Eurographics Symposium on Parallel Graphics and Visualization (2004)
Dirk Bartz, Bruno Raffin and Han-Wei Shen (Editors)

Interactive Parallel Visualization of Large Particle Datasets

Kevin Liang Patricia Monger Huge Couchman

Research & HPC Support
McMaster University
Hamilton, ON L8S 4M1
Email: [xkliang|monger] @ memaster.ca

Department of Physics and Astronomy
McMaster University
Hamilton, ON L8S 4M1
Email: couchman@physics.mcmaster.ca

Abstract

This paper presents a new interactive parallel method for direct visualization of large particle datasets. Based on
a parallel rendering cluster, a frame rate of 9 frames-per-second is achieved for 2563 particles using 7 render
nodes and a display node. This provides real time interaction and interactive exploration of large datasets, which
has been a challenge for scientific visualization and other real time data mining applications. The system allows
scientists to study and to analyze the simulation results by viewing the particle cube from different perspectives,
flying through the simulation field, or diving into the internal structure of the particles. A dynamic data distribution
technique is designed for visualizing a highlighted subset of the particle volume. It maintains the load balance of
the system and minimize the network traffic by updating the rendering pipeline through reconfiguration of the
rendering chain. The method can be easily extended to other large datasets such as hydrodynamic turbulence,
fluid dynamics, and so on.

Categories and Subject Descriptors (according to ACM CCS): 1.3.2 [Computer Graphics]: Distributed / network
graphics, 1.3.2:C3Computer GraphicsReal-time and embedded systems, 1.3.8Comp[uter GraphicsApplications

1. Introduction

One of the scientific visualization problems is to interac-
tively visualize simulated large particle datasets, usually
containing more than a hundred million particles. Three
methods have been used to visualize large particle datasets.
Researchers view the particles directly, convert the particles
to volumetric data representing particle density [MHS99a],
or explore the particles using a combined direct- and
volume-based rendering method [WMQRO2]. Direct parti-
cle rendering takes longer time on desktop graphics work-
stations; therefore, it is usually difficult to obtain interac-
tive frame rate. Volume rendering and combined methods
can provide interactive frame rates but have the limitation
of missing fine structures. In this paper, we investigate a
direct rendering method using a parallel rendering cluster,
the Sepia [MHS99b] from Hewlett-Packard. The aim is to
develop a system which can interactively explore 256> and
512° particle datasets without missing fine structures.

Interactive particle rendering is very attractive to scien-
tists who are interested in exploring particle datasets in full

(© The Eurographics Association 2004.

Figure 1: Direct rendering of a 256° particle dataset.

detail and from many different perspectives. It helps study
the development of cosmic structure, such as star formation,

delivered by

www.eg.org

-G EUROGRAPHICS
= DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Kevin Liang et. al / Interactive Parallel Visualization of Large Particle Datasets

planet formation, and galaxy evolution [WSQO04, JFP*98].
This, however, is so computationally and graphically inten-
sive that a single desktop computer is unable to handle the
problem. Our research is based on a rendering cluster with
a Sepia-2a compositing board [MHS99b] at each node. The
cluster has 8 nodes, configured as 7 render nodes and a dis-
play node. For a 256° particle dataset, as shown in Figure 1,
a frame rate of 9 frames-per-second (fps) is obtained when
running on 7 render nodes and a display node. The system is
designed to allow scientists to interactively navigate the par-
ticle volume and to study simulation results using various
particle visual representations.

For 5123 particle datasets, the system runs at 1 fps using
7 render nodes and a display node. By using more render
nodes, integrating more advanced rendering techniques, and
applying other optimization techniques, we expect to obtain
higher frame rate.

1.1. Related Work

Visualization of simulated particle datasets has focused on
direct particle rendering and volumetric rendering. The di-
rect rendering method views each particle using a simple
geometric primitive, often a single point. Volume-based par-
ticle rendering first converts the particles to volumetric data
and then displays the particles as iso-surfaces or as a series
of closely-spaced parallel texture mapped planes [Lev88].
Direct rendering has limitations for interactive exploration
of large particle datasets using desktop graphics worksta-
tions. A workstation either is unable to process such large
datasets or takes too long for rendering. Using a hierarchical
data structure and principal component analysis technique,
Hopf and Ertl [HEO3] proposed a splatting method to vi-
sualize large scattered data. The hierarchical data structure
separates clusters from point data. Clusters are rendered as
splats to accelerate the rendering process as a trade-off of im-
age quality on standard workstations. Our method maintains
all the fine features of the particle volume and to provide
interactive frame rate using parallel rendering technique on
a rendering cluster. Other methods, such as those proposed
in [RLOO] and [ZPvBGO1], are more focused on rendering
surfaces instead of points as in our work.

In volume rendering, the range covered by the particle
dataset is evenly divided into voxels, and each voxel value
is assigned a density based on the number of particles in-
side it. The data are then converted into a texture and ren-
dered on the screen as a series of parallel texture-mapped
planes, creating the illusion of volume. This method can pro-
vide real-time visualization when using lower resolutions
[MHS99a]. A major drawback of volume rendering is its
missing fine structures due to limited voxel resolution. A
combined method [WMQRO02] provides a compromise so-
lution to interactive visualization of large particle datasets,
but it suffers the same low resolution and missing fine struc-
ture problems as volume rendering does.

Moll et. al. [MHS99b] proposed a scalable 3D composit-
ing architecture, called Sepia, to interactively render par-
titioned datasets. A Sepia cluster consists of a number of
nodes, each with a Sepia-2a compositing card that imple-
ments a sort-last image composition engine. It provides scal-
ability for interactive volume rendering [LMS*01] and visu-
alization of large scientific datasets [HM99]. A high band-
width compositing network makes interactivity possible by
its speed, scalability, and low latency. Each node in the clus-
ter can be configured as either a render node or a display
node. Render nodes, the workers, are responsible for por-
tions of rendering task. A display node, the master, is the
last node in the Sepia rendering pipeline. It can be used to
control user interaction, coordinate operations among ren-
der nodes, and project the composited images to the target
display.

Using a Sepia system avoids the memory problem as ex-
perienced in stand-alone graphics workstations and allows
for dealing with increasingly large scientific datasets. In ad-
dition a scalable application can be easily designed on the
Sepia system. The more render nodes in the system, the
larger particle datasets can be processed or the higher frame
rates can be achieved.

2. Data Distribution and Parallel Visualization
2.1. Static Data Distribution

In this work, we focus on datasets from a series of sim-
ulations in a periodic volume. The dataset is organized as
randomly distributed 3D points. Each particle is defined by
its 3D position, mass, density, and velocity. Based on a
static workload distribution method, the dataset is initially
distributed to individual render nodes. An equal portion of
particles is allocated to each render node. This static equal
distribution strategy guarantees that no individual node be-
comes the performance bottleneck because each has almost
same number of particles to process. The current static dis-
tribution is solely based on the data organization of the sim-
ulation results, in which particles are randomly distributed
within the volume. This data organization obviously pre-
vents some better sorting methods to improve the rendering
process. A pre-process procedure could be applied to sort
the particles into a hierarchical data structure such as octree
first, as in [HEO3], and then the static distribution method is
used to distribute the particles based on the sorted hierarchy
of the datasets. Because, in this case, the master program has
to load all the particles into its memory and sort the dataset,
a single node in our current system does not have enough
memory to hold all the particles when dealing with 5123
particle datasets. In addition, for a series of datasets, this
will greatly increase the loading time and distribution time.
Therefore, currently we simply distribute particles based on
the original particle organization of the dataset. The dataset
is partitioned into equal portion of particles and each render
node concurrently loads only its portion of the particles.

(© The Eurographics Association 2004.

Kevin Liang et. al / Interactive Parallel Visualization of Large Particle Datasets

2.2. Dynamic Data Distribution

When exploring the particle internal structure, scientists of-
ten want to exam a chosen subset in detail while being able
to see the entire structure of the particle dataset. One way
is to apply different color maps to the subset and the rest
of the particles. This, however, can’t provide a clear view
of the subset particles if there are many clusters of parti-
cles around the subset. Another approach is to use OpenGL’s
blending operation. Particles inside the subset are rendered
as opaque points while particles outside the subset as trans-
parent points. In this case, particles need to be redistributed
among the render nodes in order to apply alpha blending op-
eration along the rendering pipeline. Subset particles need
to be rendered before the rest of the particles. This can be
done by designating a few render nodes for processing sub-
set particles and remaining render nodes for the rest of the
particles. The number of render nodes designated for subset
particles can be determined based on the number of particles
within the subset. The basic strategy is to maintain the par-
ticle load balance among all render nodes. This is possible
because the last render node for the subset can have particles
outside the subset. One way to do this is to choose the first
few render nodes in the initial rendering pipeline as the des-
ignated subset render nodes. All particles within the subset
at each render node are moved to the designated subset ren-
der nodes. Others are moved to the remaining render nodes.
This is obviously not an efficient method because it involves
massive particle exchange among render nodes.

A better way is to choose render nodes with higher num-
ber of subset particles for subset render nodes and to change
the rendering pipeline according to the number of subset par-
ticles contained in each render node. This will minimize the
data exchange among all render nodes as only a small por-
tion of the particles at most nodes needs to be exchanged. In
the new pipeline, the subset render nodes will be moved to
the front of other render nodes. This is done using Sepia’s
dynamic routing functions. For each node, a new upstream
node and a downstream node are set based on the number of
subset particles at each node.

The redistribution process uses a similar strategy to that
of the initial distribution in which each node gets approx-
imately equal share of particles. The particle redistribution
process is detailed in Figure 2.

Figure 3 shows an example of dynamic routing on a 6
render node case. At first, the system creates a rendering
pipeline according to the number of render nodes allocated
to the current running session. This initial pipeline is usu-
ally based on the physical node configuration. Each render
node, except the first and the last, is directly connected to its
upstream render node and its downstream render node. The
first render node has no upstream render node. The last ren-
der node has no downstream render node and is connected
to the display node. The top part of Figure 3 shows an initial
rendering pipeline when using 6 render nodes. Each render

(© The Eurographics Association 2004.

choose a subset.

find the bounding box of the subset.

calculate the number of particles within the subset at each
node.

calculate the total number of subset particles.

e determine the number of render nodes required for the
subset, i.e.,

number of subset particles
total number of particles

Ngubset = Myotal X

select the top n,,s.; nodes that have more particles in the
subset.

e exchange particles between nodes so that the first 7,50, —
1 nodes contains only subset particles, the 7, 'th node
contains subset particles and possibly particles outside the
subset, and other nodes contains only particles outside the
subset.

change the rendering chain so that the ng,;,,, nodes are in
front of other nodes in the rendering pipeline.

reset the upstream and downstream nodes for each node.

Figure 2: The dynamic particle distribution algorithm.

~ | |
@

Figure 3: Dynamic routing rendering pipeline.

node renders its share of particles and combines its rendering
result with the result from the previous node in the pipeline
(details are described in Section 2.4). The composited result
is then transfered to the next render node in the pipeline.

During dynamic data redistribution, the system first deter-
mines that two nodes are required for rendering subset par-
ticles. It then chooses those two nodes with the most subset
particles, i.e. nodes 1 and 3 in this case. All particles outside
the subset on node 1 will be redistributed to node 0, 2, 4,
or 5. Depending on the total number of particles in the sub-
set, node 3 may only need to redistribute part of its particles
outside the subset to node 0, 2, 4, or 5. Particles inside the
subset on nodes 0, 2, 4, and 5 are transfered to either node
1 or node 3 in exchange of particles outside the subset. The
redistribution algorithm maintains the particle load balance
among all render nodes. In general, the number of particles
on each render node remains the same as before the redistri-
bution. The 6 node rendering pipeline is finally changed so
that the two render nodes containing subset particles are set
in front of all other render nodes, as illustrated in Figure 3.

Kevin Liang et. al / Interactive Parallel Visualization of Large Particle Datasets

Node 0

composited particles

Figure 4: Particle image compositing on four render nodes.

2.3. Rendering Particle Primitives

In direct rendering each particle is represented using a sin-
gle point primitive. All point primitives use the same radius,
which is 1 in our examples. Using a uniform point represen-
tation avoids the OpenGL rendering overhead that may be
incurred by changing the point size for each particle and per-
forming complex transformations required to position dif-
ferent primitives. In this case, particles at each node can be
rendered to a display list in a single loop or using a single
OpenGL array rendering call.

Particle densities are usually used to reveal the structure
of the particle volume. To visualize the particles, particle
densities are transformed to RGB or RGBA colors based on
a given color map. This is usually done using a logarithm
mapping which maps the density of a particle to a specific
color in the color map. Linear mapping and other non-linear
mappings can be applied as well, depending on the applica-
tion’s characteristics. Non-linear color mapping method can
be conveniently used to highlight particles in a particular
range of densities. Images in this work are produced using
a variety of color maps.

2.4. Image Composition Scheme

The Sepia cluster offers a variety of compositing operations,
such as Z-comparison using OpenGL comparison opera-
tors, alpha blending, full scene anti-aliasing, and user down-
loadable re-programmable computational logic. For direct
particle visualization we use Z-comparison to composite the
rendered image at each node with the image from its up-
stream node in the pipeline. Figure 4 illustrates rendered par-
ticles at each node and composited particles after each node
in a case of 4 render nodes and a display node.

Figure 5: Subset particles rendered using alpha blending.

Using alpha blending, a chosen subset of the particle
dataset can be highlighted using the algorithm in Figure 2.
As shown in Figure 5, particles outside the selected subset
are rendered as transparent particles while particles within
the subset are rendered as opaque particles. This allows for
detailed study of particular regions of particles while users
are exploring the whole particle dataset.

2.5. Rendering Synchronization

Users interact with the master using tools in a graphical user
interface. For each operation, the master distributes a com-
mand to all workers or render nodes using a TCP/IP based
protocol. The workers then interpret the received command
and perform the corresponding operation. In a parallel ren-
dering system, operations on different nodes need to be syn-
chronized so that particles are rendered at the same time on

(© The Eurographics Association 2004.

Kevin Liang et. al / Interactive Parallel Visualization of Large Particle Datasets

Figure 6: Particles represented using inverse rainbow color mapping: a) front view; b) a close look.

all render nodes in response to the same command. Other-
wise it may be possible that some render nodes have differ-
ent view points from others. This obviously will result in a
compositing image that is not a correct representation of the
given particle dataset.

The system uses a reactor communication pattern for dis-
patching handles for synchronous events. The master listens
to and accepts user requests and concurrently dispatches the
requests to all render nodes. A frame controller is used at
both master node and render nodes. The master first sends
a command to all render nodes to initialize the controller. It
then sends each command to the render nodes, along with the
frame controller. At each step, the render nodes respond to
the master’s commands and run only commands associated
with the same frame controller. This ensures that all render
nodes are working on the same frame at the same time.

3. Results and Discussion
3.1. Implementation

At each render node, a set of OpenGL display lists are used
for fast rendering uniform particle point primitives. Parti-
cles at each render node are built into the display lists when
particle properties are changed. Using OpenGL display lists
greatly enhances the system performance when users navi-
gate the particle dataset. Another method for fast rendering
particles as uniform point primitives is to use OpenGL ver-
tex arrays, but with OpenGL display lists, little extra per-
formance improvement is obtained from using vertex arrays
when rendering 256° particle datasets in our current system.
As OpenGL display lists have to be stored in the graphics
memory, this may become the constraints of the system per-
formance for increasing number of particles. In this case,
vertex arrays may be a better choice than display lists. We
are still investigating this on the 51 23 particle datasets.

(© The Eurographics Association 2004.

3.2. Particles Visual Representations

Figures 6 and 7 show different visual representations of the
256° particle cube. In Figure 6, a front view of the directly
rendered particles is modeled using an inverse rainbow color
map. The right image shows a close look at a specific part
of the particle cube. Clusters of red particles represent high
density areas. Figure 7(left) shows the same 256° particles
cube using another color map, in which high density par-
ticles are mapped to brown while low density particles are
mapped to light black. A linear color mapping from black to
yellow is applied to the same particle cube to create a differ-
ent particle visual representation in Figure 7 (right).

3.3. Results on 256> Particle Dataset

A comprehensive test has been done for the 256° particle
dataset using 1 to 7 render node(s) and a display node. In
general, the performance is constrained by particle render-
ing, data acquisition, and image composition. Particle ren-
dering depends on the number of particles at the render
nodes. Data acquisition and image composition are depen-
dent on the Sepia hardware and its associated visualization
toolkits. Table 1 shows time used for individual operations
on 4, 5, 6, and 7 render nodes. The time shown in the ta-
ble is taken when running a series of navigation operations.
Therefore, it includes only one data acquisition and image
compositing time that is independent on the number of ren-
der nodes.

There are two types of operations, navigation and particle
update.

e Navigation operations include zooming, rotation, and
translation. These operations allow users to look around
and to go inside the particle volume. Because the particles
visual representations are not changed, the system simply
calls the OpenGL display lists created while doing parti-

Kevin Liang et. al / Interactive Parallel Visualization of Large Particle Datasets

Figure 7: Particles represented using light hue (left) color mapping and from black to yellow linear color mapping (right).

Operations/Nodes 4 5 6 7
navigation 0.112 0.112 0.112 0.112
particle update 305 2513 206 1.56

change color map 3.06 2.46 2.15 1.60

sort by color 3.21 247 2.15 1.58

change color map- 3.20 2.50 2.06 1.60
ping

Table 1: Operation time (seconds) on 2563 particle dataset.

cle update operations, providing a high interactive frame
rate.

e Particle update operations change the particles attributes
and build the OpenGL display lists. The particle attributes
can be changed by modifying particles’ positions, colors
and alpha channels using different color maps and/or dif-
ferent color mapping methods. Particle update operations
allow users to explore the overall structure and fine fea-
tures of the particle volume, and to study a specific region
of interest in the particle volume.

As shown in Table 1, the time used for navigation op-
erations remains the same when using more than 4 render
nodes. This is because each render node takes very little
time to update a frame by calling the already built OpenGL
display lists. For 256° dataset, each render node processes
about 4 million particles. Our experience showed that the
number of display lists is crucial to obtain this performance
on a given graphics card. The performance would drop dra-
matically if we use less display lists or the number of par-
ticles on each node is over a certain limit. This can be seen

from Figure 8 as the navigation operation time drops rapidly
from about 0.78 seconds on 1 render node to about 0.112
seconds on 3 render nodes.

On the other hand, particle update operations take much
longer time than navigation operations because they need to
build the display lists for rendering all the particles. Their
performance is totally dependent on the rendering capabili-
ties of each render node. The less the number of particles at
each render node, the faster the operation.

In practice scientists are more interested in navigation op-
erations because these operations provide sufficient power
for them to view the particle dataset from different view
points, to fly through the particle cube, and to dive into spe-
cific region for detailed study. Based on the data in Table 1,
a frame rate of 1/0.112 = 8.928 fps is obtained for naviga-
tion operations on the 256 particle dataset using 4 or more
render nodes. This result is very promising and satisfactory
for interactive visualization of the 2563 particle dataset. Op-
erations such as rotation and zooming in and out run very
smoothly.

Figure 8 illustrates navigation operation time against the
number of nodes. As seen in the figure, the rendering time
drops as the number of nodes increases from 1 to 3 nodes.
From 3 to 7 nodes, the rendering time is close to O and the
overall navigation operation time is dominated by the acqui-
sition and compositing time. For particle update operations,
as shown in Figure 9, the rendering time drops as the number
of render nodes is increased. This justifies the scalability of
the system. The particle update operation time is dependent
on the graphics processing capability at each render node.
The performance gain is mainly from the speedup of indi-
vidual nodes. For instance, for system running on 4 and 6
nodes, each node takes (64 — 42) 256 less particles in 6
nodes rendering than in 4 nodes rendering, and, therefore,
the overall performance is improved by about 30%.

(© The Eurographics Association 2004.

Kevin Liang et. al / Interactive Parallel Visualization of Large Particle Datasets

Time (sec)

I particle rendering time

070 - I acquisition and composition time

I overall operation time

0.60
0.50
0.40
0.30

0.20

0.10 ./.77,,,
n » »

1 2 3 4 5 6

B Nodes
7

Figure 8: Navigation operation time (seconds) vs. the num-
ber of render nodes on 256° particles.

Time (sec)
8.00

BN porticle rendering time

7.00 - I acquisition and composition time

B overall operation time
6.00 1

5.00
4.00
3.00
2.00

1.00

T T T T T =Nodes

Figure 9: Particle update operation time (seconds) vs. the
number of render nodes on 2563 particles.

In Table 2, the navigation operation time is split into par-
ticle rendering time and image data acquisition and compo-
sition time for system running on 4, 5, 6, and 7 render nodes.
As mentioned earlier, the rendering time is the time used for
calling a set of display lists built in a particle update op-
eration. The data show that the navigation operation time
is completely dependent on the acquisition and compositing
time, which is constrained by the Sepia hardware.

Operation/Node 4 5 6 7
rendering par- 0.0007 0.0006 0.0006 0.0006
ticles

acquisition & 0.1082 0.1121 0.1118 0.1118

composition

Table 2: Time split for navigation operations.

(© The Eurographics Association 2004.

In conclusion, the performance of the current system is
basically determined by the number of render nodes, espe-
cially for particle update operations. The image data acqui-
sition and composition time at each node is dependent on the
Sepia data transfer network and data compositing engine.
When using more than 3 render nodes, the Sepia data ac-
quisition and compositing engine has been identified as the
bottleneck for navigation operations of the system.

3.4. Results on 5123 Particle Dataset

A preliminary test on 5123 particle dataset has been done
using 6 and 7 render nodes and a display node. As shown in
Table 3, the system takes much longer time to perform the
particle update operations than on 256° particles. For a 5123
particles dataset, each render node processes 8 times more
particles. The large number of particles pushes the system to
the limit of both memory and graphics processing capabili-
ties.

Similarly, time used for navigation operations is greatly
increased as well. The number of particles on each render
node is much more over the limit at which the performance
of calling OpenGL display lists drops dramatically. This is
the same as in the 256° case when running on 1 or 2 render
nodes.

Operation/Nodes 6 7

navigation 1.157 1.007

particle update 189.5 154.58

Table 3: Operation time (seconds) on 51 23 particle datasets.

The frame rate is about 1 fps for navigation operations
when the system is running on 7 render nodes. Although
much more time required for both types of operations, the
result shows that the system is well scalable. The more ren-
der nodes, the faster the rendering operations.

To be able to navigate the particle volume smoothly, a
much higher frame rate for 5123 particle datasets is ex-
pected. Several techniques are currently under investigation.
First, current system uses a serial mode for data acquisi-
tion and image composition, i.e. image composition process
starts only after the data acquisition process has finished. Us-
ing a parallel mode will reduce about 50% combined time
for data acquisition and image composition. Second, a ver-
tex program is to be applied to render particle points di-
rectly using the graphics processor. This may considerably
increase the rendering speed and relieve the graphics mem-
ory stress. Third, advanced data structure, such as the hierar-
chical data structure in [HEO3], for representing the particle
volume is being investigated. In this case, software based
rendering pre-process can be done to reduce the workload
on the graphics processor.

Kevin Liang et. al / Interactive Parallel Visualization of Large Particle Datasets

3.5. Limitations

The method presented in this paper renders all particles us-
ing uniform rendering primitives. Either all particles are ren-
dered as opaque points or some of them are rendered as
transparent points. This may make it difficult to identify ex-
act particle structures when particles in a given dataset are
highly clustered. Although different color mapping methods
and subset visualization technique help to highlight partic-
ular part of the particles, the overall structure of the parti-
cle dataset, especially internal structure, is hard to be recog-
nized. In this case, we may want to render all particles as
transparent points. This will allow us to visualize the overall
particles structure and internal features in the same way as
in texture mapping based volume rendering method.

4. Conclusions and Future Work

We have described an interactive parallel visualization sys-
tem for viewing large particle datasets using the Sepia ren-
dering cluster. The test on 256° particle dataset shows that
the system provides an interactive rate at about 9 fps for
common visualization tasks, such as zooming, rotation, and
translation. The system allows for interactively changing
particles’ visual properties and highlighting particular re-
gions of interests for detailed analysis. An 1 fps is obtained
at an initial test on 5123 particle dataset using 6 or 7 render
nodes and a display node.

The most challenging task is to improve the frame rate for
the 5123 particle datasets. We are currently investigating a
number of techniques. These include parallelization of the
data acquisition and image compositing, integrating better
data structures for representing particle volumes, and apply-
ing other rendering optimization techniques.

Acknowledgment

The authors would like to thank Hewlett Packard for pro-
viding the Sepia system and technical support to the system.
We would also like to thank the department of Research and
High Performance Computing Support and SharcNet for the
use of the Sepia cluster. We are very grateful for James Wad-
sley for his particle dataset and helpful discussions on many
practical particle visualization issues from the point of view
of physics scientists. We appreciate very much to the anony-
mous reviewers for their constructive suggestions.

References

[HEO3] Hoprr M., ERTL T.: Hierarchical splatting of
scattered data. In Visualization 03 (2003),
IEEE, pp. 433 —440. 2,7

[HM99] HEIRICH A., MOLL L.: Scalable distributed

visualization using off-the-shelf components.
In 1999 IEEE symposium on parallel and

[JFP*98]

[Lev88]

[LMS*01]

[MHS99a]

[MHS99b]

[RLOO]

[WMQRO02]

[WSQO04]

[ZPvBGO1]

large-data visualization and graphics (1999),
ACM Press, New York, NY, USA, pp. 55-59.
San Francisco, California, United States. 2

JENKINS A., FReENK C., PEARCE F.,
P.A.THOMAS, COLBERG J., WHITE 8S.,
COUCHMAN H., PEACOCK J., EFSTATHIOU
G., NELSON A.: Evolution of structure in cold
dark matter universes. Astrophysical Journal
499 (1998), 20-40. The Virgo Consortium. 2

LEvoYy M.: Display of surfaces from volume
data. IEEE Computer Graphics and Applica-
tions 8, 3 (1988), 29-37. 2

LOMBEYDA S., MoLL L., SHAND M.,
BREEN D., HEIRICH A.: Scalable interac-
tive volume rendering using off-the-shelf com-
ponents. In IEEE 2001 symposium on par-
allel and large-data visualization and graph-
ics (2001), IEEE Press, Piscataway, NJ, USA,
pp. 115-121. San Diego, California, United
States. 2

MEISSNER M., HOFFMANN U., STRABER
W.: Enabling classification and shading for 3d
texture mapping based volume rendering using
opengl and extensions. In /EEE Visualization
’99 (1999), pp. 207-214. 1,2

MoLL L., HEIRICH A., SHAND M.: Sepia:
scalable 3D compositing using PCI Pamette. In
IEEE Symposium on FPGAs for Custom Com-
puting Machines (Los Alamitos, CA, 1999),
Pocek K. L., Arnold J., (Eds.), IEEE Computer
Society Press, pp. 146-155. 1,2

RUSINKIEWWICZ S., LEvOoy M.: QSplat:
A multiresolution point rendering system for
large meshes. In SIGGRAPH 00 (2000), ACM
SIGGRAPH, pp. 343 -352. 2

WILSON B., MA K.-L., QIANG J., RYNER.:
Interactive visualization of particle beams for
accelerator design. In ICCS 2002 Workshop on
High Performance Computing in Particle Ac-
celerator Science and Technology (April 21-24
2002), 2002 International Conference on Com-
putational Science, pp. 352-361. Amsterdam,
The Netherlands. 1,2

WADSLEY J. W., STADEL J., QUINN T.
Gasoline: a flexible, parallel implementation of
TreeSPH. New Astronomy 9 (Feb. 2004), 137—
158. 2

ZWICKER M., PHISTER H., VAN BAAR J.,
GROSS M.: EWA volume splatting. In Vi-
sualization 01 (2001), IEEE, pp. 29 — 36. 2

(© The Eurographics Association 2004.

