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Abstract. Multimedia middleware needs to support a wide variety of
devices together with their respective data formats. This becomes in-
creasingly relevant and difficult in a distributed environment where new
devices and formats can become available at any time and must be taken
into account when deciding how to set up a flowgraph of distributed mul-
timedia components.

In this paper we present an automatic algorithm for configuring and
connecting a high-level flowgraph of multimedia components. Given this
abstract flowgraph of participating devices and key components, the al-
gorithm automatically selects necessary additional components, chooses
suitable formats, and connects the flowgraph, while trying to achieve the
best possible quality.

1 Introduction

Traditional multimedia middleware such as DirectShow from Microsoft [1] or
Apple’s Quicktime [2] provides access only to multimedia devices directly con-
nected to the same PC an application is running on. The network is supported
as a source of data but the middleware cannot extend its control to other devices
on the network. For example, it is impossible to transparently watch TV via the
TV card in your colleague’s PC, or control remote cameras attached to other
PCs or directly to the network.

With the increased deployment of networked and mobile multimedia devices,
support for such distributed multimedia operation is becoming increasingly im-
portant. We are currently developing a distributed multimedia middleware that
takes advantage of existing architectures for multimedia middleware and trans-
parently extends them to the network. Of course this requires the redesign of
some fundamental services such as synchronization, device control and data
transport.

Such a distributed multimedia system must allow a user to create, configure,
and manage a complex flowgraph without having to deal with low level details
such as data formats and how certain devices must be connected to be compatible
with others. New devices and associated new data formats may become available
to a system at any time and should be seamlessly supported by the multimedia
middleware and thus all of its applications.
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For our purposes the term “device” includes hardware devices as well as new
software components, including new compression algorithms, network protocols,
and file formats. We define “format” as the metadata that describes a multimedia
data stream. This includes such properties as sampling rate, resolution, color
space, protocol encapsulation and many others. Associated with each of these
parameters is a “quality” specified with a weighting function, where a high value
expresses a preference for a certain parameter value. A more detailed definition
is given later in this paper (see Section 4.1).

New formats from components at the edges of a multimedia flowgraph, such
as data sources (e.g. cameras) and sinks (e.g. displays), can often be handled
by providing suitable conversion algorithms to formats already supported by
the middleware. However, format decisions at the edges can have global effect
on a flowgraph as they can propagate along a media flow. A common example
is a preferred audio sampling rate of an output device, which should be used
throughout the flowgraph in order to avoid sampling rate conversion and its
associated problems.

New components that will be used as internal nodes in a flowgraph are more
challenging as they can have more impact on the optimal data processing. For
instance, optimally using a newly added hardware device that allows efficient
DV-to-MPEG transcoding might require re-routing of data across the network
to the transcoder instead of using local software transcoding.

Existing systems either require the user to choose and specify the details of
the complete flowgraph or rely on a simple template mechanism for selecting
missing flowgraph components. Such simple techniques work for the traditional
environment with a restricted configuration space where new devices are added
infrequently. However, they are inadequate for the dynamic environment of dis-
tributed multimedia operation.

In this paper we propose a fully automatic approach to selecting and con-
figuring necessary components for an incomplete flowgraph specified by an user
or an application. Given the set of all available multimedia components and
their input and output formats, the system uses a modified version of Dijkstra’s
algorithm for solving the Single-Source-Shortest-Path (SSSP) problem to find
the possible connections between two components of the user graph. Addition-
ally this connection should provide the best quality. In order to support complex
user graphs the local SSSP algorithm operation is augmented with a global prop-
agation component that forwards local decisions along the chosen paths. Finally,
possible solutions are evaluated depending on their computational costs and a
complete and valid multimedia flowgraph is created.

We start the paper with a brief review of current systems and previous work
in the next section. In Section 3 and 4 we define our environment for specifying
multimedia flowgraphs from individual components and their associated data
formats. The format negotiation algorithm is then presented in Section 5 with
an example given in Section 6.



2 Background and Previous Work

Microsoft’s DirectShow [1] is probably the most widely used multimedia middle-
ware. It uses the common approach of providing a large set of small components
(called Filters) to be connected in the form of a flowgraph that operates on the
multimedia data streams. DirectShow classifies multimedia formats by major
type, minor type, format type and optional parameters. The major type includes
audio, video and stream formats; the minor type contains extended information
about the major type, like the specific YUV format. The local operating system
contains a registry of all filters, which allows enumeration of all filters with cer-
tain format requirements. In the later versions of DirectShow a simple template
mechanism is used for augmenting incomplete flow graphs. As mentioned above
this mechanism is insufficient for dynamic and distributed environments.

SGI’s Digital Media Library [3] provides a more advanced definition of mul-
timedia formats that is organized in a shallow hierarchy where individual pa-
rameters are stored in a list. It provides functions for common operations on
formats, such as equality. However, SGI’s middleware that is the basis for the
new cross platform “open multimedia library (OpenML)” [4] does not provide
any automatic mechanism for connecting flowgraphs.

Apple’s Quicktime [2] provides an automatic data transform mechanism,
which converts input data automatically into the preferred format of a media
codec but does not provide a general flowgraph mechanism. Sun’s Java Media
Framework [5] offers a set of methods to compare formats. A breath-first search
algorithm is employed to set up flow graphs but no criterion like costs or quality is
used to find a global optimum solution. In summary, all multimedia frameworks
are restricted to querying format properties of media processing components and
the application is responsible for establishing optimal component connections.

Home networking middleware like HAVi [6], Jini [7] or UPnP [8] offers sophis-
ticated device discovery mechanisms, but only HP JetSend technology directly
introduces a concept for format negotiation between components [9]: devices
store a preferred encoding format out of their list of supported formats. In a
negotiation step, the receiving device is responsible for choosing the encoding.
Again, this local model is inadequate for more general media processing.

Little research has been done on application-level format negotiation as de-
scribed above. However, many algorithms have been developed for automated
QoS negotiation in distributed multimedia systems, using for example an agent-
based approach [10] or an optimization approach [11]. Rothermel et al. [12] pro-
posed a QoS and format negotiation protocol, which supports arbitrary multi-
media flowgraphs. Yet, this approach is limited to determine the QoS parameters
of an already fully connected flowgraph. Our approach focuses on augmenting
incomplete flowgraphs by automatically adding necessary components, while at
the same time trying to achieve the best possible quality and configuring the
flowgraph accordingly. Computational costs are only considered to decide be-
tween two or more solutions with equal quality.



3 Basic System Design

We follow a common approach for specifying multimedia flowgraphs: devices
(e.g. a camera) and software components (e.g. a converter) are represented as
nodes, which potentially have several multimedia data inputs and outputs; in
our case called jacks. By connecting input and output jacks, complex flowgraphs
can be built. Associated with each jack are one or more supported formats. A
format provides the metadata that describes the multimedia data to be streamed
across a jack. The format negotiation procedure must select exactly one format
for each jack and configure all of its parameters. More details on formats are
given below in Section 4.1.

Our system distinguishes between six different types of nodes: A source pro-
duces data and has one output jack. A sink consumes data, which it receives
from its input jack. A filter has one input and one output jack. It only mod-
ifies the data of the stream and does not change its format or format specific
parameters. A converter also has one input and one output jack but can change
the format of the data (e.g. from raw video to compressed video) or may change
format specific parameters (e.g. the video resolution). A multiplezer has several
input jacks and one output jack; a demultiplexer has one input jack and several
output jacks.

There are two different types of dependencies which have to be modeled:
First, a converter, multiplexer or demultiplexer might only support certain com-
binations of input and output formats. We use a concept called I0-partner: Each
input format is associated with one or more output formats and vice versa. Fur-
thermore, during format negotiation, format parameters will be changed to re-
flect the actual negotiation process, for instance, a video filter which can process
any kind of x- and y-resolution has to reflect the actual chosen video resolution
of its input format in its output format.

4 Format Definition

4.1 Format Classification and Specification

A sophisticated format classification and specification mechanism is necessary
to support automated format negotiation. The goal of the format classification
is to divide all possible multimedia formats into possible main categories; in our
approach, formats are classified by type and subtype. The format specification
then states more precisely the actual parameters within each category. Each
parameter is described by key and wvalue. For example, to completely specify a
format like video/raw, additional information is needed, like framerate, resolution
and color space. The values of parameters are stored as a set of values, or as a set
of ranges (non-intersecting). If no constraints are given on a certain parameter,
a wildcard-attribute can be used. For example, a display node might support
RGB color space (set with one entry), framerates of 1 to 30 fps (set with one
range), and arbitrary video resolutions (wildcard).



When trying to connect an output jack to an input jack, one has to check for
compatible formats. A intersection format of two formats exists if their major
and minor types are equal, all parameter keys in one format exist in the other
format and vice versa, and all intersections of the ranges of values of correspond-
ing parameter keys are a non-empty set. The existence of an intersection format
is called a match.

4.2 Extending the Format Definition

In order to perform a quality driven format negotiation, the definition of a format
has to be extended. Each entry in a set of possible parameter values is assigned a
weight reflecting its respective quality, e.g. a framerate of 30 fps receives a higher
quality value than a framerate of 15. This weight is in the range of 0 to 1. For
values which are specified as a range, the weights of the lower and upper limits
have to be specified. Wildcards, which are not resolved by creating intersection
formats, are assigned maximum weight. The weight of a format is computed as
the average of its parameters’ weights. An additional weighting factor for each
parameter can be used to stress the importance of a particular parameter. The
weight of an intersection format is determined accordingly.

As mentioned above, a quality driven format negotiation is performed which
only takes “costs” into account if two or more solutions with the same quality
exist. Since the total costs of an operation performed inside a node depends not
only on the type of operation but also on the used input and output formats, we
need three different measurements: the input and output costs associated with
a format and its specific parameter values and the costs of the operation itself.
Since all these costs strongly depend on the chosen values of parameters (e.g.
the video resolution), the costs have to be updated during negotiation. While
cost measurement is an interesting topic, it is not addressed in the context of
this paper.

5 Format Negotiation

After introducing the basic elements of the underlying model, we now define
the format negotiation problem: Given a high-level description of a desired mul-
timedia flowgraph (which is independent of physically possible connections and
formats), try to find a solution which provides the highest quality and meets
defined requirements. If two or more possible solutions are found, find a cost
optimal solution.

We will give an overview of our approach for solving the format negotia-
tion problem. Then, we will describe this approach in detail and point out the
interesting aspects, such as computational complexity.

5.1 Overview

The format negotiation is performed in three steps: First, the user graph has to
be specified. Basically, this graph only stores the structure of the desired multi-



media flowgraph. It contains the wanted sources, multiplexers, demultiplexers,
filters, and sinks, and connections between these; converters can but do not
have to be added. The format negotiation will create a valid connected multi-
media flowgraph. Although the user graph is independent of formats, additional
information can be associated with connecting edges. For example, a certain
framerate or resolution of a video stream can be specified. If no additional in-
formation is given, the format negotiation method described below will try to
find the solution with the best quality. There are several ways to obtain the user
graph. A user of the system could model a desired configuration; the application
could provide a user graph; or, finally, for simple examples with only sources and
sinks, the graph could be generated automatically.

The format negotiation graph is a representation, which is derived from the
user graph and which is used in the second step, the format negotiation. With
this extended representation, several sub-negotiations, or requests, are performed
to find an optimal solution in respect to the desired parameter, e.g. quality, and
format dependencies as described in Section 3. This step uses a modified algo-
rithm for solving the shortest-path problem. Afterwards, solutions from different
requests have to be merged. In this step values of format parameters are set
globally. Solutions which provide the same quality, are ranked according to their
costs. The following section describes the format negotiation in detail.

Finally, the result flowgraph can be created. This flowgraph reflects the user
graph in the way that the structure of both is the same, but additional necessary
converters are included into the result flowgraph and the individual nodes and
connections are properly configured in terms of formats.

5.2 Format Negotiation Procedure

As the edges in the user graph can be specified independently of possible con-
nections (in the sense of matching output and input formats), this graph can
not be used for format negotiation. An extended representation, the format ne-
gotiation graph, is needed. It contains all nodes of the user graph, but all former
edges are removed because they do not necessarily represent possible connec-
tions. Instead, all connections which represent a match are added as new edges
(see Section 4.1). These edges are denoted with the appropriate intersection for-
mats. It is possible that no new edges might be added during this step, so nodes
could remain unconnected. This is the case in the example of Figure 1(a): both
devices support the same resolutions, e.g. 640x480 and 800x600, but the camera
produces video data in YUV format, whereas the display is only able to present
RGB video frames. The only way to connect these two devices is to insert a
matching converter between them.

Therefore, in the next step, all existing “matching” converters are inserted
into the graph!. Then, all possible edges are created and denoted with intersec-
tion formats. This includes edges from already existing nodes to converters and

! This implies having a node registry mechanism, where all existing converters are
stored with their possible input formats.
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Fig. 1. Basic format negotiation procedure.

vice versa, but also edges from converters to converters. Figure 1(b) shows the
result of this step for our example. For simplicity, only one converter is added,
as this is capable of performing the required conversion and processing video
frames of arbitrary resolution.

Since converters might support several input and output formats, it is neces-
sary to take possible dependencies into account. For example, only specific com-
binations of input and output formats are allowed (see I0-partner in Section 3).
Thus, converters are split in the format negotiation graph: for each supported
combination of input and output formats, its respective node is split. Since the
used format definition allows sets of values as described in Section 4.1, splitting
is not only performed per IO-partner, but also per entry in the set of supported
parameter values. Figure 1(c) shows the result of the splitting operation.

Due to the fact, that all edges can be labelled with a weight which represents
the quality of the corresponding format (as defined in Section 4.2), the format
negotiation problem can now be treated as a graph problem. We are interested
in finding the path which maximizes the lowest weight on it. This edge is called
the “bottleneck” because it determines the overall quality of the solution. Since
all weights are positive, one can apply a modified version of Dijkstra’s algorithm
for solving the Single-Source-Shortest-Path-Problem (SSSP) [13]. Only the ini-
tialization function and the relaxation function, which “guides” the search, have
to be modified [14]: First, the starting node is labelled with infinite weight, all
other nodes with 0. During execution of the algorithm, these values are updated
with the current value of the “bottleneck” of the paths leading to this node. The
running time of Dijkstra-algorithm is O(n log n+m) with n denoting the number
of nodes and m the number of edges in the graph. Figure 1(d) shows the result
of this step; the higher resolution was chosen because it provides a better quality
which is reflected in a higher weight. While a single execution of the algorithm
solves the format negotiation problem for simple graphs like the one in Fig-
ure 1, in graphs with many multiplexers and demultiplexers a m:n-relationship
between sources and sinks is given. That is why we use a divide-and-conquer
approach, by dividing the graph into subgraphs. Figure 2 shows the different
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Fig. 2. Different subgraphs.

types of subgraphs. Subgraphs with only one source and sink can be handled
with one execution of the algorithm (a). In subgraphs with filters, each filter is
first treated as being a sink, and then during the next request as being a source
(b). Each input of a multiplexer is treated as a source; the multiplexer itself as
a sink (c). Subsequently, the multiplexer is treated as a source. Demultiplexers
are treated in a similar way.

Since a solution for one subgraph may lead to an unresolvable conflict or a
solution with lower quality later on, all possible solutions for all subgraphs have
to be computed. Fortunately, this number is very small in practice, since it is
only influenced by the number of converters for a specific format. The results
of all requests are then combined to obtain a valid solution. Again, the number
of possible combinations is very small because typically only a few solutions
for subgraphs can be found which fit together. As parameters are set at this
stage, possible dependencies as described in Section 3 have to be taken into
account. A general solution which can be used for arbitrary graphs would be the
protocol described in [12]. In the special case when there is one edge through
which all multimedia data flows, another approach can be used. This includes
graphs with one source or one sink only, but also more advanced graph layouts
with many sources, sinks, multiplexers and demultiplexer, as long as there exists
a “narrowest” location in the graph. Starting from this location, all parameters
can be set by simply propagating them upstream to all sources and downstream
to all sinks and the total costs can be evaluated.

6 Example

A more advanced example is shown in Figure 3. The user graph in (a) specifies
part of a video conference application. The idea is to insert the locally taken
picture into the picture of the counterpart. The picture-in-picture multiplexer
blends two video streams, one with a small resolution, the other with a high
resolution; in this application, the video data generated by a camera (the local
picture) and the video data, which is received compressed over a network con-
nection (the picture of the counterpart). The multiplexer can handle raw video
data in RGB or YUV format. A filter node, blending a certain logo like the
current clock, and a display node as sink complete the user graph. Both nodes
can only process RGB video data. Note, that the user graph does not have to
include any converters or format specific details.
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Fig. 3. User graph and result flowgraph of a video conference application.

Figure 3(b) shows the final result of the format negotiation: A converter for
decompression has been inserted to fulfill the format constraints of the multi-
plexer, which can only handle uncompressed video data. The other input-stream
of the multiplexer is scaled by an additional converter, since the second input
of the multiplexer can only handle small resolution pictures. The color space
converter from YUV to RGB is also inserted for connecting the specified logo
node. All these steps are performed in one subgraph, denoted in Figure 3(b) by
(i). Afterwards, the subgraph (ii) is resolved. As the given formats match, there
is no need to insert a converter.

It is noticeable that the YUV to RGB converter is inserted behind the mul-
tiplexer. Another solution would have been to convert the video data of both
streams individually before they are merged. Since this possibility provides the
same quality but needs two relatively expensive conversions instead of only one,
this solution was not generated.

7 Implementation

The format negotiation has been implemented in C++ within the Network-
Integrated Multimedia framework [15] for Linux. The modified Dijkstra’s algo-
rithm uses a STL priority queue to achieve best results. Even with the current
non-optimized implementation, the running time of the initialization, format
negotiation and construction of a multimedia flowgraph with a total of 20 for-
mats, 15 nodes and 24 edges in the negotiation graph takes only 40ms. A more
advanced example with 50 nodes and 100 edges takes 60ms on a standard PC
(P-IIT, 800 MHz) under Linux.



8 Results and Discussion

Given the flexible and quickly changing environment of distributed multimedia
applications, we considered the problem of defining a valid flowgraph while min-
imizing the necessary input by a user. In our scheme the user only needs to
specify an incomplete “user graph” containing the key components such as the
media sources and specific processing components. The format negotiation then
automatically selects additional components that are necessary for a consistent
flowgraph which provides the highest “quality” in terms of a weighting function.
Additionally, the total costs are considered if more than one solution exists. The
resulting components are then connected into a complete flowgraph that can
directly be used for media processing. This scheme avoids inflexible template-
based approaches and allows to immediate integration of new devices with new
format requirements.

We consider this format negotiation an essential part of a distributed multi-
media middleware. We plan on extending the basic technique presented here to
include cost driven format and QoS negotiation as well as resource allocation (in
particular for network bandwidth). Furthermore, further work is required on the
fast reconfiguration of flowgraphs given dynamic changes in stream requirements
and the environment.
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