shadesmith automates the printf debug by
running the appropriate shader for a register that is being
watched, and drawing the output to an image window. Track-
ing multiple registers is done by running multiple programs
and displaying the results in separate windows. Shadesmith
also provides the programmer the ability to write programs
to arbitrarily scale and bias the watched registers. While
Shadesmith represents a big step in the right direction for
GPGPU debugging, it still has many limitations, the largest
of which is that Shadesmith is currently limited to debug-
ging assembly language shaders. GPGPU programs today
are generally too complex for assembly level programming.
Additionally, Shadesmith only works for OpenGL fragment
programs, and provides no support for debugging OpenGL
state.

Finally, Duca et al. have recently described a system
that not only provides debugging for graphics state but also
both vertex and fragment programs [DNB∗05]. Their system
builds a database of graphics state for which the user writes
SQL-style queries. Based on the queries, the system extracts
the necessary graphics state and program data and draws the
appropriate data into a debugging window. The system is
build on top of the Chromium [HHN∗02] library, enabling
debugging of any OpenGL applications without modifica-
tion to the original source program. This promising approach
combines graphics state debugging and program debugging
with visualizations in a transparent and hardware-rendered
approach.

4. GPGPU Techniques

This section is targeted at the developer of GPGPU libraries
and applications. We enumerate the techniques required to
efficiently map complex applications to the GPU and de-
scribe some of the building blocks of GPU computation.

4.1. Stream Operations

Recall from Section 2.3 that the stream programming
model is a useful abstraction for programming GPUs. There
are several fundamental operations on streams that many
GPGPU applications implement as a part of computing their
final results: map, reduce, scatter and gather, stream filtering,
sort, and search. In the following sections we define each of
these operations, and briefly describe a GPU implementation
for each.

4.1.1. Map

Perhaps the simplest operation, the map (or apply) operation
operates just like a mapping function in Lisp. Given a stream
of data elements and a function, map will apply the function
to every element in the stream. A simple example of the map
operator is applying scale and bias to a set of input data for
display in a color buffer.

The GPU implementation of map is straightforward.
Since map is also the most fundamental operation to GPGPU
applications, we will describe its GPU implementation in de-
tail. In Section 2.3, we saw how to use the GPU’s fragment
processor as the computation engine for GPGPU. These five
steps are the essence of the map implementation on the GPU.
First, the programmer writes a function that gets applied to
every element as a fragment program, and stores the stream
of data elements in texture memory. The programmer then
invokes the fragment program by rendering geometry that
causes the rasterizer to generate a fragment for every pixel
location in the specified geometry. The fragments are pro-
cessed by the fragment processors, which apply the program
to the input elements. The result of the fragment program
execution is the result of the map operation.

4.1.2. Reduce

Sometimes a computation requires computing a smaller
stream from a larger input stream, possibly to a single ele-
ment stream. This type of computation is called a reduction.
For example, a reduction can be used to compute the sum or
maximum of all the elements in a stream.

On GPUs, reductions can be performed by alternately ren-
dering to and reading from a pair of textures. On each render-
ing pass, the size of the output, the computational range, is
reduced by one half. In general, we can compute a reduction
over a set of data in O(logn) steps using the parallel GPU
hardware, compared to O(n) steps for a sequential reduc-
tion on the CPU. To produce each element of the output, a
fragment program reads two values, one from a correspond-
ing location on either half of the previous pass result buffer,
and combines them using the reduction operator (for exam-
ple, addition or maximum). These passes continue until the
output is a one-by-one buffer, at which point we have our
reduced result. For a two-dimensional reduction, the frag-
ment program reads four elements from four quadrants of
the input texture, and the output size is halved in both di-
mensions at each step. Buck et al. describe GPU reductions
in more detail in the context of the Brook programming lan-
guage [BFH∗04].

4.1.3. Scatter and Gather

Two fundamental memory operations with which most pro-
grammers are familiar are write and read. If the write and
read operations access memory indirectly, they are called
scatter and gather respectively. A scatter operation looks like
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the C code d[a] = v where the value v is being stored
into the data array d at address a. A gather operation is just
the opposite of the scatter operation. The C code for gather
looks like v = d[a].

The GPU implementation of gather is essentially a depen-
dent texture fetch operation. A texture fetch from texture d
with computed texture coordinates a performs the indirect
memory read that defines gather. Unfortunately, scatter is not
as straightforward to implement. Fragments have an implicit
destination address associated with them: their location in
frame buffer memory. A scatter operation would require that
a program change the framebuffer write location of a given
fragment, or would require a dependent texture write oper-
ation. Since neither of these mechanisms exist on today’s
GPU, GPGPU programmers must resort to various tricks to
achieve a scatter. These tricks include rewriting the problem
in terms of gather; tagging data with final addresses during
a traditional rendering pass and then sorting the data by ad-
dress to achieve an effective scatter; and using the vertex
processor to scatter (since vertex processing is inherently a
scattering operation). Buck has described these mechanisms
for changing scatter to gather in greater detail [Buc05].

4.1.4. Stream Filtering

Many algorithms require the ability to select a subset of ele-
ments from a stream, and discard the rest. This stream filter-
ing operation is essentially a nonuniform reduction. These
operations can not rely on standard reduction mechanisms,
because the location and number of elements to be filtered
is variable and not known a priori. Example algorithms that
benefit from stream filtering include simple data partitioning
(where the algorithm only needs to operate on stream ele-
ments with positive keys and is free to discard negative keys)
and collision detection (where only objects with intersecting
bounding boxes need further computation).

Horn has described a technique called stream com-
paction [Hor05b] that implements stream filtering on the
GPU. Using a combination of scan [HS86] and search,
stream filtering can be achieved in O(logn) passes.

4.1.5. Sort

A sort operation allows us to transform an unordered set of
data into an ordered set of data. Sorting is a classic algorith-
mic problem that has been solved by several different tech-
niques on the CPU. Unfortunately, nearly all of the classic
sorting methods are not applicable to a clean GPU imple-
mentation. The main reason these algorithms are not GPU
friendly? Classic sorting algorithms are data-dependent and
generally require scatter operations. Recall from Section 2.4
that data dependent operations are difficult to implement ef-
ficiently, and we just saw in Section 4.1.3 that scatter is
not implemented for fragment processors on today’s GPU.
To make efficient use of GPU resources, a GPU-based sort
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Figure 4: A simple parallel bitonic merge sort of eight ele-
ments requires six passes. Elements at the head and tail of
each arrow are compared, with larger elements moving to
the head of the arrow.

should be oblivious to the input data, and should not require
scatter.

Most GPU-based sorting implementations [BP04,
CND03, KSW04, KW05, PDC∗03, Pur04] have been based
on sorting networks. The main idea behind a sorting network
is that a given network configuration will sort input data
in a fixed number of steps, regardless of the input data.
Additionally, all the nodes in the network have a fixed com-
munication path. The fixed communication pattern means
the problem can be stated in terms of gather rather than a
scatter, and the fixed number of stages for a given input size
means the sort can be implemented without data-dependent
branching. This yields an efficient GPU-based sort, with an
O(n log2 n) complexity.

Kipfer et al. and Purcell et al. implement a bitonic merge
sort [Bat68] and Callele et al. use a periodic balanced sort-
ing network [DPRS89]. The implementation details of each
technique vary, but the high level strategy for each is the
same. The data to be sorted is stored in texture memory. Each
of the fixed number of stages for the sort is implemented as
a fragment program that does a compare-and-swap opera-
tion. The fragment program simply fetches two texture val-
ues, and based on the sort parameters, determines which of
them to write out for the next pass. Figure 4 shows a simple
bitonic merge sort.

Sorting networks can also be implemented efficiently us-
ing the texture mapping and blending functionalities of the
GPU [GRM05]. In each step of the sorting network, a com-
parator mapping is created at each pixel on the screen and
the color of the pixel is compared against exactly one other
pixel. The comparison operations are implemented using the
blending functionality and the comparator mapping is imple-
mented using the texture mapping hardware, thus entirely
eliminating the need for fragment programs. Govindaraju
et al. [GRH∗05] have also analyzed the cache-efficiency
of sorting network algorithms and presented an improved
bitonic sorting network algorithm with a better data access
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Figure 5: Performance of CPU-based and GPU-based sort-
ing algorithms on IEEE 16-bit floating point values. The
CPU-based Qsort available in the Intel compiler is opti-
mized using hyperthreading and SSE instructions. We ob-
serve that the cache-efficient GPU-based sorting network
algorithm is nearly 6 times faster than the optimized CPU
implementation on a 3.4 GHz PC with an NVIDIA GeForce
6800 Ultra GPU. Furthermore, the fixed-function pipeline
implementation described by Govindaraju et al. [GRH∗05]
is nearly 1.2 times faster than their implementation with
fragment programs.

pattern and data layout. The precision of the underlying sort-
ing algorithm using comparisons with fixed function blend-
ing hardware is limited to the precision of the blending hard-
ware and is limited on current hardware to IEEE 16-bit float-
ing point values. Alternatively, the limitation to IEEE 16-bit
values on current GPUs can be alleviated by using a single-
line fragment program for evaluating the conditionals, but
the fragment program implementation on current GPUs is
nearly 1.2 times slower than the fixed function pipeline. Fig-
ure 5 highlights the performance of different GPU-based and
CPU-based sorting algorithms on different sequences com-
posed of IEEE 16-bit floating point values using a PC with a
3.4 GHz Pentium 4 CPU and an NVIDIA GeForce 6800 Ul-
tra GPU. A sorting library implementing the algorithm for
16-bit and 32-bit floats is freely available for noncommer-
cial use [GPU05].

GPUs have also been used to efficiently perform 1-D and
3-D adaptive sorting of sequences [GHLM05]. Unlike sort-
ing network algorithms, the computational complexity of
adaptive sorting algorithms is dependent on the extent of dis-
order in the input sequence, and work well for nearly-sorted
sequences. The extent of disorder is computed using Knuth’s
measure of disorder. Given an input sequence I, the measure
of disorder is defined as the minimal number of elements
that need to be removed for the rest of the sequence to re-
main sorted. The algorithm proceeds in multiple iterations.
In each iteration, the unsorted sequence is scanned twice.

In the first pass, the sequence is scanned from the last el-
ement to the first, and an increasing sequence of elements
M is constructed by comparing each element with the cur-
rent minimum. In the second pass, the sorted elements in
the increasing sequence are computed by comparing each
element in M against the current minimum in I −M. The
overall algorithm is simple and requires only comparisons
against the minimum of a set of values. The algorithm is
therefore useful for fast 3D visibility ordering of elements
where the minimum comparisons are implemented using the
depth buffer [GHLM05].

4.1.6. Search

The last stream operation we discuss, search, allows us to
find a particular element within a stream. Search can also
be used to find the set of nearest neighbors to a specified
element. Nearest neighbor search is used extensively when
computing radiance estimates in photon mapping (see Sec-
tion 5.4.2) and in database queries (e.g. find the 10 nearest
restaurants to point X). When searching, we will use the par-
allelism of the GPU not to decrease the latency of a single
search, but rather to increase search throughput by executing
multiple searches in parallel.

Binary Search The simplest form of search is the binary
search. This is a basic algorithm, where an element is lo-
cated in a sorted list in O(logn) time. Binary search works
by comparing the center element of a list with the element
being searched for. Depending on the result of the compar-
ison, the search then recursively examines the left or right
half of the list until the element is found, or is determined
not to exist.

The GPU implementation of binary search [Hor05b,
PDC∗03, Pur04] is a straightforward mapping of the stan-
dard CPU algorithm to the GPU. Binary search is inher-
ently serial, so we can not parallelize lookup of a single el-
ement. That means only a single pixel’s worth of work is
done for a binary search. We can easily perform multiple bi-
nary searches on the same data in parallel by sending more
fragments through the search program.

Nearest Neighbor Search Nearest neighbor search is a
slightly more complicated form of search. In this search,
we want to find the k nearest neighbors to a given element.
On the CPU, this has traditionally been done using a k-d
tree [Ben75]. During a nearest neighbor search, candidate
elements are maintained in a priority queue, ordered by dis-
tance from the “seed” element. At the end of the search, the
queue contains the nearest neighbors to the seed element.

Unfortunately, the GPU implementation of nearest neigh-
bor search is not as straightforward. We can search a k-d tree
data structure [FS05], but we have not yet found a way to
efficiently maintain a priority queue. The important detail
about the priority queue is that candidate neighbors can be
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removed from the queue if closer neighbors are found. Pur-
cell et al. propose a data structure for finding nearest neigh-
bors called the kNN-grid [PDC∗03]. The grid approximates
a nearest-neighbor search, but is unable to reject candidate
neighbors once they are added to the list. The quality of the
search then depends on the density of the grid and the order
candidate neighbors are visited during the search. The details
of the kNN-grid implementation are beyond the scope of this
paper, and readers are encouraged to review the original pa-
pers for more details [PDC∗03, Pur04]. The next section of
this report discusses GPGPU data structures like arrays and
the kNN-grid.

4.2. Data Structures

Every GPGPU algorithm must operate on data stored in an
appropriate structure. This section describes the data struc-
tures used thus far for GPU computation. Effective GPGPU
data structures must support fast and coherent parallel ac-
cesses as well as efficient parallel iteration, and must also
work within the constraints of the GPU memory model. We
first describe this model and explain common patterns seen
in many GPGPU structures, then present data structures un-
der three broad categories: dense arrays, sparse arrays, and
adaptive arrays. Lefohn et al. [LKO05,LKS∗05] give a more
detailed overview of GPGPU data structures and the GPU
memory model.

The GPU Memory Model Before describing GPGPU data
structures, we briefly describe the memory primitives with
which they are built. As described in Section 2.3, GPU data
are almost always stored in texture memory. To maintain par-
allelism, operations on these textures are limited to read-only
or write-only access within a kernel. Write access is further
limited by the lack of scatter support (see Section 4.1.3).
Outside of kernels, users may allocate or delete textures,
copy data between the CPU and GPU, copy data between
GPU textures, or bind textures for kernel access. Lastly, most
GPGPU data structures are built using 2D textures for two
reasons. First, the maximum 1D texture size is often too
small to be useful and second, current GPUs cannot effi-
ciently write to a slice of a 3D texture.

Iteration In modern C/C++ programming, algorithms are
defined in terms of iteration over the elements of a data
structure. The stream programming model described in Sec-
tion 2.3 performs an implicit data-parallel iteration over a
stream. Iteration over a dense set of elements is usually ac-
complished by drawing a single large quad. This is the com-
putation model supported by Brook, Sh, and Scout. Complex
structures, however, such as sparse arrays, adaptive arrays,
and grid-of-list structures often require more complex iter-
ation constructs [BFGS03, KW03, LKHW04]. These range
iterators are usually defined using numerous smaller quads,
lines, or point sprites.

Generalized Arrays via Address Translation The major-
ity of data structures used thus far in GPGPU programming
are random-access multidimensional containers, including
dense arrays, sparse arrays, and adaptive arrays. Lefohn
et al. [LKS∗05] show that these virtualized grid structures
share a common design pattern. Each structure defines a vir-
tual grid domain (the problem space), a physical grid domain
(usually a 2D texture), and an address translator between the
two domains. A simple example is a 1D array represented
with a 2D texture. In this case, the virtual domain is 1D, the
physical domain is 2D, and the address translator converts
between them [LKO05, PBMH02].

In order to provide programmers with the abstraction
of iterating over elements in the virtual domain, GPGPU
data structures must support both virtual-to-physical and
physical-to-virtual address translation. For example, in the
1D array example above, an algorithm reads from the 1D
array using a virtual-to-physical (1D-to-2D) translation. An
algorithm that writes to the array, however, must convert
the 2D pixel (physical) position of each stream element to
a 1D virtual address before performing computations on
1D addresses. A number of authors describe optimization
techniques for pre-computing these address translation op-
erations before the fragment processor [BFGS03, CHL04,
KW03,LKHW04]. These optimizations pre-compute the ad-
dress translation using the CPU, the vertex processor, and/or
the rasterizer.

The Brook programming systems provide virtualized in-
terfaces to most GPU memory operations for contiguous,
multidimensional arrays. Sh provides a subset of the op-
erations for large 1D arrays. The Glift template library
provides virtualized interfaces to GPU memory opera-
tions for any structure that can be defined using the pro-
grammable address translation paradigm. These systems
also define iteration constructs over their respective data
structures [BFH∗04, LKS∗05, MTP∗04].

4.2.1. Dense Arrays

The most common GPGPU data structure is a contigu-
ous multidimensional array. These arrays are often imple-
mented by first mapping from N-D to 1D, then from 1D
to 2D [BFH∗04, PBMH02]. For 3D-to-2D mappings, Harris
et al. describe an alternate representation, flat 3D textures,
that directly maps the 2D slices of the 3D array to 2D mem-
ory [HBSL03]. Figures 6 and 7 show diagrams of these ap-
proaches.

Iteration over dense arrays is performed by drawing large
quads that span the range of elements requiring computa-
tion. Brook, Glift, and Sh provide users with fully virtualized
CPU/GPU interfaces to these structures. Lefohn et al. give
code examples for optimized implementations [LKO05].
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Figure 6:GPU-based multidimensional arrays usually store
data in 2D texture memory. Address translators for N-D ar-
rays generally convert N-D addresses to 1D, then to 2D.

Figure 7: For the special case of 3D-to-2D conversions or
flat 3D textures, 2D slices of the 3D array are packed into a
single 2D texture. This structure maintains 2D locality and
therefore supports native bilinear filtering.

4.2.2. Sparse Arrays

Sparse arrays are multidimensional structures that store only
a subset of the grid elements defined by their virtual domain.
Example uses include sparse matrices and implicit surface
representations.

Static Sparse Arrays We define static to mean that the
number and position of stored (non-zero) elements does not
change throughout GPU computation, although the GPU
computation may update the value of the stored elements. A
common application of static sparse arrays is sparse matri-
ces. These structures can use complex, pre-computed pack-
ing schemes to represent the active elements because the
structure does not change.

Sparse matrix structures were first presented by Bolz et
al. [BFGS03] and Krüger et al. [KW03]. Bolz et al. treat
each row of a sparse matrix as a separate stream and pack the
rows into a single texture. They simultaneously iterate over
all rows containing the same number of non-zero elements
by drawing a separate small quad for each row. They perform
the physical-to-virtual and virtual-to-physical address trans-
lations in the fragment stage using a two-level lookup table.
In contrast, for random sparse matrices, Krüger et al. pack
all active elements into vertex buffers and iterate over the
structure by drawing a single-pixel point for each element.
Each point contains a pre-computed virtual address. Krüger
et al. also describe a packed texture format for banded sparse
matrices. Buck et al. later introduced a sparse matrix Brook
example application that performs address translation with

Physical MemoryPage TableVirtual Domain

Figure 8: Page table address data structures can be used to
represent dynamic sparse or adaptive GPGPU data struc-
tures. For sparse arrays, page tables map only a subset of
possible pages to texture memory. Page-table-based adap-
tive arrays map either uniformly sized physical pages to
a varying number of virtual pages or vice versa. Page ta-
bles consume more memory than a tree structure but offer
constant-time memory accesses and support efficient data-
parallel insertion and deletion of pages. Example applica-
tions include ray tracing acceleration structures, adaptive
shadow maps, and deformable implicit surfaces [LKHW04,
LSK∗05, PBMH02]. Lefohn et al. describe these structures
in detail [LKS∗05].

only a single level of indirection. The scheme packs the non-
zero elements of each row into identically sized streams.
As such, the approach applies to sparse matrices where all
rows contain approximately the same number of non-zero
elements. See Section 4.4 for more detail about GPGPU lin-
ear algebra.

Dynamic Sparse Arrays Dynamic sparse arrays are similar
to those described in the previous section but support inser-
tion and deletion of non-zero elements during GPU compu-
tation. An example application for a dynamic sparse array is
the data structure for a deforming implicit surface.

Multidimensional page table address translators are an at-
tractive option for dynamic sparse (and adaptive) arrays be-
cause they provide fast data access and can be easily up-
dated. Like the page tables used in modern CPU architec-
tures and operating systems, page table data structures en-
able sparse mappings by mapping only a subset of possible
pages into physical memory. Page table address translators
support constant access time and storage proportional to the
number of elements in the virtual address space. The transla-
tions always require the same number of instructions and are
therefore compatible with the current fragment processor’s
SIMD architecture. Figure 8 shows a diagram of a sparse 2D
page table structure.

Lefohn et al. represent a sparse dynamic volume using a
CPU-based 3D page table with uniformly-sized 2D physical
pages [LKHW04]. They stored the page table on the CPU,
the physical data on the GPU, and pre-compute all address
translations using the CPU, vertex processor, and rasterizer.
The GPU creates page allocations and deletion request by
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rendering a small bit vector message. The CPU decodes this
message and performs the requested memory management
operations. Strzodka et al. use a page discretization and sim-
ilar message-passing mechanism to define sparse iteration
over a dense array [ST04].

4.2.3. Adaptive Structures

Adaptive arrays are a generalization of sparse arrays and rep-
resent structures such as quadtrees, octrees, kNN-grids, and
k-d trees. These structures non-uniformly map data to the
virtual domain and are useful for very sparse or multiresolu-
tion data. Similar to their CPU counterparts, GPGPU adap-
tive address translators are represented with a tree, a page
table, or a hash table. Example applications include ray trac-
ing acceleration structures, photon maps, adaptive shadow
maps, and octree textures.

Static Adaptive Structures

Purcell et al. use a static adaptive array to represent a
uniform-grid ray tracing acceleration structure [PBMH02].
The structure uses a one-level, 3D page table address trans-
lator with varying-size physical pages. A CPU-based pre-
process packs data into the varying-size pages and stores the
page size and page origin in the 3D page table. The ray tracer
advances rays through the page table using a 3D line draw-
ing algorithm. Rays traverse the variable-length triangle lists
one render pass at a time. The conditional execution tech-
niques described in Section 2.4 are used to avoid performing
computation on rays that have reached the end of the triangle
list.

Foley et al. recently introduced the first k-d tree for GPU
ray tracing [FS05]. A k-d tree adaptively subdivides space
into axis-aligned bounding boxes whose size and position
are determined by the data rather than a fixed grid. Like the
uniform grid structure, the query input for their structure is
the ray origin and direction and the result is the origin and
size of a triangle list. In their implementation, a CPU-based
pre-process creates the k-d tree address translator and packs
the triangle lists into texture memory. They present two new
k-d tree traversal algorithms that are GPU-compatible and,
unlike previous algorithms, do not require the use of a stack.

Dynamic Adaptive Arrays Purcell et al. introduced the
first dynamic adaptive GPU array, the kNN-grid photon
map [PDC∗03]. The structure uses a one-level page table
with either variable-sized or fixed-sized pages. They update
the variable-page-size version by sorting data elements and
searching for the beginning of each page. The fixed-page-
size variant limits the number of data elements per page but
avoids the costly sorting and searching steps.

Lefohn et al. use a mipmap hierarchy of page ta-
bles to define quadtree-like and octree-like dynamic struc-
tures [LKS∗05,LSK∗05]. They apply the structures to GPU-
based adaptive shadow mapping and dynamic octree tex-

Physical Memory
Tree 

Address TranslatorVirtual Domain

Figure 9: Tree-based address translators can be used in
place of page tables to represent adaptive data structures
such as quadtrees, octrees and k-d trees [FS05, LHN05].
Trees consume less memory than page table structures but
result in longer access times and are more costly to incre-
mentally update.

tures. The structure achieves adaptivity by mapping a vary-
ing number of virtual pages to uniformly sized physical
pages. The page tables consume more memory than a tree-
based approach but support constant-time accesses and can
be efficiently updated by the GPU. The structures support
data-parallel iteration over the active elements by drawing
a point sprite for each mapped page and using the vertex
processor and rasterizer to pre-compute physical-to-virtual
address translations.

In the limit, multilevel page tables are synonymous with
N-tree structures. Coombe et al. and Lefebvre et al. de-
scribe dynamic tree-based structures [CHL04,LHN05]. Tree
address translators consume less memory than a page ta-
ble (O(logN)), but result in slower access times (O(logN))
and require non-uniform (non-SIMD) computation. Coombe
et al. use a CPU-based quadtree translator [CHL04] while
Lefebvre et al. describe a GPU-based octree-like transla-
tor [LHN05]. Figure 9 depicts a tree-based address trans-
lator.

4.2.4. Non-Indexable Structures

All the structures discussed thus far support random ac-
cess and therefore trivially support data-parallel accesses.
Nonetheless, researchers are beginning to explore non-
indexable structures. Ernst et al. and Lefohn et al. both de-
scribe GPU-based stacks [EVG04, LKS∗05].

Efficient dynamic parallel data structures are an active
area of research. For example, structures such as priority
queues (see Section 4.1.6), sets, linked lists, and hash ta-
bles have not yet been demonstrated on GPUs. While sev-
eral dynamic adaptive tree-like structures have been imple-
mented, many open problems remain in efficiently building
and modifying these structures, and many structures (e.g.,
k-d trees) have not yet been constructed on the GPU. Con-
tinued research in understanding the generic components of
GPU data structures may also lead to the specification of
generic algorithms, such as in those described in Section 4.1.
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4.3. Differential Equations

Differential equations arise in many disciplines of science
and engineering. Their efficient solution is necessary for ev-
erything from simulating physics for games to detecting fea-
tures in medical imaging. Typically differential equations
are solved for entire arrays of input. For example, physi-
cally based simulations of heat transfer or fluid flow typi-
cally solve a system of equations representing the temper-
ature or velocity sampled over a spatial domain. This sam-
pling means that there is high data parallelism in these prob-
lems, which makes them suitable for GPU implementation.

Figure 10: Solving the wave equation PDE on the GPU al-
lows for fast and stable rendering of water surfaces. (Image
generated by Krüger et al. [KW03])

There are two main classes of differential equations: or-
dinary differential equations (ODEs) and partial differen-
tial equations (PDEs). An ODE is an equality involving a
function and its derivatives. An ODE of order n is an equa-
tion of the form F(x,y,y′, · · · ,y(n)) = 0 where y(n) is the
nth derivative with respect to x. PDEs, on the other hand,
are equations involving functions and their partial deriva-

tives, like the wave equation ∂2ψ
∂x2 + ∂2ψ

∂y2 + ∂2ψ
∂z2 = ∂2ψ

v2∂t2 (see
Figure 10). ODEs typically arise in the simulation of the
motion of objects, and this is where GPUs have been ap-
plied to their solution. Particle system simulation involves
moving many point particles according to local and global
forces. This results in simple ODEs that can be solved via
explicit integration (most have used the well-known Euler,
Midpoint, or Runge-Kutta methods). This is relatively sim-
ple to implement on the GPU: a simple fragment program is
used to update each particle’s position and velocity, which
are stored as 3D vectors in textures. Kipfer et al. presented a
method for simulating particle systems on the GPU includ-
ing inter-particle collisions by using the GPU to quickly sort
the particles to determine potential colliding pairs [KSW04].
In simultaneous work, Kolb et al. produced a GPU particle
system simulator that supported accurate collisions of parti-
cles with scene geometry by using GPU depth comparisons
to detect penetration [KLRS04]. Krüger et al. presented a

scientific flow exploration system that supports a wide vari-
ety of of visualization geometries computed entirely on the
GPU [KKKW05] (see Figure 11). A simple GPU particle
system example is provided in the NVIDIA SDK [Gre04].
Nyland et al. extended this example to add n-body gravita-
tional force computation [NHP04]. Related to particle sys-
tems is cloth simulation. Green demonstrated a very simple
GPU cloth simulation using Verlet integration [Ver67] with
basic orthogonal grid constraints [Gre03]. Zeller extended
this with shear constraints which can be interactively bro-
ken by the user to simulate cutting of the cloth into multiple
pieces [Zel05].

Figure 11: GPU-computed stream ribbons in a 3D flow
field. The entire process from vectorfield interpolation and
integration to curl computation, and finally geometry gener-
ation and rendering of the stream ribbons, is performed on
the GPU [KKKW05].

When solving PDEs, the two common methods of sam-
pling the domain of the problem are finite differences and
finite element methods (FEM). The former has been much
more common in GPU applications due to the natural map-
ping of regular grids to the texture sampling hardware
of GPUs. Most of this work has focused on solving the
pressure-Poisson equation that arises in the discrete form of
the Navier-Stokes equations for incompressible fluid flow.
Among the numerical methods used to solve these sys-
tems are the conjugate gradient method [GV96] (Bolz et
al. [BFGS03] and Krüger and Westermann [KW03]), the
multigrid method [BHM00] (Bolz et al. [BFGS03] and
Goodnight et al. [GWL∗03]), and simple Jacobi and red-
black Gauss-Seidel iteration (Harris et al. [HBSL03]).

The earliest work on using GPUs to solve PDEs was
done by Rumpf and Strzodka, who mapped mathemati-
cal structures like matrices and vectors to textures and lin-
ear algebra operations to GPU features such as blending
and the OpenGL imaging subset. They applied the GPU
to segmentation and non-linear diffusion in image process-
ing [RS01b, RS01a] and used GPUs to solve finite ele-
ment discretizations of PDEs like the anisotropic heat equa-
tion [RS01c]. Recent work by Rumpf and Strzodka [RS05]
discusses the use of Finite Element schemes for PDE solvers

c© The Eurographics Association 2005.



Owens, Luebke, Govindaraju, Harris, Krüger, Lefohn, and Purcell / A Survey of General-Purpose Computation on Graphics Hardware 35

on GPUs in detail. Lefohn et al. applied GPUs to the solution
of sparse, non-linear PDEs (level-set equations) for volume
segmentation [LW02, Lef03].

4.4. Linear Algebra

As GPU flexibility has increased over the last decade, re-
searchers were quick to realize that many linear algebraic
problems map very well to the pipelined SIMD hardware in
these processors. Furthermore, linear algebra techniques are
of special interest for many real-time visual effects important
in computer graphics. A particularly good example is fluid
simulation (Section 5.2), for which the results of the numer-
ical computation can be computed in and displayed directly
from GPU memory.

Larsen and McAllister described an early pre-floating-
point implementation of matrix multiplies. Adopting a tech-
nique from parallel computing that distributes the computa-
tion over a logically cube-shaped lattice of processors, they
used 2D textures and simple blending operations to perform
the matrix product [LM01]. Thompson et al. proposed a gen-
eral computation framework running on the GPU vertex pro-
cessor; among other test cases they implemented some linear
algebra operations and compared the timings to CPU imple-
mentations. Their test showed that especially for large ma-
trices a GPU implementation has the potential to outperform
optimized CPU solutions [THO02].

With the availability of 32-bit IEEE floating point textures
and more sophisticated shader functionality in 2003, Hilles-
land et al. presented numerical solution techniques to least
squares problems [HMG03]. Bolz et al. [BFGS03] presented
a representation for matrices and vectors. They implemented
a sparse matrix conjugate gradient solver and a regular-
grid multigrid solver for GPUs, and demonstrated the effec-
tiveness of their approach by using these solvers for mesh
smoothing and solving the incompressible Navier-Stokes
equations. Goodnight et al. presented another multigrid
solver; their solution focused on an improved memory layout
of the domain [GWL∗03] that avoids the context-switching
latency that arose with the use of OpenGL pbuffers.

Other implementations avoided this pbuffer latency by
using the DirectX API. Moravánszky [Mor02] proposed a
GPU-based linear algebra system for the efficient repre-
sentation of dense matrices. Krüger and Westermann took
a broader approach and presented a general linear algebra
framework supporting basic operations on GPU-optimized
representations of vectors, dense matrices, and multiple
types of sparse matrices [KW03]. Their implementation was
based on a 2D texture representation for vectors in which a
vector is laid out into the RGBA components of a 2D texture.
A matrix was composed of such vector textures, either split
column-wise for dense matrices or diagonally for banded
sparse matrices. With this representation a component-wise
vector-vector operation—add, multiply, and so on—requires

rendering only one quad textured with the two input vec-
tor textures with a short shader that does two fetches into
the input textures, combines the results (e.g. add or multi-
ply), and outputs this to a new texture representing the result
vector. A matrix-vector operation in turn is executed as mul-
tiple vector-vector operations: the columns or diagonals are
multiplied with the vector one at a time and are added to the
result vector. In this way a five-banded matrix—for instance,
occurring in the Poisson equation of the Navier-Stokes fluid
simulation—can be multiplied with a vector by rendering
only five quads. The set of basic operations is completed by
the reduce operation, which computes single values out of
vectors e.g., the sum of all vector elements (Section 4.1.2).

Using this set of operations, encapsulated into C++
classes, Krüger and Westermann enabled more complex al-
gorithms to be built without knowledge of the underlying
GPU implementation [KW03]. For example, a conjugate
gradient solver was implemented with fewer than 20 lines
of C++ code. This solver in turn can be used for the solution
of PDEs such as the Navier-Stokes equations for fluid flow
(see Figure 12).

Figure 12: This image shows a 2D Navier-Stokes fluid
flow simulation with arbitrary obstacles. It runs on a stag-
gered 512 by 128 grid. Even with additional features like
vorticity confinement enabled, such simulations perform at
about 200 fps on current GPUs such as ATI’s Radeon X800
[KW03].

Apart from their applications in numerical simulation,
linear algebra operators can be used for GPU perfor-
mance evaluation and comparison to CPUs. For instance
Brook [BFH∗04] featured a spMatrixVec test that used a
padded compressed sparse row format.

A general evaluation of the suitability of GPUs for linear
algebra operations was done by Fatahalian et al. [FSH04].
They focused on matrix-matrix multiplication and discov-
ered that these operations are strongly limited by mem-
ory bandwidth when implemented on the GPU. They ex-
plained the reasons for this behavior and proposed architec-
tural changes to further improve GPU linear algebra perfor-
mance. To better adapt to such future hardware changes and
to address vendor-specific hardware differences, Jiang and
Snir presented a first evaluation of automatically tuning GPU
linear algebra code [JS05].
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4.5. Data Queries

In this section, we provide a brief overview of the ba-
sic database queries that can be performed efficiently on a
GPU [GLW∗04].

Given a relational table T of m attributes (a1,a2, ...,am), a
basic SQL query takes the form

Select A
from T
where C

where A is a list of attributes or aggregations defined on in-
dividual attributes and C is a Boolean combination of pred-
icates that have the form ai op a j or ai op constant. The
operator op may be any of the following: =, �=,>,≥,<,≤.
Broadly, SQL queries involve three categories of basic oper-
ations: predicates, Boolean combinations, aggregations, and
join operations and are implemented efficiently using graph-
ics processors as follows:

Predicates We can use the depth test and the stencil test
functionality for evaluating predicates in the form of ai op
constant. Predicates involving comparisons between two
attributes, ai op a j, are transformed to (ai− a j) op 0 us-
ing the programmable pipeline and are evaluated using the
depth and stencil tests.

Boolean combinations A Boolean combination of predi-
cates is expressed in a conjunctive normal form. The sten-
cil test can be used repeatedly to evaluate a series of log-
ical operators with the intermediate results stored in the
stencil buffer.

Aggregations These include simple operations such as
COUNT, AVG, and MAX, and can be implemented us-
ing the counting capability of the occlusion queries.

Join Operations Join operations combine the records in
multiple relations using a common join key attribute.
They are computationally expensive, and can be accel-
erated by sorting the records based on the join key. The
fast sorting algorithms described in Section 4.1.5 are
used to efficiently order the records based on the join
key [GM05].

The attributes of each database record are stored in the
multiple channels of a single texel, or in the same texel lo-
cation of multiple textures, and are accessed at run-time to
evaluate the queries.

5. GPGPU Applications

Using many of the algorithms and techniques described in
the previous section, in this section we survey the broad
range of applications and tasks implemented on graphics
hardware.

5.1. Early Work

The use of computer graphics hardware for general-purpose
computation has been an area of active research for many

years, beginning on machines like the Ikonas [Eng78], the
Pixel Machine [PH89], and Pixel-Planes 5 [FPE∗89]. Pixar’s
Chap [LP84] was one of the earliest processors to explore
a programmable SIMD computational organization, on 16-
bit integer data; Flap [LHPL87], described three years later,
extended Chap’s integer capabilities with SIMD floating-
point pipelines. These early graphics computers were typi-
cally graphics compute servers rather than desktop worksta-
tions. Early work on procedural texturing and shading was
performed on the UNC Pixel-Planes 5 and PixelFlow ma-
chines [RTB∗92,OL98]. This work can be seen as precursor
to the high-level shading languages in common use today
for both graphics and GPGPU applications. The PixelFlow
SIMD graphics computer [EMP∗97] was also used to crack
UNIX password encryption [KI99].

The wide deployment of GPUs in the last several years
has resulted in an increase in experimental research with
graphics hardware. The earliest work on desktop graph-
ics processors used non-programmable (“fixed-function”)
GPUs. Lengyel et al. used rasterization hardware for robot
motion planning [LRDG90]. Hoff et al. described the use
of z-buffer techniques for the computation of Voronoi di-
agrams [HCK∗99] and extended their method to proxim-
ity detection [HZLM01]. Bohn et al. used fixed-function
graphics hardware in the computation of artificial neu-
ral networks [Boh98]. Convolution and wavelet transforms
with the fixed-function pipeline were realized by Hopf and
Ertl [HE99a, HE99b].

Programmability in GPUs first appeared in the form of
vertex programs combined with a limited form of fragment
programmability via extensive user-configurable texture ad-
dressing and blending operations. While these don’t con-
stitute a true ISA, so to speak, they were abstracted in a
very simple shading language in Microsoft’s pixel shader
version 1.0 in Direct3D 8.0. Trendall and Stewart gave a
detailed summary of the types of computation available on
these GPUs [TS00]. Thompson et al. used the programmable
vertex processor of an NVIDIA GeForce 3 GPU to solve
the 3-Satisfiability problem and to perform matrix multipli-
cation [THO02]. A major limitation of this generation of
GPUs was the lack of floating-point precision in the frag-
ment processors. Strzodka showed how to combine mul-
tiple 8-bit texture channels to create virtual 16-bit precise
operations [Str02], and Harris analyzed the accumulated er-
ror in boiling simulation operations caused by the low pre-
cision [Har02]. Strzodka constructed and analyzed special
discrete schemes which, for certain PDE types, allow re-
production of the qualitative behavior of the continuous so-
lution even with very low computational precision, e.g. 8
bits [Str04].

5.2. Physically-Based Simulation

Early GPU-based physics simulations used cellular tech-
niques such as cellular automata (CA). Greg James of
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NVIDIA demonstrated the “Game of Life” cellular automata
and a 2D physically based wave simulation running on
NVIDIA GeForce 3 GPUs [Jam01a, Jam01b, Jam01c]. Har-
ris et al. used a Coupled Map Lattice (CML) to simulate
dynamic phenomena that can be described by partial differ-
ential equations, such as boiling, convection, and chemical
reaction-diffusion [HCSL02]. The reaction-diffusion portion
of this work was later extended to a finite difference imple-
mentation of the Gray-Scott equations using floating-point-
capable GPUs [HJ03]. Kim and Lin used GPUs to simu-
late dendritic ice crystal growth [KL03]. Related to cellular
techniques are lattice simulation approaches such as Lattice-
Boltzmann Methods (LBM), used for fluid and gas simula-
tion. LBM represents fluid velocity in “packets” traveling
in discrete directions between lattice cells. Li et al. have
used GPUs to apply LBM to a variety of fluid flow prob-
lems [LWK03, LFWK05].

Full floating point support in GPUs has enabled the next
step in physically-based simulation: finite difference and fi-
nite element techniques for the solution of systems of par-
tial differential equations (PDEs). Spring-mass dynamics on
a mesh were used to implement basic cloth simulation on
a GPU [Gre03, Zel05]. Several researchers have also im-
plemented particle system simulation on GPUs (see Sec-
tion 4.3).

Several groups have used the GPU to successfully simu-
late fluid dynamics. Four papers in the summer of 2003 pre-
sented solutions of the Navier-Stokes equations (NSE) for
incompressible fluid flow on the GPU [BFGS03, GWL∗03,
HBSL03, KW03]. Harris provides an introduction to the
NSE and a detailed description of a basic GPU imple-
mentation [Har04]. Harris et al. combined GPU-based NSE
solutions with PDEs for thermodynamics and water con-
densation and light scattering simulation to implement vi-
sual simulation of cloud dynamics [HBSL03]. Other re-
cent work includes flow calculations around arbitrary obsta-
cles [BFGS03, KW03, LLW04]. Sander et al. [STM04] de-
scribed the use of GPU depth-culling hardware to acceler-
ate flow around obstacles, and sample code that implements
this technique is made available by Harris [Har05b]. Rumpf
and Strzodka used a quantized FEM approach to solving
the anisotropic heat equation on a GPU [RS01c] (see Sec-
tion 4.3).

Related to fluid simulation is the visualization of flows,
which has been implemented using graphics hardware to ac-
celerate line integral convolution and Lagrangian-Eulerian
advection [HWSE99, JEH01, WHE01].

5.3. Signal and Image Processing

The high computational rates of the GPU have made graph-
ics hardware an attractive target for demanding applications
such as those in signal and image processing. Among the
most prominent applications in this area are those related

to image segmentation (Section 5.3.1) as well as a variety
of other applications across the gamut of signal, image, and
video processing (Section 5.3.2).

5.3.1. Segmentation

The segmentation problem seeks to identify features embed-
ded in 2D or 3D images. A driving application for segmen-
tation is medical imaging. A common problem in medical
imaging is to identify a 3D surface embedded in a volume
image obtained with an imaging technique such as Magnetic
Resonance Imaging (MRI) or Computed Tomograph (CT)
Imaging. Fully automatic segmentation is an unsolved im-
age processing research problem. Semi-automatic methods,
however, offer great promise by allowing users to interac-
tively guide image processing segmentation computations.
GPGPU segmentation approaches have made a significant
contribution in this area by providing speedups of more than
10× and coupling the fast computation to an interactive vol-
ume renderer.

Image thresholding is a simple form of segmentation that
determines if each pixel in an image is within the segmented
region based on the pixel value. Yang et al. [YW03] used
register combiners to perform thresholding and basic con-
volutions on 2D color images. Their NVIDIA GeForce4
GPU implementation demonstrated a 30% speed increase
over a 2.2 GHz Intel Pentium 4 CPU. Viola et al. performed
threshold-based 3D segmentations combined with an inter-
active visualization system and observed an approximately
8× speedup over a CPU implementation [VKG03].

Implicit surface deformation is a more powerful and accu-
rate segmentation technique than thresholding but requires
significantly more computation. These level-set techniques
specify a partial differential equation (PDE) that evolves an
initial seed surface toward the final segmented surface. The
resulting surface is guaranteed to be a continuous, closed
surface.

Rumpf et al. were the first to implement level-set segmen-
tation on GPUs [RS01a]. They supported 2D image segmen-
tation using a 2D level-set equation with intensity and gra-
dient image-based forces. Lefohn et al. extended that work
and demonstrated the first 3D level-set segmentation on the
GPU [LW02]. Their implementation also supported a more
complex evolution function that allowed users to control
the curvature of the evolving segmentation, thus enabling
smoothing of noisy data. These early implementations com-
puted the PDE on the entire image despite the fact that only
pixels near the segmented surface require computation. As
such, these implementations were not faster than highly op-
timized sparse CPU implementations.

The first GPU-based sparse segmentation solvers came a
year later. Lefohn et al. [LKHW03,LKHW04] demonstrated
a sparse (narrow-band) 3D level-set solver that provided a
speedup of 10–15× over a highly optimized CPU-based
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solver [Ins03] (Figure 13). They used a page table data struc-
ture to store and compute only a sparse subset of the volume
on the GPU. Their scheme used the CPU as a GPU memory
manager, and the GPU requested memory allocation changes
by sending a bit vector message to the CPU. Concurrently,
Sherbondy et al. presented a GPU-based 3D segmentation
solver based on the Perona-Malik PDE [SHN03]. They also
performed sparse computation, but had a dense (complete)
memory representation. They used the depth culling tech-
nique for conditional execution to perform sparse computa-
tion.

Both of the segmentation systems presented by Lefohn
et al. and Sherbondy et al. were integrated with interactive
volume renderers. As such, users could interactively control
the evolving PDE computation. Lefohn et al. used their sys-
tem in a tumor segmentation user study [LCW03]. The study
found that relatively untrained users could segment tumors
from a publicly available MRI data set in approximately
six minutes. The resulting segmentations were more precise
and equivalently accurate to those produced by trained ex-
perts who took multiple hours to segment the tumors manu-
ally. Cates et al. extended this work to multi-channel (color)
data and provided additional information about the statistical
methods used to evaluate the study [CLW04].

Figure 13: Interactive volume segmentation and visualiza-
tion of Magnetic Resonance Imaging (MRI) data on the
GPU enables fast and accurate medical segmentations. Im-
age generated by Lefohn et al. [LKHW04].

5.3.2. Other Signal and Image Processing Applications

Computer Vision Fung et al. use graphics hardware
to accelerate image projection and compositing oper-
ations [FTM02] in a camera-based head-tracking sys-
tem [FM04]; their implementation has been released as the
open-source OpenVIDIA computer vision library [Ope05],
whose website also features a good bibliography of papers
for GPU-based computer/machine vision applications.

Yang and Pollefeys used GPUs for real-time stereo depth
extraction from multiple images [YP05]. Their pipeline first
rectifies the images using per-pixel projective texture map-
ping, then computed disparity values between the two im-
ages, and, using adaptive aggregation windows and cross
checking, chooses the most accurate disparity value. Their
implementation was more than four times faster than a com-
parable CPU-based commercial system. Both Geys et al. and
Woetzel and Koch addressed a similar problem using a plane
sweep algorithm. Geys at al. compute depth from pairs of
images using a fast plane sweep to generate a crude depth
map, then use a min-cut/max-flow algorithm to refine the
result [GKV04]; the approach of Woetzel and Koch begins
with a plane sweep over images from multiple cameras and
pays particular attention to depth discontinuities [WK04].

Image Processing The process of image registration estab-
lishes a correlation between two images by means of a (pos-
sibly non-rigid) deformation. The work of Strzodka et al. is
one of the earliest to use the programmable floating point ca-
pabilities of graphics hardware in this area [SDR03,SDR04];
their image registration implementation is based on the
multi-scale gradient flow registration method of Clarenz et
al. [CDR02] and uses an efficient multi-grid representation
of the image multi-scales, a fast multi-grid regularization,
and an adaptive time-step control of the iterative solvers.
They achieve per-frame computation time of under 2 sec-
onds on pairs of 256×256 images.

Strzodka and Garbe describe a real-time system that com-
putes and visualizes motion on 640×480 25 Hz 2D image
sequences using graphics hardware [SG04]. Their system
assumes that image brightness only changes due to motion
(due to the brightness change constraint equation). Using
this assumption, they estimate the motion vectors from cal-
culating the eigenvalues and eigenvectors of the matrix con-
structed from the averaged partial space and time derivatives
of image brightness. Their system is 4.5 times faster than a
CPU equivalent (as of May 2004), and they expect the addi-
tional arithmetic capability of newer graphics hardware will
allow the use of more advanced estimation models (such as
estimation of brightness changes) in real time.

Computed tomography (CT) methods that reconstruct
an object from its projections are computationally inten-
sive and often accelerated by special-purpose hardware.
Xu and Mueller implement three 3D reconstruction algo-
rithms (Feldkamp Filtered Backprojection, SART, and EM)
on programmable graphics hardware, achieving high-quality
floating-point 1283 reconstructions from 80 projections in
timeframes from seconds to tens of seconds [XM05].

Signal Processing Motivated by the high arithmetic ca-
pabilities of modern GPUs, several projects have devel-
oped GPU implementations of the fast Fourier transform
(FFT) [BFH∗04, JvHK04, MA03, SL05]. (The GPU Gems
2 chapter by Sumanaweera and Liu, in particular, gives a
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detailed description of the FFT and their GPU implemen-
tation [SL05].) In general, these implementations operate
on 1D or 2D input data, use a radix-2 decimation-in-time
approach, and require one fragment-program pass per FFT
stage. The real and imaginary components of the FFT can be
computed in two components of the 4-vectors in each frag-
ment processor, so two FFTs can easily be processed in par-
allel. These implementations are primarily limited by mem-
ory bandwidth and the lack of effective caching in today’s
GPUs, and only by processing two FFTs simultaneously can
match the performance of a highly tuned CPU implementa-
tion [FJ98].

Daniel Horn maintains an open-source optimized FFT li-
brary based on the Brook distribution [Hor05a]. The discrete
wavelet transform (DWT), used in the JPEG2000 standard,
is another useful fundamental signal processing operation; a
group from the Chinese University of Hong Kong has devel-
oped a GPU implementation of the DFT [WWHL05], which
has been integrated into an open-source JPEG2000 codec
called “JasPer” [Ada05].

Tone Mapping Tone mapping is the process of mapping
pixel intensity values with high dynamic range to the smaller
range permitted by a display. Goodnight et al. implemented
an interactive, time-dependent tone mapping system on
GPUs [GWWH03]. In their implementation, they chose the
tone-mapping algorithm of Reinhard et al. [RSSF02], which
is based on the “zone system” of photography, for two rea-
sons. First, the transfer function that performs the tone map-
ping uses a minimum of global information about the im-
age, making it well-suited to implementation on graphics
hardware. Second, Reinhard et al.’s algorithm can be adap-
tively refined, allowing a GPU implementation to trade off
efficiency and accuracy. Among the tasks in Goodnight et
al.’s pipeline was an optimized implementation of a Gaus-
sian convolution. On an ATI Radeon 9800, they were able
to achieve highly interactive frame rates with few adaptation
zones (limited by mipmap construction) and a few frames
per second with many adaptation zones (limited by the per-
formance of the Gaussian convolution).

Audio Jędrzejewski used ray tracing techniques on GPUs
to compute echoes of sound sources in highly occluded en-
vironments [Jęd04]. BionicFX has developed commercial
“Audio Video Exchange” (AVEX) software that accelerates
audio effect calculations using GPUs [Bio05].

Image/Video Processing Frameworks Apple’s Core Im-
age and Core Video frameworks allow GPU acceleration
of image and video processing tasks [App05a]; the open-
source framework Jahshaka uses GPUs to accelerate video
compositing [Jah05].

5.4. Global Illumination

Perhaps not surprisingly, one of the early areas of GPGPU
research was aimed at improving the visual quality of GPU
generated images. Many of the techniques described below
accomplish this by simulating an entirely different image
generation process from within a fragment program (e.g. a
ray tracer). These techniques use the GPU strictly as a com-
puting engine. Other techniques leverage the GPU to per-
form most of the rendering work, and augment the result-
ing image with global effects. Figure 14 shows images from
some of the techniques we discuss in this section.

5.4.1. Ray Tracing

Ray tracing is a rendering technique based on simulating
light interactions with surfaces [Whi80]. It is nearly the re-
verse of the traditional GPU rendering algorithm: the color
of each pixel in an image is computed by tracing rays out
from the scene camera and discovering which surfaces are
intersected by those rays and how light interacts with those
surfaces. The ray-surface intersection serves as a core for
many global illumination algorithms. Perhaps it is not sur-
prising, then, that ray tracing was one of the earliest GPGPU
global illumination techniques to be implemented.

Ray tracing consists of several types of computation: ray
generation, ray-surface intersection, and ray-surface shad-
ing. Generally, there are too many surfaces in a scene to
brute-force-test every ray against every surface for intersec-
tion, so there are several data structures that reduce the total
number of surfaces rays need to test against (called accelera-
tion structures). Ray-surface shading generally requires gen-
erating additional rays to test against the scene (e.g. shadow
rays, reflection rays, etc.) The earliest GPGPU ray tracing
systems demonstrated that the GPU was capable of not only
performing ray-triangle intersections [CHH02], but that the
entire ray tracing computation including acceleration struc-
ture traversal and shading could be implemented entirely
within a set of fragment programs [PBMH02, Pur04]. Sec-
tion 4.2 enumerates several of the data structures used in this
ray tracer.

Some of the early ray tracing work required special
drivers, as features like fragment programs and floating point
buffers were relatively new and rapidly evolving. There are
currently open source GPU-based ray tracers that run with
standard drivers and APIs [Chr05, KL04].

Weiskopf et al. have implemented nonlinear ray tracing on
the GPU [WSE04]. Nonlinear ray tracing is a technique that
can be used for visualizing gravitational phenomena such as
black holes, or light propagation through media with a vary-
ing index of refraction (which can produce mirages). Their
technique builds upon the linear ray tracing discussed previ-
ously, and approximates curved rays with multiple ray seg-
ments.
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(a) (b) (c) (d)

Figure 14: Sample images from several global illumination techniques implemented on the GPU. (a) Ray tracing and photon
mapping [PDC∗03]. (b) Radiosity [CHL04]. (c) Subsurface scattering [CHH03]. (d) Final gather by rasterization [Hac05].

5.4.2. Photon Mapping

Photon mapping [Jen96] is a two-stage global illumination
algorithm. The first stage consists of emitting photons out
from the light sources in the scene, simulating the photon
interactions with surfaces, and finally storing the photons
in a data structure for lookup during the second stage. The
second stage in the photon mapping algorithm is a render-
ing stage. Initial surface visibility and direct illumination are
computed first, often by ray tracing. Then, the light at each
surface point that was contributed by the environment (indi-
rect) or through focusing by reflection or refraction (caustic)
is computed. These computations are done by querying the
photon map to get estimates for the amount of energy that
arrived from these sources.

Tracing photons is much like ray tracing discussed previ-
ously. Constructing the photon map and indexing the map to
find good energy estimates at each image point are much
more difficult on the GPU. Ma and McCool proposed a
low-latency photon lookup algorithm based on hash ta-
bles [MM02]. Their algorithm was never implemented on
the GPU, and construction of the hash table is not currently
amenable to a GPU implementation. Purcell et al. imple-
mented two different techniques for constructing the pho-
ton map and a technique for querying the photon map, all of
which run at interactive rates [PDC∗03] (see Sections 4.1.6
and 4.2 for some implementation details). Figure 14a shows
an image rendered with this system. Finally, Larsen and
Christensen load-balance photon mapping between the GPU
and the CPU and exploit inter-frame coherence to achieve
very high frame rates for photon mapping [LC04].

5.4.3. Radiosity

At a high level, radiosity works much like photon mapping
when computing global illumination for diffuse surfaces. In
a radiosity-based algorithm, energy is transferred around the
scene much like photons are. Unlike photon mapping, the
energy is not stored in a separate data structure that can be
queried at a later time. Instead, the geometry in the scene is
subdivided into patches or elements, and each patch stores
the energy arriving on that patch.

The classical radiosity algorithm [GTGB84] solves
for all energy transfer simultaneously. Classical radiosity
was implemented on the GPU with an iterative Jacobi
solver [CHH03]. The implementation was limited to matri-
ces of around 2000 elements, severely limiting the complex-
ity of the scenes that can be rendered.

An alternate method for solving radiosity equations,
known as progressive radiosity, iterates through the energy
transfer until the system reaches a steady state [CCWG88].
A GPU implementation of progressive radiosity can render
scenes with over one million elements [CHL04,CH05]. Fig-
ure 14b shows a sample image created with progressive re-
finement radiosity on the GPU.

5.4.4. Subsurface Scattering

Most real-world surfaces do not completely absorb, reflect,
or refract incoming light. Instead, incoming light usually
penetrates the surface and exits the surface at another lo-
cation. This subsurface scattering effect is an important
component in modeling the appearance of transparent sur-
faces [HK93]. This subtle yet important effect has also been
implemented on the GPU [CHH03]. Figure 14c shows an
example of GPU subsurface scattering. The GPU implemen-
tation of subsurface scattering uses a three-pass algorithm.
First, the amount of light on a given patch in the model is
computed. Second, a texture map of the transmitted radiosity
is built using precomputed scattering links. Finally, the gen-
erated texture is applied to the model. This method for com-
puting subsurface scattering runs in real time on the GPU.

5.4.5. Hybrid Rendering

Finally, several GPGPU global illumination methods that
have been developed do not fit with any of the classically
defined rendering techniques. Some methods use traditional
GPU rendering in unconventional ways to obtain global illu-
mination effects. Others combine traditional GPU rendering
techniques with global illumination effects and combine the
results. We call all of these techniques hybrid global illumi-
nation techniques.
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The Parthenon renderer generates global illumination im-
ages by rasterizing the scene multiple times, from different
points of view [Hac05]. Each of these scene rasterizations
is accumulated to form an estimate of the indirect illumina-
tion at each visible point. This indirect illumination estimate
is combined with direct illumination computed with a tradi-
tional rendering technique like photon mapping. A sample
image from the Parthenon renderer is shown in Figure 14d.
In a similar fashion, Nijasure computes a sparse sampling of
the scene for indirect illumination into cubemaps [Nij03].
The indirect illumination is progressively computed and
summed with direct lighting to produce a fully illuminated
scene.

Finally, Szirmay-Kalos et al. demonstrate how to approx-
imate ray tracing on the GPU by localizing environment
maps [SKALP05]. They use fragment programs to correct
reflection map lookups to more closely match what a ray
tracer would compute. Their technique can also be used to
generate multiple refractions or caustics, and runs in real
time on the GPU.

5.5. Geometric Computing

GPUs have been widely used for performing a number of
geometric computations. These geometric computations are
used in many applications including motion planning, virtual
reality, etc. and include the following.

Constructive Solid Geometry (CSG) operations
CSG operations are used for geometric model-
ing in computer aided design applications. Basic
CSG operations involve Boolean operations such as
union, intersection, and difference, and can be imple-
mented efficiently using the depth test and the stencil
test [GHF86, RR86, GMTF89, SLJ98, GKMV03].

Distance Fields and Skeletons Distance fields compute
the minimum distance of each point to a set of objects
and are useful in applications such as path planning and
navigation. Distance computation can be performed either
using a fragment program or by rendering the distance
function of each object in image space [HCK∗99,SOM04,
SPG03, ST04].

Collision Detection GPU-based collision detection algo-
rithms rasterize the objects and perform either 2D or
2.5-D overlap tests in screen space [BW03, HTG03,
HTG04, HCK∗99, KP03, MOK95, RMS92, SF91, VSC01,
GRLM03]. Furthermore, visibility computations can be
performed using occlusion queries and used to compute
both intra- and inter-object collisions among multiple ob-
jects [GLM05].

Transparency Computation Transparency computations
require the sorting of 3D primitives or their image-space
fragments in a back-to-front or a front-to-back order and
can be performed using depth peeling [Eve01] or by
image-space occlusion queries [GHLM05].

Shadow Generation Shadows correspond to the regions

visible to the eye and not visible to the light. Popular
techniques include variations of shadow maps [SKv∗92,
HS99, BAS02, SD02, Sen04, LSK∗05] and shadow vol-
umes [Cro77, Hei91, EK02]. Algorithms have also been
proposed to generate soft shadows [BS02, ADMAM03,
CD03].

These algorithms perform computations in image space,
and require little or no pre-processing. Therefore, they work
well on deformable objects. However, the accuracy of these
algorithms is limited to image precision, and can be an issue
in some geometric computations such as collision detection.
Recently, Govindaraju et al. proposed a simple technique to
overcome the image-precision error by sufficiently “fatten-
ing” the primitives [GLM04]. The technique has been used
in performing reliable inter- and intra-object collision com-
putations among general deformable meshes [GKJ∗05].

The performance of many geometric algorithms on GPUs
is also dependent upon the layout of polygonal meshes and a
better layout effectively utilizes the caches on GPUs such as
vertex caches. Recently, Yoon et al. proposed a novel method
for computing cache-oblivious layouts of polygonal meshes
and applied it to improve the performance of geometric ap-
plications such as view-dependent rendering and collision
detection on GPUs [YLPM05]. Their method does not re-
quire any knowledge of cache parameters and does not make
assumptions on the data access patterns of applications. A
user constructs a graph representing an access pattern of an
application, and the cache-oblivious algorithm constructs a
mesh layout that works well with the cache parameters. The
cache-oblivious algorithm was able to achieve 2–20× im-
provement on many complex scenarios without any modi-
fication to the underlying application or the run-time algo-
rithm.

5.6. Databases and Data Mining

Database Management Systems (DBMSs) and data mining
algorithms are an integral part of a wide variety of commer-
cial applications such as online stock marketing and intru-
sion detection systems. Many of these applications analyze
large volumes of online data and are highly computation-
and memory-intensive. As a result, researchers have been ac-
tively seeking new techniques and architectures to improve
the query execution time. The high memory bandwidth and
the parallel processing capabilities of the GPU can signifi-
cantly accelerate the performance of many essential database
queries such as conjunctive selections, aggregations, semi-
linear queries and join queries. These queries are described
in Section 4.5. Govindaraju et al. compared the performance
of SQL queries on an NVIDIA GeForce 6800 against a
2.8 GHz Intel Xeon processor. Preliminary comparisons in-
dicate up to an order of magnitude improvement for the GPU
over a SIMD-optimized CPU implementation [GLW∗04].

GPUs are highly optimized for performing rendering op-
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erations on geometric primitives and can use these capabil-
ities to accelerate spatial database operations. Sun et al. ex-
ploited the color blending capabilities of GPUs for spatial se-
lection and join operations on real world datasets [SAA03].
Bandi et al. integrated GPU-based algorithms for improving
the performance of spatial database operations into Oracle
9I DBMS [BSAE04].

Recent research has also focused attention on the effec-
tive utilization of graphics processors for fast stream min-
ing algorithms. In these algorithms, data is collected con-
tinuously and the underlying algorithm performs contin-
uous queries on the data stream as opposed to one-time
queries in traditional systems. Many researchers have advo-
cated the use of GPUs as stream processors for compute-
intensive algorithms [BFH∗04, FF88, Man03, Ven03]. Re-
cently, Govindaraju et al. have presented fast streaming al-
gorithms using the blending and texture mapping function-
alities of GPUs [GRM05]. Data is streamed to and from the
GPU in real-time, and a speedup of 2–5 times is demon-
strated on online frequency and quantile estimation queries
over high-end CPU implementations. The high growth rate
of GPUs, combined with their substantial processing power,
are making the GPU a viable architecture for commercial
database and data mining applications.

6. Conclusions: Looking Forward

The field of GPGPU computing is approaching something
like maturity. Early efforts were characterized by a some-
what ad hoc approach and a “GPGPU for its own sake” at-
titude; the challenge of achieving non-graphics computation
on the graphics platform overshadowed analysis of the tech-
niques developed or careful comparison to well optimized,
best-in-class CPU analogs. Today researchers in GPGPU
typically face a much higher bar, set by careful analyses
such as Fatahalian et al.’s examination of matrix multipli-
cation [FSH04]. The bar is higher for novelty as well as
analysis; new work must go beyond simply “porting” an
existing algorithm to the GPU, to demonstrating general
principles and techniques or making significantly new and
non-obvious use of the hardware. Fortunately, the accumu-
lated body of knowledge on general techniques and building
blocks surveyed in Section 4 means that GPGPU researchers
need not continually reinvent the wheel. Meanwhile, devel-
opers wishing to use GPUs for general-purpose computing
have a broad array of applications to learn from and build
on. GPGPU algorithms continue to be developed for a wide
range of problems, from options pricing to protein folding.
On the systems side, several research groups have major on-
going efforts to perform large-scale GPGPU computing by
harnessing large clusters of GPU-equipped computers. The
emergence of high-level programming languages provided a
huge leap forward for GPU developers generally, and lan-
guages like BrookGPU [BFH∗04] hold similar promise for

non-graphics developers who wish to harness the power of
GPUs.

More broadly, GPUs may be seen as the first genera-
tion of commodity data-parallel coprocessors. Their tremen-
dous computational capacity and rapid growth curve, far
outstripping traditional CPUs, highlight the advantages of
domain-specialized data-parallel computing. We can expect
increased programmability and generality from future GPU
architectures, but not without limit; neither vendors nor users
want to sacrifice the specialized performance and archi-
tecture that have made GPUs successful in the first place.
The next generation of GPU architects face the challenge
of striking the right balance between improved generality
and ever-increasing performance. At the same time, other
data-parallel processors are beginning to appear in the mass
market, most notably the Cell processor produced by IBM,
Sony, and Toshiba [PAB∗05]. The tiled architecture of the
Cell provides a dense computational fabric well suited to
the stream programming model discussed in Section 2.3,
similar in many ways to GPUs but potentially better suited
for general-purpose computing. As GPUs grow more gen-
eral, low-level programming is supplanted by high-level lan-
guages and toolkits, and new contenders such as the Cell
chip emerge, GPGPU researchers face the challenge of tran-
scending their computer graphics roots and developing com-
putational idioms, techniques, and frameworks for desktop
data-parallel computing.
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